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Abstract—This paper presents a new architecture for band-
pass delta-sigma modulators (BP∆ΣMs) featuring finite impulse
response (FIR) filters in the feedback path. The effectiveness
of FIR feedback in lowpass delta-sigma modulators (LP∆ΣMs)
has been well-established in improving loop-filter linearity and
robustness to clock jitter. Building upon these findings, we explore
the application of bandpass FIR filters in single-bit BP∆ΣMs.
By contrast to conventional BP∆ΣMs, the proposed technique
significantly reduces out-of-band quantization error contents in
the feedback signal. This approach is applicable to both discrete-
time and continuous-time implementations. Further, we show that
performance does not improve by increasing the number of FIR
taps beyond a certain point. However, we can enhance filtering
performance by employing non-equal coefficients within the filter.
To validate the efficacy of the presented approach, the paper
includes electrical simulation of a 4th-order active-RC BP∆ΣM.

Index Terms—Analog-to-digital conversion, delta-sigma mod-
ulation, continuous-time circuits, FIR DAC, clock jitter.

I. INTRODUCTION

BANDPASS ∆ΣMs digitize signals placed in an arbitrary
band by applying band-stop filtering to quantization

noise. Consequently, the noise is pushed out of a bandwidth
(BW) centered around the frequency fn (also called the
notch frequency) [1]. Their main application is to digitize
intermediate-frequency (IF) or radio-frequency (RF) signals in
wireless receivers, thus placing the analog-to-digital converter
(ADC) closer to the antenna. This way, most of the signal
processing can be moved to the digital domain and benefit
from technology downscaling and higher programmability [2]–
[8].

As RF ADCs need sampling frequencies in the GHz range,
state-of-the-art BP∆ΣMs are dominated by continuous-time
(CT) circuits [6]–[8]. CT∆ΣMs can operate at higher speeds
when compared to their discrete-time (DT) counterparts while
consuming less power. Furthermore, they are easy to drive
and possess the property of inherent anti-aliasing [9], [10].
The choice of the number of quantizer levels is perhaps the
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first choice that needs to be made in any ∆ΣM design. A
multi-bit quantizer enables the use of a noise transfer function
(NTF) with large out-of-band gain (OBG). However, a multi-
bit ADC is difficult to drive, particularly at the high sampling
rates needed in an RF ADC. A multi-bit DAC has problems
with element mismatch, which needs to be addressed with
techniques such as dynamic element matching. This increases
the hardware complexity and makes it difficult and costly to
reach the required performance in GHz-range applications.

A single-bit quantizer, on the other hand, has the advantage
of an ADC that is easy to drive and an inherently linear
feedback DAC [11], [12]. Unfortunately, however, the rail-to-
rail feedback DAC waveform necessitates increased loop-filter
power dissipation to achieve the desired linearity. Furthermore,
the modulator’s sensitivity to clock jitter is greatly increased.

This work follows up on the approach presented in [13] and
proposes to address these problems in a single-bit BP∆ΣM
using bandpass FIR (BP-FIR) feedback. The motivation is
similar to that in LP∆ΣMs [14], [15]. Like in the lowpass
case, BP-FIR feedback in a BP∆ΣM reduces the height of
the steps in the feedback DAC waveform, thereby reducing
the magnitude of the error signal that drives the loop-filter.
Furthermore, FIR feedback implemented using a semi-digital
FIR DAC maintains the inherent linearity of the single-bit
quantizer. Finally, sensitivity to clock jitter and comparator
metastability are reduced.

Alternatively, infinite impulse response (IIR) filtering has
been applied to the feedback path of a BP∆ΣM before
[16]. Apart from needing a multi-bit feedback DAC whose
performance is degraded due to element mismatch, the internal
feedback needed to implement an IIR filter also appears
challenging. An FIRDAC avoids these problems.

Following this introduction, the article is organized as
follows: Section II describes the proposed BP∆ΣM with
FIR filtering, considering a DT implementation. Section III
extends this approach to CT BP∆ΣMs and compares them
with conventional implementations. We consider two case
studies: a second- and a fourth-order loop-filter, and in this
context, we have discussed the calculation of coefficients using
two different methods. In Section IV, a comparison is made
between the use of FIR filter in LP∆ΣMs and BP∆ΣMs.
We will show how, in both cases, using proper FIR filtering
will emulate multi-bit operation. The considerations for the
optimum design of the FIR filter are addressed in Section
V. Finally, mapping these system-level concepts to circuit
implementation is discussed in Section VI, and conclusions
are drawn in Section VII.
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Fig. 1. Block diagram of a DT BP∆ΣM. (a) Conventional. (b) Proposed
with BP-FIR feedback. (c) BP-FIR filter structure and frequency response.

II. DISCRETE-TIME BP∆ΣMS WITH BP-FIR FEEDBACK

To build insight, we first consider a second-order discrete-
time BP∆ΣM with a center frequency fs/4 as shown in
Fig. 1(a). The NTF of the modulator is NTF(z) = 1+z−2 [9],
[10]. The objective is to add an FIR filter to the feedback [see
Fig. 1(b)] and rebuild the loop in such a way that the NTF
is restored. The input signal is at fn = fs/4 rather than DC,
hence a BP-FIR filter centered at fn [see Fig. 1(c)] must be
used for F (z) to filter the 2-level quantizer output sequence
before driving the feedback in the main path.

