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Tensile and shear strength of bimaterial interfaces within composite 

materials 

Abstract: The determination of the tensile and shear strengths of homogeneous 

materials can be easily performed by standard tensile and shear (e.g. Iosipescu) 

tests. Nevertheless, when the determination of these strengths involves a 

bimaterial interface, the standard samples present bimaterial corner configurations 

at their free-edges which generate singular stress fields. In the presence of these 

singular stress fields, the tensile and shear stress distributions are strongly non-

uniform at these edges, where failure initiates and propagates along the bimaterial 

interface. The apparent strength obtained from these tests is not representative of 

the regularized strength of the bimaterial interface. To eliminate the stress 

singularities, a small notch is made on one of the materials along the interface 

perimeter, in this study. This idea, originally proposed by Lauke and Barroso 

(Compos. Interface, 18:661-669, 2011) for ascertaining tensile strength, is now 

adapted to ascertain shear strength, using a modified geometry of the Iosipescu 

sample, and it has also been generalized to configurations involving composite 

materials. Both proposals, for the tensile and shear tests, are performed using the 

bimaterial configuration of a composite and an adhesive; a bimaterial interface 

which typically appears in adhesive joints with composites. The local notch 

geometry is defined using semi-analytical tools developed by the authors and 

numerically verified by Finite Element models. The modified bimaterial 

geometries, tested under tension, demonstrated a higher tensile strength. However, 

the modified bimaterial geometries tested in shear did not show any clear 

influence over the failure load with or without the notch in the particular 

bimaterial configuration tested in this study. 

Keywords: Adhesive joints, Interfacial strength, Stress singularities, Iosipescu 

test, Joining. 
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1 Introduction 

Failure prediction for structural components containing bimaterial interfaces may 

require knowledge of the normal and shear strengths of the interface. Failure criteria 

typically compare some combination of stresses/strains/displacements with their 

corresponding critical values. This study is mainly motivated by the need to ascertain 

some of these critical values (in particular the tensile and shear strengths values), for 

potential failure paths in adhesive joints which involve bimaterial interfaces (Figure 1), 

for the purposes of predicting failure initiation. From the three potential failure paths 

shown in Figure 1 (which start at the critical corner point, where failure typically begins 

[2]), path “a” involves only one material (adhesive), whose tensile and shear strengths 

can easily be determined by standard test procedures. However, paths “b” and “c” 

involve bimaterial interfaces with different fibre orientations, which might have 

different strengths. Along failure path “b”, the fibre orientation is perpendicular to the 

interface plane, whereas along path “c”, the fibre orientation is parallel to the interface 

plane. 

 

Figure 1. Failure paths initiated at the critical corner point of an adhesive joint. 

The problem arises when trying to determine the strengths (e.g., the tensile strengths) 

associated with these alternative failure paths. Figure 2 shows the natural choices for the 

a

b

c
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bimaterial specimen configurations for determining the tensile strength. Figures 2a, b 

and c correspond to failure paths “a”, “b” and “c” respectively. Figure 2d will be 

discussed later. Nevertheless, samples in Figures 2b and c (butt samples with a flat 

bimaterial interface) have, at the free edges of the samples, bimaterial corner 

configurations which give rise to stress singularities due to the material properties 

mismatch. The tensile stresses are non-uniform along the interface. Thus, the tensile 

strength at the instant of failure (calculated as the failure load divided by the cross-

sectional area of the sample) is not representative of the nominal adhesion strength, 

under tension, of the interface. The transverse section of these butt samples is of a 

rectangular shape whose width, represented in Figure 2, is usually much larger than its 

thickness. 

 

Figure 2. Reference configurations for determining the adhesion strength: a) adhesive 

bulk configuration, b) bimaterial configuration with the fibre perpendicular to the 

interface, c) bimaterial configuration with the fibre parallel to the interface, d) 

bimaterial configuration with the fibre parallel to the interface and perpendicular to the 

sample plane. 

