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ABSTRACT. The present work concerns the study of monodromy of ¢-adic sheaves with an strong
focus on computational matters. After reviewing étale and ¢-adic cohomology, we introduce some
families of local systems and consider the problem of determining whether their monodromy is
finite or not. To this end, we propose a sieve-based approach and an algorithm is described.
Actual implementations are used to explore the question for the described families and to compare
the outputs with recent results in the area. The algorithm is further used to obtain some
numerical data showing certain phenomena that allows us to identify major obstructions to the
performance of the implementations. We conclude with some motivation coming from coding
theory and cryptography as well as an application of the study of monodromy to coding theory.
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Introduction

This work deals with the study of exponential sums with a specially simple expression such as

Z Y o tracer, /r, (z? + tx)

z€F,

for t € IFy, where p is a prime number, g a p-power, d > 0 a positive integer coprime to p and
¢ : F, = C* a non-trivial additive character of a prime finite field. As explained in Chapter 3,
when p = 2 these specific sums are well-known for coding theorists and cryptographers, since they
can be used to measure the auto-correlation and cross-correlation between randomness simulating
sequences. Hence, a good deal of information about them is already established by means of coding
theory.

But nowadays, after the work of Deligne, we commonly think in ¢-adic cohomology as soon as
we hear about exponential sums. This is how we will study those easy-to-remember exponential
sums in this master’s thesis. f-adic cohomology is much broad and deep than what we really need
for our goals, so we should specify what we mean by reviewing étale and ¢-adic cohomology. We
have two main interests in the tools of /-adic cohomology:

1. First, to understand the equivalence between lisse ¢-adic sheaves over varieties over finite
fields and representations of the étale fundamental group of the variety.

2. Second, to see how the study of ¢-adic cohomology groups can be used to obtain es-
timates and information about exponential sums by using fundamental results such as
Grothendieck’s Lefschetz trace formula or Deligne’s theorem on weights.

We explain as much ¢-adic cohomology as needed to understand those stated goals and the involved
concepts. This is the content of Chapter 1, which must be understood as an introduction to the
subject for a working number theorist.

After describing the equivalence between local systems and representation of fundamental
groups, we can introduce the main actors of the work: the monodromy groups. In Chapter 2
we introduce sensible concepts and review well-known results that allow us to study the question
of finiteness of monodromy for lisse f-adic sheaves. After this, we introduce the sort of easy-to-
remember families of £-adic sheaves we are interested in, showing that they are suitable for applying
and specializing the described criteria. This way, we will obtain explicit, i.e. numerical, criteria
for the finiteness of their monodromy.

After obtaining those explicit conditions, that are just inequalities but infinitely many of them,
the main content of the present work starts (Section 2.3). This thesis is mainly concerned with
the computational counterpart of the mentioned inequalities. We have two goals that complement
each other:

1. On the first hand, to developed sufficiently general strategies so we can explore the
problem of finiteness of monodromy for the introduced families (or more generally any
family for which such a numeric criterion can be obtained).

2. On the second hand, translate the strategies into actual algorithms (preferably with im-
plementations) so we can indeed explore the problem and obtain computational evidences
that might be used, for example, to improve the existing strategies or identify some un-
expected phenomena.



x INTRODUCTION

Our contribution to this problem is to describe a sieve-based approach taking advantage of the
properties of the sum-of-digits functions involved in the inequalities appearing in the criteria. We
implemented algorithms (using Julia Programming Language, see Appendix) for the families we
deal here with and study the experimental complexity of our approach through them. After using
our strategy on previously studied families, we compare the results with recent theorems of Katz—
Tiep that determine when the monodromy groups are finite. For a specific family of local systems
not studied before in the literature, namely the family denoted by B, we show that the parameters
found by the algorithm indeed give raise to a lisse /-adic sheaf with finite monodromy group.

To conclude this introduction, it should be mentioned that the work can be read in at least two
ways. For readers looking for an stronger applied motivation, Chapter 3 can be read first despite
the truth of some facts treated in previous chapters should be assumed. The point of reading
Chapter 3 first is that the last theorem proven there nicely motivates why we are concerned with
the finiteness of the monodromy groups of certain local systems. If the reader prefers an expositon
free of backward jumps, the suggested reading is the linear one.
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CHAPTER 1

Review of /-adic cohomology and /-adic sheaves

In this chapter we briefly review important results from ¢-adic cohomology on varieties. We
have two major goals with this section. The first one is to explain enough ¢-adic and étale coho-
mology in order to explain concretely the equivalence between the category of lisse Q,-sheaves and
finite-dimensional continuous representations of the corresponding fundamental group. The second
one is to illustrate some of the ideas involved in the translation of questions about exponentials (or
character, or trigonometric) sums into questions in ¢-adic cohomology. For example, we describe
Gauss sums and Kloosterman sums together with their geometric incarnation via f-adic sheaves
on G,,.

Relative to references and literature, we cite original sources together with modern works
scrupulously. Having said this, we should mention the usage of several texts that were extremely
useful while diving through the several pages of SGA volumes, Deligne’s Weil II and Laumon’s
article on Fourier transform. The citation of these was difficult due to their expository nature. The
mentioned works are [I1187], [Kat88b], [Kat94], [Kat01], [I1106], [Ngol17, Chapter 1], [Frel9],
[KR20] and [FFK23, Appendices A and D]. The influence of the aforementioned works on this
thesis is reflected in the selected topics and the way in which they are presented.

1.1. Etale fundamental group

Given a locally noetherian and connected scheme X, we denote by FEtx the category of étale
coverings Y — X, i.e. finite étale morphisms Y — X. A geometric point of X is a morphism
T : Spec ) = X where ) is an algebraically closed field. Giving a geometric point 7 is equivalent
to giving a point x of X and an algebraically closed overfield of the residue field k(z). In this case
we say that T lies over . Given an étale covering f : Y — X and a geometric point 3 : Spec 2 — Y]
we denote the geometric point f og by f(7).

Given a geometric point 7 : Spec 2 — X, the functor that sends each Y — X to the underlying
set of the fibre Yz := Y x x Spec Q is denoted by Fibz : FEt x — FinSets. Following Grothendieck
[SGA 1, Exposé V, §4,7], we define the étale fundamental group of X with basepoint T, denoted
m1(X,T), as the automorphism group of Fibz. This means that w1 (X,T) is the group of natural
isomorphisms of Fibgz.

The fundamental group satisfies the following theorem:

THEOREM 1.1.0.1 ([SGA 1, Exposé V, §4]). Let X be a locally noetherian connected scheme
and T a geometric point of X. The étale fundamental group 71(X,T) is a profinite group and the
functor Fibz induces an equivalence of categories

FEtx <— {finite discrete continuous w1 (X,T)-sets}. O

REMARK 1.1.0.2. In the previous theorem continuous means that we assume the defining
morphism of the action, say m (X,Z) x S — S, continuous where S is a discrete set and m (X, T)
is seen as a profinite group (in particular, a toplogical group). This condition is easily seen to be
equivalent to: the stabilizer of every element s € S is an open subgroup of 71 (X, T). |

The following two properties are analogous to the classical properties of fundamental groups:
THEOREM 1.1.0.3 ([SGA 1, Exposé V, §7]).

1



2 1. ~-ADIC COHOMOLOGY AND ¢-ADIC SHEAVES

(a) Given two geometric points T1,Te of X, the functors Fibgz, and Fibgz, are isomorphic.
Choosing an isomorphism between the functors Fibg, ,Fibg, gives an isomorphism be-
tween the fundamental groups m(X,Z1),m1(X,Ta). Choosing another isomorphism be-
tween Fibgz, ,Fibgz, vary the isomorphism between groups by an inner automorphism.

(b) A morphism between locally noetherian connected schemes f : X — X' induces the
“preimage” functor

f*: FEtx, — FEtx
Y - X' — YXX/X.

For each geometric point T of X, f® induces a canonical continuous homomorphism be-
tween étale fundamental groups (compatible with the equivalence of 1.1.0.1)

o :m(X,7) = m (X', f(Z)). O

More generally, we will speak of the induced homomorphism f, : 71 (X,Z) — m(X’',T') for
arbitrary geometric points. This makes sense up to conjugation on the target and the source.

EXAMPLE 1.1.0.4. The fundamental group of the point Spec k :

Fixed a field k, a geometric point T of X = Spec k is just an embedding of k in an algebraically
closed field k8. In this case [Stacks, tag 0BNE], the étale fundamental group (X, Z) can be
identified with the absolute Galois group Gal(k®°P/k), where k°°P is the separable closure of k
inside k'8,

In particular, if k = F, is a finite field, the étale fundamental group is canonically isomorphic
to the profinite completion 7 of Z, with topological generator the Frobenius map ¢ — t?. We call
geometric Frobenius the inverse Froby of  — x?. Given a degree n extension F/k, the map induced
by Spec E — Spec k on the fundamental groups sends Frobg to Frobj. |

THEOREM 1.1.0.5 ([SGA 1, Exposé IX, Théoreme 6.1],[Stacks, tag 0BTX]). Let k be a field,
k28 /k an algebraic closure of k, X a k-scheme, X = X @y, k*'8, T a geometric point of X, x its
image over X and b its image over Spec k. Assuming that X is quasi-compact and geometrically
connected over k, the sequence of canonical homomorphisms

1 — m(X,7) — m(X,2) — 71(Spec k,b) — 1

is exact and
71 (Spec k,b) < m(Spec k, k*'8) = Gal(k*'€/k). O

If F, is a finite field (in particular a perfect field), the previous theorem and Example 1.1.0.4
give us the following exact sequence:

1— 1 (Xpooo, T) — (X, 2) B2 — 1.

geom

We call the group 71 (Xyeer, T) the geometric fundamental group, and denote it by 77" (X). Simi-
larly, 1 (X, ) is the arithmetic fundamental group and is denoted by 73*8(X). Since 75°*"(X) =
ker(deg), 78" (X) < m3FitR(X).

1.2. Etale topology and étale cohomology

1.2.1. Etale topology and the étale site. Let X be a scheme and denote by Et/X be
the category of étale X-schemes, i.e. its objects are étale maps U — X and arrows from U — X
to V' — X are morphisms U — V between X schemes. Given U — X € Et/X and a collection
U = {fi : Ug — U}icr of morphisms in Et/X, we say % is an étale covering of U — X if the
sets f;(U;) C U cover the whole of U. From standard results about étale morphisms we derive the
following properties [Mil80, Proposition 3.3]:

(a) If V — U is an isomorphism then {V — U} is an étale covering of U.
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(b) (stability under composition) If {U; — U };¢; is an étale covering of U and for every i € T
we have an étale covering {V;; — U, }jes, of U;, then the family {V;; — Uticr jes, is an
étale covering of U.

(c) (stability under base change) If {U; — U};c; is an étale covering of U and V — U is a
morphism then {my : U; xy V — V}er is an étale covering of V.

The collection of étale coverings on the category Et/X is called the étale topology [SGA 42,
Exposé VII,§1]. It is an instance of a Grothendieck topology (see [Art62, Chapter 1, Definition
0.1] for further details). It is important to observe that Et/X has a final object, namely the identity
morphism X — X. The category Et/X together with the collection of étale coverings is called the
étale site and denoted by Xe;. A warning is in order, we are careless about the set theoretic issues
underlying these definitions. Further foundational details can be found in [SGA 44].

1.2.2. Etale sheaves.

DEFINITION 1.2.2.1 ([SGA 44, Exposé 11, §2, §6]). Let X be a scheme.

(a) An (abelian) étale presheaf on X is a functor F : (Et/X)°PP — Ab.
(b) An étale presheaf on X is said to be an (abelian) étale sheaf on X (or simply a sheaf on
Xt ) if for every étale map U — X and all coverings {U; — U};¢; the sequence

0= FU) = [[F W) — [[ FW xv U)
il ijel
is exact in the category Ab, where the first arrow is s — (s|y,)icr and the second one is
(Si)iEI = (SilUj,XUU]' - Sj‘UiXUU]‘)iJEI'

REMARK 1.2.2.2. Lets spell out what condition (b) in the above definition means. The mor-
phism [ [, F(Ui) = 11, je; F (Ui xu Uj) sends (si)ier € [[F(Us) to (silvxpv; —8jluixou; )ijer €
[1; ; F (Ui xu U;) where we denote by t|y the image of a section ¢ € F(U) under the image of the
group homomorphism F(p) : F(U) — F(V) whenever ¢ : V — U € Et/X. The exactness of the
sequence is the following usual gluing condition: Given (s;) € [[;c; F(U;) such that for every pair
i,j € I the equality s;|u,x,u; = $j|u,x,u; holds, then there is a unique section s € F(U) such
that s|y, =s; for all ¢ € I. n

A morphism between étale presheaves is a natural transformation between functors. The
category of sheaves on X, is considered as a full subcategory of the category of presheaves on Xg;.

If F is a presheaf on Xg; then there exists a sheaf sF on Xg and a morphism F — sF
such that any morphism F — G with G a sheaf on X4 factors uniquely through F — sF (see
[SGA 44, Exposé II, §3] or [Art62, Chapter II, Theorem 1.1]). Furthermore, the construction of
sF is functorial, hence we obtain a functor s from the category of presheaves on X4 (denoted
PAb(Xg:), or simply PAb(X)) to the category of sheaves on Xg; (denoted Ab(Xg;) or Ab(X)). The
universal property stated above can be rephrased as follows: the inclusion ¢ : Ab(Xg;) < PAb(Xe:)
has s : PAb(Xs;) — Ab(Xet) as left adjoint functor, that is, for all F € PAb(Xet),G € Ab(Xet)
there is a bifunctorial bijection

HOmPAb(Xét) (.F7 Lg) = HOmAb(Xét) (Sf, g)

The categories PAb(X) and Ab(X) are both abelian categories [SGA 44, Exposé I, Proposition
6.7]. Furthermore, Ab(X) has enough injectives (see [SGA 41, Exposé II, Remarque 6.9]). A

sequence F’ L FS P in Ab(X) is exact if and only if for every U € Et/X and every s € F(U)
such that g(U)(s) = 0, there exists a covering {p; : U; — U} of U and sections t; € F'(U;) with
f(U;)(t;) = s|e,. We recover the classical criterion of exactnes via stalks at all the geometric points
[SGA 4., Exposé VIII, Corollaire 3.8], where the notion of stalk of a sheaf at a point for the étale
topology is defined as follows [SGA 4V2, Arcata, §11.3]: Given T — X, an étale open U — X is
said to be an étale neighborhood of T if the morphism T — X factors through some morphism
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T — U. Then, for an étale sheaf F on X, its stalk at T is Fz := liﬂ}"(U), where the limit is over
étale neighborhoods of .

ExaMPLE 1.2.2.3.
(a) Representable sheaf: Let G — X be a group object of Et/X. Consider the functor

hg: (Et/X)PP — Ab
U — Homg, , x (U, G)
vLhUu o ()of:he(V) = ha(U).
Initially this functor is only a presheaf but since we are working over the étale site Xy,
it is a sheaf [Stacks, tag 0303, tag 0304].

(b) Constant sheaf: Let C be a noetherian ring and assume X to be a noetherian scheme.
We denote by C i the sheaf defined by U + C™ () where 7y(U) denotes the finite set of
connected components of X.

(¢) Gg,x and G,y x @ The presheaves U — I'(U,Oy) = Oy(U) and U — I'(U,Op)* =
Oy (U)* are sheaves, called respectively the structure sheaf and the multiplicative group
of Xe. Both sheaves are examples of representable sheaves via the schemes X ®gz Z[T)]
(resp. X ®z Z[T,T~1]) [Mil80, pg. 51]. They are also denoted by Ox or G, (resp. O%
or G,,).

(d) Roots of unity un x : Let n € N and define p,, x as the kernel of multiplication by n on
G, x. When n is not divisible by the characteristic of residue fields at any point z € X
this sheaf is represented by the scheme X ®zZ[T]/(T™ —1). In particular, pu, x associates
to any U — X € Et/X the group of n-th roots of unity in T'(U, Oy). It is also denoted
by fir,. u

For a point Spec k we have the following description of étale sheaves on it:

THEOREM 1.2.2.4 ([SGA 42, Exposé VIII, Corollaire 2.2],[Con, Theorem 1.1.4.3]). Let k
be a field, X = Spec k and k®%® a separable closure of k. The category of abelian sheaves on
Xst 1s equivalent to the category of discrete continuous Gal(k®®P/k)-modules. Furthermore, the
global sections functor F — T'(X,F) and the Gal(k®®/k)-invariants functor M — M E/k) gre
identified under this equivalence. O

We have the following short exact sequences:

THEOREM 1.2.2.5 ([SGA 43, Exposé IX, Statements 3.2 and 3.5]).

(a) KUMMER THEORY: Ifn € N is invertible in the scheme X (that is, char(k(x)) {n for all
x € X), the following sequence is exact:

0— Hn, X — Gm)x l> Gm,x — 0.
(b) ARTIN-SCHREIER THEORY: If X is a scheme of characteristic p > 0 (that is, X — Spec Z
factors through Spec F,), the following sequence is exact

AP
0— MX — Gax ()—>1 Go,x — 0. (|

These two sequences are exact since we are working over the étale site Xg¢. If we study them
using classical Zariski topologies they are not exact in general.