We can start by considering the general form of a lowpass
FIR (LP-FIR) filter with the following transfer function

FIRLP(z) =a0 + a1 · (z−1) + a2 · (z−1)2 + · · ·+
aNfir−1 · (z−1)(Nfir−1)

(1)

where Nfir is the number of taps in the FIR filter and ai
are the filter coefficients. The equivalent BP-FIR filter with a
passband centered at fs/4, is obtained by applying a z → −z2

transformation to a LP-FIR filter (1), yielding

FIRBP(z) =a0 + a1 · (−z−2) + a2 · (−z−2)2 + · · ·+
aNfir−1 · (−z−2)(Nfir−1).

(2)

The gain in the passband of the filter is determined by
summing all the coefficient values together. For simplicity,
the tap weights of the FIR filter F (z) are considered to be
the same and equal to 1/Nfir, so that the gain of the signal
transfer function (STF) at fs/4 is unity. Based on (2), we can
write the transfer function for this filter as follows

F (z) =
1

Nfir
·
Nfir−1∑
n=0

(−z−2)n. (3)

The delay introduced by the FIR filter would render the loop
unstable without a compensation path around the quantizer
[15]. This is shown in Fig. 1(b). For the modulators in
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Fig. 2. Impact of BP-FIR feedback in DT BP∆ΣM sequences. (a) Input to the
modulator, u[n] (fin = fs/4+BW/3). (b) Output, v[n]. (c) Resonator input
of a conventional BP∆ΣM, e1[n]. (d), (e) Resonator input of the proposed
BP∆ΣM, e2[n] for Nfir = 2 and Nfir = 4.

Figs. 1(a) and (b) to have identical NTFs, we see that the
following has to be satisfied

F (z) ·
(

−z−2

1 + z−2

)
+ Fc(z) =

(
−z−2

1 + z−2

)
(4)

hence, Fc(z) is calculated as

Fc(z) = [1− F (z)] ·
(

−z−2

1 + z−2

)
(5)

since F (z) has a unity gain at z = j (corresponding to f =
fs/4), [1−F (z)] has zeros at z = ±j. Consequently, we can
write it as

[1− F (z)] = (1 + z−2) · P (z) (6)

where P (z) is a polynomial. Using (6) in (5), Fc(z) is seen
to be

Fc(z) = (−z−2) · P (z). (7)

From the above discussion, it can be concluded that Fc(z) is
also an FIR filter. This indicates that the original NTF can
be restored exactly. Furthermore, the taps of Fc(z) are not
identical in general.

For a 2-tap FIR, where F (z) = (−z−2)[0.5 + 0.5(−z−2)],
Fc(z) turns out to be (−z−2)[1 + 0.5(−z−2)] which demon-
strates a BP-FIR followed by two delays in each path. The
simulation results of Fig. 1(a) and (b) are shown in Fig. 2.
The output of the modulator remains identical in both cases,
as the NTFs are the same. The main difference lies in the error
signal fed into the resonator. Thanks to FIR feedback, e2[n]
is considerably smaller with 2- and 4-tap FIR feedback when
compared to the case without an FIR filter (i.e., e1[n]). The
reasoning can be extended to arbitrary NTFs and to the CT
domain.
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input error signal in a conventional 2nd-order single-bit CT BP∆ΣM.

III. CONTINUOUS-TIME BP∆ΣMS

Fig. 3 shows the block diagram of the two common
approaches for implementing CT BP∆ΣMs with multi-path
feedback, utilizing an ideal resonator with a transfer function
HRes(s) = ωos/(s

2 + ω2
o). Here, ωo = 2πfn is the center

frequency. A 2nd-order loop-filter made up of a resonator
with fn = fs/4 is considered. The feedback loop can be
implemented in multiple ways. For example, Fig. 3(a) [17]
uses two different DAC pulse shapes, return-to-zero (RZ)
and half-delayed return-to-zero (HRZ), while Fig. 3(b) [18]
includes a non-return-to-zero (NRZ) DAC with a different
delay for each path. In both cases, multiple feedback paths
are required to implement the desired NTF.

In the main path of a conventional CT BP∆ΣM (Fig. 3),
the feedback signal allows passing both the digitized signal
(placed around fn = fs/4) as well as most of the out-of-
band frequency components of the shaped quantization error.
As a consequence, the DAC output v1(t) does not approach
the input signal u(t). Accordingly, the error signal at the input
node of the modulator e(t), which coincides with the input of
the resonator, displays considerable changes. This is illustrated
in Fig. 4 for a 2nd-order BP∆ΣM with a maximally flat NTF
with an OBG of 1.5.

As previously stated, this phenomenon imposes limitations
on the signal-to-noise ratio (SNR) in BP∆ΣMs, particularly

u t( ) v n[  ]

fs

z -1

- -

z -1/2

-z -2 -z -2

NRZ

DAC
1/Nfir

z -1

ωs

s2 + 2ω
k0

1/Nfir
k2 k1

NRZ

DAC

e(t)

v1( )t

(a)

(b)

(c)

Compensation (fast) path:

NRZ

DACz -1zz -1z

(d)

Precise ath :p by merged blocks

z -1z k0

Precise ath:p

z -1/2z -1z
ωs

s2 + 2ω
NRZ

DAC
k0

F( )z

F( )z

F( )z H   ( )s
Aux

v[ ]n

v[ ]n

v[ ]n

y[t]
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redefined by merging half delay, CT resonator, and the NRZ DAC into an
auxiliary block.

when opting for single-bit quantization to simplify the system
in high-speed design. However, this simplification is not
restricted to high speeds; even a low-speed design benefits.
In such scenarios, employing FIR feedback proves highly
beneficial, as it effectively filters the quantization error and
converts a high-speed 1-bit stream into a multi-level waveform.