 

a b c d

Bimaterial
corners
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Lauke and co-workers [3-6] proposed bimaterial samples with a curved interface to 

avoid the stress singularities. This idea was also used by Wetherhold and Dargush [7] 

and Chowdhuri and Xia [8] to determine the adhesive strength between epoxy-

aluminum joints, and also by Wu [9]. Lauke and Barroso [1] proposed a simpler 

modification of the butt-test with a flat interface, including a little notch at the free edge, 

which generates a particular local bimaterial corner configuration and avoids the 

singular stress field. Although both proposals require the calculation of the corner 

angles where the singularities vanish, the second option is easier to manufacture. In any 

case, there are no proposals, to the best knowledge of the authors, for the shear strength 

determination of bimaterial interfaces. The use of notches to eliminate the stress 

singularities in the Iosipescu test, with a bimaterial configuration, is the main 

contribution of the present work. Moreover, the presence of composite materials in the 

new tensile and shear configurations make the calculations of the stress singularities not 

straightforward, due to the non-isotropic behaviour of the composite material. In the 

present work this has been solved using the tool developed by the authors to calculate 

the stress singularities in multimaterial anisotropic corners [12,13], which also 

represents a difference with previously mentioned works. 

The idea of using notches to relieve stress singularities is not new (e.g. Bijak-

Zochowski et al. [10]) using photoelasticity images. An alternative idea, changing the 

bimaterial geometry configuration locally, but not using notches, was proposed by 

Wang and Xu [11] for two isotropic materials. 

In the present study, the determination of the tensile and shear strengths of bimaterial 

interfaces similar to the configurations “b” and “c” in Figures 1 and 2 will be 

considered. The proposal made by Lauke and Barroso [1] will be used in order to 
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determine the tensile strength. In order to determine the shear strength, a new proposal, 

based on a modification of the Iosipescu geometry, will be defined in which the shear 

stress singularities at the free edges are removed. To achieve this objective, analytical 

calculations for the local corner configurations will be performed in order to determine 

the correct angle at which the stress singularity vanishes. Numerical models will be 

developed to check the uniformity of the shear stress distribution along the flat interface 

in the shear test. The confirmation of the elimination of the stress singularity in the 

tensile test sample was carried out beforehand in [1] for a bimaterial (both isotropic) 

configuration. Finally, fabrication of the samples and tests will be carried out in tension 

and shear for the bimaterial configurations “b” and “c” in Figure 2. 

 

2 Definition of the modified tensile and shear test samples 

At a bimaterial corner, assuming linear elasticity and anisotropic behaviour of materials, 

the asymptotic stress field can be singular due to the mismatch in the material 

properties. Using a polar coordinate reference system with the centre at the corner tip, 

the stress state is defined by the asymptotic series expansion 





n

k

)k(
ijkij )(fr·K),r( k

1

      (1) 

Where Kk are the Generalized Stress Intensity Factors, k are the stress singularity 

orders, and )(f )k(
ij   are the characteristic angular shape functions associated to this 

corner. Both k and )(f )k(
ij   can be computed semi-analytically following [12,13], 

where all manipulations are analytical except for the final calculation of the roots of a 

characteristic equation, which are computed numerically. 
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For the two bimaterial configurations under analysis (with the fibre orientation 

perpendicular and parallel to the interface) and for all the corner angles considered (see 

Figures 2 and 3), there is only one singular term (0<<1) which dominates the stress 

field as r0 because the associate stresses become unbounded. This fact has been 

verified by using the Argument’s Principle (e.g. [13,14]), which is an excellent tool for 

identifying the number of roots of a holomorphic function in a particular region of the 

complex plane. This observation can be explained by the small corner angle (occupied 

by the bimaterial configuration), considered equal to 180º in Figure 2 (and less than 

180º in Figure 3) which, from a geometrical point of view, does not generate a re-

entrant corner configuration. Recall that in homogeneous materials there are no stress 

singularities at all for such corner angle values (this can be easily shown by applying the 

Cauchy Lemma at both traction free corner faces). Thus, the stress singularity order 

computed is essentially caused by the material mismatch as already mentioned above. 

Due to the material symmetries, the solution for the generalized plane strain problems 

for the present corner configurations can be decoupled into the in-plane and anti-plane 

solutions [15], the singular stress state corresponding to the in-plane solution. It has 

been checked using procedures developed in [12,13,16] that there are no singularities in 

the anti-plane solutions for the present corner problems for the corner angles less than, 

or equal to 180º. 