1.2.3. Direct image, inverse image and extension by zero. Given a morphism between
schemes f: X — Y and F a sheaf on Xg;, we define the direct image of F under f by

foF o Y PP — Sets
VoY — FX xyV—=X).
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It is a well-defined presheaf on X4 because étale morphisms are preserved under base change.
Since F is a sheaf on Xg, fiF is a sheaf on Y. Indeed [Stacks, tag 03PX], if {V; — V} is a
covering in Yz, then {X xy Vi = X Xy V} is a covering in Xg;. Hence, F being a sheaf, the
following sequence

FX xy V)= [[FX xy Vi) = [ FX xy Vi xy V)
iel ijel
is exact and by definition f.F is a sheaf on Yg;. This construction provides us with a left exact
functor fi : Ab(Xe) — Ab(Ysy), called the direct image functor. The left exactness follows from the
fact that if a sequence 0 — F' — F — F" is exact on Xg then for every U € Et/X the sequence
of abelian groups 0 — F'(U) — F(U) — F"(U) is exact. Then, for every V € Et/Y the previous
sequence is exact with U = X xy V. Hence, the sequence 0 — f.F'(V) = fu F(V) = fuF" (V)
is exact. When f is a finite morphism we have that f. is exact (see [SGA 45, Exposé VIII,
Proposition 5.5]). If g : Y — Z is another scheme morphism we have immediately (g o f). = g fx.

The functor fi : Ab(Xs) — Ab(Ys) admits a left adjoint denoted by f* : Ab(Yar) — Ab(Xss)
and called the inverse image functor. It can be proved that for every geometric point T of X
the formula (f*F)z = Fj(z) holds (see [SGA 42, Exposé VIII, §3.4]). It shows that f* is an
exact functor. Analogously to the situation with direct images, if g : Y — Z is another scheme
morphism, we have (g o f)* = f*g*. Indeed this follows from the adjunction property between f,
and f*.

For an étale morphism j : U — X, the inverse image functor j* (that now is just the restriction
functor for the étale toplogy, ie. (j*F) (U — U) = F(U' — U % X)) has a left adjoint
gi : Ab(Usy) — Ab(Xgy) called extension by zero. If T is a geometric point of X then (5, F)z =
@D, @)~z F= where the direct sum runs over the geometric points of U above T (see [SGA 44,
Exposé IV, Proposition 11.3.1] and [Stacks, tag 03S5]). This shows that ji is an exact functor.
Again, if g : Y — Z is a scheme morphism, it holds that (g o f) = ¢ fi. In fact, this follows from
the adjunction property between f* and fi.

When j : U — X is separated and étale, there is a functorial injective map ji.F — j.JF where
F € Ab(X) (see [Stacks, tag 04FL]). Moreover, if the map j : U — X is assumed to be finite then
the morphism 5 F — j.F is an isomorphism for all 7 € Ab(X) (see [Stacks, tag 03S7]).

1.2.4. Locally constant sheaves and constructible sheaves.

DEFINITION 1.2.4.1 ([SGA 43, Exposé IX, §2|,[SGA 4%, Arcata, §IV.3]). Let X be a noe-
therian scheme and F an étale sheaf on Xsg.

(a) F is said to be locally constant if there is an étale covering {¢; : U; — X };cr such that
each F|y, := @i F is a constant sheaf (see Example 1.2.2.3.(b)). We say that F is locally
constant constructible (abreviated by l.c.c.) if it is locally constant and each value group
is a finite group.

(b) F is said to be constructible if for every affine open U C X there exists a decomposition
of U into a finite number of constructible locally closed reduced subschemes U; such that
the induced sheaf of F over each Uj; is locally constant constructible.

The inverse image under a morphism of schemes f : X — Y of a l.c.c. sheaf is again l.c.c.
(see [Stacks, tag 095A]). If f : X — Y is an étale covering, the analogous result for direct images
holds (see [Stacks, tag 095B]).

If X is a quasi-compact and quasi-separated noetherian scheme, a sheaf F is constructible if
and only if there is a decomposition of X into constructible locally closed sets X; such that F is
l.c.c. on each X; (see [SGA 43, Exposé IX, Proposition 2.4]).

The following lemma on representability of l.c.c. sheaves is essential for us:
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LEMMA 1.2.4.2 ([SGA 43, Exposé IX, Lemme 2.2],[Stacks, tag 03RV]). Let X be a noether-
tan scheme and F an étale sheaf on Xgy. F is locally constant constructible if and only if F is
representable (Example 1.2.2.3.(a)) by an étale covering U — X. O

From this lemma it follows that the sheaf p, x (with n invertible in X) of Example 1.2.2.3 is
locally constant constructible since it is represented by the scheme X ®gz Z[T]/(T™ — 1).
Combining Lemma 1.2.4.2 and Theorem 1.1.0.1 we obtain the following theorem:

THEOREM 1.2.4.3 ([Stacks, tag 0DV5]). Let X be a connected noetherian scheme and T a
geometric point of X. The functor F — Fz defines an equivalence of categories

{l,c.c. abelian sheaves on Xét} — {ﬁnite discrete continuous 71 (X, E)—modules}.

Furthermore, if f : Y — X is a morphism between connected schemes, § is a geometric point of Y
and T = f(7), then the diagram

{l.c.c abelian sheaves on Yer } <— {finite discrete continuous 71 (Y, y)-modules}

a [

{l.c.c. abelian sheaves on Xg} +— {finite discrete continuous m (X, T)-modules}

18 commutative, where the vertical right arrow is precomposition of the action with the homomor-
phism f, introduced in Theorem 1.1.0.3.(b). O

1.2.5. Some remarks on sheaves of modules. So far we have worked with abelian sheaves
on Xe. If the target category of our presheaves and sheaves is the category of A-modules (A a
commutative unitary ring), we speak of presheaves and sheaves of A-modules respectively. We
denote the corresponding categories by PMod (X, A) and Mod(Xes, A). All the stated properties in
§1.2.2 hold for them.

Given sheaves of A-modules 7 and G on X4 we can consider the A-module Homyeq(x,,,4)(F,G),
that is, the set of all natural transformations between functors F and G endowed with its natu-
ral structure of A-module. However, it is desirable to have an internal “hom” in the category
Mod(Xet, A). To this end, given F and G in Mod(Xet, A) consider the presheaf

UL X € Bt/X — Homyog(u,, ) (Flv, Glv)

where F|y := j*F and G|y := j*G. Tt is easy (but tedious) to check that the previous presheaf is
in fact a sheaf. We denote it by Hom 4(F,G).

Analogously, we can define the presheaf U — F(U)®4 G(U). In general, this presheaf is not a
sheaf and we should consider its associated sheaf. We define this way the tensor product of sheaves
of A-modules denoted by F ®4 G. We introduce locally free sheaves of rank r € N :

DEFINITION 1.2.5.1. Let A be a noetherian ring, X a scheme and F a sheaf of A-modules
on Xg;. F is said to be locally free if there exists an étale covering {X; — X };cr such that each
restriction F|x, is a free sheaf of A-modules, that is F|x, ~ ;¢ ; A for some index set .J. Moreover,
if the rank of the free sheaves of A-modules F|x, is the same value r € N for all i € I we say that
F is locally free of (constant) rank r.

Despite all the notions introduced in §1.2.2 and §1.2.3 can be stated without major changes
for sheaves of A-modules, the notion of locally constant constructible sheaf needs an important
modification. We define them as follows:

DEFINITION 1.2.5.2. Let A be a ring, X a noetherian scheme and F a sheaf of A-modules
on Xg;. We say that F is locally constant constructible (l.c.c.) if there exists an étale covering
{U; — X}ies such that for all ¢ € I the sheaf F|y, is constant and its associated value group is a
finitely generated A-module.




1.2. ETALE TOPOLOGY AND ETALE COHOMOLOGY 7

Observe [SGA 43, Exposé IX, §2.3.1] that an abelian sheaf F on Xg; is locally constant
constructible as an abelian sheaf if and only if it is locally constant constructible as a sheaf of
Z-modules and its associated value groups are all finite. However the sheaf Z x is locally constant
constructible as a sheaf of Z-modules but not as an abelian sheaf.

When A = Z/nZ, we will usually refer to constructible sheaves of Z/nZ-modules simply by
torsion abelian sheaves such that n is one of its torsion orders.

1.2.6. Etale cohomology. Let X be a scheme. We already know that the category of
abelian sheaves on Ab(X) (resp. Mod(Xg;, A)) is abelian and has enough injectives. Furthermore,
the global sections functor F € Ab(X) — F(X) = I'(X, F) is left exact. Hence, we can speak
about its right derived functors. Also, a morphism of schemes f : X — Y induces a left exact
functor f, : Ab(X) — Ab(Y) and we can consider its right derived functors. We name them in the
following definition:

DEFINITION 1.2.6.1. Let X be a scheme. We denote by H®(X, ) the right derived functors of
the global sections functor I'(X,-) and call H (X, F) the i-th étale cohomology group of X with
values in F € Ab(X). If f: X — Y is a morphism of schemes, we denote by R® f. the right derived
functors of f, and call R f,F the i-th higher direct image functor of F € Ab(X).

Since the functor f, is exact when f is a finite morphism, by definition R f, = 0 for all i > 0.
In general, to “compute” higher direct images we have to introduce two objects. Following the
notation of [Mil80, §2.1]:
(a) Given j: U — X an étale morphism, the functor F € Ab(X) — T'(U, F) is left exact and
we can consider its right derived functors. We denote them by H*(U, F).
(b) The functor ¢ : Ab(X) — PAb(X) is left exact. Its right derived functors are written
He (X, F).
It is obvious that the presheaf H!(X,F) is just the presheaf U ~— H'(U,F). Observe that for
j : U — X a given étale morphism the functor j* takes injectives objects of Ab(X) to injectives
objects of Ab(U). This simply follows from the adjunction property

Homyy, 1) (F, j*Z) = Homyy(x) (1 F, T)

and the exactness of j, since, if we assume Z to be injective, then the functor on the left hand
side is clearly exact. Using this observation, the fact that j is exact and working directly with
injective resolutions, we see that the cohomology groups H*(U, F) introduced in (b) above and the
standard cohomology groups H®(U, j*F) are canonically isomorphic. Combining all these remarks
we conclude that the presheaf H!(X,F) is just the presheaf U ~ H'(U, F|y). With this in mind
we can state the following proposition:

PROPOSITION 1.2.6.2 ([SGA 42, Exposé V, Proposition 5.1]). Let f : Y — X be a morphism
of schemes and F an abelian sheaf on Ys. Then R' f,F is the sheaf associated to the presheaf

U— X €eEt/X —H(U xx Y, Flusxy)- -

In the case of points we already know how to compute cohomology. In fact, as a direct
consequence of Theorem 1.2.2.4 we have the following:

COROLLARY 1.2.6.3 ([SGA 4, Exposé 11, Corollaire 2.3]). Let k be a field, k*%P a separable
closure of k and X = Spec k. Let F be an abelian sheaf on Xey and M its associated Gal(k®P/k)-
module under the equivalence of Theorem 1.2.2.4. Then we have a canonical isomorphism (func-
torial in F) of 6-functors

H* (X, F) = H*(Gal (k" /k), M)

where the groups on the right are Galois cohomology groups. ]
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The following theorem is quite important for the general theory of constructible sheaves on
shcemes of finite type over a separably closed field. It shows that higher direct images preserve
constructibility:

THEOREM 1.2.6.4 ([SGA 4%, Th. Finitude, Théorémes 1.1 and 1.9]). Let k be a separably
closed field, f : X — 'Y a morphism between k-schemes of finite type and F a constructible sheaf on
X whose torsion orders are invertible on S. Then the higher direct images R' f,F are constructible
for every i € N and they are not zero for only finitely many integers i € N. Furthermore, the
formation of Rt f,F commutes with arbitrary extension to a separably closed field. |

Setting Y = Spec k in the previous theorem we obtain the following:

COROLLARY 1.2.6.5 ([SGA 4%z, Th. Finitude, Corollaire 1.10]). Let k be a separably closed
field, X a scheme of finite type over k and F a constructible abelian sheaf on X whose torsion
orders are invertible on k. Then the groups H (X, F) are finite, vanish for every i except for finitely
many integers i € N and are invariant under extension from k to any separably closed overfield. O

For a more precise statement on the vanishing part of these theorems see Corollary 1.2.7.3.

1.2.7. Proper base change theorem. We want to state one of the most important theorems
in étale cohomology, namely proper base change theorem. To this end we introduce the base change
maps [SGA 43, Exposé XII, §4]. Let

X — X

I
S —2= 3

be a cartesian square. We construct a natural transformation g*f, 2 f/(¢')* as follows. Using
that ¢g* is left adjoint to g, to give a morphism ¢g* f,. — f.(¢’')* is equivalent to give a morphism
fo = g fU(g) = (9f)(9")" = (f9):(9')" = frgilg)™.
It is easy to give such a morphism just applying f. to the adjunction morphism id — ¢.(g¢’)*.
Observe that we can proceed simmetrically using that f. is right adjoint to (f’)* and arguing as
before we can apply (¢’)* to the adjunction morphism f* f, — id. Despite it seems we can construct
two different base change maps, it was proved (in a broader context) by Deligne in [SGA 43, Exposé
XVII,Proposition 2.1.3] that both procedures give us the same morphism between functors.
More generally, we can give a base change map for every i > 0
* [t Lpi 1 *

g R L) D R
Indeed, reasoning as before but using this time the desription of R’ provided by Proposition 1.2.6.2,
we construct

R'fe = (R £)9L(9) = R (fg):(g") =R (gf)(9)" — g"R' filg")"-
Using these functors we can state proper base change theorem:

THEOREM 1.2.7.1 ([SGA 43, Exposé XII, Théoreme 5.1.(iii)]).

Let
X — X

g
N
s —2= S
be a cartesian diagram with f a proper morphism and let F be a torsion abelian sheaf on Xg:.
Then the base change morphism

¢ g RfF = RfL(g)F

is an isomorphism for every i > 0. ]
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Proper base change theorem has some remarkable consequences. We state two of them:

COROLLARY 1.2.7.2 ([SGA 43, Exposé XII, Corollaire 5.2.(iii)]). Let f : X — S be a proper
morphism, s — S a geometric point and Xz the fiber of f at's. If F is a torsion abelian sheaf on
Xet, for every i > 0 the base change morphism

(R' . F)s — H' (X5, Flx)
s an isomorphism. O
The next corollary is a vanishing statement for higher direct images:

COROLLARY 1.2.7.3 ([SGA 43, Exposé XII, Corollaire 5.3.bis]). Let f : X — S be a proper
morphism and assume the fibers of f are of dimension < n. Then for every torsion abelian sheaf
F on Xe; it holds R f, F = 0 for every i > 2n. O

In [SGA 43, Exposé XII, §2] it is shown the torsion hypothesis on F is necessary for Theorem
1.2.7.1 to hold.

A last result on étale cohomology that is useful in applications is the so called Affine Lefschetz
theorem:

PROPOSITION 1.2.7.4 ([SGA 43, Exposé XIV, Corollaire 3.2]). Let X be an affine scheme of
finite type over a separably closed field k and F a torsion abelian sheaf on Xey. Then H(X, F) =0
for every i > dim X. |

1.2.8. Etale cohomology with compact support. It is desirable to have an étale analog
of cohomology with compact support so we can try to give duality theorems similar to Poincaré
duality. In this section we construct such “compactly” supported cohomology groups.

Let f: X — S be a separated and finite type map of schemes and assume that S is quasi-
compact and quasi-separated (succintly, S is a qcgs scheme). After Nagata’s compactification
theorem [Nag62] (see [Con07] for a version of this theorem without noetherian hypothesis on .S)
we know there is an open immersion j : X — X into a proper S-scheme f : X — S such that
f = fj. We call the previous data a compactification of f. With this notation we define:

DEFINITION 1.2.8.1. With f,j and f as above, we define the i-th higher direct image with
compact support R’ fi as the composed functor R f, o ji restricted to the category of torsion abelian
sheaves. If S = Spec k with k a separably closed field then we denote the higher direct images
with compact support by H® (X, F), named cohomology groups with compact support.

This definition needs two observations. First of all, the definition of R’f; does not depend
on the chosen compactification. Checking this fact needs the proper base change theorem (see
[SGA 4V, Arcata IV, §5] and [SGA 43, Exposé XVII, Théoréme 5.1.8]) and this explains why in
the definition we have restricted our functors to the category of torsion étale sheaves (otherwise
proper base change would be false). Finally observe that H® (X, F) = H*(X, ji.F).

