

 Depósito de investigación de la Universidad de Sevilla

 https://idus.us.es/

This is an Accepted Manuscript of an article published by IEEE in IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS on

2024, available at: https://doi.org/10.1109/TCSI.2023.3338056

“© 2021 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in other Works”

https://idus.us.es/
https://doi.org/10.1109/TCSI.2023.3338056

1

On the Use of Artificial Neural Networks for the
Automated High-Level Design of Σ∆ Modulators

Pablo Dı́az-Lobo, Gustavo Liñán-Cembrano and José M. de la Rosa, Fellow, IEEE

Abstract—This paper presents a high-level synthesis method-
ology for Sigma-Delta Modulators (Σ∆Ms) that combines be-
havioral modeling and simulation for performance evaluation,
and Artificial Neural Networks (ANNs) to generate high-level
designs variables for the required specifications. To this end,
comprehensive datasets made up of design variables and perfor-
mance metrics, generated from accurate behavioral simulations
of different kinds of Σ∆Ms, are used to allow the ANN to
learn the complex relationships between design-variables and
specifications. Several representative case studies are considered,
including single-loop and cascade architectures with single-bit
and multi-bit quantization, as well as both Switched-Capacitor
(SC) and Continuous-Time (CT) circuit techniques. The pro-
posed solution works in two steps. First, for a given set of
specifications, a trained classifier proposes one of the available
Σ∆M architectures in the dataset. Second, for the proposed
architecture, a Regression-type Neural Network (RNN) infers the
design variables required to produce the requested specifications.
A comparison with other optimization methods – such as genetic
algorithms and gradient descent – is discussed, demonstrating
that the presented approach yields to more efficient design
solutions in terms of performance metrics and CPU time.

Index Terms—Design Automation, Optimization, Neural Net-
works, Analog-to-Digital Converters, Sigma-Delta Modulation.

I. INTRODUCTION

S IGMA-Delta Modulators (Σ∆Ms) are one of the best
techniques to implement Analog-to-Digital Converters

(ADCs) in a wide range of applications – from instrumen-
tation, biomedical devices and automotive sensors to com-
munications. In spite of their potential advantages in terms
of robustness and efficiency, the design of high-performance
Σ∆Ms involves a number of tasks carried out in a top-
down/bottom-up design flow from systems to chip, which
requires a certain degree of know-how and expertise. In most
cases, the main design bottleneck is at the system level,
where finding the best Σ∆M architecture for a given set of
specifications, and mapping those specifications onto circuit-
level electrical design parameters become crucial to get a good
design choice [1], [2].

Over the years, a number of design methodologies and CAD
tools have been presented to automate the design of Σ∆Ms.
These tools are mostly focused on optimizing system-level

Manuscript submitted August 16, 2023; reviewed October 7, 2023.
This work was supported in part by Grants PID2019-103876RB-I00,

PID2022-138078OB-I00, funded by MCIN/AEI/10.13039/501100011033, by
the European Union ESF Investing in your future, by ERDF A way of making
Europe, and by ”Junta de Andalucı́a” under Grant P20-00599.

Pablo Dı́az-Lobo, Gustavo Liñán-Cembrano and José M. de la Rosa are with
the Institute of Microelectronics of Seville, IMSE-CNM (CSIC/University
of Seville), Parque Tecnológico de la Cartuja, C/ Américo Vespuccio
28, 41092 Sevilla, SPAIN, e-mail: [pabdiaz,jrosa]@imse-cnm.csic.es, gus-
tavo.linan@csic.es

tasks – such as architecture selection, loop-filter design, be-
havioral modeling, simulation and sizing, as well as electrical
design and validation [3]–[9]. The most general approach is
based on the so-called optimization-based synthesis method,
where an optimizer is combined with a performance evaluator
(usually a simulator) to find the optimum design. A number
of optimization algorithms have been proposed to this end,
including genetic, simulated annealing, or multi-objective evo-
lutionary Pareto fronts, to cite a few [3], [4], [7], [10].

Recent works demonstrate that Artificial Intelligence (AI)
algorithms can be applied to automate, or to assist, analog cir-
cuit design [11]–[19]. Their use in Σ∆Ms has been employed
to improve the performance metrics of Σ∆Ms and other ADCs
by means of linearization or calibration techniques based on
Artificial Neural Networks (ANNs) [20], [21]. Some authors
have proposed using ANNs in an optimization-based synthesis
methodology [11]–[13], [15], [20], [22]. In some of them, the
ANN has been trained to replace the simulator, while other
approaches consider ANNs as an optimization engine. In the
latter case, the ANN is trained to size a given system for a set
of specifications. Thus, the ANN should be trained with sized
solutions known from prior optimized designs. Once the ANN
is trained, it is able to automate the sizing process and generate
optimum design solutions for new sets of specifications which
were not considered in the training dataset. This method has
been successfully applied to design essential analog circuits
such as operational amplifiers [11].

In our initial publication on this topic [23], we investigated
the use of manually designed neural networks in deriving
high-level design variables for some Σ∆Ms architectures.
Here we present the evolution of this initial concept into a
self-contained comprehensive framework for automatic archi-
tecture selection and high-level design. In this framework,
neural networks with optimized architectures, combined with a
library of classifiers topologies, are the core of a methodology
that, starting from very high-level and general specifications,
can swiftly provide users with a suitable topology and its
corresponding high-level design variables in negligible time
(less than 50 milliseconds in our simulations). We demonstrate
the versatility of our approach, applicable to either single-bit
or multi-bit quantization, single-loop or cascade configuration,
discrete or continuous time operation, with a case study that
embeds an extensive dataset encompassing various Σ∆M
architectures, including 2nd-order SC-Σ∆M, 3rd- and 4th-
order cascade 2-1 and 2-1-1 SC-Σ∆M, as well as a 2nd-
order Gm-C Σ∆M. The networks have been automatically
optimized and trained to learn the complex mapping from
specifications onto high-level design variables, enabling them
to predict the most suitable set of design variables for a

2

Modulator
Specifications

Resolution ?
Bandwidth?

Power cons.?

Behavioral
Simulation

&
Optimization

Circuit Design and Implementation

Nonlinear
Equations

Heuristic
Know-How

Heuristic
Know-How

Sigma-Delta
Synthesis Tool

Schreier’s
Toolbox

Architecture Selection
(L, OSR, B) ?

ADC

DAC

∫g
1

g'
1

∫g
2

g'
2

-

+

+

-

-

+

+

-
+

(GBW, SR, Adc,…) ?

OptimiserSIMSIDES

Fig. 1. Usual design flow diagram applied to the design of Σ∆Ms.

given set of specifications. The results achieved with our
proposed method are compared with those obtained using
other optimization algorithms, demonstrating very significant
improvements in terms of the CPU time.

The paper is organized as follows. Section II revisits prior
art on design methodologies and EDA tools for Σ∆Ms, with
emphasis on the optimization-based system-level sizing pro-
cedure. Section III describes the proposed ANN-based high-
level synthesis methodology. Section IV presents the results
for some case studies encompassing four different modulator
architectures. Section V discusses the comparison with other
existing approaches. Finally, conclusions are drawn in Section
VI.