The stress singularity order  defines the singular character of the stress field and its 

value depends on the local configuration of the corner (which includes the elastic 

properties of the materials, local geometry and local boundary conditions). Thus, for the 

aim of the present study, it is only necessary to find the local geometry which makes  

zero or negative, for the stresses to be regular (non-singular) at the corner tip. The 

elastic properties of the carbon fibre reinforced plastic (CFRP, AS4-8552) and the 
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epoxy adhesive (FM-73M0.6) are: E11=141.3 GPa, E22=E33=9.58 GPa, G12=G13=5.0 

GPa, G23=3.5 GPa, 12=13=0.3, 23=0.32 (where subindex “1” defines the fibre 

direction) and E=3.0 GPa, =0.35, respectively. The calculations of the stress 

singularity orders were performed for the two basic bimaterial configurations under 

investigation and are summarized in Figure 3. The results shown in Figure 3 were 

obtained by modifying the corner angle of the adhesive at the interface, because it is 

much easier to do the machining on the epoxy side rather than on the CFRP side. 

The results in Figure 3 show that, for the configurations associated with the failure path 

“b” (see Figure 1), with the fibre perpendicular to the interface, the stresses are not 

singular for a corner angle of the epoxy adhesive (the angle  measured from the 

interface), for   65º. For the configuration associated with the failure path “c”, with 

the fibre parallel to the interface, the singularity disappears for a corner angle of the 

adhesive side, for  75º. For the sake of simplicity, the selected angle for both 

configurations is 65º, which essentially eliminates the singularity in both bimaterial 

configurations. 

 

Figure 3. The order of stress singularity  for the two bimaterial configurations in 

generalized plane strain. 

The real 3D tensile test sample in the 0º configuration (Figure 2b) has the entire 



90o

epoxy

CFRP 0o

Angle


(degrees)

Order of stress
Singularity
(CFRP 0o)

Order of stress
Singularity
(CFRP 90o)

90 0.219697 0.100345

80 0.152230 0.031065

75 0.112593 - 0.008421

70 0.067840 - 0.052401

65 0.016722 - 0.102193

60 - 0.042452 - 0.159563



90o

epoxy
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interface perimeter with the same bimaterial corner configuration, (the fibres being 

perpendicular to the interface plane as shown in Figure 2b), with the actual local corner 

configuration being visible in Figure 3 (left configuration). 

In contrast, in the 90º configuration (Figure 2c), the longest side (width) of the 

transversal section has the fibres parallel to this side, while the shortest side (thickness) 

of the transversal section (which is not visible in Figure 2c but it is schematically shown 

in Figure 2d), has the fibres parallel to the interface plane (as in the longest side), but 

perpendicular to this shortest side. 

It is therefore understood that the two situations, represented as corresponding to 

independent samples in Figure 2 (c and d), appear for the same sample in the 90º 

configuration, at the two different sides.  

The order of stress singularity has also been calculated for the fibre orientation 

corresponding to the configuration shown in Figure 2d, and, somewhat surprisingly, is 

exactly equal to that of case 2b. Thus, the corner angle   65º fulfils the condition of 

eliminating the stress singularities for all the material configurations considered. 

Figure 4 and Figure 5, respectively, show the modifications carried out on the tensile 

sample (Figure 4) and shear, so-called Iosipescu, sample (Figure 5). As will be 

explained in detail below, the notch in the tensile sample is made all around the 

interface perimeter, whereas the notch in the shear sample is only made along the short 

sides of the interface section, in view of the shear load direction. This is because, as 

mentioned above, there is no anti-plane stress singularity for the bimaterial corner angle 

of 180º. Thus, no anti-plane stress singularity can be activated along the long interface 

side (width) in this shear test. 
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Figure 4. Machining of the tensile samples to eliminate the stress singularity. 

 

 

Figure 5. Machining of the shear (Iosipescu) samples to eliminate the stress singularity. 

In the tensile notched butt-test samples, the local machining of the coupons was carried 

out all around the interface perimeter using a tool with r=3 mm (Figure 4). The 

machining was delicate, as the depth required to achieve the desired 65º configuration is 

only 0.281 mm. This modification, as mentioned previously, is similar to that proposed 
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in [1]. 