Higher direct images with compact support verify theorems analogous to those of higher direct
images. Specially important is the following one:

THEOREM 1.2.8.2 ([SGA 43, Exposé XVII, Proposition 5.2.8]). Let f : X — S be a separated
and finite type map of schemes and F a torsion abelian sheaf on X. For every geometric point 5
of S let Xz be the fiber of f at's. Then the identiy

(R.zfl]:)g - HZ(Xg, ]:
holds canonically. O

X5)

We obtain the corresponding vanishing result:

COROLLARY 1.2.8.3 ([SGA 43, Exposé XVII, Corollaire 5.2.8.1]). Let f : X — S be a separated
and finite map with fibers of dimension < n. Then for every torsion abelian sheaf over X it holds
R fiF =0 for every i > 2n. |
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The following important theorem on constructibility of higher direct images with compact
support holds:

THEOREM 1.2.8.4 ([SGA 4%, Arcata IV, Théoréme de finitude (6.2)],[SGA 43, Exposé XVII,
Théoréme 5.3.6]). Let f : X — S be a separated finite-type map and F a torsion constructible
abelian sheaf on X whose torsion orders are invertible on S. Then the sheaf R fiF is constructible
for every index i. |

From this theorem it follows the following finiteness result:

COROLLARY 1.2.8.5 ([SGA 43, Exposé XVII, Corollaire 5.3.8]). Let k be a separably closed
field, X a separated of finite type scheme over k and F a torsion constructible abelian sheaf on X
whose torsion orders are invertible on k. Then the groups H (X, F) are finite, vanish for every i
except for finitely many integers i € N and are invariant under extension from k to any separably

closed overfield. O

1.2.9. Poincaré duality. Before stating Poincaré duality we describe Tate twists of sheaves
of A-modules. We restrict A to be either Z/nZ for some n € N or Oy/m% where O, is the ring
of integers of a finite extension K/Q, (¢ prime number), n € N and m, its maximal ideal. The
main properties we want from these rings are: A is noetherian and injective as an A-module. This
last property easily follows from Baer’s criterion on injectivity [Stacks, tag 05NU]. Let X be an
scheme where n (resp. /) is invertible. We can consider the sheaf p, x of Z/nZ-modules (resp.
pen x of Z /" Z-modules). It is a locally free sheaf of modules of rank 1. For ¢ € Z we define

pat if i > 0,
Z/nZ(3) :=< Z/nZ ifi=0,
Homy )z (Z/nZ(—i), Z/nZ) ifi<O0.
More generally for every sheaf of Z/nZ-modules (resp. sheaf of O /m%-modules) F and i € Z we
define F(i) := F ®z/nz Z/nZ(i) (vesp. F(i) = F @z enz, Z/L"ZL(i)). Observe the use we make of
the fact that Oy/mY is a Z/¢"Z-algebra.
Poincaré duality is the following statement:

THEOREM 1.2.9.1 ([Fulb, Corollary 8.5.3],[Con, Theorem 1.3.8.1]). Let X be a smooth,
spearated of finite type and pure of dimension d scheme over a separably closed field k. Assume that
n (resp. £) is invertible on X and k. For any locally constant constructible sheaf of Z/nZ-modules
(resp. Oy/mY-modules) F on X and any i, we have an isomorphism

H24(X, Z/nZ(d)) = Z/nZ
and ‘ ‘
B2 X, Homynz(F, Z/nZ(d))) x HL(X, F) — H2Y(X, Z/nZ(d)) ~ Z/nZ
is a perfect pairing (resp. we have an isomorphism
Ho4(X, 05 /m}(d)) = Oy /m}
and ' ‘
H*(X, Homo, jmy (F, Ox/m5(d))) x HL(X, F) = HZY(X, Or/m}(d)) ~ Oy /m}

is a perfect pairing). O

1.3. /-adic sheaves and /-adic cohomology

As we have seen, étale cohomology is a good cohomology theory satisfaying the expected
properties when the values are in a torsion sheaf. The torsion hypothesis should be removed in
order to obtain theorems such as Lefschetz fized-point formula, otherwise we would be counting
fixed points modulo torsion orders. The remedy for this is to extend our definition of étale sheaves
while working in a more restricted context. For this section we mainly follow [Con, §1.4].
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1.3.1. /-adic sheaves. We fix some notation. Let A = O, be the ring of integers of a finite
extension K of Q. A is a complete local noetherian ring, denote its maximal ideal by m (or simply
m) and its residue field by Fy (or simply F). We also fix an uniformizing parameter of A, i.e. a
generator 7 of m. Define A,, = A/m"*! for n > 0. In the sequel we consider 0 € N.

DEFINITION 1.3.1.1 ([SGA 42, Rapport, Définition 2.1]). Let X be a noetherian scheme. A
A-sheaf F, on X is a projective system of sheaves F,, (n > 0), where F,, is a constructible sheaf
of A,-modules such that the transition morphism F,, — F,_1 factors through an isomorphism
Fn @A, A1 — Frn—1. We say F is lisse if the sheaves F,, are locally constant constructible.

REMARK 1.3.1.2. The condition that F,, — F,,_1 factors through an isomorphism F,, ®x,,
A, _1 — F,_1 means that there is an isomorphism such that the diagram

JT"n JT"n—l

~ L

‘Fn ®An Anfl

is commutative. Equivalently, F,, — F,_1 induces an isomorphism F,, /7" F, — F,_1. Lastly, it

is also equivalent to the exactness of the sequence F,, I, Fn — Fno1 — 0. |

We can extend ordinary sheaf constructions to these A-sheaves just applying them termwise.
For example, if F, and G, are two A-modules, we define Homp (Fo,Gs) = (Homp, (F, Gn))nen.
Similarly, we define Fo @5 Go = (Fp, ®4,, Gn)nen. To define inner “hom” we have to take F, such
that each F,, is a locally free sheaf of A,-modules of finite rank (see [SGA 5, Exposé VI, §1.3.3]).
With this assumption, we define Homa(Fe, Ge) = (Homnp,, (Fn,Gn))nen. The hypothesis we make
on JF, assures us that we have an exact sequence

Homa, (Fn,Gn) = Homn. (Fn,Gn) — Homa, (Fn,Gn_1) — 0.

Since "G, _1 = 0, the exact sequence F, l—> Fn — Fn_1 — 0 shows that precomposing with
Fn — Fpn—1 induces an isomorphism Homp, ,(Fn—1,Gn-1) = Homn, (Fn,Gn-1). Combining this
facts we conclude that our definition of Homa (Fe,Gs) indeed defines a A-sheaf.

ExAMPLE 1.3.1.3 ([SGA 5, Exposé VI, Exemple 1.2.2]). The Zs-sheaves Z; o(7) :

Let ¢ be a prime number invertible on X. For every n € Z, we have a morphism of lo-
cally constant sheaves (-)° : pmt1 x — jn x. They obviously define a Zg-sheaf on X denoted
Zio(1) == (pgn+1 x)nen. In fact, Zy o(1) is a lisse Z,-sheaf. We extend the definition for ¢ > 1 as
Zp (i) := Zo(1)®%" and for i = 0 as Zye(0) = (/0" Z)pnen = Zoo. For i < 0 we set Zg o(i) =
Homy,(Z¢,e(—1),Z¢.e). Now, for every A-sheaf F, and i € Z we define F, (i) := Fo Qz, Zy¢,o(i). By
definition, the sheaves F,(i) coincide with (F,, @z gn+1z Z/0" L)) nen = (Fn())nen- ]

It is natural to expect A-sheaves to verify a certain constructibility property similar to the one
defined in Definition 1.2.4.1. The following is a precise statement:

PROPOSITION 1.3.1.4 ([SGA 4Y2, Rapport, Proposition 2.5],[Con, Theorem 1.4.4.7]). Let F
be a A-sheaf on a noetherian scheme X. There is a finite partition of X into locally closed subsets
X, such that F|x, is a lisse A-sheaf on each X;. O

Given a geometric point T of X and F, a A-sheaf on X, we define the stalk of F, at T as the
inverse limit @(fn)f Since each stalk (F,)z is a finitely generated A,-module, obviously (Fe)z
is a finitely generated A-module (using that A is complete with respect to the m-adic topology).
Using stalks and Theorem 1.2.4.3 we obtain the theorem:

THEOREM 1.3.1.5 ([SGA 5, Exposé VI, Proposition 1.2.5],[Ful5, Proposition 10.1.23]). Let X
be a connected noetherian scheme and T a geometric point of X. The functor Fe — (Fe)z defines
an equivalence of categories

{lisse A-sheaves on Xét} — {ﬁm'tely generated continuous A[my (X, E)]-modules} .
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Furthermore, if f :' Y — X is a morphism between connected noetherian schemes and y is a
geometric point of Y with T = f(g) the diagram

{lisse A-sheaves on Ya } +—— {finitely generated continuous A[m(Y,y)]-modules}

] 1

{lisse A-sheaves on Xe} «—— {finitely generated continuous A[m1(X,T)]-modules}

1s commutative, where the vertical right arrow is precomposition of the action with the homomor-
phism f, introduced in Theorem 1.1.0.3.(b). O

REMARK 1.3.1.6. After Example 1.3.1.3 and Theorem 1.3.1.5 we know Z; (1) is equivalent
to a Zg-module together with an action of m1(X,Z). For our purposes, it is sufficient to describe
it when X = Spec k is a point with &k a finite field. In this case, Zse(1) = (ften+1 spec k)neN
and (Zg,e(1))spec kse = Mugn+l(ksep> o~ yLnZ/E"HZ ~ Z; is the Tate module of k®P. The
action of Gal(k®*®%P/k) on each pyn+1(k%°P) is the natural one which factors through the finite
quotient Gal(k(gugn+1)/k). This last group is (non-canonically) isomorphic to (Z/¢"*1Z)* and
Gal(k(ue)/k) = @Gal(k(,ugn)/k) < Z,. The action we are considering of Z, on Z, is just
multiplication. The map

Gl (k(jire) ) < Z
precomposed with the projection (given by restriction)
Gal(k®?/k) — Gal(k(pe=)/k)

is called the cyclotomic character. Under this character Frob; is mapped to |k|~! since Froby

is t — tl"™". By tensoring (or dualizing) we find Zse(n) on Spec k corresponds to the ¢-adic
character of Gal(k®®?/k) that sends Froby, to |k|™" for n € Z. ]

The category of K-sheaves has as objects the A-sheaves (this time denoted F, ® K) and
Homp (Fo ® K,Ge ® K) = Homp (Fe, Ge) ®a K. The stalk of a K-sheaf Fy ® K at a geometric point
T of X is the finite dimensional K-vector space (Fe)z ®a K. We say that F ® K is a lisse K-sheaf
if F, is a lisse A-sheaf. We denote A(r) ® K by K(r). It should be remarked that, intuitively, the
step from A-sheaves to K-sheaves corresponds to the deletion of the torsion. We have the following
equivalence of categories:

THEOREM 1.3.1.7 ([Fulb, Proposition 10.1.23]). Let X be a connected noetherian scheme and
T a geometric point of X. The functor Fe @ K +— (Fo)z @ K defines an equivalence between
the category of lisse K-sheaves on X and the category of continuous K -linear representations of
m1(X,T) on finite dimensional K-vector spaces.

Furthermore, if f 'Y — X is a morphism between connected noetherian schemes, j is a
geometric point of Y with T = f(7) and Fe @ K is a lisse K-sheaf on X with associated represen-
tation p, then the representation associated to f*(Fe @ K) is po f. where f, is the homomorphism
introduced in Theorem 1.1.0.3.(b). O

If Q¢ C K C L is a tower of finite extensions we can extend scalars and define, for each K-sheaf
Foe, the L-sheaf Fq ® ¢ L. Taking this observation into account, we introduce Q,-sheaves:

DEFINITION 1.3.1.8 ([Con, Definition 1.4.5.6]). Let X be a noetherian scheme, ¢ a prime and
Q an algebraic closure of Q. The category of Q,-sheaves on X is the category whose objects are
triples (F,, K,2) where ¢ : K — Q, is an embedding of a finite extension of Q, into Q, and F,
is a K-sheaf, and Homg ((Fe, K, 1), (Ge, L, 7)) := Hompr (Fo @k K”,Go @1 K") @5 Qy, where K"
is any finite extension of Q; inside Q, containing both +K and jL. A Q,-sheaf (F,, K,2) is lisse if
F. is a lisse K-sheaf. We define the stalk of a Q,-sheaf (F,, K,2) at a geometric point Z of X as
(Fo)z @K Q.
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Let X be a connected scheme and Z a geometric point of X. Let p : m1(X,Z) — GL(r,Q,) be
a finite dimensional Q-linear representation of 7 (X, Z). Since 71 (X, T) is a profinite group, it is
in particular a compact group. Hence the image of p is a compact subgroup of GL(r, Q,) and after
[KS99, Remark 9.0.7] (see also [Con, Proof of Theorem 1.4.5.7]) we know that it lies in GL(r, K)
for some finite extension K of Qy inside Q,. Using this observation we obtain the following theorem:

THEOREM 1.3.1.9 ([Ful5, Corollary 10.1.24],[Con, Theorem 1.4.5.7]). Let X be a connected
noetherian scheme and T a geometric point of X. The functor (Fe, K,2) = (Fo)z @x Q, defines
an equivalence between the category of lisse Qy-sheaves on X and the category of continuous linear
representations of w1 (X,T) on finite dimensional Q,-vector spaces. O

We say the rank of a lisse Q,-sheaf F on X is d if the associated Q,-representation p of 71 (X, Z)
has dimension d, i.e. p: 7 (X,Z) — GL(d, Q).

1.3.2. /-adic cohomology. Let X be a noetherian scheme and F, ® K a K-sheaf on X with
Fo a A-sheaf on X. We define its cohomology groups by H/ (X, Fe ® K) := (l'£1Hi(X7 Fn)) @a K.
More generally, if F = (F, ® K, K,1) is a Q;-sheaf on X, we define
H'(X,F) =H(X,Fe ® K) @k Q.

Analogously, we define cohomology groups with compact support for K-sheaves Fo@K by H: (X, Fo®
K) = QiLnHi(X,]-'n)) ®a K and for Qg -sheaves F = (F, @ K, K,1) by

H (X, F) :=H(X,F. ® K) @k Q,.

We are interested in the case X is a separated of finite type scheme over a separably closed
field k. In this case, assuming /¢ is invertible on k, we use Corollary 1.2.6.5 to deduce that the
cohomology groups of Q,-sheaves on X are finitely generated Q,-vector spaces vanishing for every
degree except for finitely many of them. For cohomology with compact support we use Corollary
1.2.8.5 to find the analogous properties.

In general, for f : X — Y a separated finite-type morphism between noetherian schemes of
finite type over a separably closed field k and F, a A-sheaf on X such that ¢ is invertible on k,
we define R’ f,.Fy = (R'foFy)nen- By Theorem 1.2.6.4 we find that R f,F, is again a A-sheaf on
X. Similarly, using Theorem 1.2.8.4, we find the corresponding result for R f,F, (for more details
see [Con, Theorem 1.4.6.1] or [Ful5, Proposition 10.1.18]). We extend our definitions to K-
sheaves and Q,-sheaves just embedding the result of the previous operations into the corresponding
category.

1.3.3. Grothendieck’s Lefschetz trace formula. Before stating Grothendieck’s Lefschetz
trace formula we introduce (following [KS99, §9.0 and §9.1]) the actors involved. Recall from
Example 1.1.0.4 that if k¥ = F, is a finite field with ¢ elements, we have Gal(k®®P/k) ~ 7 with
topological generator x — x¢. We denote the inverse of this generator by Froby, called the geometric
Frobenius.

Let X be a connected noetherian scheme and £ a marked geometric point of X. Given a k-
valued point x € X (k) and a geometric point Z : Spec k%' — X lying over x, we obtain a canonical
homomorphism

x, : 71 (Spec k, k*'8) — 1 (X, T).
Using the isomorphism 7 (Spec k, k*'8) ~ Gal(ks°P/k), we consider z,(Froby). Since the funda-
mental groups of X at different base points are all conjugate, the conjugacy class of Froby, , is well
defined in the set of conjugacy classes 71 (X, €)% of the fundamental group of X based at €.

REMARK 1.3.3.1. For general Q,-sheaves F we can define an action of Frob, on Fy as follows.
As before, if X is a connected noetherian scheme, = : Spec k — X is a k-valued point and F is a
Qy-sheaf on X, we consider its inverse image z* F that is a Q,-sheaf on Spec k. Since Q,-sheaves on
a point Spec k are just finite dimensional Q,-vector spaces (z*F)ps» = Fz (T being the composition
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of x : Spec k — X with Spec k**® — Spec k) endowed with a continuous action of Gal(k®P/k),
we speak again of the action of Froby on the the stalk Fz and its trace Trace(Froby|Fz). This
action agrees with the action of (a representative of) Froby , when F is lisse since the inverse
image functor is compatible with the functoriality of fundamental groups.

When F is lisse with associated representation p : 71(X, &) — GL(r, Q,), for every conjugacy
class v € m (X, €)% we write Trace(y|F) := Trace(p(y)), which is well defined since the trace is
invariant under conjugation. ]

Finally for X a separated, connected noetherian scheme of finite type over a finite field &, fix an
algebraic closure k%P of k and let F be a Q,-sheaf on X. We want to describe a Gal(k®P/k)-module
structure on the cohomology groups H: (X ®j k5°P, p* F), where p : X ®j, kP — X is the canonical
projection. Let o € Gal(k®®P/k). We consider the morphism 1 ® o : X ®j k3P — X ®y, k%P which
verifies po (1 ® o) = p. Now for a € HL(X ®j, k°%P,p*F) we define oo := (1 ® 0)*a € H(X @y
k5P (1®0)*p*F). Taking into account the equality (1®0)*p* = p* we get oo € HL (X @, kP, p* F)
and it defines an action of Gal(k®®P/k). To simplify the notation we always denote p*F directly
by F. After our construction, H(X ®j k*%P, F) can be understood as a lisse Q,-sheaf on Spec k.
Moreover, it can be checked [Stacks, tag 03ST] that this action coincides with the Gal(k®¢P/k)
action on the stalk (R'mJF)gser = HL (X ®1 k%P, F) where 7 : X — Spec k is the structure morphism.
Now all the terms in the following theorem have a meaning:

THEOREM 1.3.3.2 ([KS99, §9.0.14],[SGA 4%, Rapport, Théoréme 3.2]). Let X be a separated,
connected noetherian scheme of finite type over a finite field k of dimension d and F a Q,-sheaf
on X. Then for every finite extension E/k we have

2d
Z Trace(Frobg|Fz) = Z(—l)iTrace(FrobE|Hi(X @ k218 F)). 0
2EX(E) i=0

If we assume F to be lisse in the previous theorem, the traces Trace(Frobg|Fz) are just
Trace(Frobg ;| F) as already observed above.

1.3.4. Weights and Deligne’s theorem. Let p be a prime number, k/F, a finite field and
k218 an algebraic closure. We fix an isomorphism ¢ : Q, — C. Following [Del80, Définition 1.2.1]
we say o € Qy is pure of weight w € Z relative to q (q being a prime power) if it is algebraic and
all the complex conjugates of ta are complex numbers with absolute value ¢*/2. Such an « is also
called a g-Weil number of weight w.

DEFINITION 1.3.4.1 ([Del80, Définition 1.2.2]). Let X be a separated of finite type scheme
over k and F a Q,-sheaf on X.

(a) We say F is punctually pure of weight w if for every closed point = of X, the eigenvalues
of Froby, acting on Fz (for Z a geometric point of X over x) are |k(x)|-Weil numbers
of weight w.