A. 2nd-order CT BP∆ΣM with 2-tap BP-FIR DAC

Let us consider the simplest case of a 2nd-order BP∆ΣM as
shown in Fig. 5(a). The forward path is made up of a resonator
and a 1-bit quantizer, and the feedback paths are implemented
using delayed 2-tap BP-FIR DAC. While in DT BP∆ΣM with
FIR feedback we had the same delay of 2, before F (z) and
Fc(z), it turns out that another degree of freedom is needed
in the CT domain to match the loop-filter transfer function
with an equivalent DT BP∆ΣM. This is accomplished by
applying different delays to the main feedback path (1.5-cycle
delay) and the compensation path around the quantizer (2-
cycle delay).

The objective is to find the coefficients that restore the
correct NTF. Schreier’s toolbox [19] is used to get the de-
sired NTF(z) with an OBG of 1.5. The 2nd-order DT loop-
filter transfer function can be easily obtained from Ld(z) =
1/NTF(z)− 1 as follows

Ld(z) =
−0.6667

(z2 + 1)
. (8)

The equivalent DT loop-filter transfer function of the desired
CT BP∆ΣM, denoted as Lc(z), is derived using a method
similar to that found in [20]. The loop-filter of the modulator
consists of a fast path around the quantizer Fig. 5(b), which
is entirely in the discrete-time domain, and a precise path
that is responsible for the noise shaping in the modulator
Fig. 5(c). The precise path consists of both discrete-time
and continuous-time components. For simplification purposes,
we can aggregate the half delay, the CT resonator, and the
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NRZ DAC into an auxiliary block, denoted as HAux(s), and
redefine the precise path as shown in Fig. 5(d). Based on these
assumptions, the loop-filter of the modulator in Fig. 5(a) can
be written in the z-domain:

Lc(z) = k0 · Z{HAux(s)} · F (z) · z−1︸ ︷︷ ︸
Precise path

+Fc(z) · z−2︸ ︷︷ ︸
Fast path

(9)

where k0 represents the scaling gain of the resonator output.
Based on (9), to determine Lc(z) all we need to do is calculate
HAux(z), which can be expressed as follows

HAux(z) = Z [HRes(s) ·HDAC(s)] (10)

where HRes(s) represents the resonator transfer function and
HDAC(s) denotes the transfer function for a half-delayed NRZ
DAC pulse shape. In the s-domain, we define an arbitrary
rectangular DAC pulse as

HDAC(s) =
e−tds − e−(td+τ)s

s
(11)

here τ denotes the pulse width, and td signifies the applied
delay to the pulse. In the case of an NRZ DAC pulse delayed
by half, τ and td take values of 1 and 0.5, respectively.
Substituting (11) into (10), we obtain

HAux(z) = Z
[
HRes(s) · e−0.5s

s

]
−Z

[
HRes(s) · e−1.5s

s

]
.

(12)
In (12), we have delays that are not integer multiples of the
sampling period. Therefore, the use of a modified z-transform
is required [21]. Hence, we can rewrite (12) as

HAux(z) = Zm1

[
HRes(s)

s

]
−Zm2

[
HRes(s)

s

]
(13)

where mi = 1 − td is the fractional delay parameter and is
valid for 0 < mi < 1. In the case of a half-delayed NRZ DAC,
m1 = 0.5 and m2 = −0.5. Here we can eliminate a complete
delay from m2 and consider that m2 is a fractional delay
in the first sampling phase, so m2 = 0.5. We will take into
account the impact of this delay in our further calculations.
Given these, (13) can be derived using the residue theorem
[22] as follows

HAux(z) =
∑

poles of HRes(s)
s

Residues
[
HRes(s)

s
· em1s

z − es

]

−

 ∑
poles of HRes(s)

s

Residues
[
HRes(s)

s
· em2s

z − es

] · (z−1)

(14)

here the delay that is multiplied in the second part of (14) is
due to the assumption we made for m2. Therefore, HAux(z)
is determined as

HAux(z) =
1√
2
· z

−1(1− z−2)

1 + z−2
. (15)

By substituting (15) in (9) and equating Lc(z) = Ld(z), the
values of k0, k1, and k2 are obtained as −0.47, −0.5, and
−0.17, respectively. By following a similar procedure, the
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coefficients for CT BP∆ΣM assisted with BP-FIR with more
taps can be determined.