II. BACKGROUND AND PRIOR ART ON
OPTIMIZATION-BASED SYNTHESIS OF Σ∆MS

The design methodology of Σ∆Ms follows the well-known
hierarchical top-down/bottom-up approach. In this divide-and-
conquer strategy, a Σ∆M is partitioned into several abstrac-
tion levels (system-level, building block-level, circuit-level
and device/physical-level), so that at each abstraction level, a
design (or sizing) process takes place, to transmit (or to map)
the system specifications in a hierarchical way – from Σ∆M
architecture to circuit [24].

This process is conceptually depicted in Fig. 1 for the
different tasks involved in the system-level design of Σ∆Ms:
from specifications to building-block/circuit-level implemen-
tation. Starting from the Σ∆M specifications; i.e. Effective
Number of Bits (ENOB) and signal bandwidth (BW), the first
design problem consists of finding out the best modulator
architecture that meets such specifications with the minimum
power consumption. At the first step, ideal design equations
– without including the effect of circuit errors – of the
Noise Transfer Function (NTF) and ENOB are used to get
an estimation of main Σ∆M system-level parameters, i.e.
OverSampling Ratio, OSR, loop-filter order, L, and number
of bits of the embedded quantizer, B. Once these parameters
are known, the Σ∆M is analyzed by using more accurate
nonlinear model equations. Schreier’s MATLAB® Σ∆-toolbox
is widely used to do this task [25]. This toolboox is a collection
of MATLAB scripts that include nonlinear models of Σ∆Ms,
which can be applied to automatically synthesize a Σ∆M
Loop Filter (LF), providing the desired noise shaping while
keeping system stability [1], [9].

Once the Σ∆M architecture has been selected, the next
design task is to analyze the influence of circuit nonidealities
to obtain the specifications of main Σ∆M building blocks, i.e.
the amplifiers, comparators, switches, etc. To this purpose,
an accurate – but computationally efficient – performance
evaluator, usually a simulator, is used. The modulator needs
to be modeled at a high abstraction level, albeit taking into
account the effect of nonideal physical phenomena at circuit
and device level.

An efficient technique to do this is the so-called be-
havioral modeling approach, which allows to simulate
Σ∆Ms in a fast but precise way [4]. Fig. 1 high-
lights some exemplary behavioral simulators which are nor-
mally used by Σ∆M designers. One of them is the so-
called SIMSIDES [8]– a time-domain simulator developed
in the MATLAB/SIMULINK environment and available at
www.imse-cnm.csic.es/simsides. This tool is able
to simulate any arbitrary Σ∆M, by considering the effect
of main circuit nonidealities. Behavioral models included in
SIMSIDES have been verified by electrical simulations and
experimental measurements from state-of-the-art chips in order
to guarantee the accuracy of the simulations. Behavioral mod-
els of building blocks are implemented in C-coded MATLAB
S-functions to keep high accuracy and high computational
efficiency – typically a 216 clock-cycle simulation takes a few
seconds CPU time [4].

Another widely used system-level simulation approach –
mostly focused on CT-Σ∆Ms – is based on the so-called lifting
method [7]. This approach allows to speed up the simulation
by using Discrete-Time (DT) solvers and hardware (GPU) ac-
celeration, drastically reducing the simulation time – typically
hundreds or thousands of simulations are done within seconds
– while keeping high accuracy. Based on this technique, a
web-based tool named Sigma-Delta Synthesis Tool [26] is
available at www.sigma-delta.de. This tool also provides
a design automation environment for CT-Σ∆Ms, including
Signal Transfer Function (STF) engineering and automated
LF scaling. Behavioral simulators are usually guided by an
optimization engine to explore the multi-dimensional design
space and automate the high-level sizing process. The final
objective is to find the optimum solution, i.e. the best set of
design variables (building-block performance parameters), that
satisfy the Σ∆M ADC specifications with the minimum power

3

dissipation. This paper proposes replacing the optimizer–
behavioral simulator system with neural networks that will
learn, from extensive datasets, how to map a point P within the
specifications space onto a point Q in the high-level design-
variables spaces. This work assumes that the first steps of
the synthesis procedure shown in Fig. 1, i.e. the internal
architecture of a given modulator type, the scaling of loop-
filter coefficients, Out-of-Band Gain (OBG), etc. are given.
However, ANNs might also be applied to this purpose. The
procedure – beyond the scope of this paper – would essentially
be the same as that followed in this work but applying the
sizing process at a higher abstraction level. In such a case, the
design variables would be the loop-filter coefficients, and the
Σ∆M subcircuits (integrators, resonators, comparators, etc.)
should be considered as ideal blocks.

III. PROPOSED METHODOLOGY

A. Problem Definition

As stated in previous section, the high-level design of a
Σ∆M involves solving two types of problems. First, for a
given vector of specifications, Γ̄, a suitable architecture has
to be selected from a family of alternatives {Aj}, where
j represents available topologies. In our case, specifications
typically involve ENOB, BW, Signal-to-Noise Ratio (SNR),
Signal-to-Noise and Distortion Ratio (SNDR), Total Harmonic
Distortion (THD), a Figure of Merit (FOM)1, etc., but they
might also include constrains imposed by higher hierarchy
considerations if the modulator is to be embedded in a more
complex system (e.g. forcing discrete-time vs. continuous time
operation or vice-versa, defining a maximum area occupation,
setting a maximum power consumption, etc.), and even in-
clude constrains imposed by application-related scenarios (i.e.
military, industrial, space, automotive, mass market,...). Based
on the selected topology, a vector of architecture-dependent
design variables ϵ̄(Aj) needs to be found in such a way that
specifications Γ̄ are not only met but also optimized according
to some predefined metrics.

B. Proposed Solution

For the first problem, finding a suitable architecture from
the information in our dataset, we propose to consider it as
obtaining an inference from a trained classifier, C, which maps
system performance metrics (Γ̄i) into a categorical variable
Aj (the selected architecture). The process of selecting and
training the classifier is described in detail in Section III-D.
The second problem must yield the design variables which
guarantee that the received set specifications are met for
the chosen Σ∆M architecture. Here we propose utilizing
Regression-type Neural Networks (RNNs), trained on com-
prehensive datasets, to infer these design variables. Hence,
our methology, detailed in the flow charts in Fig. 2, can be
basically described by these two operations:

Aj = C(Γ̄i); ϵ̄k = RNN(Γ̄i, Aj) (1)

1The Schreier’s Figure of Merit – denoted as FOMS [1] and widely adopted
by Σ∆M community – will be used in this work.

Where C(·) is a call to the classifier to obtain an architecture,
and RNN(·) is a call to the neural network inference pro-
cess to generate the design variables. Section III-E provides
detailed information on how we propose to optimally design
and train the regression neural networks. Utilizing pre-trained
classifiers and networks offers the significant advantage of
reducing the inference time, i.e., the time required to select
a modulator architecture and obtain its high-level design vari-
ables from a new set of specifications, to just a few millisec-
onds. Furthermore, memory limitations and CPU time-related
concerns are alleviated as they pertain to the dataset generation
and training processes, which need to be executed only once
or infrequently when incorporating new datasets/architectures.
However, the primary drawback of this approach is that the
quality of the obtained solution heavily relies on the accuracy
(in a broad sense) of both the classifier and the networks,
which, in turn, are highly dependent on the quality of the
available dataset [27].