(b) We say F is mixed if it admits a finite filtration whose successive quotients are punctually
pure Q,-sheaves. If the weights of the non-zero quotients are bounded above by an integer
w, we say F is mixed of weights < w.

More generally, we say « € Q, is (-pure of weight w € Z relative to ¢ if it is algebraic and
the complex absolute value of ta equals ¢“/2. Analogously to the definitions of pure and mixed
sheaves, we use the notion of t-pure algebraic numbers to define [Del80, §1.2.6] t-pure sheaves of
weight w and (-mixed sheaves of weight < w.

The main theorem of [Del80] is the following:

THEOREM 1.3.4.2 ([Del80, Théoréme 3.3.1]). Let f : X — Y be a separated morphism of
schemes of finite type over k and F a Qg-sheaf on X. If F is mized of weights < w then for every
i € Z the Q,-sheaf R' fiF over Y is mized of weights < w + i. |
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This theorem has a direct corollary:

COROLLARY 1.3.4.3 ([Del80, Corollaire 3.3.4]). Let X be a separated scheme of finite type
over k and F a Qg-sheaf mized of weights < w. Then H.(X ® k'8 F) is a Q,-sheaf on Spec k
mized of weights < w + 1 for every i. |

The combination of this theorem with Poincaré duality provides us with the following:

COROLLARY 1.3.4.4 ([Del80, Corollaire 3.3.5]). Let X be a smooth scheme of finite type over
k and F a lisse Q,-sheaf mived of weights > w. Then H'(X ® k*, F) is a Q,-sheaf on Spec k
mized of weights > w + 1 for every i. O

1.3.5. Ly, L, and generalized Tate twists. We follow [Kat88a, §4.4.3], [Kat90, §7.2]
and [KS99, §9.0.11]. Using the equivalence of Theorem 1.3.1.9 we give important examples of lisse
Qy-sheaves. Their relevance is that they will allow us to translate questions about exponential
sums into questions about cohomology of Q,-sheaves (see §1.4.2 for details).

ExaMpPLE 1.3.5.1. Artin—Schreier and Kummer sheaves:

Let G be a smooth and connected commutative group scheme over a finite field F,. We denote
by F': G — G the absolute Frobenius endomorphism of G relative to Fy, i.e. it is the identity at
the level of topological spaces and the g-th power on the structural (Zariski) sheaf of G. We define
the Lang isogeny of G as £ : x € G — zF(x71) € G. The Lang isogeny is a finite étale Galois
covering with Galois group G(F,). £ being an étale Galois covering with group G(F,), there is a
canonical surjection m (G, §) = G(F,). If p: G(F,) — Q,” is a character with ¢ a prime number
invertible on F, and we precompose it with the previous canonical surjective homomorphism, we
obtain a Q-representation of m; (G, ) of dimension 1. The associated sheaf £, verifies the following
properties [Kat88a, §4.4.3]:

(a) [SGA 4%2, Sommes trigonométriques, §1.7.7] For any finite extension k/F, and a € G(k),
we have

trace(Frob o|L,) = p(Ng(k) (@)
where Ng(x)(a) denotes the norm of a in G(k) under the action of Gal(k/F,), i.e. the
product in G(k) of all conjugates of a under Gal(k/Fy).

(b) [SGA 4Y2, Sommes trigonométriques, §1.8.(ii)] For any finite extension k/F,, denote by
7 : G®F, k — G the canonical projection and by potrace the composition (G ®r, k)(k) =
G(k)
on G ®r, k

tracey — X . . . . oy
% G(F,) % @,” . Then we have a canonical isomorphism of lisse Q,-sheaves

* ([,p) = £potrace-
(c) [Lau87, §1.1.3.2] Denote Homg, (£,,Qp) by LY. Then L,-1 = LY.
(d) [SGA 4%, Sommes trigonométriques, Théoreme 2.7] If p is a non trivial character, then
H(G® k>, L,) =0.
We specialize the previous construction to the group schemes A%Fq and G, ,. The Lang isogeny
can be seen in an exact sequence as follows:

L=x—1x1

0 = F, —= Alqu Alqu - 0 for G:A]}q,

L=a'"1
1 — Hg—1 — G’m’]}‘q L) Gm’]}‘q — 1 for G:Gm’]p‘q.

Ify:F, — @gx is an additive character, we obtain a lisse rank one Q,-sheaf on A]}q denoted by

Ly and called Artin-Schreier sheaf. If x : Fy — @ZX is a multiplicative character, we obtain a
lisse rank one Q,-sheaf on Gm,r, denoted by £, and called Kummer sheaf. More generally, for any
morphism of schemes f : X — A%q and additive character ¢ : F, — @ex (resp. f: X = G,

and multiplicative character x : F;* — @@X) we denote Ly () := [*Ly (vesp. Ly = fLy). N
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EXAMPLE 1.3.5.2. Q,-Tate twist and generalized Tate twists:

Let k =, be a finite field and ¢ a prime number invertible in k. For every n € Z consider the
character of Gal(k*'8/k) that sends Froby to ¢~ ™. It defines a lisse rank one Q,-sheaf on Spec k
denoted by Q(n). After Remark 1.3.1.6, our definition of Q,(n) is the natural extension of our
previous notions of Tate twist.

In general, let a be a unit in the ring of integers of Q, and denote by a®8 the lisse rank one
Q-sheaf on Spec k associated to the representation Froby € Gal(k®®?/k) — «. This way, Q,(—n)
is just a°® with o = ¢™.

More generally, for any morphism f : X — Spec k we again denote by Q,(n) and a8 the
pullback along f of the corresponding sheaves on Spec k. As characters of 7 (X, §) (assuming X
good enough), they take the value |E|™ and a%°8(E/k) respectively on the Frobenius conjugacy class
Frobp .. For any lisse Q/-sheaf F on X, we denote F(n) := Feg, Qu(n) and F®ade = Feg,a'e.
When «a € Q, is a square root of 1/q we write F(1/2) := F ® a8 and call it the half-Tate twist.

It should be observed that we can describe the sheaf a®€ just as the Q,-sheaf associated to
the composition of the mentioned character Froby — « with the surjective group homomorphism
deg : m(X,z) — Gal(k®®P/k) of Theorem 1.1.0.5. Using the exact sequence of the theorem we
see that, as a character, a?®® vanishes on the geometric fundamental group and they are all the
“characters” with such property. |

1.4. Trace functions and exponential sums

1.4.1. Trace functions.

Let F, be a finite field and ¢ a prime number invertible on ;. While stating Grothendieck’s
Lefschetz trace formula we have seen that, for every Q-sheaf on a good enough F,-scheme X and
F a Q-sheaf on X, we can define functions from the sets of E-valued points of X to Q, for every
finite extension E/F, as follows:

Given z € X(FE) we know z*(F)gae is a Qy[Gal(E**?/E)]-module. If T is defined by the
composition of z : Spec F — X and Spec E*¢ — Spec E, then (z*F)gas = Fz We
define trr g : X(E) — Q, by x ~ Trace(Frobg|Fz).

The trace function of a Q,-sheaf F is the collection of functions trz := (tr FF,n )nen. They verify
the following properties [Lau87, §1.1]:

(a) For every pair of Q,-sheaves F and G on X we have trrag = trr + trg.

(b) For F and G Q-sheaves on X we have trrgg = trr - trg.

(c) For every morphism of F,-schemes f : X — Y between F,-schemes of finite type and
every Qg-sheaf F on Y we have try-r=trrof.

(d) Taking f : X — Y as in the previous item, Grothendieck’s Lefschetz trace formula and
the properties of R' f; provide us, for every Q,-sheaf F and every point y € Y (F,n), with
the (integration) identity

Z(—l)iTrace(Froqun |(R"fiF)y) = Z(—l)iTrace(Froqun Hi(X§7f|X?))
i=0 i=0
= Z Trace(Frobg,. |(F|x,)z)
z€Xy(Fyn)
= Z Trace(Froqun | Fz).
2EX (Fgn)
flz)=y

1.4.2. Exponential sums.
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1.4.2.1. Fourier transform on finite abelian groups. In order to describe Gauss sums and
Kloosterman sums in a convenient way we briefly review the Fourier transform of complex-valued
functions on finite abelian groups. Let G be a finite abelian group and define its Pontryagin dual
GV as the group of all homomorphisms from G to S'. It is well known that for every charac-
ter x : G — C* the sum > ,x(9) = 0if x # 1 and |G| if x = 1. Dually, if g € G then

> veav X(g) =0if g #0 and |G| if g = 0.
Now for any complex-valued function f : G — C we define its Fourier transform as the
complex-valued function

FTaf: GY — C
X = 2ea fla)x(9).

We can recover f from FTq f via Fourier inversion formula
f(9) > X(9)FTaf)(x).
|G|x€GV
Indeed, if we expand the term on the right we get:
> Xlg) Y f)x(h) =D f(h) Y x(h—g)=|G|f(g)-
XEGY heG heG XEGY

Given two complex-valued functions f,g : G — C* their convolution product f * g is the complex-
valued function defined by (f * g)(h) =3_,,, ), f(2)g(y). It holds that the Fourier transform of a
convolution is the product of the Fourier transform of the functions: FTg(f * g) = (FTaf)(FTgyg).
By Fourier inversion formula we find

> fh) = (f*9)( Z 0)FTe(f * g)( |G| > (FTaf)(X)(FTag) (x)-

heG xEG'V XEGY

Using in the previous equality the function ¢g*(h) = g(—h) instead of g and noting that FTg(g*) =
FTqg, we arrive at Parseval’s identity

> f(h)g(h) |G| > (FTaf)(X)FTag(x)-

heG XEGY

1.4.2.2. Gauss sums, Jacobi sums and Kloosterman sums. In this section we fix an isomor-
phism ¢ : Q, — C and tacitly identify both fields.

Let k = F, be a finite field with char(k) = p and ¢ : k — Q,” the additive character
Y(t) = exp(2mitraceyr, (t)/p). We extend every multiplicative character x : k* — C* as a
complex-valued function y : k — C by setting x(0) = 0. We define Gauss sums by

X) == Y p(t)x()

tekx

Clearly, 7(1,x) coincides with —(FTyx)(¢)) and with —(FTgx1|xx)(x). Using Fourier inversion
formula we find x(t) = _71 doprery T, )Y (t) for t € k and )(t) = q_T11 2ovemyv T X)X (1)
for t € k*. The following properties can be verified easily:

(a) If x = 1 is the trivial character, then 7(1, x) = 1. If ¢’ = 1 is the trivial character and x

is non trivial, then 7(¢’, x) = 0. If both ¢’ and x are trivial then 7(¢',x) =1 — q.

(b) If %, a € kX, is the additive character “y(x) := 1 (ax), then 7(%, x) = x(a=1)7(¢¥, x).

(c) If x # 1 then 7(¢, x) = x(=1)7(¥,X). Moreover (¢, x)7(¢), x) = ¢.

(d) If x # 1 then 7(¢, x?) = 7(¢, x o Frobyp,) = 7(¢, X)-

In a more general way, let k, = F,r and for ¢ : k — C* and x : & — C* two characters (¢

non trivial) denote by v, := 1) o tracey, s (or simply ¢,.) and xg, := x o Ny s (or simply x;).
With these notations, we have the following two relations due to Hasse and Davenport:
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(a) Hasse-Davenport lifting identity: [DH35, (0.8)] For every r > 1,

(e, xr) = T, )"

(b) Hasse—Davenport product identity: [DH35, (0.91)] Let N be a divisor of ¢ — 1 and denote
by p1,...,pn the N multiplicative characters of k* of order dividing N. Then for any
multiplicative character x of £* the following identity holds:

N N
TN XN [T 7@ p0) = [T 7@, xe0)-
i=1 i=1
Observe that in the last identity 1~ is just the product of 1 with itself N times, hence
PN (t) = »(Nt) for all t € k so (¥, xN) = x"N(N)7(¥, x V).
Related to Gauss sums we have Jacobi sums which we introduce here: given multiplicative
characters x,n € (k*)V define

Ioem === > x@my)=— > x(@mnl-a).

z,y€k™ ek \{1}
z4y=1

They satisfy the following properties:
(a) IO, m) = I, x)-
(b) J(1,1)=2—gq.
c) If x # 1 then J(x,1) = 1.
(d) If x # 1 then J(x, x ") = x(-1).
(e) For every x,n with xn # 1 and ¢ € k" a nontrivial additive character, 7(1, xn)J(x,n) =
(¥, x)7(¢,m). In particular, if x, 7, xn # 1 then J(x,n)I(x,n) = ¢

We show the last property:

o) = (= ¥ vlon@) (- X vi))

ek yekX

= Y Ya+yx@n) = ¢t > x@mn)

z,y€kX tek z,yek”
r4+y=t

=S w0 X attaen) = (5 wom©)( X xenn)
tekX z,yck™ tekX z,yck>
z+y=1 z+y=1
=7, xm)I(x, n)-
Combining this with Hasse-Davenport identity we obtain:

(a) Let x,n € (k*)V with xn # 1, then J(x»,n:) = J(x,n)". If xn = 1 the identity holds
trivially.

(b) [DH35, (0.95)] Let N be a divisor of ¢—1 and x € (k*)V such that xV # 1. If we denote
the set of multiplicative characters of k of order dividing N by p1,...,pn, then p;x #1

and
N

(¥, )N
H IpisX) = v
paiey TN, xN)
Another famous family of exponential sums are Kloosterman sums: For any n € N'\ {0} and
a € k* we define
Kloos,(q;a) := Z P(xy + -+ ).
T1,...,Tn €k

T1-Tp=a



1.4. TRACE FUNCTIONS AND EXPONENTIAL SUMS 19

These sums are further generalized by the expressions

Z Yy + -+ )X (1) Xn(T0),

X
T1,...,Tn €k
by bn
z, bz =a

where x1,...,Xn are multiplicative characters of k* and b1, ...,b, € Z are integers. The relation
between this family and Gauss sums is the following;:

ProposiTION 1.4.2.1 ([Kat88a, Chapter 4], [Kat80, Lemme 2.4.1.1]). Define the function
f:k* — Q by the expression f(a) = Zml oz k% mil..m?’ﬂ:aw(xl + ot xn)xa(xr) o xn(Tn)
where x; are multiplicative characters of k> and b; integers. Then

(FTo )0 = (1" - ] 7w - x0)
=1

for every multiplicative character x of k*.

PRrROOF. The result follows from the case n = 1. Indeed, write f;(a) = >_, cpx. zvi—q ¥(@)Xi(2),
and consider the convolution product

(frs-xf)@= > [lfiw)

Y1,eyn €L =1
Yi-Yyn=a

ST Y. v@xe)

yl:---vynekx i=1 xiekx
Yi-Yn=a xq;i:yi

S Y etz xal@)

b
i
i —Yi

Yo Wt m)xal@) - xal@n) = fla).

X
T1,...,Xn €K
by bp

Tt =a

Hence FTyx f = [[;_) FTpx fi. For n= 1, let f(a) := 3, cpx.pv—q ¥(2)x(x). Then
(FTix f)(n) = Y m@)fla) = Y nla) Y d(z)x(x)

ackXx ackX x%kx

= Z Y(x)n(z®)x(z) = Z b(@) (" - x)(x)
a,x€k™ ek

= —7(1/)7 77b : X)

O
COROLLARY 1.4.2.2. The functions Kloos,(q;-) : k* — Q. and (—=7(p, )™ (k)Y — Q.

are Fourier transforms of each other. Explicitly, for every a € k™ we have the identity

Kloos,(g;a) = (_j): Z X(a)7 (¥, x)"

175 ey

and for every x € (k™) the identity
(=7, )" = Z x(a)Kloos,(g;a). U

ackX
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We obtain the following estimate for the absolute value of Kloosterman sums due to Carlitz
(compare with Deligne’s amazing improvement below):

COROLLARY 1.4.2.3 ([Kat80, Corollaire 2.4.1.2]). For every n € N\ {0}, we have

> [Kloos,(g;a))* =q" — (" +¢" P+ g+ 1)
ackX

In particular, for every a € k*, we have the bound [Kloos,(q;a)| < ¢"/?.

PROOF. Parseval’s identity with f = g = Kloos,(q;-) gives the equality

Z |Kloos,(q;a)|* = %1 Z (¥, )"

ackX xX€E(kX)V

Since |7(¢, x)|? = q for x # 1 and |7(¢,1)]? = 1, we find

1
Y [Kloosu(gia)]* = ——(1+ (¢ - 2)q")
a€kX 4=

— (g De" = ("~ 1)
g (),
|

1.4.2.3. Cohomological interpretation of exponential sums. f-adic cohomology has quite con-
crete applications to the study of exponential sums. Here we show how some classical properties
of character and exponential sums have a geometrical interpretation. The key step in constructing
this dictionary is to observe that Artin—Schreier and Kummer sheaves are the correct geomet-
ric replacement of additive and multiplicative characters. Indeed, for every additive character
vk — @zx, the Artin—Schreier sheaf £, on A} is a lisse Q -sheaf of rank 1 whose trace function
is given by trz,, k, = ¥,. Similarly, for every multiplicative character x : k> — @ZX, the Kummer
sheaf £, on G,k is a lisse Q-sheaf of rank 1 whose trace function is given by tre, k. = Xor-

Now we can translate the vanishing of the cohomology groups He (A} @ k'€, L) and HS (G i ®
k'€, L) into the classical orthogonality of characters: Y7, ;. ,(t) = 0 and ), .x x»(t) = 0.
Indeed,

2

Z Pe(t) = tre, k() = z:(—l)iTrace(Frobkr|H2(A,1C ® k8 Ly)).
tek, teA; (k) i=0

Similarly for x and L.
To realize Gauss sums as trace functions we proceed as follows: let j : G, — A}, be the open
inclusion and consider j*L£, the restriction of Ly to Gy, 5. Then

—T(rxe) = Ytk (8 tTo ok () = Y T @i,k ()
tE€Gm, k (kr) tEGm, k (Kr)
2
= 3 (~1)"Trace(Froby, [H: (G i © k%, £, © 57 Ly))
i=0
In fact we know more thanks to the following result of Deligne:

PROPOSITION 1.4.2.4 ([SGA 4%, Sommes trigonométriques, Proposition 4.2]). The cohomol-
ogy of G, i, with coefficients in L, ® j7* Ly satisfies

(a) H. =0 fori# 1 and H! is a one dimensional Q,-vector space.
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(b) If x is non trivial then the canonical morphisms HX — H® are isomorphisms at every
degree. O

Mixing up our previous formula and this proposition we deduce the equality
Trace(Froby, [H: (G, x @ k*'8, L, @ j*Ly)) = 7(¢r, Xr),

which realizes Gauss sums as the trace function of a lisse Q,-sheaf on Spec k. Since H(G,,  ®
k2, L, @ j*Ly) is one dimensional we obtain the stronger fact that the action of Froby, on H! is
multiplication by 7(%,, x,). Actually, this allows us to give a geometric proof of Hasse-Davenport
lifting identity. Indeed, the action of Froby, on H! has as unique eigenvalue the number 7(¢,., x;)
but Froby, = Frobj hence it also have the eigenvalue 7(¢, x)” and both must coincide. The
geometric interpretation of Hasse-Davenport product identity is more involved but possible, see
[Kat88a, Proposition 5.6.2 and Remark 5.6.3] for details.