As illustrated in Fig. 6(a), the error processed by the loop-
filter, which is e(t) = u(t)−v1(t), is significantly reduced with
respect to conventional BP∆ΣMs with single-bit quantizer
(see Fig. 4). As a result, the linearity requirement of the
resonator in the loop-filter is relaxed, just like in CT∆ΣMs
with multi-bit quantization. The presence of F (z) accounts for
this functionality. As depicted in Fig. 6(b), F (z) is a bandpass
filter with a passband frequency centered at fn = fs/4. Thus,
the input signal component of v[n] is not affected, though the
power of the shaped noise is diminished. Therefore, the DAC
output, v1(t), has reduced out-of-band (quantization error)
content and only contains frequency components close to the



5

(b)

(a)

u t( ) v n[  ]

- -

k2

z -1/2

k0

-

ωs

s2 + 2ω

ωs

s2 + 2ω

z -1

z -1

NRZ
DAC

e(t)

v1( )t fs

k1

-z -2

1/Nfir 1/Nfir1/Nfir

-z -2

-z -2-z -2

k3k4km

F( )z

F( )z

F( )z

F ( )zc

y[ ]t

u t( ) v n[  ]

- -

k2

z -1/2

k0

-

ωs

s2 + 2ω

ωs

s2 + 2ω

z -1

z -1

k1
NRZ
DAC

e(t)

v1( )t fs

-z -2

1/Nfir 1/Nfir1/Nfir

-z -2

-z -2-z -2

k3k4km

F( )z

F( )z

F( )z

F ( )zc

y[ ]t

(c)

z -1.5
ωs

s2 + 2ω
NRZ
DAC

F( )z

Main Path1:

ωs

s2 + 2ω

1

l t( )
1

~

ωs

s2 + 2ω
NRZ
DAC

F( )z

Main Path2:

z -1.5

z -2zF( )z
ωs

s2 + 2ω
NRZ
DAC

Main Path3:

Compensation (Fast) Path:

NRZ
DACz -2z

l t( )
0

l [n]
0

[  ]n

l t( )
2

~

l t( )
3

~

l t( )
0

~

l t( )
3

l [n]
3

l t( )
2

l [n]
2

l t( )
1

l [n]
1

k2

k1

k0

Fig. 8. Proposed 4th-order CT BP∆ΣM with Nfir-tap BP-FIR DAC in: (a) CRFB structure, and (b) CRFF-B structure. (c) Open-loop impulse response
analysis of the modulator paths.

input u(t) around fs/4.
Fig. 7(a) and (b) illustrate the power spectral density (PSD)

of the output and the SNR versus input amplitude of the
modulator in Fig. 5, respectively. In both cases, excellent
alignment is observed between the CT∆ΣM and its DT
counterpart. Achieving this remarkable agreement involves
compensating for the degradation induced by sinc(1/4), as
is the case in CT BP∆ΣM with NRZ DACs and fn = fs/4
sampling. To achieve this, a degradation (≈0.9) is applied to
the input before reaching the summation node. Through this
approach, the maximum stable amplitude (MSA) is matched
to that of the DT BP∆ΣM.

B. 4th-order CT BP∆ΣM with Nfir-tap BP-FIR DAC

The presented approach can be applied to high-order
BP∆ΣMs with Nfir-tap BP-FIR filtered DACs. This is illus-
trated for a 4th-order BP∆ΣM with two different structures:
a cascade of resonators with feedback (CRFB) shown in
Fig. 8(a), and a cascade of resonators with feedforward and
feedback (CRFF-B) shown in Fig. 8(b).

The process starts by obtaining a 4th-order DT loop-filter
transfer function. For a maximally flat NTF with an OBG of
1.5, we have

Ld(z) =
−0.7749z2 − 0.5585

(z2 + 1)2
. (16)

Regardless of the structure type, the coefficients can be deter-
mined using the technique discussed in the previous section.
However, performing mathematical calculations for higher-
order NTFs can be tedious and impractical in real designs.
This is due to the complexity of the transfer function, which
includes additional poles and zeros caused by finite gain-
bandwidth (GBW) in the active blocks (such as op-amps or
transconductors) and parasitics of the circuit. Determining the
exact locations of these additional poles and zeros from circuit
simulations is a challenging task that is not straightforward.

Therefore, in this section, we follow a robust numerical
method known as “closed-loop fitting” [23] to determine the
coefficients and taps of the compensation FIRDAC. The main
idea behind this method is based on rewriting the relationship
between NTF and the loop-filter transfer function as

Ld(z)× NTF(z) = 1− NTF(z). (17)

Let us denote the impulse response corresponding to Ld(z)
and NTF(z) by l[n] and h[n], respectively. We can express
equation (17) in time domain as follows

l[n] ∗ h[n] = δ[n]− h[n]. (18)

According to Fig. 8(c), depicting the various paths of
the 4th-order modulator, we can determine that l[n] =

[l̃1[n] l̃2[n] l̃3[n] l̃0[n]]

[
K
Fc

]
. Further, let h0[n] = l̃0[n] ∗ h[n],

h1[n] = l̃1[n] ∗ h[n], h2[n] = l̃2[n] ∗ h[n], and h3[n] =
l̃3[n] ∗ h[n]. Subsequently, (18) can be written as



h1[1] h2[1] h3[1] h0[1] 0 0 · · ·
h1[2] h2[2] h3[2] h0[2] 0 0 · · ·
h1[3] h2[3] h3[3] h0[3] h0[1] 0 · · ·
h1[4] h2[4] h3[4] h0[4] h0[2] 0 · · ·
h1[5] h2[5] h3[5] h0[5] h0[3] h0[1] · · ·
h1[6] h2[6] h3[6] h0[6] h0[4] h0[2] · · ·

...
...