C. Designing the Dataset

Our proposal is to format every input di in the dataset as
a triplet of the form {Ci, Γ̄i, ϵ̄i} where Ci is a categorical
variable which defines the architecture of the modulator, Γ̄i

is a vector of Σ∆M performance metrics, (i.e., a point in the
specifications space) and ϵ̄i is a vector which contains the
design variables (i.e., a point in the design-variables space)
that produced such metrics in a behavioral simulation of this
modulator architecture using SIMSIDES [2], [4]. Regardless
of the specific modulator architecture, Γ̄i must always be made
up of the same performance metrics for all the architectures
being incorporated into our framework. This is simply justified
by the fact that the classifier needs to operate on Γ̄ across
the whole dataset in order to find the best-suited solution
for a particular set of specifications Γ̄i. However, different
modulators will require different high-level design variables to
be found. Thus, if a unified ϵ̄i format is to be used for all the
architectures under consideration, we will need to define the
ϵ̄i vector with as many elements as there are different design
variables across all the modulators in our dataset, forcing
us to pad with ”N/A” (Not Applicable), and handle it, all
inputs that do not correspond to the specific modulator in
each particular dataset entry. Though this solution offers the
advantage of using a single dataset file, it lacks scalability as
it necessitates recreating this file every time a new architecture
is added to our framework and retraining the classifier and the
RNN from scratch. Alternatively, one can choose to create a
specific dataset in the form of {Ci, Γ̄i, ϵ̄i} for each modulator,
where Ci remains the same for all inputs in each particular
dataset. Individual networks can then be tailored for each
case, optimizing them specifically for their corresponding
architectures. This approach enables us to optimize a network
for each modulator, training it solely on specific {Γ̄i, ϵ̄i} data,
rather than seeking an optimum and more complex solution
that handles the entire dataset encompassing all architectures.
Thus, (1) suffers an apparently simple but conceptually crucial
transformation becoming:

Aj = C(Γ̄i); ϵ̄k = RNNAj (Γ̄i) (2)

4

Arch.1

Arch.2

Arch.N

Family of Architectures

Generate
design var

vectors
(thousands)

Datasets

Dataset Arch. 1

Dataset Arch. 2

Dataset Arch. N

Behavioral

Simulation

SIMSIDES

Classif. 1

Classif.2

Classif.K

Family of Classifiers

For each architecture obtain metrics

For each Classifier

Train &
Evaluate
Accuracy

Downsample &
Create dataset

for the classifiers

Select Best
Classifier

Classifier

For each Dataset

Use NAS to
optimize

RNN
architecture

RNN training &
validation

Save to file
Save model to file

RNN for this
SDM Arch.

Dataset for this

Architecture

Save to file

(a) Training procedure

{Γk, Ck}
{CN , Γ̄N , ǭN}

(b) Inference procedure

Specifications

Classifier Obtain Architecture

 Select RNN for

 this architecture

RNN Model Files

RNN N

RNN 2

RNN 1

RNN k

Select
Best
FOM

DESIGNSave to file

Design vars

Run inference

Fine Tuning

Behavioral

Simulation

SIMSIDES

Generate small

variations

Fig. 2. Flow diagrams for the proposed methodology. (a) Training and dataset preparation. (b) Inferring a design from specifications.

where, now, the regression operation RNN(Γ̄i, Aj) in (1)
has been transformed in RNNAj (Γ̄i), i.e, the role of the
classifier is selecting a specific network from a library of
already trained ones, and none of the networks receive the
categorical architecture variable as input. As far as the training
of the classifier is concerned, it will only require reading
the Ci, Γ̄i information for each modulator in the dataset and
simply concatenate the information before training. In our
opinion, having specific datasets for each architecture is a
better solution, considering both scalability and neural network
performance. Thus, adding a new modulator architecture to
the framework only requires creating its particular dataset in
the behavioral simulator, training the classifier, and optimizing
and training its associated network, which is preferable to
creating a completely new dataset file by augmenting the
number of columns and adding ”N/A” in all the previously
existing columns, and then training again a single network
whose complexity grows as new architectures are added.

D. Considerations on the Classifier Definition

Selecting an appropriate architecture for a classifier is a
crucial step in machine learning and data analysis. The choice
of architecture directly impacts the model’s performance and
its ability to generalize well on unseen data. However, deter-
mining the optimal classification technique is not a one-size-
fits-all process. It heavily depends on various factors, including
the characteristics of the dataset, statistical properties of the
data, and the specific problem at hand [28]. The dataset plays

a central role in architecture selection, as its size, complexity,
and distribution of classes influence the model’s behavior.
Imbalanced datasets, where certain classes are significantly
more abundant than others, pose a challenge as they can lead
to biased predictions towards the majority classes [29]. In our
case, we propose to always feed the classifier with a subsam-
pled version of the data available for each of the architectures
in our framework in such a way that all classes will have same
presence. Moreover, the statistical properties of the data, such
as feature correlation, co-linearity, dimensionality, and noise,
also influence the architecture selection. Since we are not a-
priori imposing any limitation on which data is to be present
in the metrics vector {Γ̄} (until a case study is presented in
Section IV), we have implemented a procedure which explores
different classifier types and returns the classifier featuring a
better confussion matrix for the particular dataset under con-
sideration. Our solution currently covers: Quadratic and Linear
Discriminant Analysis [30], Support Vector Machines SVM
[31] with linear, polynomial, and radial-basis function kernels,
Gaussian and Multinomial Naive-Bayes [28], Decission Trees
[32], Random Forest [33], Gradient Boosting Classifiers [34],
and neural network-based classifiers [35].

E. Network Architecture Search and Model Optimization

The backbone of our solution consists of utilizing an opti-
mized multivariate regression network [36] for each modulator
architecture to map system metrics (specifications) onto high-
level design variables, making the network to play the role

5

Fig. 3. Network Template Architecture which is optimized using NAS

of the optimizer in the conventional approach depicted in
Fig. 1. However, the problem of manually defining a network
architecture which minimizes the regression error2 usually
implies a tedious and time-consuming process where network
parameters such as number of layers, neurons per layer, etc.,
are varied in an iterative way until a solution is accepted.
To overcome this, we have integrated Neural Architecture
Search (NAS3) [37] techniques in our design framework to
automatically explore the hyper-parameters space and identify
a network architecture for each modulator using the Keras
tuner API [38], [39]. Our solution first defines a parameterized
network template, shown in Fig. 3, and a search space for the
following hyper-parameters:

• Number on neurons (units) per layer: ∈ [32, 64] step 4.
• Number of additional layers after the concatenation block

in Fig. 3: ∈ [1, 6] step 1.
• Activation function: ∈ [relu, tanh], where relu stands

for Rectified-Linear Unit and tanh stands for hyperbolic
tangent.