In the Iosipescu samples, the local machining was only performed along the shortest 

free edges of the interface (Figure 5). Recall that the long, non-machined side of the 

interface section in the Iosipescu test is subjected to a kind of tearing mode (anti-plane 

mode) along this line. Nevertheless, as mentioned above, the calculations carried out to 

determine the order of stress singularity revealed that there is no stress singularity 

associated with this mode. Recall that in all the configurations of bimaterial interfaces 

analysed in Figure 2, the in-plane behaviour is not coupled with the antiplane behaviour 

due to the presence of the symmetry planes of the bimaterial configuration. 

All samples were inspected using a microscope at (×50). No damage was observed due 

to the machining process and the measured values of the angle produced by the 

machining were quite accurate (65º ± 2º). 

A Finite Element Method (FEM) model was developed in order to check, from a 

numerical point of view, the suppression of the stress singularity at the free edge and the 

degree of uniformity of the shear stresses along the interface in the modified shear 

sample. Loading in the FEM model was applied following the indications in [17]. In the 

model, an appropriate mesh refinement towards the corner tip was used, with an 

element size of 10-3 mm adjacent to the free edge. 
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Figure 6. Finite element model of a) the original, and b) the modified configurations, 

and real pictures of the samples. 

Figure 7 shows the shear stress distribution along the interface of the planar model, for 

the bimaterial sample with the fibre direction perpendicular to the interface. Although 

the real test sample geometry would more likely behave in a plane stress state, in Figure 

7, the shear stress distribution has also been calculated for the plane strain state. 

 

Figure 7. Finite element results for the shear stresses along the interface, for the original 

and modified configurations of the Iosipescu sample (fibre orientation in the composite 

lamina is perpendicular to the interface). 

It can be clearly seen in Figure 7 that, as predicted, the notch at the free edges 

-150

-125

-100

-75

-50

-25

0
0 2 4 6 8 10 12

MPa

Distance (mm)

Plane Strain (without notch)
Plane Strain (with notch)
Plane Stress (without notch)
Plane Stress (with notch)

-100

-50

0
0 0.2 0.4 0.6 0.8 1

Plane Stress (without notch)
Plane Stress (with notch)

-100

-50

0
11 11.2 11.4 11.6 11.8 12

Plane Stress (without notch)
Plane Stress (with notch)



13 
 

eliminates the stress singularities. Specifically, in the geometry without the notch, the 

shear stresses become unbounded as far as the mesh is refined (assuming a linear elastic 

analysis), whereas in the case of the notched geometry, the shear stresses tend to vanish 

with progressive mesh refinements. However, firstly due to the lack of symmetry of the 

bimaterial sample and, secondly, to the presence of the free edges and the notch itself, 

the shear stress distribution along the interface is not absolutely constant, but quite 

uniform, which means that a representative shear strength is expected to be determined 

at the instant of failure, as happens when the Iosipescu test is used to determine 

stiffness/strength properties for homogeneous composite specimens. 

The corresponding results for the tensile samples are shown in Figure 8, in which, the 

composite material has the fibre direction perpendicular to the interface. Both, plane 

strain and plane stress conditions have been computed for configurations with and 

without notch. In Figure 8, the normal stress at the interface (xx) divided by the remote 

nominal tensile stress (0) is represented along the interface (only half of the model has 

been calculated due to the symmetry). It can be clearly seen that the configurations 

without notch have stress singularities at the free edge, while configurations with the 

notch do not have the stress singularity and give rise to stress distributions which are 

mainly constant along the interface. 
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Figure 8. Finite element results for the normal stresses along the interface, for the 

original and modified configurations of the tensile sample (fibre orientation in the 

composite lamina is perpendicular to the interface). 