...
...

...
...

. . .




k0
k1
k2
Fc



=



1
0
0
0
0
0
...


−



h[1]
h[2]
h[3]
h[4]
h[5]
h[6]

...


.

(19)
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TABLE I
TABLE OF CALCULATED COEFFICIENTS FOR A 4TH-ORDER CT BP∆ΣM

WITH OBG = 1.5 AND EQUAL TAPS (1/NFIR ) IN F (z)

2-Tap 3-Tap 4-Tap 5-Tap 6-Tap 7-Tap 8-Tap
k0 −0.097 −0.097 −0.097 −0.097 −0.097 −0.097 −0.097
k1 −0.662 −0.739 −0.815 −0.892 −0.968 −1.045 −1.121
k2 0.054 0.054 0.054 0.054 0.054 0.054 0.054
k3 −0.527 −0.591 −0.623 −0.643 −0.656 −0.665 −0.672
k4 −0.193 −0.405 −0.511 −0.574 −0.617 −0.647 −0.670
k5 - −0.147 −0.344 −0.463 −0.542 −0.598 −0.640
k6 - - −0.123 −0.308 −0.431 −0.518 −0.584
k7 - - - −0.109 −0.283 −0.408 −0.501
k8 - - - - −0.1 −0.266 −0.391
k9 - - - - - −0.094 −0.253
k10 - - - - - - −0.089

In a practical implementation, these impulse responses can be
easily obtained through simulation, which takes into account
the impact of all non-idealities. By solving the equation
mentioned above, we can determine the weighting coefficients.
Table I summarises the calculated coefficients for a 4th-order
CT BP∆ΣM with 2-tap to 8-tap FIR filter.

Analyzing the impulse response of the CT system and
comparing it with the DT system is essential for identifying
the expected matching crossing points. Fig. 9(a) illustrates this
concept in the context of a 4th-order CT BP∆ΣM with a 4-
tap FIR filter. The additional delay introduced by F (z) affects
samples 2, 4, 6, and 8. However, as discussed in Section II, by
employing a BP-FIR filter with an equal number of taps Fc(z),
we can effectively compensate for this distortion. Fig. 9(b)
demonstrates the conformity of the CT NTF with the DT NTF
after this compensation process.

The first tap in the FIR filter plays a critical role, as
it is the closest stage to the quantizer and is particularly
susceptible to data-dependent jitter resulting from comparator
metastability. However, in all the cases discussed, the proposed
structure incorporates a sufficient delay between the output
of the modulator and the first tap in the FIR filter. This
characteristic alleviates the requirements for quantizer in terms
of metastability.

The decision between CRFB and CRFF-B structures de-
pends on the intended application of the ADC. CRFF-B
is preferred for two reasons. Firstly, this structure offers
the advantage of removing one of the FIRDACs from the
feedback, resulting in power and area savings. Secondly, the
incorporation of a forward path around the second resonator
contributes to better reducing the input swing of the second
resonator. Therefore, we can highlight that in the proposed
architecture, the benefits of the BP-FIR DAC in reducing error
signal swings extend beyond just the input of the first resonator
and also apply to the input of the second resonator. This is
depicted in Fig. 10, where the input swing of the second
resonator exhibits a remarkable reduction when compared
to the conventional case without FIR filtering. However, the
main limitation of the feedforward approach, in general, is
its inability to effectively handle close to in-band interferer.
As demonstrated in Fig. 11, the proposed CRFF-B exhibits
STF peaking near fs/4. This peaking can potentially lead the
modulator to saturate when the ADC needs to operate in the
presence of strong blockers close to in-band, as is the case in
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certain radio applications.

Considering that we are restoring the original NTF with
this approach, it does not result in an improvement in SNR.
However, we can apply the same approach to synthesize a
more aggressive NTF with a higher-order and/or a higher OBG
while considering the stability of the system. A higher OBG
corresponds to lower in-band gain for the NTF, which can lead
to an enhanced SNR. This effect is demonstrated in Fig. 12
for the PSD of a 6th-order CT BP∆ΣM with OBGs of 1.5
and 1.7, using 8-tap BP-FIR feedback.
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IV. COMPARISON BETWEEN LP∆ΣMS AND BP∆ΣMS
WITH FIR FEEDBACK

In general, for a single-bit operation, assuming that the
modulator output bitstream is v[n] = ±1, the magnitude of
transitions in v[n] is 2. In a LP∆ΣM assisted with FIRDAC,
this is decreased to 2/Nfir thanks to the action of F (z). As
a result, the step magnitudes are Nfir times smaller, and in
the input summation node the signals are similar to a multi-
bit LP∆ΣM [see Fig. 13(a)]. The same condition applies to
BP∆ΣM. As shown in the previous sections, we can emulate
multi-bit operation by using a single-bit DAC and assisting it
with a BP-FIR filter. In this case, the magnitude of transitions
decreased, but not in a manner similar to the LP∆ΣM. Due
to the limitation imposed by fn = fs/4, the sampling occurs
only four times during one period of the input signal. As a
result, the signal can vary a lot from sample to sample. In
such a situation, although we have levels in between, these
levels are separated in the time domain [see Fig. 13(b)].
These discussions hold significance when aiming to explore
the jitter performance of the modulator, since clock jitter is
proportional to the height of the transitions in the DAC output
[24]. Generally, the jitter is composed of an input related
component and a quantization noise related component. In
both cases of LP/BP∆ΣMs, no matter whether using multi-
bit operation without FIRDAC or single-bit with FIRDAC,
the jitter component associated with the quantization noise
is reduced since this part of the jitter is proportional to the
height of the transitions in the DAC output, while the jitter
component related to the input signal is not changed. Bearing
in mind that the variation in the input signal of a BP∆ΣM is
much more than that of a LP∆ΣM. Recall that even multi-bit
BP∆ΣM has the same limitation.
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Fig. 13. Feedback signal to the modulator [v1(t)] in single-bit operation,
multi-bit operation, and single-bit assisted with FIRDAC in: (a) LP∆ΣMs.
(b) BP∆ΣMs.