To ilustrate one more time how to derive properties of Gauss sums from geometric properties,
we translate the identiy 7 (., X, )7 (¥, Xr) = ¢". Since H! ~ H!, by Poincaré duality we deduce that
H (G ke ® k28, L, @ j*Ly) and HY (G i @ k'€, Ly © j*L75) are in perfect duality with values in
Q/(—1). Using again that we know the unique eigenvalue of Froby, acting on these vector spaces,
we conclude

T(¢TaXr>T(wr7 XT) = T(wraXr)T(wraz) =q".

For Kloosterman sums we also have a very nice geometric picture which we describe here. For
a € k™8 write V, for the hypersurface of A%.,, with equation z; ...z, = a. Let o : AL, — Al,,
be the map (x1,...,2,) = 21+ -+ 2, and p : Ay, — A}ﬂalg the map (z1,...,2,) = @1 Tp.
The next theorem due to Deligne describe the sheaves Riugﬁwa) for every i € NU {0} :

THEOREM 1.4.2.5 ([SGA 4Y2, Sommes trigonométriques, Théoréme 7.4]). Denote by H. (resp.
H%) the cohomology groups with proper support (resp. ordinary cohomology groups) of V, with values
in Lyo)- They verify the following properties:
(a) The canomnical morphisms H. — H are isomorphisms for every i.
(b) H. =0 fori#n—1.
(¢c) Fora#0,dim H2~1 =n. For a =0, 2! is canonically isomorphic to Q,. ]

After base change theorem we know (R'uLy(»))a = HL(Va, Ly(o)) for every i. Hence, R'ju Ly ()
is zero for every i # n — 1 and only R"~! Ly ) matters. After Grothendieck’s Lefschetz trace
formula we obtain for a € k) the identity

(—1)"'Trace(Froby, [H ' (Va, Ly(@)) = D trymk @) = Y, @i+ +a,)
PEVa(kr) ml,..‘,xnekf

PR
= Kloos,(¢"; a),

which realizes Kloosterman sums as values of a certain trace function. Moreover, after Deligne’s
fundamental theorem (Theorem 1.3.4.2 and Corollary 1.3.4.4) we know R" 'Ly is a mixed
Q-sheaf of weight < n — 1 since L.y (o) is pure of weight 0. But the isomorphism H YV, L)) ~
H"‘l(Va,Ed,(U)) and Ly, being lisse imply R"‘l,ugﬁw(g) is mixed of weight > n — 1. Hence
R?1 mLy(o) is pure of weight n — 1 on Gy, . This implies that for every a € k)X there exists n
complex numbers aq, ..., a, (i.e. the eigenvalues of the action of Frobenius on the n-dimensional
vector space H? 1) with complex absolute value equal to an71 such that

Kloos,(q";a) = (—1)"! Z af.
i=1

In particular,
n—1

|Kloos,(¢";a)| <n(q") =
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This bound considerably improves the one given by Carlitz and is a rather concrete application of
Deligne’s fundamental theorem on weights.



CHAPTER 2

Monodromy groups and their finiteness

In this chapter we start defining the monodromy groups and reviewing classical criteria to
establish their finiteness. Later on we describe the families of sheaves that will occupy us until
the end together with explicit numeric criteria for the finiteness of their monodromy groups. In
the last section we propose an algorithm to decide effectively which local systems within the
mentioned families have finite monodromy. We include an experimental analysis of its complexity
for small characteristics and expose phenomena observed by means of an actual implementation
of the algorithm.

2.1. Monodromy groups

Let X be a smooth geometrically connected scheme of finite type over a finite field k£ = I, of
char(k) = p > 0, £ # p a prime number and F a lisse Q,-sheaf of rank r on X. After Theorem
1.3.1.9, F “is” just a continuous r-dimensional Q,-linear representation of the fundamental group
p:m(X) — GL(r,Q,) (we omit the base point from the notation taking into account fundamental
groups are conjugate for different base points). If k*'8/k is an algebraic closure of k, we consider
the geometric fundamental group of X which is a normal closed subgroup of the fundamental
arithmetic group:

T8 N(X) == m (X @ k218) 9 7T (X) 1= 1y (X).

We say the lisse sheaf F is arithmetically irreducible (resp. geometrically irreducible) if it has
no nonzero lisse subsheaves (resp. if its pullback to X ®j, kP has no nonzero lisse subsheaves).
F is arithmetically (resp. geometrically) irreducible if and only if as a representation of 73**2(X)
(resp. 78°°"(X)) is irreducible. The lisse sheaf F is arithmetically semisimple (resp. geometrically
semisimple) if it is a direct sum of irreducible lisse sheaves (resp. if its pullback to X ®j k°°P is a
direct sum of lisse sheaves). F is arithmetically (resp. geometrically) semisimple if and only if as
a representation of w8 (X) (resp. 7°°"(X)) is semisimple.

We define the geometric monodromy group of F, denoted Ggeon, as the Zariski closure of
p(78°°"(X)) in the algebraic group GL(r, Q). Similarly, we define the arithmetic monodromy group
of F, denoted Garitn, as the Zariski closure of p(m3¥#**(X)) in the algebraic group GL(r, Q,). Clearly,
Glgeon is a normal subgroup of Garien. After a deep result of Deligne [Del80, Théoreme 3.4.1.(iii)], if
F is t-pure of some weight w for some isomorphism ¢ : Q, — C, then F is geometrically semisimple
and it follows Ggeon is a reductive group. After Grothendieck’s theorem [Del80, Théoreme 1.3.8]

we know the identity component Ggeom is semisimple, or equivalently, the Lie algebra of the complex

(via ¢) Lie group Ggeon(Qy) ~ Ggeon(C) is semisimple.

2.1.1. Criteria for finiteness of monodromy and geometric irreducibility. Our final
goal is to find Q,-sheaves on certain k-varieties X whose geometric monodromy groups are finite.
Here we review a classical criterion for this phenomenon. The following result uses the hypothesis
fixed at the beginning of the section.

THEOREM 2.1.1.1 ([Kat90, Theorem 8.14.4],[KRLT20, Propostion 2.1 and Remark 2.2]).
Suppose F is pure of weight zero and consider the conditions:

(a) Garitn is finite.

23
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(b) For every finite extension k,/k and x € X (k,), Trace(Froby, .|F) is an algebraic integer.
(c) Ggeon is finite.
(d) det(F) is arithmetically of finite order.
Then we have the implications (a) = (b) = (¢) and (b) = (d). If F is geometrically irreducible,
we have (a) <= (b) < (¢). O
We include a useful result that allows us to check if a lisse Q,-sheaf is geometrically irreducible:

ProPOSITION 2.1.1.2 ([KT21, Proposition 2.1)). Assume further that dim(X) > 0 and F is
-pure of weight zero. If a decomposition into pairwise non-isomorphic irreducible lisse Q,-sheaves
of F on X @4 k%P is F ~ @, n;G; with G; a lisse Qq-sheaf on X @y, k%P for every i (such a
decomposition exists after Deligne’s theorem on geometric semisimplicity for pure sheaves), we

have:
5 ] |Trace(Froby, m|]'—)2>
n; = limsup e . ]
Yo -amme 3 B,

The quantity . n? in the previous proposition is called the second geometric moment of F
and denoted by M5°°"(X, F). More generally, we can define (a, b)-th higher geometric moments for
a, b non-negative integers. We follow [Kat05, §1.15 and 1.16]. Given an algebraically closed field F’
of characteristic zero (usually Q, or C) and G a group that acts irreducibly on a finite-dimensional
F-vector space V, for each pair (a,b) of non-negative integers, we define the (a,b)-th moment of
(G,V) by

Mo p(G,V) = dimp (VE* ® (VV)®”)G
as the dimension of the space of G-invariants in V®¢ @ (VV)®?. Moreover, we denote My, (G, V) :=
M, (G, V) and call it the 2n-th moment of (G,V). Observe that V™ @ (VV)®m = E\[(V®"),
hence My, (G, V) is the dimension of Endg(V®").

Assuming that dim X > 0, since F is lisse it has an associated representation of m$°*"(X)
and we can speak about its higher moments. We denote M5)"(X,F) = M, (n{***(X), F) and
M (X, F) i= Moy (n5°°"(X), F). If we further assume that F is t-pure of some weight w and
geometrically irreducible, we have the limit formula [Kat05, Theorem 1.17.4.2)]:

> vex (k) FTFeek, ()P Fo0 i (2)
|k7" ‘dim X+(at+b)w/2

ME" (X, F) = limsup
’ k. /k

2.1.2. Equidistribution and monodromy. Before explaining how monodromy governs the
distribution of traces of Frobenius, we introduce the formal notion of equidistribution of sets
following [Kat88a]. Given a compact topological space X, denote by C(X) the C-vector space of
continuous complex valued functions f on X. Let u : C(X) — C be a linear functional on C(X)
such that (1) if f € C(X) is real and positive then u(f) € Rsg and (2) p assings 1 to the constant
function equal to 1. We will denote p(f) by fX fdp.

DEFINITION 2.1.2.1. Let {X,},en be a sequence of subsets in X. Consider the measures
Ux, = ﬁ D owe X, 0z, where d,, is the Dirac delta measure supported at p. The sequence of sets

is said to be p-equidistributed over X if for every f € C(X) we have
1
f(z)dp = lim / f(x)dux, = lim —— fa).
/X n—oo Jy n—oo |Xn| wEZXn

When our compact topological space is a compact group G we endow it with the normalized
Haar measure Haar. Let 7 : G — G? be the natural projection of G onto the set of its conjugacy
classes, the latter endowed with the quotient topology. Denote by Haary the push-forward of Haar
on G% i.e. for class functions f € C(G*) define Haar(f) := Haar(f o).
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ProOPOSITION 2.1.2.2 ([Kat88a, Proof of Theorem 3.6]). A sequence {X,,}nen of subsets of
G" is Haary-equidistributed if and only if for every character x of a non-trivial finite-dimensional
irreducible representation of G we have

2 TX |X PR -
reX,
This result follows from Peter-Weyl theorem (which tells us that the subspace generated by
irreducible characters of G is dense in C'(G?) ) and Schur’s orthogonality.
With this notion in mind, we are going to show that Gauss sums are equidistributed in a
concrete sense:

EXAMPLE 2.1.2.3. For every prime power g, fix an additive character ¢ : F; — C* and consider
the set of angles

{Gq(x) = T(qdf}f) | x € (F})" \{1}} c st

Our equidistribution statement is the following;:

THEOREM 2.1.2.4 ([Kat80, Théoreme 1.3.3.1]). The sets {04(x) : x # 1} become equidis-
tributed over S' for the normalized Haar measure when q grows to infinity, that is, for every
continuous function f : S' — C we have the equality

1 19
Gy f (e")df = qlggo qf Z f(0
x#1
PROOF. S! is an abelian group, it follows (S!)! = S' and p; = p. Since the irreducible
characters of S! are just the homomorphisms z ~— 2" with n € Z \ {0}, we are reduced to showing
the equalities

1 o zn@ 1 n
0=5: 0=l = ;T(w’ )"
It is enough to prove this for n > 1. Indeed, for n < —1 and x non trivial we have 7(¢, x)7 (1, %) =
hence
()" (Tw,x))‘”
P P
Forn > 1,

Do) = (1" | =7, 1)+ 37 D x(@)KLoos, (g;a)

x#1 X a€Fy

= (=)t 4+ Z Kloos,(q;a ZX

a€lFy
= (=)™ + (=1)"(g — 1)Kloos,(q; 1).
After Deligne’s bound, |[Kloos,(g¢;1)| < ng»~1/2 and this implies

;Z an :’_1+(q_1)Kloosn(q;l)‘
q—2)q"/? ’ q"?(q—2)
1 g—1 1
S22 T q—2gr "

n(g—1)/(¢g—2)+1 _2n+1
<
q\72 =42
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for ¢ > 3. Hence, for ¢ — oo we reach 0.
a

If we use Carlitz’s bound instead of Deligne’s one we would not be able to conclude the proof.
Observe also that this equidistribution result is quite strong since the base prime p does not matter.
Indeed, 2n + 1 does not depend on p. In general, with the tools of ¢-adic cohomology we can only
prove vertical equidistribution results (that is, we only allow higher powers of a fixed prime). W

Now we describe the general (but easiest) picture for equidistribution of Frobenius conjugacy
classes, mainly following [Kat88a, Chapter 3] and [KS99, §9.2].

Let k be a finite field of characteristic p, X/k a smooth and geometrically connected scheme
of dimension d > 0, £ a prime number £ # p, ¢ : Q, — C an embedding. Consider a lisse Q,-sheaf
F of rank n > 1 on X which is (-pure of weight 0. Denote by Ggeon and Garitn the geometric
and arithmetic monodromy groups of F. Via the complex embedding ¢ we can speak of the group
Ggeon(C). This group, with the classical topology, is a complex semisimple Lie group. Denote
by K C Ggeon(C) a maximal compact subgroup. It is well known that every compact subgroup
of Ggeon(C) is Ggeon(C)-conjugate to a subgroup of K. The representation theories of the Q-
algebraic group Ggeon, the complex Lie group Ggeon(C) and the compact group K are described
by the following diagram of equivalences between categories (see [Frel9, Théoreme 3.1],[Kat88a,
page 37]):

(Finite—dimensional Q-representations of Ggeon 8 Q,-algebraic group)

J{extension of scalars via ¢
(Finite—dimensional C-representations of Ggeon ®g, C as C-algebraic group)

levaluation on C-valued points
(Finite—dimensional holomorphic representations of Ggeon(C) as complex Lie group)

lrestriction to K

(Finite-dimensional continuous representations of K as compact group) .

From now on in this subsection we assume the representation p : 7¥¥i*"(X) — GL(n,Q,)

associated to F factors through Ggeon(Q,). With the notation introduced above and this hypothesis,
the angles of Gauss sums we used before can be generalized as follows. Let E/k be any finite
extension of k and z € X(E). For any choice of Frobenius element Frobg, € w3 *"(X), the
element tp(Frobg ;) € Ggeon(C) has all its eigenvalues on St. Let p(Frobg . )® be the semisimple
part (in the sense of Jordan decomposition) of p(Frobg ;). Then t(p(Frobg ,)®°) is semisiple and
all its eigenvalues are roots of unity, hence (t(p(Frobg ,)®®)) is a compact subgroup of Ggeon(C).
In particular, ¢(p(Frobg ;)%%) is Ggeon(C)-conjugate to an element of K. Using that Ggeon(C) and
K have the “same” finite-dimensional representation theory and the Peter—Weyl theorem, it can
be shown [Del80, Proof of 2.2.2] that the Ggeon(C)-conjugacy class of ¢(p(Frobg ,)%°) meets K in
a single K-conjugacy class. Denote this K-conjugacy class by 6(F,z), thought as the generalized
“angle” of tp(Frobg,z).
With all these ingredients we can state Deligne’s equidistribution theorem

THEOREM 2.1.2.5 ([Del80, Théoreme 3.5.3],[KS99, Theorem 9.2.6 (1)]). With the notations
and hypothesis introduced above, the Frobenius conjugacy classes O(E, x) are equidistributed in the
space of conjugacy clases of K. Explicitly, for any continuous C-valued class function f: K — C,
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we have the formula:

1
fdHaary = lim —— f(O(E,x)),
K, " B~ [X(B))| IE;:E)
the limit taken over finite extensions E of k large enough so that X (E) is nonempty. O

Consider the Kloosterman sheaf given by R”_l/uﬁd,(g) on Gy, ,, where p : G%,k — G i s
the product map and o : Gy, , — A}l is the sum. This is a lisse Q-sheaf of rank n on G,,
and pure of weight n — 1. Hence, R”flugﬁw(g)(%_l) is lisse of rank n and pure of weight 0 (fixing
some square root of \/q € Qy.) After the previous theorem, we know the conjugacy classes of
Frobenius elements are equidistributed in the space of conjugacy classes of any maximal compact
subgroup K of Ggeon(C). We combine this equidistribution result with Katz’ computation of Ggeon
for R" Loy (50) -

THEOREM 2.1.2.6 ([Kat88a, Main Theorem 11.1 and Remark 11.2.(1)]). The geometric mon-

n—1

odromy group Ggeon Of R"_l,ulﬁw(g)( 5—) as an algebraic group over Qy is given, forn > 2, by:

Sp(n) n even,
) sL(n) pn odd,
geom S0(n) p=2,n odd,n # 17,
Go p=2,n="T.