3 Test results 

3.1 Manufacturing of the samples 

To prepare the samples, already cured composite laminates were used. Adhesive layers 

were laminated adjacent to the composite laminates (Figure 9a), using a vacuum bag for 

each five adhesive laminas to help the compactation process. Then, the adhesive 

laminate was cured according to the curing cycle supplied by the manufacturer (90 

minutes, 120ºC) (Figure 9b). The adhesive was laminated to get a little larger thickness 

than that of the cured composite laminate (Figure 9c), to allow a final thickness control 

in the machining process (Figure 9d). Finally, the samples were polished, before testing, 

to eliminate surface irregularities. 
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Figure 9. a) Lamination of the adhesive, b) samples ready to autoclave curing, c) 

samples after curing, d) machining of samples to get constant thickness. 

3.2 Tensile tests 

Tensile samples were tested in a universal testing machine under tension at a cross-head 

speed of 2 mm/min. Load-displacement curves for tensile samples with the carbon fibre 

lamina at 0º (parallel to the load direction) are shown in Figure 10, whereas the curves 

for the case with the fibre direction at 90º (perpendicular to the load direction) are 

shown in Figure 11. Eight samples were tested for each bimaterial configuration, four 

samples with a notch and four samples without a notch. The load-displacement curves 

shown in Figures 10 and 11 were obtained directly using the displacement information 

from the grips, without using an extensometer. 

The tensile strength, calculated as the failure load divided by the cross-sectional area of 

the sample, was evaluated. Both in the straight samples (without a notch) and in the 

modified samples (with a notch), the cross-sectional area was taken as the nominal one 

(thickness × width) from the un-notched section. Table 1 shows the summary of tensile 

test results. 



16 
 

 

Figure 10. Tensile tests for samples with the carbon fibre at 0º. 

 

Figure 11. Tensile tests for samples with the carbon fibre at 90º. 
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90º without notch 9.1 12.7 9.8 10.0 10.4 1.6 15.2 

90º with notch 12.3 8.5 16.3 13.6 12.7(1) 3.3 25.7 

(1) Mean value removing test “With notch – 2” is 14.1 MPa. 

Table 1: Summary of tensile test results. 

The tensile test results in Table 1 show that the presence of the notch on the epoxy 

(adhesive) part has a clear influence on the failure load. In the samples with the carbon 

fibre at 0º (associated with the failure path “b”), the presence of the notch increases the 

mean tensile strength value by 92% (in fact, the failure in the notched specimens does 

not occur just at the interface, but a little way into the epoxy side as well), whereas in 

the case of the carbon fibre at 90º (associated with failure path “c”), the tensile strength 

increase is 22% when all the results are considered. This increase is greater (35%), if the 

test result corresponding to sample “With notch – 2” is not taken into account, as this 

shows very different failure behaviour when compared to the other notched samples 

(see Figure 11). An explanation for the higher sensitivity to the notch elimination in the 

0º configuration may be associated with the higher value of the order of stress 

singularity of the 0º configuration (=0.219697), compared to the 90º configuration 

(=0.100345), both for the un-notched case, i.e. =90º (see Figure 3). 

 

3.3 Shear tests 

Shear samples were tested using the Iosipescu device. Figures 12 and 13 show the load-

displacement curves for the samples with the carbon fibres at 0º and 90º, respectively. 

Similarly, as in the case of the tensile tests, eight samples were tested (4 without the 

notch and 4 with the notch). The nominal shear strength was calculated by dividing the 
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failure load by the nominal cross-sectional area of the samples at the reduced neck 

section of the Iosipescu samples, where the bimaterial interface is located. Table 2 

shows the summary of the shear test results. 

 

Figure 12: Shear (Iosipescu) tests for samples with the carbon fibre at 0º. 

In the shear tests, in both test configurations (with the fibres at 0º and 90º), there is no 

clear influence of the presence of the notch on the failure load. The apparent difference 

in behaviour, mainly in displacements at the beginning of the tests (see Figure 13), 

between samples with the notch and samples without the notch, was found to be a small 

clearance of the jigs, which was corrected later. The presence of this clearance does not 

affect the failure load of the samples. 
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Figure 13: Shear (Iosipescu) tests for samples with the carbon fibre at 90º. 

 Shear strength (MPa) Mean 

(MPa) 

Std. Dev. 