• Dropout layers [40]: Whether to insert dropout layers
between dense layers or to bypass them.

• Optimizer: ∈ {Adam,SGD,RMSprop,Adadelta}.
and then runs the grid-search optimization until the search
space has been exhausted or an early-stop condition4 occurs.
Once the hyper-parameters for each network are available, the
fitting process takes place using a 80% - 20% division for
the training and validation subsets (TS, VS). For any existing
{Γ̄k, ϵ̄k} pair in the training dataset (TS) of a particular Σ∆M
architecture, the RNN produces a regression output ϵ̄

′

k such
that, overall, during the training process, a loss function (MSE
in our case) ETS = f(ϵ̄k, ϵ̄

′

k), k ∈ TS is minimized. Then,
the network validation process checks for over-fitting5 by
evaluating this same metric E over the unseen data in the
validation set (VS); EV S = f(ϵ̄j , ϵ̄

′

j), j ∈ V S, letting us
guarantee that whenever |ETS − EV S | < δ, with delta a
predefined threshold, the network has been able to generalize
the problem with an accuracy EV S .

2Assuming a dataset with j = 1...M inputs, and a i = 1...N -elements
target yi and output vectors ŷi, then

MSE = 1
N·M

∑N
i=1

∑M
j=1(yi,j − ŷi,j)

2.
3NAS is a technique that automatically explores and finds the best-

performing neural network architecture for a specific task.
4Meeting specifications or not improving the solution in a predefined

number of iterations known as the patience parameter.
5It occurs when a neural network becomes overly specialized in capturing

noise and random fluctuations in the training set so that it performs excep-
tionally well on its training data but fails to generalize to new, or unseen
data.

F. Cross-Validation and Result Improvement

Unfortunately, using the MSE to quantify the accuracy of
the networks only guarantees that the errors between the in-
ferred design variables vector ϵ̄

′

k and the target design variables
ϵ̄k are, on average, bounded by the MSE. However, due to the
highly non-linear nature of Σ∆Ms, it does not provide a clear
insight about how closely the performance metrics Γ̄

′

k obtained
for the inference design variables ϵ̄

′

k match the requested ones
Γ̄k. To address this concern, our methodology incorporates a
final step which involves using the behavioral simulator [4]
not only for cross-validation but also for result improvement.
In order to do so, we first create a small number (niters) of
slightly varied versions of the solution provided by he network
ϵ̄
′

k where each of its components (DVn, n = 1...Nvars)6 is
randomly modified by adding a small amount taken from an
uniform distribution within ±r(%)× 100 range:

DVn,a = DVn (1 + αn,a) , where

a = 1 . . . niters

n = 1 . . . Nvars

αn,a ∼ U(−r, r)

(3)

Essentially, this cloud of points represents a random sampling
of a small, well-defined region within the design-variables
space around the point selected by the network where the aver-
age distance of these additional points to the original solution
is constrained to be less than the MSE. Afterwards, we employ
the behavioral simulator to evaluate the resulting performances
not only for the point predicted by the network ϵ̄

′

k but also for
the cloud of random points around it.{ϵ̄′k,a}a=0...niters :

{Γ̄′

k,a} = BS(Aj , {ϵ̄
′

k,a}) (4)

where Aj is the selected modulator architecture, BS(·) is a
call to the behavioral simulator, and {ϵ̄′k,0} ≡ ϵ̄

′

k.
Finally, we select the high-level design point which pro-

duces the best Schreier’s FOM [1]. Conceptually, our approach
can be described as a two-step process. First, the neural net-
work provides a coarse solution for the design variables which
serves as a starting point. In the second step, a small random
search is conducted around this initial solution to identify
similar solutions featuring better FOM. Clearly, this second
step is open to further development by leveraging advanced
optimization solutions, such as gradient-driven methods or
simulated annealing, among others, representing an excellent
opportunity for future improvements of our design framework.

6DV stands for Design Variable and Nvars is the number of design
variables.

6

(a)

(c)

(b)

(d)

Fig. 4. SIMSIDES models of the Σ∆Ms used as case studies: (a) 2nd-order
SC-Σ∆M (I). (b) 3rd-order cascade 2-1 SC-Σ∆M (II). (c) 4th-order cascade
2-1-1 SC Σ∆M with 3-bit quantization (III). (d) 2nd-order Gm-C Σ∆M with
3-level quantization (IV). (All models include main circuit nonidealities such
as limited input/output swings, thermal noise, finite DC gain, GBW, maximum
output current, nonlinear transconductance, etc. [2]).

IV. CASE STUDY

The versatile design methodology proposed in this paper
can be applied to any arbitrary Σ∆M. Without loss of gen-
erality, let us consider four case-study architectures which
include single-loop and cascade loop-filter topologies, single-
bit and multi-bit quantization as well as switched-capacitor
and continuous-time circuit techniques. Fig. 4 shows the SIM-
SIDES diagrams of the Σ∆Ms under study: (I) a 2nd-order
SC-Σ∆M (Fig. 4(a)), (II) a 3rd-order cascade 2-1 SC-Σ∆M
(Fig. 4(b)), (III) a 4th-order cascade 2-1-1 SC-Σ∆M with 3-bit
quantization (Fig. 4(c)) and (IV) a 2nd-order 3-level CT-Σ∆M
based on Gm-C integrators. Regardless of the architecture,
the specifications vector Γ̄ comprised the required modulator
resolution, in terms of the SNR, the signal bandwith BW
(expressed by the OSR), and the power consumption (Pow)
Γ̄k ≡ {SNRk,OSRk,Powk}. Conversely, the design variables
vector ϵ̄k were obviously different for each architecture. In
order to generate this case study’ dataset, we ran behavioral
simulations of each architecture under consideration using the
design variables and ranges listed in Table I for five values
of the OSR, namely: OSR= 32, 64, 128, 256, 512. For two of
the cases, the 2nd-ord Gm-C-Σ∆M and the 3th-ord 2-1 SC-
Σ∆M, the variables space was covered using nested loops,

4th
-Or
d 2
-1-
1 S
C

2n
d-O

rd
Gm
-C

2n
d-O

rd
SC

3rd
-Or
d 2
-1
SC

Predicted Label

4th-Ord 2-1-1 SC

2nd-Ord Gm-C

2nd-Ord SC

3rd-Ord 2-1 SC

Tr
ue
 L
ab
el

0.95 0.00 0.02 0.03

0.00 1.00 0.00 0.00

0.02 0.00 0.94 0.04

0.05 0.00 0.09 0.86

GB

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Confusion Matrix for the Gradient Boosting (GB) Classifier.

whereas for the other two cases design variables were gener-
ated randomly within meaningful predefined ranges. Moreover,
for the 2-1-1 cascade architecture (case III), we considered
the design variables of the first amplifier, and defined the
other three amplifiers’ parameters as a scaled version of those
of the first one. The dataset generation involved evaluating
more than 200,000 random designs. The combined use of
behavioral simulation (SIMSIDES), GPU acceleration and the
MATLAB Parallel Computing ToolboxTM allowed us to obtain
results at a rate of about 10,000 simulations per hour of CPU
time7. Needless to mention, since we were generating random
designs, not all combinations produced simulation results that
were valid for classifiers and networks training as they featured
poor SNR. Thus, prior to the training process, the dataset
was filtered to remove designs where SNR<50dB. The final
number of elements in each dataset is listed in the Valid Points
column in Table I, amounting to nearly 120,000 {Ck, Γ̄k, ϵ̄k}
(Class, Specifications, Design Vars.) entries.