O
Hence, for p # 2, the Frobenius traces of R"’lmﬁw(g) (”T’l) at points a € k%, i.e. the Klooster-

n—1
man sums (\_/(1721,1 Kloos,(g;a) for a € k™, are distributed as the traces of random matrices for big
powers of the base prime p, since in both cases the maximal compact subgroup can be described

by

o {USp(n) n even Gaeon(€) NU(R).

SU(n) nodd
2.2. Families of exponential sums and numeric criteria for finite monodromy

In this section we introduce the “parametric” exponential sums we will be working with and
give concrete (i.e. numeric) criteria for the finiteness of the monodromy groups of the associated
Q-sheaves.

We fix a prime p, and ¢ a prime number different from p. We choose a square root of p,

denoted p'/? € @¢X7 for the rest of the chapter. Whenever we refer to a half-Tate twist we are
taking a = p~1/2 for the generalized Tate twist. We further fix a finite prime field k = Fp, the
non-trivial additive character ¢ : F,, — Q,” given by ¥(t) = exp(2nit/p). We identify Q, with C
implicitly. Recall our notation v, := v o tracey /., where k, = F-.

2.2.1. The Q,-sheaves of interest for us and their monodromy. Given a polynomial
f € k[x] of degree coprime to p, we are interested in the parametric exponential sums

Z Pr(sf(x) + tx) for s, t € k) x k.

€k,
To realize these sums as the values of a trace function, we consider the following geometric situation:

1 1 A 1
Gk x Ay x Ay —— Ay

lﬂ'm

1
Gm,k X Ak
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where ¢(s,t,2) = sf(x) + tx. Then our sums are just

2

Z Trace(Froby, | (Riﬂ-12l[-:w(gp) )(s.))
i=0

and we must understand the sheaves Riﬂ12!£¢(¢)-

PROPOSITION 2.2.1.1. The sheaves Riﬂ'lzgﬁw(w) are zero fori # 1 and fori = 1 the sheaf is lisse
of rank deg f — 1 and pure of weight 1. Furthermore, the sheaf R17r12;/3w(¢)(1/2) is geometrically
irreducible.

PROOF.

(a)

Vanishing, smoothness and purity: We use Deligne’s idea from [Del80, §3.7.2], and in
order to do so, we introduce some convenient notation. We denote the variable for
polynomials by X, so f € k[X]. Let S be the affine space over k parametrizing polynomials
of degree deg f, that is, we allow arbitrary coefficients for monomials of degree less than
deg f and non-zero coefficients for the leading term of the polynomials (this guarantees the
non-singular hypersurface condition is fullfilled). Observe that S is isomorphic to G, x X
Aieg T Let fs(X) denote the universal polynomial over S. Denote by eval : S x A} — Al
the evaluation morphism sending (g, z) to g(z). We denote the lisse Q,-sheaf eval*L, by
Ly (fs) for notational coherence. Now consider the projection mpo1y : S x A} — S. Then
our polynomial f(X) corresponds to a rational point of S, and the Q,-sheaf Ly (fy on A}
is just the stalk of Ly(zs) at f(X) under mye1y. Finally, consider the closed immersion
P : G p x A} — S defined by (s,t) — sf(X)+tX € S (P standing for parametrization).
With this notation we have the enhanced diagram:

1 1 1
Gk X Ay <—m2— Gy X Ap X Ay

T~

@

T~

Pxid A}c

| e

S Trpoly S X Ai

where the leftmost vertical arrow is such that the square is commutative. We have the
following identity between lisse Q,-sheaves:

(szpolyyﬁw(fs)) Gk xAL Rlﬂu!ﬁw(w)'

Indeed, since ¢ = evalo (P x id), we know Ly () = (P x 1d)* Ly (f). Now we apply the
functor Rimi9, and invoke base change theorem for cohomology with compact support:

R'miaiLy(p) = R'miai(P X 14)" Lu(ss) = (R'Tpory Ls(fs)) g,y wat

After [Del80, Lemme 3.7.3 and §3.7.2.3], we know the sheaves R'po1y Ly (f4) are lisse

and only Rlﬂ'poly!ﬁw( fs) 18 not trivial, since for i # 1 they have trivial stalks. Moreover,
from the argument in loc. cit. it follows that lepolwﬁqp(@ has rank deg f — 1 and is
pure of weight 1.
Geometric irreducibility: After the previous item, we know the sheaf RiW12!£¢(w)(1 /2) is
lisse and pure of weight 0. Denote this sheaf by F and suppose it can be decomposed as
@?:1 n;G; into pairwise non-isomorphic irreducible lisse sheaves on (G, 1 X A,lc) 0y kSeP.
Applying Proposition 2.1.1.2, we get

. Trace(Frob F 2
Zn? = limsup Z ‘ ( 5 kgv(s’t)‘ )‘ .
i=1 kT/k ‘ T‘|

s€EkS tEk,
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We compute the right hand term of the previous equation using orthogonality of charac-
ters:

Z ’Trace (Froby, (s, t)|.7:

Z(Zwrsf +t:c>> > e (sf () +ty)

s€kX tek, ‘k | s#0,t \wik yEky
=l LS ST (s (@) — F@)) e (t — )
r s#0,t T,y
= o Z > e (s(f(x) = f()) (Z r (t(z — y)))
"xy s#£0 t

- % > Ik <wr(o) +) e (s(f(x) - f(x)))) = Skl = 1) = (] = 1).

x

Hence > ;_, n? = limsup (1 — |k1 ) = 1. This implies e = 1 and ny = 1, i.e. F is

reN -
geometrically irreducible.

O

This proposition shows we can use Theorem 2.1.1.1 to decide the finiteness of Ggeon for
Rlﬁlggﬁw(w)(l /2) by checking the algebraicity of its traces. Moreover, observe that we can fur-
ther restrict ourselves to the variety Gy, X Gy, . This follows because Gy, j; X G,y 1 is dense in
G,k X A}, s0 W%em(((}mk X Gyp,) maps onto 75" (G, x A}). This way, the finiteness of Ggeon
for the pullback of R! T121L4y(4)(1/2) t0 Gk X Gy is equivalent to the finiteness of Ggeon for the
original sheaf. We usually work with the lisse Q,-sheaf Rlﬁlggﬁw(w)(l/Z) on Gk X Gy, with

trace function given by

(5,1) € kX X kX — T |1/2 > en(sf(x) +ta).
€k,

Finally we further reduce the study of algebraicity to the study of the p-adic valuation of the
traces. Fix a primitive 4-th root of unity (4 and a primitive p-th root of unity ¢, for p # 2. Write

_JQ(G) ifp=2,
Q(Cp) if p # 2.

In both cases, K contains a square root of p. Indeed, 14 (4 is such a square root up to multiplication
by an unit for p = 2. For p # 2, the Gauss sum 7(¢, x) € K with y the Legendre character is a
square root of p up to multiplication by an unit. To simplify the exposition, assume that our fixed
square root of p in Q, is this Gauss sum if p # 2 and 1 + (4 if p = 2. With this convention, it
follows that the traces of R1w12!£¢(@)(1/2) can be realized in K for every prime p.

Taking into account that K is a number field, we know its ring of integers is a Dedekind
domain, in particular it is a Krull domain. Therefore an element of K is in its ring of integers
if and only if it is in the valuation ring associated to every prime ideal. Now we distinguish the
prime ideals according to the characteristic of their residue fields. For any rational prime ¢ # p,
observe that ) ., t.(sf(x)+tz) is an algebraic integer because it is a sum of roots of unity and
we divide by |k,|'/? (which is not divisible by ¢), so we already know the traces are integers with
respect to every prime with residue characteristic ¢. For p we argue as follows. Observe that the
extension K/Q is totally ramified at p and unramified outside p, so there is only one prime ideal
with residue characteristic p. Let ord,- be the unique p-adic valuation of K normalized such that
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ord,r(p") = 1. Then the values of the traces on k, are algebraic integers if and only if

ord,- <|k ‘11/2 ; U (sf( )thx)) > 0 for every 7 > 1, and s,t € kX
ie. ordyr >0 cp Ur(sf(z)+tx) > 1/2 for every r > 1 and s,t € k. This way we get a numerical
criterion for the finitenes of Ggeon for R17T12!£,¢(4P)(1 /2) considered either as a Q,-sheaf on G i X
Gm,k or Gm,k X A}C

2.2.1.1. The sheaves B(y,qp)(, ). Now we specialize the previous discussion to polynomials
of the form f(z) = (z — a)*(z — B)® where a,b € N and o, 8 € k with a,b,a + b coprime to p
and o # 3. We denote By, 1)) (v, B) := R177121£¢(Sf(z)+m)(1/2), a Qg-sheaf on G,, i X G, x whose
trace function at (s,t) € kX x kX is

|k’ |1/2 Z 'l/}r - ( 5)b+tx)'

€k,

We do a reduction step before giving an explicit form to our finiteness criterion of monodromy
for the sheaf By, (e, B). It suffices to understand the geometric monodromy group of the sheaf

Bipiab) = Bpiap)(0,1) on Gy X Gy . Indeed, write f(x) = (v — a)®(x — B)® and, for every
r>1,s,t € k)X, observe that

Zw, sf(x+ o) + tx) Z% sf(x) + te — ta) = Y.(—ta) Zw,.(sf(a:)—i-tx).
€k, z€k, €k,

Since ¥, (—ta) is a root of unity, it does not matter while studying the integrality of the traces.
We can assume without loss of generality o = 0. Also, since

D e(sf(@) +tw) = Y (sf(Ba) +tBz) = Y vp(sp* P (x — 1)" + tBx),
€k, €k, €k,

we see Bp.q.1)(0, 3) is the pullback of By, 4 via the isomorphism (s,t) (Betbs, Bt).
We state the following explicitation of Theorem 2.1.1.1 for the sheaves By, (c, 5) :

THEOREM 2.2.1.2 (Private communication by Antonio Rojas-Leén). Let a,b € N be natural
numbers and a, 8 € k with o # . The Qg-sheaf Bpqpy(t, B) has finite Ggeon if and only if for
every r > 1 and multiplicative characters x,n € (k)})V,x # 1 the following inequalities hold:

(a) If x*Ton #1,
ordyr (7(¢r, X)) + ordyr (7(¢r, 1))

o oxdy (71, X)) + 0xdyr (7(1, X)) = 0rdyr (7 (6, X" 17)

w\»—‘

(b) If x*Ttp =1,
1

ordyr (7(thr, X)) + 0xdyr (7(thy,m)) = 3.

PROOF. We already know Ggeon is finite for By, ) (a, ) on Gy g ¥ A} if and only if Ggeon
is finite for B(,.q,p) on Gy X Gy, if and only if for every r > 1 and s,t € k) the inequality
ordyr (Y e, Ur(sz(x —1)° +tx)) > 1/2 is satisfied. Now we use Mellin transform and inverse
Mellin transform as in [KRLT20, Theorem 2.7].

For every r > 1 the trace function of B(,.q) is defined on the finite abelian group k) x k.
Taking the Fourier transform (and the inverse Fourier transform) of this function on the group
kX x kX we find ord,: (tB/ vk k. (s,t)) > 1/2 for every s,t € k) if and only if the values of its

Fourier transform satisfy the same inequality (because inverse Fourier transform involves a division
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by (p" — 1)? which is coprime to p"). Since the character group (k2 x kX)V is (k)Y x (k)X)V, we
are reduced to study whether the inequality

1
ordpr( Z x(s)n(t) Z Y (sx(x —1)° —|—tx)) > 5 with y,n € (k)Y and r > 1
s,tek)S z€ky

holds or not. We rewrite the Mellin transform as follows:

S ) S wnlsrtle =)0 +t2) = S (3 dnlsat (@ = 1)°)x()) (D enltain()

s,tEkX z€ky z€kr  sek) tekr
=(ZX(5))<—T(¢M7)+ > 0M) + W )W) > X @~ ))i()
sekX tekX z€kS\{1}
= (3 X)) (= @+ Y 00) = R D)W 0T I T).
sek)r tekr

If x =1, the Mellin transform becomes

0 = 1)( = @) + Y 0(0)) = I 1).

teky
But
()3, 1) = ()~ 14+ Y ﬁ(m)) ) = (3 Gl )( > W)
yEk)X k) yek)X
wr» Z 'l/}r ) ¢r> Z {lpr [I,'t
z, Y€k x,tEkS
=—7(Wrn) = Y 0t) Y wp(at) = —r(r,n) + > n(t),
tek)r z€k) tek)s

and our Mellin transform is just pr( = 7(Yrsm) + D erx n(t)), which is always divisible by p”

(Gauss sums are algebraic integers).
If x # 1, the Mellin transform becomes

X (=17 (W, )T (%, ) IXT,X).
We distinguish between different cases:

(a) If x**tbn # 1. In this case J(X7,X°) = (¢, X7 (Vr, X°) /7 (¢r, X2T°7) and the Mellin
transform is

_yb(_]-)T(?/}ra X)T(¢ra 77)7—(7/}7“’ Y“ﬁ)T(iﬁm Yb)T(Z/Jm Y(H_bﬁ)'
We have to impose the inequality

Ordp7‘ (T(l/}r, X)) + Ordp" (T(¢T, 77))

+Ordl)r (T(%,Yaﬁ)) +Ordpr (T(¢r,Yb)) _ OI‘dp ( (¢r’ ~—a+b= )) >

w\»—‘

(b) If x®0n = 1. If x* # 1 then J(x°7,X°) = X’(—1) and we impose the inequality
ord,: (T(wr, x)) + ord,r (T(’(/}T,’I])) > 3
If x*n = x* = 1 then J(X°7,X°) = (2 — p"). The inequality takes the form

1

ord,r (T(T,ZJT, X)) + ord,- (T(?/)T, 77)) +ord,(2—p") > 3
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If p # 2 then ord,-(2 — p”) = 0 and we obtain the same inequality. If p = 2 then

L ord,(2—p") 1
d i 2 - 4 = 717 = —,
ord,-( p") r ,
and the inequality is
1 1
ordyr (7(thr, X)) + 0xdyr (7(tyym)) + — > 5.
We impose this inequality for every r» > 1 and every pair of characters x and n satisfying
x*n = x? = 1. In particular, for every n € N the same inequality holds for &y, and Xy, 7y,
Then for every n € N we impose

1 1
5 < ordyrn (T(Vrn, Xn)) + 0xdprn (T(Ynr, mn)) + p—-
1
= nord,rm (7’(1/17«, X)) + nordyrn (T(wr, n)) + pn

= oxdy (r(, ) + oxdy (r(thr,) + -

Taking n — oo we again get the same inequality.
O

2.2.1.2. The sheaves M(p;d,1) and Myig(p;d,1). Let d > 1 be an integer and consider the
polynomial f(z) = 2% € k[z]. Denote by Muysg(p;d, 1) either the sheaf R'mi2 Ly (spa40)(1/2) on
Gk % A,lc or on Gy, X Gy, . The trace function of Mysg(p;d,1) in both cases is given by
—W D vk, Vr(sz? + tx), with s € kX and t € k, or k. We can assume without loss of
generality that d is coprime to p, otherwise an Artin—Schreier reduction would bring us back to
this assumption.

The following lemma shows that the finiteness of Ggeon for Myig(p;d, 1) is equivalent to the
finiteness of Ggeon When we restrict our sheaf to the slice s = 1.We denote it by M(p;d,1) =
Musg(p; d,1)js=1. As in Proposition 2.2.1.1, it can be shown that M(p;d, 1) is lisse of rank d — 1,
pure of weight zero and geometrically irreducible. Its trace function on A} (resp. Gy, ) is given

by
1
k2 > (at + ).

€k,

LeEvMMA 2.2.1.3 ([KRLT20, Lemma 2.6]). The Q,-sheaf Mbyig(p;d, 1) on Gy X Gy i has
finite Ggeon if and only if the sheaf M(p;d,1) on Gy, has finite Ggeon-

PROOF. Since M(p;d, 1) is a pullback of My;4(p; d), the finiteness of Ggeon for the latter clearly
implies the finiteness of Gigeon for the former.
Conversely, let k,./k be a finite extension and ¢ € k<. For s € k) we have

Z V(24 + tr) = Z Y (st2d 4 tsx).

€k, €k,

t €k, (resp. t €k))—>

Making the change of variable ' = st, the sum becomes »_ ., Yy (sdz? + t'x), which (after a
normalization) is still an algebraic integer. Hence the pullback of Mysig(p;d, 1) via the finite étale
Galois map 0(s,t) = (s%,t) has all its traces algebraic integers. After Theorem 2.1.1.1 we know
this pullback has finite Garitn. Since the image of 6, : (G, 1 X Gy k) = T (G X G i)
is a subgroup of index d, the group Garitn for Mysg(p; d, 1) contains a finite group as a subgroup of
finite index, so it must be finite as well. To conclude recall that the finiteness of Ggeon is equivalent
to the finiteness of Garicn for the sheaf Mbig(p; d,1).

O

An explicit version of Theorem 2.1.1.1 for the sheaf My;gz(p; d, 1) is the following:
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THEOREM 2.2.1.4 ([KRLT20, Theorem 2.7]). Let d > 1 be an integer coprime to p. The Q,-
sheaf Myig(p;d, 1) on Gy X Gy i has finite Ggeon if and only if for every pair of multiplicative
characters p,x € (kX)V such that not both are trivial and px® = 1 the following inequality is
satisfied:

1
5

PROOF. As we argued before, for the Frobenius traces to be algebraic integers it is sufficient
for them to be so with respect to the unique p-adic valuation of the field K where the traces live.