(MPa) 

CV 

(%) Sample 1 2 3 4 

0º without notch 31.9 33.3 32.2 32.4 32.5 0.59 1.8 

0º with notch 31.7 24.9 31.2 23.4 27.8(1) 4.28 15.4 

90º without notch 28.0 30.4 28.6 30.6 29.4 1.3 4.4 

90º with notch 31.1 23.9 30.3 30.6 30.7(2) 0.4 1.3 

(1) Mean calculated removing samples “With notch – 2” and “With notch – 4” is 31.4 MPa. 

(2) Mean calculated removing sample “With notch – 2” which failed outside the interface. 

Table 2: Summary of shear (Iosipescu) test results. 

In the 0º configuration, samples with notch 2 and 4 should be discarded from the 

statistics as the failure in one of these cases was outside the interface, and in the other 

case, the sample presented some damage near the notch which gave rise to a premature 

failure. In the 90º configuration, the sample with notch 2 failed outside the interface as 

well and should not be taken into account for the calculations. These samples show, in 

Figures 12 and 13, a completely different behaviour from the rest of tests. 
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In the shear tests with the carbon fibre at 0º, even after eliminating samples 2 and 4 

(with notch), which failed at a lower load than samples 1 and 3, the mean shear strength 

does not change significantly (32.5 MPa without notch, and 31.4 MPa with notch). 

Something similar occurs with the shear tests where the carbon fibre is oriented at 90º, 

where only a slight increase in the shear strength appears, which is probably associated 

more with the dispersion of the experimental tests than with a clear influence of the 

notch over the failure. 

4 Concluding remarks 

The original idea by Lauke and Barroso [1] to evaluate the tensile strength of bimaterial 

joints was extended to anisotropic bi-materials and shear tests (Iosipescu) in order to 

evaluate the apparent adhesive shear strength of bimaterial joints with composite 

materials. In the present study, and in the framework of failure prediction of adhesive 

joints with composite materials, the tensile and shear strengths of bimaterial joints were 

obtained. 

The free-edge stress singularities typically appearing in bimaterial samples were 

removed by adequate machining of the local configuration of the corner, creating a 

small notch at the interface on the adhesive side. The correct angle of this little notch 

was determined using a semi-analytical procedure to calculate the stress singularities 

and looking for the range of notch angles where the stresses become regular (bounded). 

Then, the samples were manufactured accordingly. FEM models were performed in 

order to confirm the disappearance of the stress singularities. 

Tensile test results demonstrated the strong influence of the notch on the failure load 

and consequently, on the measured tensile strength value, almost multiplying by two the 

tensile strength in the case of the carbon fibre oriented parallel to the load direction (0º). 
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In contrast, shear (Iosipescu) tests did not show any clear influence of the notch over the 

shear strength, as the failure load was not altered in a demonstrable way. 

A possible reason for this difference between the tensile and shear test results could be 

the difference in the interface area affected, or influenced, by the stress singularities. In 

the tensile test, most of the cross-sectional area of the sample is affected by the presence 

of the singularity stress field, and the whole perimeter of the interface needs to be 

machined with notches. By contrast, in the shear tests, only the edges along the 

thickness side are affected by the shear stress singularities and need to be machined. An 

additional explanation for the observed difference between the tensile and shear 

specimens is that in shear tests the interface zone close to the short free edge is more 

prone to plasticity effects in shear than in tension (thinking initially about the von 

Misses plasticity criterion, for example). 

Previous works, already referenced, have also shown this strength increment in the 

tensile configuration when eliminating the stress singularity configuration [1,11]. 

Nevertheless, the important strength increment of a 92% was not referenced previously. 

This significant increment might be associated to the stiffness mismatch, higher than for 

isotropic material configurations, due to the presence of the unidirectional carbon fibre 

laminate. 

In the case of shear stresses, Chowdhuri and Xia [8] tested isotropic bimaterial 

configurations in shear but using cylindrical samples in torsion. This gives rise only to 

shear stresses along the interface but with a non-uniform distribution, no shear strength 

values being reported for the non-singularity configuration to be compared with. 

It can be concluded that, for the bimaterial configuration under analysis, a correct 

tensile strength determination in bimaterial composite joints requires the presence of the 
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notch (whose angle value depends on the local corner configuration), whereas for the 

shear strength determination, the presence of the stress singularity has not been shown 

to influence the failure load value. 
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