A. Training Results

The training involved executing two independent processes
(see Fig. 2(a)).

First we trained the classifiers. There, in order to avoid class-
imbalance related problems, we down-sampled the dataset to
obtain an equal representation of all classes (Σ∆M architec-
tures). We set a 80%-20% division for Training Set (TS) and
Validation Set (VS), obtaining the results in Table II for the
four best performing options. The Gradient Boosting classifier,
whose confusion matrix is depicted in Fig.5, provided the best
accuracy over the Validation Set (i.e. over unseen previous
data) and we selected it as the best option for our case study.

Second, each modulator’s neural network topology and
hyperparameters were optimized using NAS, and trained af-
terwards. The dataset was also split in 80%-20% subsets for
training and validation.

7All simulations have been carried out in a PC with a 5.0 GHz, i9-12900F
CPU, 64-GB RAM and NVIDIA® GeForce RTX™3060TI GPU.

7

TABLE I
DESIGN PARAMETERS AND RANGES USED TO GENERATE Σ∆M DATASETS

Σ∆M Arch. Parameter(s) Description Range (Units) Scale Points Scheme Valid P.

2nd-Ord SC

ao Finite DC Gain (10, 1000) Log. 5× 104 Random 23,432
gm Amp. Transconductance (10µ, 1m), (A/V) Log. 5× 104

io Max. Amplifier Output Current (100µ, 10m), (A) Log. 5× 104

Vn Input-Referred Noise (10p, 100n), (V/
√

Hz) Log. 5× 104

2nd-Ord Gm-C

ao{1,2} OTA1,2 Finite DC Gain (10, 1000) Log. 40, 40 Nested 16,334
GBW{1,2} OTA1,2 GBW (1, 1000), MHz Log. 25, 25 Loops
IIP3,{1,2} Integrators1,2 3rd-order intermod. prod. (-10, 50), (dBm) Lin. 10
IIPFF FeedForward path integrators IIP3. (-10, 50), (dBm) Lin. 10

3rd-Ord 2-1 SC
ao{1,2} Stage1,2 Amplifiers Finite DC Gain (100, 10000) Log. 50, 50 Nested 58,570
gm{1,2} Stage1,2 Amplifiers Transconductance (10µ, 10m), (A/V) Log. 25, 25 Loops
io{1,2} Stage1,2 Max. Amplifier Output Current (100µ, 10m), (A) Log. 10, 10

4th-Ord 2-1-1 SC

ao1 First Stage Amplifiers Finite DC Gain (1, 1000) Log. 5× 104 Random 19,769
gm1 First Stage Amplifier Transconductance (10µ, 1m), (A/V) Log. 5× 104

io1 First Stage Max. Amplifier Output Current (100µ, 10m), (A) Log. 5× 104

k2,3,4 Scaling factors for 2nd, 3rd, and 4th (0.2, 1) Lin. 5× 104

Stage Amps {ao, gm, io} with respect to Amp1

We applied the grid-search NAS algorithm for each mod-
ulator and fine-tuned the resulting network template for ei-
ther 2000 epochs or until an early-stopping condition was
met8.Table III summarizes the training results. Notably, the
MSE values for the training and validation sets were very
similar in all cases, demonstrating that none of the networks
experienced overfitting. The NAS CPU time varied between
1 hour and 53 minutes and 6 hours and 4 minutes due to
the differences in number of output variables, optimal number
of layers and dataset dimensions. Once the optimal network
architecture was determined by the NAS algorithm, the fine-
tuning of each network took between 60 and 397 seconds to
complete —almost negligible when compared to the NAS CPU
time. Finally, the validation took less than 0.125 seconds in
the worst case (2nd- ord. SC). Note that, during this time, this
network generated 4687 designs, i.e. it only required 26µs
to produce the high-level design variables for every set of
specifications

B. Validating Results

To fully validate our methodology, we randomly selected
1000 {Γ̄k, ϵ̄k} pairs from the validation set (250 per architec-
ture) and computed the relative deviation vector9 ρ̄k between
the obtained specification vector, Γ̄

′

k, and its requested value
Γ̄k.

ρ̄k =
Γ̄

′

k − Γ̄k

Γ̄k

(5)

8The early-stopping condition was defined as no significant improvement
in the loss function over the last 50 epochs.

9Here, vector division is defined as component-wise division.

TABLE II
CLASSIFIER TRAINING RESULTS

Classifier AccTS (%) AccV S (%) CPU Time(s)
Grad. Boost. 94.4 93.7 6.47
Rand. Forest 99.9 92.4 0.62

Dec. Tree 100 91.4 0.11
SVM RBF 82.8 82.9 16.09

To obtain the resulting specifications Γ̄
′

k, we employed the
method described in Section III-F, equation (3), with niters =
10 and α = 5%.

Table IV shows the resulting FOM for the four archi-
tectures in our case study. Observe that the mean value of
the deviation, i.e., the difference between the obtained FOM
and the requested one, is very close to zero but positive in
three of the cases and just slightly negative in the case of
the cascade 2-1-1 SC. This result shows that the networks
produced centered designs, in other words, designs meeting
specifications, demonstrating that they learned to implement
the specifications−→high-level design variables mapping. Be-
sides, the probability of producing designs with better than
required specifications were of at least 68.5% in the worst
case (2nd-ord Gm-C) and peaked to 78.5% for the cascade 2-
1 SC. Finally, notice how the use of the small random search
method, significantly improves the resulting FOM.

V. DISCUSSION

We have compared our solution against alternative more
”conventional” optimizers incorporated in the SIMSIDES
environment [41] available in MATLAB®, namely Genetic,
Gradient Descent, and Positive Basis Np1. Before entering
into the comparison results it is crucial to highlight the fact
that our solution does not have any optimization capability.
Every network has just learned how to map specifications onto
design variables that guarantee (up to a level of accuracy) that
these specifications are met, whether these specifications are
optimal in any way or not, is completely beyond the network.
This is an important concept; the optimization that occurs
during the neural network training refers to the minimization
of the error in generating this mapping not to how optimal
the specifications are because specifications are inputs for the
network.

In order to obtain the specifications to pass to the networks,
we fixed OSR= 128, and commanded the optimizers to
maximize SNR for each of the modulator architectures in
our case study. Power consumption was estimated by the

8

TABLE III
RNN TRAINING RESULTS

Case Study NLayers N(a)
Units Dropout Optimizer [38] # Train # Validation MSETS MSEVS T

(b)
NAS T

(c)
Train T

(d)
Val

2nd-ord. SC 5 32 No adam 18,746 4,687 0.034 0.033 2h.32min 63.81s 0.123s
2nd-ord. Gm-C 5 32 No adam 13,068 3,267 0.075 0.073 1h53min 105s 0.094s
3rd-ord. 2-1 SC 6 32 No RMSProp 47,862 11,965 0.031 0.028 6h4min 397s 0.025s

4th-ord. 2-1-1 SC 1 32 Yes RMSProp 15,816 3,954 0.016 0.017 2h40min 60.07s 0.088s
a Number of neurons per layer. b NAS GPU Time(s). c RNN GPU Training Time(s). d RNN GPU Validation Time(s).