Now we invoke Mellin transform as we did earlier. The Mellin transform of our trace function
on k, is, evaluated at p,x € (kX)V, the following sum

MelLin(tan, ) (0 ) == 3 p(OX(s) 3 v (sa + ta).

stk zEky

ord,: (T(wr, ,0)) + ord,- (T(’(/JT, X)) >

We rewrite it as follows:

Mel1in(Eat k) (00) = D (3 rlszx(s)) (3 nlta))

z€kr  sekX tek)

= (X ) (X o)+ 3 (X wnlsaxs) (X wlt)oth))

s€k)X teky x€k)  sckX teky
= (32 @) (X p0) + 7w 0 p) Y (®P)@):
sek)r teky z€k)
We distinguish two cases:
(a) If p=x =1. Then
Mellin(taty, .k )(1,1) = (p" — 1) +p" — 1= (p" = 1)p",
which is divisible by p".
(b) If p# 1 or x # 1. Then
Mel1in(t .k, ) (P, X) = T(Ur, )T (%r, X) D (AXD) (@)
zek)t
If px? # 1 the Mellin transform vanish. If pxy? = 1 then the Mellin transform equals
(¢" — 1)7(¥r, p)7T(r, X). The inequality we impose is

N

ordp’" (T(wra P)) + OI'de (T(i/Jm X)) >
O

REMARK 2.2.1.5. The sheaves M(p;dy,...,d1) and Mysg(p;dy,...,d1). As a generalization
of the sheaves My;g(p; d, 1) we can consider, for d,, 41 > dy, > dy—1 > -+ > d2 > dy = 1 a sequence
of integers coprime to p, the Q,-sheaf on Gz:rkl with trace function

n+1

n 1 .
t= (tl,. .. ,tn+1) S kr+1 — —1W Z ’L/}T(th.’td‘)
r €k, i=1

As we did in Proposition 2.2.1.1, we can show that these sheaves are lisse, pure of weight zero
and geometrically irreducible. Moreover, we can further consider them as sheaves on A} x
Gy, and the finiteness of Ggeon for both is equivalent. In both cases we can consider the slice
M(p;dpii,dn, ... di) = Myig(D;dni1, ..., d1), =1, and the finiteness of Gigeon for these sheaves
can be shown to be equivalent to the finiteness of Ggeon for the original sheaves as in Lemma 2.2.1.3.
The corresponding explicitation of Theorem 2.1.1.1 for these sheaves is the following, which we
include because it will be needed later:
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THEOREM 2.2.1.6 ([KRLT20, Theorem 2.7]). Let dpt1 > dp, > -+ > dy > dy =1 be a
sequence of integers coprime to p. The sheaf M(p;dyy1,-..,d1) (equivalently Mysg(p; dp1, ..., d1)
on Ay or Gy, (equivalently on A}l X G, 1, or GZJ‘,CI) has finite Ggeon if and only if for every n+1-
tuple of multiplicative characters p1, ..., pn+1 € (kX)V such that there exists an index i with p; # 1

and pi* - .. pin piff =1 the following inequality is satisfied:

n+1

; ord,r (T(’(/JT, pZ)> > % O
]

2.2.2. Kubert’s V function and sums of digits. In Theorems 2.2.1.2 and 2.2.1.4 the
valuation of Gauss sums naturally arised. In this subsection we define Kubert’s V function which,
together with sums of p-adic digits, allows us to work with valuations of Gauss sums, reformulate
our explicit criteria and study finiteness of monodromy effectively.

2.2.2.1. Kubert’s V function. We follow [Kat90, §8.14] and [Kat07, §13]. Let p be a prime
number. For every N € N denote by (y € Q a primitive N-th root of unity. Let K = Q({¢,}U{{n :
(N,p) = 1}) with a fixed embedding into Q,. Denote by O = Z[{(,} U {¢x : (N,p) = 1}]
the subring of all algebraic integers in K. We write Ky = Q({¢(ny : (NV,p) = 1}) € K and
Ouwr = Z[{¢n : (N,p) = 1}] for the subring of all algebraic integers in Ky,. Every multiplicative
character x : Fpr — @@X takes values in Oy, and the Gauss sums 7(¢, x) € Ok. Fix an embedding
) Koy = Q.

For any n € N coprime to p we can identify the groups of n-th roots of unity g, (@p) ~ by (]F?,lg)
via reduction modulo a prime g of @p lying over p. We have

,“n(@e) = pin(Our) = :un(@p) ~ pin(Fp).

For n = ¢ — 1 with ¢ = p" a p-power we have
pin (Our) ~ Mn(F;aylg) = Mq—l(F;aalg) = F; .

The isomorphism from F; — tig—1(Oyr) is the Teichmiiller character Teichp,. Observe that, after
our construction, Teichr, (t) + ¢ = ¢ and in particular Teichr, ({4—1 + @) + @ = (-1 + p soO
Teichy, has order ¢ —1 and is a generator of the character group (I )V. Observe the compatibility
Teichy,. |F:r = Teichy,, if Fps JFpr.

Using Teichp, we can construct for every p-power g a group isomorphism

A, : (qfllZ) /7 — (Fx)V

x —  Teichy "7V,

To avoid confusions, the group (ﬁZ)/Z ={i/(¢g—1) modZ:i=0,...,q— 2} is just the group

of integer multiples of 1/(¢ — 1) modulo Z and we use indistinguishibly x mod Z and = € Q. If
F,: /Fpr the following diagram commutes:

(72) /12— (757) /2

Awprl ( AFPS\L

L
X
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Indeed, for every x € ( 7Z)/Z and t € Fjs we have the following equalities

(P°=1)/(P"-1)
Teichy 2@ () = (Telch =(p" 71)) ' ’ (t)

= Teich];ps( b (Ng, . /F, (1))

. —am(pt—1
= Telcthf(” VolNe e (1).

Now for ¢ a p-power we denote by ord, the p-adic valuation of @p normalized by ord,(q) = 1.
Observe that if r|s then ord,s = (r/s)ord,-. Let ¢ € F)) be a non trivial additive character and
denote by 9, the additive character of F)- given by ¢ o tracep . r,. For every r € N we define the

function

v (552)/2 — 0.1)
T —  ordyr (T(Yr, Ap,. (2))).
If r|s and x € ( ) /Z then, after Hasse-Davenport lifting identity,

Vs(z) = ordps (7(1/)5, Ag,. (x)))
ordps (T(ws, A]Fp,,, (m) o N]Fps /IFpr ))
(r/s)oxdy (7(0r, A, (2)°/")
=V, (z).

Hence, all these functions can be “glued” together via an inverse limit. We denote the limit function
by V: (Q/Z),, , — [0,1) and call it Kubert’s V function. Here (Q/Z),,, , denotes the group of
rational numbers with denominator coprime to p modulo Z, i.e. Z,z/Z with Z,z the localization
of Z at the prime ideal pZ.

The properties of Gauss sums §1.4.2.2 translate into properties of the V function [Kat07, page
37):

(a) V() = 0 if and only if x = 0 in (Q/Z)
r/2

This follows from the fact 7(¢,,x) has

not p°
absolute value p™/# if x is non trivial.

(b) Forz € (Q/Z),y, , nonzero, V(x)+V(—z) = 1. This again follows from the norm formula

(W, X)T (Y, X) = D"

(¢) V(1/2) =1/2 if p # 2. This is (b) with x = 1/2 since 1/2 = —1/2 in Q/Z.

(d) For any x € (Q/Z),,, » V(z) = V(pz). Indeed, 7(¢y, x 0 Froby, /r,) = T(¢r, X)-

(e) For any x,y € (Q/Z),y ,» V(z) +V(y) = V(z + y). This is the integrality of Jacobi sums
[Was97, Corllary 6.3].

(f) For any x € (Q/Z),q, , and any integer N > 1 prime to p, Zl 0 Vix+i/N)=V(Nz)+
(N —1)/2. This follows from Hasse-Davenport product identity. Indeed, let r be the
smallest integer with (p” — 1)z € Z and p” = 1 (mod N). The multiplicative characters
of F,r of order N are precisely the characters Ag,, (v) with x € {i/N :7=0,...,N —1}.
By Hasse-Davenport product identity:

N-1 N—-1
(@, Ax, (N2)) T 70 Ar, (i/N)) = ] 7, A, (2 +i/N)).
i=0 i=0

Taking ord,- of both terms we find V(Nz) + Zfigl V(i/N) = Zi]i?)l V(z +i/N). Using
(b) it follows SN M v(i/N) = (N — 1)/2.
All these properties show that V is a Kubert distribution (see [Lan78]| for a survey) and it is an

interesting question to decide if the relationships written above are essentially the unique ones that
V verifies. Relationships for V come from multiplicative identities between Gauss sums (omitting
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the information coming from roots of unity). There are results [Yam66, Yam?75] showing that all
multiplicative identities between Gauss sums up to multiplication by roots of unity can be derived
from Hasse-Davenport identities together with the norm relationship under (mild) restrictions.
An analogous result, proven this time using equidistribution techniques, in a different but closely
related direction can be found in [RL23b].

It is hard to work computationally with V function, and we would like to have an expression
for it as explicit as possible. Stickelberger’s theorem provides us with such an expression. Before
stating the result we fix some notation. Let 7w € @p such that 77~! = —p and ord, is the p-adic
valuation normalized such that ord,(m) = 1. It follows that ord, = (p — 1)ord,. Write [a], for the
sum of the p-adic digits of a € Z, i.e.,ifa=ag+a1p+--- af_lpf’1 is the base-p-expansion of a,
then

lalp =ao+ a1+ - +ap_1.
It is well known that [a],, with 0 < a < p/ — 1, can be computed as follows [Was97, Lemma 6.14]:

[a1p=<p—1>§{pfifl}.

=0

Let f e Nand ¢ : F,r — @gx be a non trivial additive character. Stickelberger’s theorem [Was97,
Proposition 6.13] gives us the p-adic valuation of Gauss sums:

ord.(7(¢, Teichg %)) = [a], for every a € Z/(p" — 1)Z.

For z € (Q/Z) let f € N such that (p/ — 1)z = 0, then

not p’

V() = ordy ((, As, (1)) = Sordy(r(t, As, (1)) =

[(pf — 1)z],
7 — L

(p—1f
Equivalently,
1,
V(z) = 2 > {p'e}).
=
We introduce a variant of Kubert’s V function. Define Rojas-Ledn’s Vg;, function by
Vee(x) =V(x) for z #£ 0,
VRL(O) = 1
Now equality V(z) + V(—z) = 1 for z # 0 becomes V(x) + Vp.(—z) = 1 for all « and this implies
Vpr verifies:
(a) Ver(x) =1 if and only if z = 0.
(b) Ve (1/2) = 1/2 if p £ 2.
(c) Ven(z) = Ve (p) for every x € (Q/Z),,; -
(d) For any = € (Q/Z),, , and any integer N > 1 prime to p, Zfigl Vee(z + i/N) =
2.2.2.2. Sums of p-adic digits. After Stickelberger’s theorem it is natural to study sums of p-

adic digits and their properties, where p is as always a prime number. We have Kummer’s theorem
on sums of p-adic digits:

LEMMA 2.2.2.1 ([Kumb2, Lehrsatz, pages 115 and 116]). Let x,y € Z be positive integers.
Then
[z 4+ ylp = [z]p + [y]p — (p — 1)(F#carries while adding x and y in base p).

PROOF. Let x = Zi:o TPty = Zizo y;p® be the base-p-expansions of z and y. Write x +y =

Ziié zip'. Set €_1 = 0 and define ¢; € {0,1} for 0 < i <[ by:

2 =T +Yi + €1 — Pei.
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Observe that, with this definition ¢; = 1 (0 < ¢ < [) if and only if a carry occurs at i-th digit
while adding = and y in base p. In particular, z;11 = €. Now the lemma follows from the following
manipulations:

1+1 1

[z + ylp Zzz Z$z+yi+6i71—]9€i)+€l
- 141 I
+Zez 1—pZez— Y= (-1 e

=0

O

Strictly speaking, this is not Kummer’s result. He proved, using Legendre’s identity ord,(n!) =
m+y) )

x

(n—[n]p)/(p—1), that the number of carries that occur while adding # and y in base p is ord,
Indeed, [¢+ yly = 7 +y — (p — 1)ordy ((z +1)!) = [zl + [yl — (b — Dord, ((z + 1)}/ (zly!)).

Now we introduce a function that will simplify our statements later. For every r € N, denote
g =p". For any z with 1 < 2 < ¢ — 1 we define [RL19] [z],, := [z], and extend this definition
to all integers by periodicity, that is, for © € Z we consider its residue modulo ¢ — 1 in the set of
residue classes {1,2,...,¢—1}. Observe that for 1 <z < ¢—2, [z],, = (p—1) >i_{p'z/(¢—1)}.
Using Kummer’s theorem 2.2.2.1 we can describe [z],, in terms of [z], for z # 0 (mod ¢ — 1) as
follows:

LEMMA 2.2.2.2. Let z such that x 20 (mod q — 1). Then

]y =[], — (p— )ord, (“7 =] )

z
PrRoOF. By Euclidean division write x = {q%lJ (¢g— 1) +zTwith0 <T < ¢g—1<q. Then

x + {ﬁJ = {ﬁJ q + . Applying [], to both sides we get: {x + {%H = HﬁJ q +E}
P

Since T < g, there is no carry while adding L J g and T in base p. Also, by definition [Z], = [z], .
After Lemma 2.2.2.1 and using that [p - n], = [n], :

e [[2] - () < [ ]e

The functions [-],, [-]p,» satisfy the properties:

PROPOSITION 2.2.2.3. For every integers x,y > 0 and every r,s € N we have the following
properties:

p,TS
ProoF. (a) This follows immediately from Kummer’s theorem.

(b) This is obvious after Lemma 2.2.2.2 since ("Htg;liflj) €Z.
(¢c) We reproduce the argument of [KRL19, Proof of Proposition 2.2]. Assume z,y < p".
Then [z +ylpr < [z +ylp < [2]p + [Ylp = [@]pr + [Ylpr-

(d) Following loc. cit.: Assume z < p" and write z = Z:;é a;p'. Then pz (mod p" — 1) =
aop + arp® + -+ + ar_op" ' + ay_y1. Hence, [paly, = Y i2) a; = [@]p.r-
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(e) It is proven in [KRLT20, Lemma 2.10].

g
We introduce a slight variant of [-], ,. For 0 < a < p” —1 define [z], , — := [z], and extend the
definition to Z by periodicity, i.e. [z]p,— = [¢ (mod p" — 1)],, —. With this definition, Lemma

2.2.2.2 holds for every integer x € Z and not only for z # 0 (mod p” — 1). The corresponding
properties of Proposition 2.2.2.3 hold true for [-], ., .
2.2.2.3. Relationships between V functions and sums of digits. As we observed above,

! (p’“a— 1) B ig{pfi—al} B 7“[Zr]?p’—rg)

for 0 < a < p"— 1. In general, if z € (Q/Z),,, , and r € N is such that (p" — 1)z = 0 then

V(z) = (@ =Dalpre T_(;)_T]lg“

VRL( a ) -1 —v( —a ) r(p—1) = [~alpr— -1 —r(p—1)+ap,  [alp,

pr—=1 1)

. For Vi, we have the following:

r(p—1) r(p—1) Cr(p-1)

for 0 < a < p"—1.In general, if z € (Q/Z) is such that (p” —1)x = 0 then Vg (z) = " =Yalp.r

r(p—1)
2.2.3. Reformulation of criteria for finite monodromy. We rewrite Theorems 2.2.1.2
and 2.2.1.4 using V functions and sums of digits. We keep the notations fixed in section 1.

CoroLLARY 2.2.3.1 ([KRLT20, Theorems 2.8 and 2.9]). Let dyt1 > dy > -+ >d1 =1 be a
sequence of integers coprime to p. The Qp-sheaf M(p;dyy1,dn, ..., d1) has finite Ggeon if and only

if
1 n+1 n+1
3 + ; V(z;) > Var ( ; dﬂi)
for every xa, ..., xn11 € (Q/Z),,, , which are not all 0. Equivalently, if and only if

'I"(p . 1) n+1 n+1
DS ey | 3 din]
i=2 i=2 P
foreveryr > 1 and 0 < x9,...,2,41 < p" — 1 which are not all 0.

PROOF. Let @1,...,%n11 € (Q/Z),y, ,, (not all 0) and r > 1 such that (p” — 1)z; = 0 for all
t=1,...,n+ 1. Consider the characters p; := AFPT (7). There is at least one index i with p; # 1.
After Theorem 2.2.1.4 we know M(p; D,d,, ...,d;) has finite Ggeon if and only if the inequality

Z?:ll ord,- (7(¢y, pi)) > 1/2 holds whenever p ... pi’ff = 1. Hence, Ggeon is finite if and only if

S () > 1/2 whenev&ir S diz; = 0. Since dy = 1, we know the equality S0 diz; = 0 is
n+

not p

equivalent to x; = — >,y d;z;. If we substitute this in the last inequality we find
n+1 n+1 1
V( - E;ix) + E;V(xi) >3
= =

must hold for arbitrary zo,...,2n41 € (Q/Z),., » (not all 0) for Ggeon to be finite. Using the
relationship V(—t) + Vg (t) = 1 we conclude our criterion is equivalent to the inequality

n+1 1 n+1
> () + g 2 V(3 i)
=2 =2
for every xo, ..., 2,41 € Q, not all equal to 0.
The second part of the statement follows easily using the formulas relating V functions and
sums of digits.
|
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COROLLARY 2.2.3.2. Let a,b € N be natural numbers and o, 3 € k with o # . The Q,-sheaf
B(piap) (v, B) has finite Ggeon if and only if

V(z) +V(y — (a+b)x) + V(bz —y) + V( —bx) +V(y) >

for every x,y € (Q/Z),,, , \ {0} and

N W

V() + V(= (a+b)z) >

N | =

for every x € (Q/Z),,, , \ {0}. Equivalently, if and only if

@y + [y — (@ -+ Bl + 2 — gl + (bl + [l > 2=

foreveryr >1,0<z,y<p"—1 and

N =

[@]p,r— + [ (@ +D)x]p,r— >
foreveryr>1,0<z<p” — 1.