V. BP-FIR FILTER CONSIDERATIONS

A. Number of FIR taps

The jitter performance of a 4th-order BP∆ΣM with FIR-
DAC is shown in Fig. 14(a) for a −7 dBFS input. The
result matches our expectations based on the discussion in
the previous section. The performance of the system will not
improve much after 6-tap, while in a similar case of LP∆ΣM
with FIRDAC, jitter immunity improves by increasing number
of FIR taps up to 10-12 taps. Another metric in the decision
for the number of FIR taps is the modulator input error signal
swing, e(t), that is shown in Fig. 14(b) for a −5 dBFS input.
Note that the signal swing is reduced with Nfir. However, this
reduction becomes less effective again after 6-tap. In addition,
as seen from Table I, k1 increases with Nfir and it turns out that
the passband gain of the calculated Fc(z) increases with Nfir
as shown in Fig. 14(c). This phenomenon increases the second
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resonator output swing. This extra swing can be compensated
by adding a feedforward path around the resonators, although
this would lead to a higher STF peak. Therefore, there will be
a trade-off between hardware complexity, STF peaking, and
signal swing.

B. Non-equal FIR taps
To this point, all the discussion was based on considering

equal taps (1/Nfir) for the F (z) filter. We can improve the
performance of the filter by using non-equal coefficients. This
technique was used before in LP∆ΣMs (see [14] and [25]), but
like other concepts in this paper, we can apply it to BP∆ΣMs.
All we need to do is keep the sum of all the filter coefficients
equal to 1 to maintain the unity gain in the passband. As
an example, a 7-tap FIR with equal coefficients is compared
with an optimized non-equal version of it in Fig. 15(a). The
optimized F (z) shows better out-of-band rejection – similar
to an FIR with more taps. Although the coefficients (a1−7)
are not equal, we can still implement the filter by using unit
elements. Considering the value of a unit element 1/36, the
coefficients are a1,7 = 2unit, a2,6 = 5unit, a3,5 = 7unit,
and a4 = 8unit. With these changes in mind, a new set of
coefficients should be calculated for Fc(z) to keep the NTF
correct, as depicted in Fig. 15(b). In the next section, we will
use this optimized filter for our circuit implementation.

C. Mismatch between FIR taps
At first glance, it might seem that by applying complicated

feedback with a lot of weights (the FIR filter), the robustness
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Fig. 16. Monte Carlo SNR simulation results for a 4th-order CT BP∆ΣM
(CRFF-B) with BP-FIR DAC and 10% random mismatch in all tap weights.

of the system will degrade. However, this is not a correct
assumption; random mismatch only alter the filter response.
We performed Monte Carlo simulation by adding variation to
the coefficients in all three FIR filters of a CRFF-B structure
[see Fig. 8(b)] and determined the variation in ADC SNR.
Fig. 16 shows the result for 1000 runs, considering different
number of FIR taps. The tight distribution demonstrates the
design’s sturdiness.

VI. CIRCUIT IMPLEMENTATION

In this section, we will show how this system-level concept
can easily be applied to well-known BP∆ΣM circuit struc-
tures. We will present a case study of a single-bit CT BP∆ΣM
with a 7-tap BP-FIR DAC featuring non-equal coefficients
[F (z) = (2/36)−(5/36)z(−2)+(7/36)z(−4)−(8/36)z(−6)+
(7/36)z(−8) − (5/36)z(−10) + (2/36)z(−12)] using a CRFF-
B structure. Fig. 17(a) illustrates the schematic of the circuit.
The calculated coefficients (k0 to k9) for such a system are
−0.097, −1.045, 0.054, −0.732, −0.793, −0.727, −0.561,
−0.350, −0.158, and −0.036. The modulator is tuned for
fn = 200 MHz when clocked at fs = 800 MHz. A fully-
differential circuit – not shown in Fig. 17(a) for simplicity
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– is implemented, and a 1-pole macromodel with main non-
ideal effects is considered for the op-amps [see Fig. 17(c)]
in this example. The final result will be compared to a
BP∆ΣM of the same order and structure but in convectional
form and without FIRDAC that is implemented with identical
macromodel building blocks to have a fair comparison.