TABLE IV
VALIDATION RESULTS

Architecture: 2nd-ord SC
Result (a)ρFOM0,0

(b)ρFOM10,5%
Boost(%)

Mean Value 0.0059 0.0184 211.9
(c)P(ρ > 0) 0.6331 0.7470 18.0

(d)Percentile(5) -0.0976 -0.0826 15.4
Percentile(50) 0.0100 0.0196 96.0
Percentile(95) 0.0814 0.0960 17.9

Architecture: 2nd-ord Gm-C
Mean Value 0.0215 0.0267 20.9

P(ρ > 0) 0.6580 0.6850 4.1
Percentile(5) -0.0572 -0.0550 3.8

Percentile(50) 0.0219 0.0269 28.1
Percentile(95) 0.1201 0.1253 4.3

Architecture: 2-1 Cascade SC
Mean Value 0.0638 0.0741 16.1

P(ρ > 0) 0.6979 0.7850 12.5
Percentile(5) -0.1847 -0.1656 10.3

Percentile(50) 0.0196 0.0272 38.8
Percentile(95) 0.3881 0.4018 3.5

Architecture: 2-1-1 Cascade SC
Mean Value -0.0773 -0.0622 19.5

P(ρ > 0) 0.6536 0.6997 7.1
Percentile(5) -0.5917 -0.5825 1.6

Percentile(50) 0.0088 0.0102 15.9
Percentile(95) 0.0558 0.0575 3.0

a ρFOM0,0 is the relative deviation (see eq.(5)) for the FOM when
using only the design variables inferred by the RNN.

b ρFOM10,5%
is the relative deviation (see eq.(5)) for the FOM

when improving the RNN result using the small random variations
method (10 samples, ±5% of random variation).

c P(ρS > 0) is the probability of a given relative deviation ρS to
be larger than 0.

d Percentile(x)=T: When sorted, (1 − x)% of the points are above
T.

behavioral simulator SIMSIDES from the biasing currents
obtained for the amplifiers during the SNR optimization. Then,
for each architecture, we selected the best performing solution
provided by the optimizers in terms of the FOM, and passed
its results (SNR, OSR, Power) to the corresponding neural
network to infer the design variables.

Table V presents the results of this process. First, we
can highlight a noteworthy aspect: our solution obtained a
CPU time improvement of at least ×60 across the various
modulators when compared to the available optimizers in
SIMSIDES. Clearly, this is due to the fact that the optimizers
do not incorporate any a priori knowledge about the problem
whereas the networks, during the training phase, did learn
how to precisely map specifications into design variables.
Moreover, our networks are not too complex, involving just
a few hundreds of neurons and a relatively low number of
layers, consequently inference time is reduced to just a few
milliseconds. Indeed, most of the time required to obtain the

TABLE V
COMPARISON WITH OTHER OPTIMIZATION ALGORITHMS

Architecture: 2nd-ord SC
Algorithm CPU Time (min) SNR (dB) P (mW) FOM(dB)
This work 0.05 86.01 10.16 149.0
Gradient 9 85.8 10.80 148.5
Genetic 18 88.1 18.41 148.5

Np1 5 86.6 20.00 146.6
Architecture: 2nd-ord GmC
This work 0.05 75.19 0.07 182.6
Gradient 3 88.6 0.8 185.5
Genetic 129 90.2 0.8 187.0

Np1 10 88.0 0.4 187.9
Architecture: 3rd-ord Cascade 2-1 SC
This work 0.05 115.8 2.7 181.5
Gradient 11 115.7 8.0 176.7
Genetic 145 116.2 4.1 180.1

Np1 12 115.9 8.0 176.9
Architecture: 4th-ord Cascade 2-1-1 SC
This work 0.05 143.44 0.6 241.5
Gradient 4 144.32 1.8 237.9
Genetic 90 144.32 13.6 229.0

Np1 10 143.9 1.5 238.55

design variables was spent in the final search among the ran-
domly generated points which involved using the behavioral
simulator 10 times –as detailed in Section IV-B. As a by-
product, due to the fine-tuning phase, our solution produced,
in all cases, designs with a smaller power consumption thus
yielding to better FOMs in three out of the four case studies.
Probably, the most important contribution provided by our
approach is the very short time required to obtain valid designs
from new sets of specifications. Once the training phase is
over, our framework is able to choose a modulator architecture
and obtain its design variables from specifications in less than
50 milliseconds. However, we cannot neglect the fact that it
requires a significant training time. In our opinion, this must
be considered an initial cost that gets amortized proportionally
based on the number of times the network is used.

Another important concern arises from the abundance of
specification-design variable pairs within the datasets: why
not utilize this information directly, treating it like a Look-
Up-Table (LUT) where valid designs can be readily found?
In other words, when new specifications are required, why
not identify the nearest corresponding point in the dataset and
simply select its associated design variables as the solution?
The answer to this question is far from being simple as it
heavily depends on how accurate are the networks producing
design vars from specs as compared to the resolution of the
data in the LUT, i.e. how densely the space of variables was
explored when producing the dataset. Let us employ the two-
dimensional example in Fig.6 to illustrate this. There, assume

9

(a)

(b)

(c)

Target

RNN

Innacuracy

Nearest

Grid Point

Nearest

Random Point

Y

X

X

Y

Fig. 6. Uniform vs. Random Coverage of the Design Space. (a) Uniform
Coverage (b) Random Coverage (c) Average minimum distance between
generated points vs. Number of generated points (log-log scales)

that the problem is to map specifications onto the 2D design
variables space [x, y] ∈ [0, 1]. In order to create the dataset
we have to obtain pairs of design-variables and specifications
using a behavioral simulator and to do so, we would have two
options; using a grid-based distribution of the design variables
(which implies using nested loops in practice) Fig.6(a), or
pick points randomly within this space Fig.6(b). In the first

case, the resolution of the created LUT ∆Grid
LUT , i.e. the average

minimum distance between dataset entries, scales down with
the number of points in the grid ∆Grid

LUT ∝ N−1
points –Fig.6(c)

solid line– whereas in the case of the randomly picked points,
it scales down with its square-root10, ∆Rand

LUT ∝ N
−1/2
points –

Fig.6(c) dashed line. This has important implications when
we have to compare the performance of the neural-network
based method vs. just using the dataset as a LUT since it can
be demonstrated that the average squared distance d̄2 between
any point in a N-Dimensional space to the nearest point of a
grid of resolution ∆LUT is given by:

d̄2 =
Ndims

12
·∆2

LUT (6)

To facilitate a comparison of the accuracies of the LUT and
network approaches in our case study, we utilized the LUT
as a predictor for design variables, just as we did when im-
plementing our neural network based solution. We employed
the training dataset as the exploration space and the entries
from the validation set as the targets for which we sought
predictions. Therefore, for every vector of specifications in the
validation dataset, we selected the most similar one (nearest
distance) in the training dataset and computed the L2-norm-
squared11 between their associated design variables. Table VI
shows the obtained MSE for the LUT approach together,
for comparison purposes, with the already presented values
for our solution (Table IV). It can be clearly seen that the
neural network approach outperformed the LUT method in
all instances in our case study, with improvements varying
between 66.7% for the Cascade 2-1 SC Σ∆M case and 34.6%
for the Cascade 2-1-1 SC Σ∆M.

In summary, the extent to which the neural network solution
surpasses a search among available designs (the LUT solution)
in a comprehensive dataset hinges on the density of exploration
within the specifications-design variables space during dataset
generation, the complexity of the problem, and the number
of design variables being sought. Generally, we can anticipate
the networks to yield at least the same MSE as the LUT in the
worst-case scenario. However, for highly dense datasets where
data points are closely packed, the ability of the neural nets
to generalize among very close neighboring points becomes
less crucial, potentially resulting in only marginal performance
gains compared to merely selecting the nearest point in the
dataset. The true power of neural network solution comes into
play when dealing with sparse or irregularly spaced datasets. In
such cases, the network can learn patterns and dependencies
across distant data points, and its ability to interpolate and
generate new points can be much more valuable.

VI. CONCLUSION

The use of neural networks for the automated high-level
design of Σ∆ modulators has been discussed. It has been
demonstrated that trained classifiers can be used to identify
a suitable Σ∆M topology for a given set of specifications,

10The problem is equivalent to the calculation of the ’mean free path’ in
solid-state physics or statistical theory.

11Since the average of this norm across the dataset is, by definition, the
MSE.

10

TABLE VI
LUT VS. RNN COMPARISON

Architecture Scheme MSELUT MSERNN

2nd-Ord. SC Random 0.077 0.033
2nd-Ord. Gm-C Nested Loops 0.173 0.073
3rd-Ord. 2-1 SC Nested Loops 0.084 0.028

4th-Ord. 2-1-1 SC Random 0.026 0.017

whereas regression-type neural networks can be trained to
obtain the design variables that produce these specifications.
This methodology can be applied to any arbitrary Σ∆M
architecture, considering, for instance, either single-bit or
multi-bit quantization, single-loop or cascade-loop filter im-
plementation, and continuous time or discrete-time operation.
The results have been compared with other optimization
engines available in SIMSIDES, a widely used behavioral
simulator, featuring a competitive performance in terms of the
obtained figure of merits, whereas producing significant CPU
time improvements. Finally we have also discussed how our
approach produces better solutions than the simple use of the
designs database as a Look-Up-Table.

REFERENCES

[1] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma
Data Converters. Wiley-IEEE Press, 2nd ed., 2017.

[2] J. M. de la Rosa, Sigma-Delta Converters: Practical Design Guide.
Wiley-IEEE Press, 2nd ed., 2018.

[3] K. Francken et al., “A high-level simulation and synthesis environment
for delta-sigma modulators,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 22, pp. 1049–1061, August 2003.

[4] J. Ruiz-Amaya et al., “High-Level Synthesis of Switched-Capacitor,
Switched-Current and Continuous-Time Σ∆ Modulators Using
SIMULINK-based Time-Domain Behavioral Models,” IEEE Trans. on
Circuits and Systems – I: Regular Papers, pp. 1795–1810, Sep. 2005.

[5] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Con-
verters. IEEE Press, 2005.

[6] S. Pavan, “Systematic Design Centering of Continuous Time Over-
sampling Converters,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 57, pp. 158–162, March 2010.

[7] T. Bruckner et al., “A GPU-Accelerated Web-based Synthesis Tool
for CT Sigma-Delta Modulators,” IEEE Transactions on Circuits and
Systems - I: Regular Papers, vol. 61, pp. 1429–1441, May 2014.

[8] J. M. de la Rosa, “Design Automation of Σ∆ Converters: A Review
of Modeling, Synthesis and Optimization Techniques,” Proc. of the
IEEE Intl. Conf. on Electron Devices and Solid-State Circuits (EDSSC),
October 2017.

[9] J. Wagner, M. Ortmanss, and J. M. de la Rosa, “Man or Machine –
Design Automation of Delta-Sigma Modulators,” Proc. of the IEEE Intl.
Symp. on Circuits and Systems (ISCAS), pp. 4229–4232, May 2018.

[10] M. Velasco, R. Castro-Lopez, and J. M. de la Rosa, “High-Level
Optimization of Σ∆ Modulators Using Multi-Objetive Evolutionary
Algorithms,” Proc. of the IEEE Intl. Symp. on Circuits and Systems
(ISCAS), pp. 1494–1497, May 2016.

[11] N. Lourenco et al., “On the Exploration of Promising Analog IC Designs
via Artificial Neural Networks,” Proc. of the 2018 Intl. Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design (SMACD), 2018.

[12] Y. Li et al., “An Artificial Neural Network Assisted Optimization System
for Analog Design Space Exploration,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, pp. 2640–
2643, October 2020.

[13] E. Afacan et al., “Review: Machine learning techniques in analog/RF
integrated circuit design, synthesis, layout and test,” Elsevier Integration,
the VLSI Journal, vol. 77, pp. 113–130, November 2021.

[14] M. Fayazi et al., “Applications of Artificial Intelligence on the Modeling
and Optimization for Analog and Mixed-Signal Circuits: A Review,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
pp. 2418–2431, June 2021.

[15] A. Budak et al., “An Efficient Analog Circuit Sizing Method Based on
Machine Learning Assisted Global Optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. IEEE-
xplore Early Access Article, 2021.

[16] P. Jaraut et al., “Augmented Convolutional Neural Network for Behav-
ioral Modeling and Digital Predistortion of Concurrent Multiband Power
Amplifiers,” IEEE Trans. on Microwave Theory and Techniques, vol. 69,
pp. 4142–4156, September 2021.

[17] P. Vaz, A. Gusmão, N. Horta, N. Lourenço, and R. Martins, “Speeding-
up complex rf ic sizing optimizations with a process, voltage and
temperature corner performance estimator based on anns,” in 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1570–
1574, 2022.

[18] J. Domingues, A. Gusmão, N. Horta, N. Lourenço, and R. Martins,
“Accelerating voltage-controlled oscillator sizing optimizations with
ann-based convergence classifiers and frequency guess predictors,” in
2022 18th International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design (SMACD),
pp. 1–4, 2022.

[19] K.-E. Yang, C.-Y. Tsai, H.-H. Shen, C.-F. Chiang, F.-M. Tsai, C.-A.
Wang, Y. Ting, C.-S. Yeh, and C.-T. Lai, “Trust-region method with
deep reinforcement learning in analog design space exploration,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 1225–1230,
2021.

[20] S. Bansal et al., “Neural-Network Based Self-Initializing Algorithm for
Multi-Parameter Optimization of High-Speed ADCs,” IEEE Transac-
tions on Circuits and Systems - II: Express Briefs, vol. 68, pp. 1384–
1388, January 2021.