A. Resonator Circuit
The first step involves choosing between different structures

for the resonator, a decision that should be made by consider-
ing the frequency range of operation. In this case, we will use
positive-feedback single op-amp resonators [3] (see Fig. 18).
This type of resonator is formed by wrapping positive feedback
around a bandpass filter created by serially connecting an
active lowpass filter and a passive highpass filter. Due to the
imperfection of the circuit in a real implementation – finite
GBW of amplifiers – the resonator experiences degradation in
terms of gain in the passband. Several methods to overcome
this limitation were suggested in [6] and [26]. This structure
can be simplified and implemented in differential mode, and
the transfer function of this resonator can be expressed as

HRes(s) = α · ωos

s2 + 2ζωos+ ω2
o

(20)

where ωo = 1/
√
RnRpCnCp is the resonant frequency.

It has been demonstrated in [3] that when the values of

capacitors and resistors are selected such that Cp = 2Cn

and Rn = 2Rp, the damping factor (ζ) becomes zero. In this
scenario, the outcome is an ideal resonator transfer function,
and α simplifies to −2Rp/Rin.

B. BP-FIR DAC

There are several methods for implementing feedback
DACs. Resistive DACs are more common with these types
of resonators based on amplifiers. By properly choosing the
resistor value at the input node of the modulator, we can
adjust the noise level to an optimum value. Here, we choose a
resistive DAC with reference switching [see Fig. 17(b)] for
all three FIRDACs. The coefficients of the outermost FIR
filter [F1(z)] are Rdac1,7 = (36/2)R1, Rdac2,6 = (36/5)R1,
Rdac3,5 = (36/7)R1, and Rdac4 = (36/8)R1. The second FIR
filter [F2(z)] also has the same coefficient, but with a scaling
(k2) compared to the first FIR. The third FIR filter [Fc(z)]
has different coefficients for all the taps: Rdac1 = R3/k3,
Rdac2 = R3/k4, ..., and Rdac7 = R3/k9. The forward
coefficients k0 and k1 will be implemented using R2 and Rf2 ,
respectively, and a non-inverting amplifier in the summation
node. As described in Section V, we may need a forward
path around both resonators to compensate for the high output
swing of the second resonator due to the gain in the passband
of Fc(z). This is carried out using Rf1 .

In order to complete the feedback loop, some additional
delays are needed, implemented by D flip-flops. If we pass
the output sequence through a D flip-flop, it will be delayed
by 0.5-cycle. One cycle delay is achieved by serializing two
D flip-flops with inverting clocks. In a similar manner, we
can make a 2- and 1.5-cycle delay in the output, as shown in
Fig. 17(d). It is clear that the system is sensitive to jitter in both
the negative and positive edges of the main clock signal to the
ADC, but the feedback loop filtering effectively suppresses it.
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C. Simulation results

The output PSD of the overall BP∆ΣM is shown in
Fig. 19(a). The jitter performance of the single-bit modulator
for white clock jitter, with an RMS value of 12.5 ps (1% rela-
tive RMS jitter), is improved by about 10 dB when compared
with the conventional form. Another important improvement
is shown in the PSD of the feedback current to the first
resonator, which indicates that out-of-band components around
dc and fs/2 are suppressed by more than 100 dB thanks
to the filtering of the FIRDAC. This reduces the amplifier’s
input current swing by more than 3.5 times, as illustrated in
Fig. 19(c). This relaxes the linearity requirement and could
offer a subsequent advantage in terms of power consumption
during circuit implementation.

VII. CONCLUSION

A new kind of BP∆ΣM has been proposed that uses a band-
pass FIR filter in the feedback loop. This approach reduces the
magnitude of the error signal at the modulator input node. As
a result, loop-filter resonators mostly process error signals,

thereby relaxing their requirements for dealing with signal
excursions, including linearity and clock jitter. A systematic
methodology is shown for the calculation of coefficients, both
through a mathematical method and a more practical approach
based on the analysis of the open-loop impulse response. It has
been shown that using non-equal coefficients can improve the
FIR filter performance. Additionally, the optimal number of
FIR taps has been discussed, revealing that the improvement
achieved through the FIR filter saturates after 6–8 taps, which
is lower compared to LP∆ΣM, where the choice of FIR taps is
usually higher than 10-tap. The presented technique is versatile
and can be applied to any arbitrary BP∆ΣM architecture
implemented with either DT or CT circuits.
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[8] A. Sayed, T. Badran, M.-M. Louërat, and H. Aboushady, “A 1.5-to-
3.0GHz tunable RF sigma-delta ADC with a fixed set of coefficients
and a programmable loop delay,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 67, no. 9, pp. 1559–1563, Sep. 2020.

[9] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma
Data Converters. Wiley-IEEE Press, 2nd ed., 2017.

[10] J. M. de la Rosa, Sigma-Delta Converters: Practical Design Guide.
Wiley-IEEE Press, 2nd ed., 2018.

[11] J. Harrison, M. Nesselroth, R. Mamuad, A. Behzad, A. Adams, and
S. Avery, “An LC bandpass ∆Σ ADC with 70dB SNDR over 20MHz
bandwidth using CMOS DACs,” in IEEE ISSCC Dig. Tech. Papers, Feb.
2012, pp. 146–148.

[12] J. Ryckaert, J. Borremans, B. Verbruggen, L. Bos, C. Armiento, J. Cran-
inckx and G. Van der Plas, “A 2.4 GHz low-power sixth-order RF
bandpass ∆Σ converter in CMOS,” IEEE J. Solid-State Circuits, vol. 44,
no. 11, pp. 2873–2880, Nov. 2009.