[21] J. M. de la Rosa, “AI-Assisted Sigma-Delta Converters – Application
to Cognitive Radio,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, pp. 2557–2563, June 2022.

[22] G. Wolfe and R. Vemuri, “Extraction and use of neural network models
in automated synthesis of operational amplifiers,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 22,
pp. 198–212, February 2003.

[23] P. Dı́az-Lobo and J. M. de la Rosa, “High-Level Design of Sigma-Delta
Modulators using Artificial Neural Networks,” Proc. of the IEEE Intl.
Symp. on Circuits and Systems (ISCAS), May 2023.

[24] G. Gielen and J. Franca, “CAD Tools for Data Converter Design: An
Overview,” IEEE Trans. on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 43, pp. 77–89, February 1996.

[25] R. Schreier, The Delta-Sigma Toolbox. [Online]. Available:
http://www.mathworks.com/matlabcentral, 2017.

[26] M. Ortmanns et al., Uni Ulm Sigma-Delta Synthesis Tool. [Online].
Available: http://www.sigma-delta.de.

[27] C. Renggli, L. Rimanic, N. M. Gurel, B. Karlas, W. Wu, and C. Zhang,
“A data quality-driven view of mlops,” IEEE Data Engineering Bulletin,
vol. 44, pp. 11–23, March 2021.

[28] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[29] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9,
pp. 1263–1284, 2009.

[30] B. Ghojogh and M. Crowley, “Linear and quadratic discriminant analy-
sis: Tutorial.” https://arxiv.org/abs/1906.02590, 2019.

[31] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[32] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[33] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[34] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[35] J. M. Zurada, Introduction to Artificial Neural Systems. West Publishing
Company, 1992.

[36] K. P. Murphy, Machine learning: a probabilistic perspective. The MIT
Press, 2012.

[37] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” Google Research, 2017.

[38] Keras, Keras API Reference. [Online]. Available: https://keras.io/api/.,
2021.

[39] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi,
et al., “Kerastuner.” https://github.com/keras-team/keras-tuner, 2019.

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-

11

ting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–
1958, 2014.

[41] B. Cortes-Delgadillo et al., “Embedding MATLAB Optimisers in SIM-
SIDES for the High-Level Design of Σ∆ Modulators,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 65, pp. 547–551,
May 2018.

Pablo Dı́az-Lobo received his B.Sc. degree in
Physics and Mathematics at the University of
Seville, Spain, in 2022. In January 2023, he joined
the Institute of Microelectronics of Seville (IMSE) as
a junior research scholar, with a scholarship funded
by the Spanish National Research Council (CSIC).

His main research interests include artificial neu-
ral networks and their application to the automated
design of analog and mixed-signal integrated cir-
cuits.

Gustavo Liñán-Cembrano is a Tenured Scientist
of the Spanish National Research Council at the
Instituto de Microelectrónica de Sevilla (IMSE-
CNM CSIC-Univ. Sevilla). He received hist degree
in Physics in 1996, and PhD degree in Microelec-
tronics. His research career focused at the beginning
in the design of high complexity mixed-signal chips
for vision, embedding sensing and processing at the
pixel level. For about 10 years he was involved
in designing CMOS imagers exhibiting very high
dynamic range for industrial applications, including

automotive. In recent years he has focused his research in vision processing
application using artificial intelligence, among other techniques, for ecology
applications, where he has published in the top journals, including Science
and a software package which is freely distributed with more than 2000 users
all over the world. He has authored more than 100 journal and conference
papers. He has received the Best Paper Award of the International Journal of
Circuit Theory and Applications two times and has been the co-chair of the
SPIE’s Microtechnologies for the New Millenium Conference also two times.

José M. de la Rosa (Fellow, IEEE) received the
M.S. degree in Physics in 1993 and the Ph.D. degree
in Microelectronics in 2000, both from the Univer-
sity of Seville, Spain. Since 1993 he has been work-
ing at the Institute of Microelectronics of Seville
(IMSE), which is in turn part of the Spanish Micro-
electronics Center (CNM) of the Spanish National
Research Council (CSIC). He is also a Full Professor
at the Dpt. of Electronics and Electromagnetism of
the University of Seville. His main research interests
are in the field of analog and mixed-signal integrated

circuits, especially high-performance data converters. In these topics, Dr. de
la Rosa has participated in a number of Spanish and European research and
industrial projects, and has co-authored over 260 international publications,
including journal and conference papers, book chapters and the books System-
atic Design of CMOS Switched-Current Bandpass Sigma-Delta Modulators
for Digital Communication Chips (Kluwer, 2002), CMOS Cascade Sigma-
Delta Modulators for Sensors and Telecom: Error Analysis and Practical
Design (Springer, 2006), Nanometer CMOS Sigma-Delta Modulators for
Software Defined Radio (Springer, 2011) and CMOS Sigma-Delta Converters:
Practical Design Guide (Wiley-IEEE Press, 2013, 2nd Edition, 2018). He is in
the World’s Top 2% Scientists List from Stanford University (editions 2019,
2020 and 2022).

Dr. de la Rosa is an IEEE Fellow and member of the IEEE Circuits and
Systems Society (CASS) and the IEEE Solid-State Circuits Society (SSCS).
He is a Member-at-Large of the IEEE-CASS Board of Governors (BoG) for
the 2023-2025 term. He served as a Distinguished Lecturer of IEEE-CASS
(term 2017-2018), and as Chair of the Spain Chapter of IEEE-CASS during
the term 2016-2017. He was at the front of the Editorial Board of IEEE
Transactions on Circuits and Systems II: Express Briefs, where he served
as Deputy Editor-in-Chief since 2016 to 2019, and as Editor-in-Chief in the
term 2020-2021. He is a member of the TechRxiv Editorial Advisory Board
since 2022. He also served as Associate Editor for IEEE Transactions on
Circuits and Systems I: Regular Papers, where he received the 2012-2013 Best
Associate Editor Award and was Guest Editor for the Special Issue on the
Custom Integrated Circuits Conference (CICC) in 2013 and 2014. He served
as Guest Editor of the Special Issue of the IEEE J. on Emerging and Selected
Topics in Circuits and Systems on Next-Generation Delta-Sigma Converters.
He is a member of the Analog Signal Processing Technical Committee of
IEEE-CASS and of the Steering Committee of IEEE MWSCAS. He has
also been involved in the organizing and technical committees of diverse
international conferences, among others IEEE ISCAS, IEEE MWSCAS, IEEE
ICECS, IEEE LASCAS, IFIP/IEEE VLSI-SoC, DATE and ESSCIRC. He
served as TPC chair of IEEE MWSCAS 2012, IEEE ICECS 2012, IEEE
LASCAS 2015 and IEEE ISICAS (2018, 2019). He has been a member of
the Executive Committee of the IEEE Spain Section (terms 2014-2015 and
2016-2017), where he served as Membership Development Officer during the
term 2016-2017. He has been recently appointed as Editor-in-Chief of IEEE
TCAS-I for the term 2024-2025.