[13] J. Gorji, S. Pavan, and J. M. de la Rosa, “Bandpass ∆Σ modulators
with FIR feedback,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2023, pp. 1–5.

[14] O. Oliaei, “Sigma-delta modulator with spectrally shaped feedback,”
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50,
no. 9, pp. 518–530, Sep. 2003.

[15] S. Pavan, “Finite-impulse-response (FIR) feedback in continuous-time
delta-sigma converters,” in Proc. IEEE Custom Integr. Circuits Conf.
(CICC), Apr. 2018, pp. 1–8.

[16] J. Chi, J. Wagner, J. Anders, and M. Ortmanns, “Digital interferer
suppression and jitter reduction in continuous-time bandpass Σ∆ mod-
ulators,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017,
pp. 1–4.

[17] O. Shoaei and W. M. Snelgrove, “Design and implementation of a
tunable 40 MHz-70 MHz Gm-C bandpass ∆Σ modulator,” IEEE Trans.
Circuits Syst. II, Analog Digit. Signal Process., vol. 44, no. 7, pp. 521–
530, July 1997.



11

[18] N. Beilleau, H. Aboushady, and M.M. Loureat, “Using finite impulse
response feedback DACs to design Σ∆ modulators based on LC filters,”
in Proc. IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2005,
pp. 696–699.

[19] R. Schreier, Delta Sigma Toolbox. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/19-delta-
sigma-toolbox, 2023.

[20] H. Aboushady and M.-M. Louerat, “Systematic approach for discrete-
time to continuous-time transformation of Σ∆ modulators,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2002, pp. 229–232.

[21] M. Ortmanns, and F. Gerfers, Continuous-Time Sigma-Delta A/D Con-
version, Fundamentals, Performance Limits and Robust Implementa-
tions. Springer, 2006.

[22] K. Ogata, Discrete-Time Control Systems. Prentice-Hall, 1987.
[23] S. Pavan, “Systematic design centering of continuous time oversampling

converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3,
pp. 158–162, Mar. 2010.

[24] H. Tao, L. Toth, and J. M. Khoury, “Analysis of timing jitter in bandpass
sigma-delta modulators,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 46, no. 8, pp. 991–1001, Aug. 1999.

[25] A. Abdelaal, M. Pietzko, M. A. Mokhtar, J. G. Kauffman, and M. Ort-
manns, “FIR filter with symmetric non-equal coefficients for CT delta-
sigma modulators,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2021, pp. 1–5.

[26] S. Kim, C. Rhee, and S. Kim, “A wide dynamic range multi-mode band-
pass continuous-time delta–sigma modulator employing single-opamp
resonator with positive resistor-feedback,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 67, no. 2, pp. 235–239, Feb. 2020.

Javad Gorji (Student Member, IEEE) received the
B.S. degree in electrical engineering from Azad
University, Tehran, in 2013, and the M.S. degree
(with honors) in electrical engineering from Shahed
University, Tehran, in 2017. He is currently pursuing
a Ph.D. degree at the University of Seville. In 2021,
he joined the Institute of Microelectronics of Seville
(IMSE-CNM) as a research scholar supported by
an FPI scholarship from the Ministry of Science
and Innovation of Spain, where he is involved in
the design of analog-to-digital converters for RF

applications. His research interests include analog and mixed-signal integrated
circuit designs for high-speed data converters and frequency synthesizers.

Shanthi Pavan (Fellow, IEEE) obtained the B.Tech
degree in Electronics and Communication Engi-
neering from the Indian Institute of Technology,
Madras in 1995 and the M.S and Sc.D degrees from
Columbia University, New York in 1997 and 1999
respectively. From 1997 to 2000, he was with Texas
Instruments in Warren, New Jersey, where he worked
on high speed analog filters and data converters.
From 2000 to June 2002, he worked on microwave
ICs for data communication at Bigbear Networks in
Sunnyvale, California. Since July 2002, he has been

with the Indian Institute of Technology-Madras, where he is now the NT
Alexander Institute Chair Professor of Electrical Engineering. His research
interests are in the areas of high speed analog circuit design and signal
processing.

Dr. Pavan is the recipient of several awards, including the IEEE Circuits
and Systems Society Darlington Best Paper Award (2009), the Shanti Swarup
Bhatnagar Award (2012) and the Swarnajayanthi Fellowship (2009) (from the
Government of India). He is the author of Understanding Delta-Sigma Data
Converters (second edition), with Richard Schreier and Gabor Temes, which
received the Wiley-IEEE Press Professional Book Award for the year 2020.
Dr. Pavan has served as the Editor-in-Chief of the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, and on the editorial boards
of both parts of the IEEE Transactions on Circuits and Systems. He has served
on the technical program committee of the International Solid State Circuits
Conference, and been a Distinguished Lecturer of the Solid-State Circuits and
Circuits-and-Systems Societies. He currently serves as the Vice President of
Publications for the IEEE Solid-State Circuits Society, and on the editorial
boards of the IEEE JOURNAL OF SOLID-STATE CIRCUITS and the IEEE
SOLID-STATE CIRCUITS LETTERS. He is a fellow of the Indian National
Academy of Engineering, the Indian National Academy of Science and an
IEEE fellow.
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