PRrROOF. Let z,y € (Q/Z),,, , With x # 0 and 7 > 1 such that (p” — 1)z = (p" — 1)y = 0 in
(Q/Z),y, ,,- Consider the characters x := Ap,, () and 1= Ag,,. (y). Since z # 0, it is x # 1. After
Theorem 2.2.1.2 we know By, 5)(c, 3) has finite Ggeon if and only if the following inequalities hold:

(a) If (a+b)z+y #0 then V(z) +V(y) +V(—az —y) +V(—bz) = V(- (a+ bz —y) > 1/2
must be true. If we make the change of variable y — y — (a + b)x (so now y # 0) we
rewrite the inequality as

V(z) +V(y — (a+b)x) +V(bx —y) +V(—bx) —V(—y) > 1/2.
Finally we rewrite this using the relationship V(—t) + V(¢) =1 for t # 0 :
V(z) +V(y — (a+ b)) +V(ba —y) + V( —bz) +V(y) >3/2.
(b) If (a+b)z 4+ y = 0 then V(z) + V(y) > 1/2. Since y = —(a + b)z this is equivalent to
V(z) + V(= (a+b)x) >1/2.

The second part of the statement follows trivially using the known formula relating Kubert’s
V function and [-], . —.
|

We will mostly work with the sehaves M(p;a, 1) and M(p;a,b, 1), that is, withn =1 orn = 2.
For n = 1 the criterion is just
V(z) +1/2 > Ve (az) for every z € (Q/Z),,, , \ {0}.
For n =2 it is
V(z) +V(y) +1/2 > Va(az + by) for every z,y € (Q/Z),,, , with (z,y) # (0,0).
As it is expected, we can see from these inequalities that the finiteness of Ggeon for M(p;a,b,1)
implies the finiteness of Ggeon for both M(p;a,1) and M(p; b, 1).

There are also some relations between the sheaves B and M for n = 1. Namely, if B(,.q 5 has
finite monodromy then we know that for every € (Q/Z),,, ,, \ {0} the inequality V(z) + V(—(a +
b)x) > 1/2 holds. Using that V(—t)+Vg.(t) = 1, the previous inequality would imply the inequality

V(x) +1/2 > Veo((a + b))
for every x € (Q/Z),,, ,, \ {0}. This means that the finiteness of Ggeon for B,.q ) implies the
finiteness of Ggeon for M(p;a + b,1). A bit more surprising is the following:
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LemMA 2.2.3.3. Let a,b € N be natural numbers. Then the finiteness of Ggeon for B(p;a)b)
implies the finiteness of Ggeon for both M(p;a,1) and M(p;b,1).

PROOF. Assume B(,q) has finite Ggeon. Then, for every z,y € (Q/Z)
inequality

not p \ 10} we have the

V(z) +V(y — (a+ b)z) + V(bx — y) + V(—bx) + V(y) > 3/2
and
V(z) 4+ 1/2 > Var((a + b)z).
Now we particularize these at points of the form (z,bz) with  # 0, i.e. y = bz and = # 0. We

consider two cases.
If x is such that bz # 0 then the first inequality applies and we get

3/2 <V(x) + V(—ax) + V(0) + V(—bx) + V(bx) = V(x) + V(—ax) + 1
since br # 0 and V(¢t) + V(—t) = 1 for ¢t # 0. Rearranging and rewriting with Vg, we reach the

inequality V(z) + 1/2 > Vgi(az) for = such that bz # 0.
If « is such that bz = 0, since = # 0, the second inequality applies and we get

V(z)+1/2 > Var((a + b)x) = Vpo(ax).

In summary, it does not matter if bx = 0 or not, we get the same inequality and it implies
that M(p;a, 1) has finite Ggeon. To deduce the same for M(p; b, 1) observe that By, ;) has finite
Glgeon if and only if B,y ,) does since we can just reindex the defining exponential sums.

O

From this lemma we see that the problem of deciding if M(p;a, 1) has finite Ggeon is more
fundamental than studying the same for the sheaves B or the sheaves M for higher n > 1.

We know some cases for which M(p;a,1) and M(p;dp41,dp,...,1) have finite Ggeon. These
results are due, independtly, to Kubert [Kat07, §13] (for n = 1) and Rojas-Leén [RL19] (for
arbitrary n) :

PROPOSITION 2.2.3.4 ([Katl18, Theorem 4.1],[RL19, Corollary 4]). Let an, > --- > a; > 0 be
a sequence of non-negative integers. Then M(p;p® +1,...,p* +1,1) has finite Ggeon.

PROOF. We use the idea of [RL19, Proof of Corollary 4]. We want to show that for every
r>1land 0<zy,...,x, <p" — 1 the inequality

[zn:(pai + 1>$i < i[l‘i]p,n + M

‘ 2

i=1 p,r
holds true. We can assume without loss of generality that x; # 0 for every 4, so [z;]p.r— = [Ti]p.r-
Observe that if >0 | [@i]p, > @ then the inequality is trivially satisfied since the function

[]p,r takes values less than r(p — 1). Assume that Y . [@;]p» < 7(p —1)/2. Then

[Z(pai + 0| <YM A Dy, <20 [wilpr < D [l + W'
i=1 =1 =t

i=1

p,r

O

ProPOSITION 2.2.3.5 ([Kat18, Theorems 4.2 and 4.3],[RL19, Corollary 5]). Let a, > -+ >
ay > 1 be a sequence of non-negative integers and m € Zxg.

(a) If m =0 and p is odd, then
M(p; (p +1)/2,..., (p* +1)/2,1)
has finite Ggeon-
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(b) If m > 0 and a; is odd for everyi=1,...,n then
M(p; (" +1)/P™ + 1), (" + 1)/ (™ +1),1)
has finite Ggeon.

PrOOF. Assume m = 0. Let r > 1 and 0 < xy,...,2, < p" — 1 not all equal to 0. Actually,
without loss of generality, we assume all z; # 0 so [x;]p,» = [zi]pr—. We use the idea of [RL19,
Proof of Corollary 5].

T(p—l)—[z:(p“’#l)xz :T(p—l)—l2 £ 2+137i :l—sz +1,
i=1 por i=1 por por
[ n p* 4+ 1 l n p% 41
<2| - Z; =2r(p—1)—2 x;
= 2 por = 2 por

Rearranging we get

lzn: pai; 1 Ti

[Zpa‘—kl

r(p—1)
—

N\H

i=1 p,r

< [ilp,r,— +

M:

i=1

Notice the same argument works for the second case, since 2 = p” 4+ 1 and the only property
we use of this number is that [(p® + 1)z],,, < 2[z]p,. The distinction in the statement is just to
assure that (p® + 1)/2 or (p™* + 1)/(p™ + 1) is an integer for every i = 1,...,n (see [RL19,

Remark 1]).
]

REMARK 2.2.3.6. Kubert’s types and finiteness of Ggeon :

The numbers appearing in the previous corollaries have a quite particular base-p-expansion.

The numbers p® + 1 for a > 0 are those with base-p-expansion given by (10...01),, with a — 1
zeroes between the 1 digits. If @ = 0 and p is odd, then 2 = (2),,.

For p an odd prime we have

T () ),

with the digit (p — 1)/2 repeated m — 1 times.
For [ an odd integer and m > 1, denoting ¢ = p", we have

-1
q+1 i : -
=D (D =14aa - D+ tla =D+ g - 1)

1=0
(-n/2 m-1  (=1)/2 '
=14+(q-1) Y ¢ '=1+@- 1)( p’)( > pm@’*”)
=1 1=0 i=1

= ((p—l)...(p—l)O...O...(p—l)...(p—l)O...O) + (1),

p

m-times m-times m-times m-times

(I —1)/2-times

The corollaries above tell us that if we do not mix Kubert types the monodromy groups keep finite.
Our interest will be in finding new integers giving finite monodromy for n = 1 that do not pertain

to a Kubert type and/or integers that mix Kubert types but still give finite monodromy for n > 1.
|
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Despite the second formulation of Corollary 2.2.3.1 is the useful one for computations, we need
a further formulation suitable for inductive proofs:

COROLLARY 2.2.3.7 ([KRLT20, Theorem 2.12]). Let D :=dpq41 > dp > -+ >dy =1 bea
sequence of integers coprime to p. The Q,-sheaf M(p;dp11,dn,---,d1) has finite Ggeon if and only
if there exists some real A > 0 such that for every positive integer r and every 0 < xa,...,Tpy1 <
q" — 1 which are not all 0, we have the inequality

( n+1 n+1
1=2 p

PrOOF. We show that the inequality of this corollary is equivalent to the inequality of the
previous one.

Suppose there is some A > 0 such that r(p —1)/2+ A+ > a], > [ZnH d; x,] holds for

p
every 7 > 1 and every 0 < x9,...,2,41 < ¢" — 1 which are not all zero. Then ZTH d;x; > 0, and
n+1 n+1 n+1 T(p . 1)
d;x; < | < i —
{E:x} [zyx} Y leidp + P 4
1=2 b, p =2
n+1

=Sl + TRl Y

Hence, for every m > 1

r+1 pmr _1 n+1 m mr(p _ 1)
|:1;=2 pT —1 v :|p,m7‘ - p — 1 p,mr,— * 2 +

Using Proposition 2.2.2.3 and dividing by m we get

r+1 n+1
rp—1) A
Y| <Y+ 4 D
=2 p,r =2

for every m > 1. Taking m — oo we get our seeked inequality.

Conversely, assume
1 n+1 n+1
+§ wzpr|:§ dzxz:|
i=2 p,r

is satisfied for every » > 1 and every 0 § Z2,...,Tp41 < p" — 1 which are not all 0. Let [ be an
integer such that 30" d; < pt. Then, if 0 < zq, ..., 2,11 <p" — 1, S0 dizy < p"H =1, 50

n+1 n+1 n+1
r+1)(p—1
{ E dixi:| = [ E dixi:| < E [@i]pry1,— + %
i=2 D i=2 p,r+l i=2

n+1
_le 1)_‘_1(292—1).

Taking A = l(p — 1)/2 we get the inequality from the statement.

2.3. Computational approach and numeric explorations

In this section we explain how to use effectively the criteria given above, compare the conse-
quent algorithm with previous ones and present some experimental phenomena obtained by use of
these ideas. We mostly focus on the sheaves M(p;a, 1), M(p;a,b,1) and B(,,q p)-
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2.3.1. The sheaves M(p,a,1). Recall that the monodromy group Ggeon of the Q,-sheaf
M(p;a,1) on Alle is finite if and only if for every r > 1 and every 0 < z < p” — 1 we have

rip—1)
5
Our approach is to decide if a does not have finite monodromy by checking the inequality against

every x € (0,p" — 1) NZ with r running through some finite set of integers, usually [1, L] N Z. Just
doing this we get the naive algorithm:

laz]p,r < [@]p,r,— +

Algorithm 1 Naive algorithm for finding candidates with finite Ggeon for M(p;-, 1)

Input: p > 0 prime number; L > 0 an integer
for1<a<p’—1do
if a (mod p) =0 then
continue a’s loop
end if
for 1 <r<Ldo
t<+0
for1<z<p'—1do
t < [alpr,— — [az]p, +7(p—1)/2
if £ <0 then
break x’s loop
end if
end for
if t <0 then
break r’s loop
end if
end for
if ¢t > 0 then
print a
end if
end for

We will use this algorithm as our basic layout and incorporate some simplifications to it.
In general, to improve the naive approach we can reduce the sets where we look for witnesses
((0,p" —1)NZ for 1 <r < L above) and obtain from just one a such that M(p;a,1) does not
have finite Ggeon as many new b’s as possible such that M(p; b, 1) does also not have finite Ggeon-
The following observations go in this direction:
1. For every r > 1, both [],»— and [-],, are periodic functions of period p” — 1. This has
two consequences.
First of all, if a € Z~, to evaluate [z],,_ — [az], , against every z € (0,p" —1)NZ,
we only have to consider ax (mod p" — 1) = ((a (mod p" — 1))33) (mod p” — 1). This
reduces the number of operations needed to perform the multiplication of integers a, z.
Second, if there exists € (0,p" —1) NZ such that [az], , > [z]pr— +7(p—1)/2 (ie.
x is a whitness for the non-finiteness of monodromy for M(p;a,1) ), then [(a + k(p" —
1))x}p’r > []p.r— +7(p—1)/2 for every k € Z. In particular, M(p;a+ k(p" — 1), 1) does
not have finite Ggeon for every £ > 0.
2. For every r > 1 both [-], ,— and [],, are invariant under multiplication by p. This again
has two practical implications.
In the first place, if € (0,p” — 1) N Z then z satisfies the inequality [ax],, <
[z]p,r,— +7(p—1)/2 if and only if px (mod p" —1) satisfies the same inequality. Moreover,
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since we can consider arguments modulo p” — 1, we see x satisfies the inequality at “level”
r if and only if any rotation of its base-p-expansion does. This allows us to restrict the
search for witnesses at each level r to the set of orbits of Z/(p" — 1)Z under the action
by multiplication of p (mod p" — 1). These orbits are well-known in combinatorics, they
are (p — 1)-ary necklaces of length r.

Second, if we find that « € (0,p” — 1) NZ is a witness for the non-finiteness of Ggeon
for M(p;a,1) at level r, then M(p;p’a (mod p” —1),1) does not also has finite Ggeon for
any t =0,...,7 — 1.

. Observe that the inequality [az],, < [z]p - +7(p—1)/2 is an empty condition whenever

[z]pr,— > r(p—1)/2 since [az],, < r(p — 1) always holds. This restrict us further to
those orbits such that each (or any) representative verifies [z], ,_ < 7(p —1)/2.

. We introduce a bit of notation that will simplify our algorithms. We write a O, p for

the orbit of a (mod p” — 1) under multiplication by p. Observe that each orbit a O, p
can be well-ordered by considering the lexicographic order on the base-p-expansions of
its elements (starting from the right). Using this order, we denote the set of smallest
representatives of (p — 1)-ary necklaces of length r by Necks,(p).

These remarks lead to an improvement of the naive approach. We collect them in Algorithm 2.

Algorithm 2 Algorithm for finding candidates with finite Garisn for M(p;-, 1)

Input: p > 0 prime number; L > 0 an integer

A < Boolean array indexed from 1 to p” — 1 with all its entries equal to True
for1<a<pr—-1do
if a (mod p) =0 then

a-th entry of A < False

end if
end for
for1<a<pr—-1do
if a-th entry of A = False then

continue a’s loop

end if
for 1 <r<Ldo

a <+ a (mod p"—1)e{1,...,p" — 1}
t<0
for x € Necks,(p) do
if [z]pr— > r(p—1)/2 then
continue z’s loop
end if
t « [z]pr— — [@’z (mod p" — 1)]pr +r(p—1)/2
if ¢ < 0 then ’
fori=0,...,r—1do
a' < pa’ (mod p” —1)
for 0 <k < {@Lp_ril)l_alJ do
(a/ + k(p” — 1))-th entry of A « False
end for
end for
break x’s loop
end if
end for
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if t <0 then
break r’s loop

end if

end for

if t > 0 then
print a

end if

end for

REMARKS 2.3.1.1.

1. Observe that in both algorithms we only print integers a > 1 for which we have not been
able to find a witness for the non-finiteness of Ggeon for M(p; a, 1) at any level r = 1,..., L.
Clearly, this does not mean M(p;a,1) has finite Ggeon. The utility of these algorithms
is to find strong candidates, that is, find integers a that satisfies all our inequalities up
to some big level L. At this point it is natural to ask if there are upper bounds to the
number of levels we have to check in order to establish if certain M(p;a,1) has finite
monodromy or not. This question is addressed in Rojas-Leén’s paper [RL23a] using the
notion of complexity for lisse Q,-sheaves introduced by Sawin (see the paper for more
details). For the moment being, it seems the bounds these methods can provide us are
impractical for computational purposes.

2. It should be observed that our algorithm has some resemblence to classic sieve algorithms
such as Eratosthenes’ sieve. The main differences are that we have to check the inequal-
ities which are by no means trivial, and that we have for each r > 1 a whole set of
exclusions that we “propagate” modulo p™ — 1.

3. As we have seen, our algorithm makes essential usage of necklaces. In fact, it needs
the smallest representative in each orbit with respect to lexicographic order on base-p-
expansions. We make use of Cattell-Ruskey—Sawada—Serra—Miers algorithm [CRS'00,
Algorithm 2.1 and Table 1] for our purpose. This algorithm generates lexicographically
minimal necklaces of arbitrary length and on arbitrary finite alphabets in constant amor-
tized time. Moreover, if desired, the algorithm can output the period of the corresponding
necklace, that is, the size of its orbit. Essentially, the algorithm computes efficiently the
permutation p induces on S,r—1 = {0, ...,p" —2} acting by multiplication modulo p” — 1.

4. This algorithm has been implemented succesfully with Julia Programming Language
[BEKS17]. In practice we precompute a few things for the code to be practical. Since
powers of the base prime p are needed frequently, it is more efficient to keep the values
{1,p,p?%,...,p"} in memory rather than computing them each time. Also, since we make
several loops on representatives of necklaces, we precompute once and for all the sets
Necks,.(p) for r = 1,..., L using the algorithm from previous item. The same philosophy
applies to the computation of digital sums, so our code previously computes an array
where all values of [t], for t = 1,...,pl — 1 are saved. For details, see the Appendix.
These precomputations are an important limitation to the performance of the code for
big values of L.

2.3.1.1. Ezxperimental comparison of algorithms. Here we present some tables showing the per-
formance of the naive approach and the algorithm with our improvements. We include the column
Checks which counts the number of integers a that were tested checking inequalities and not using
congruences or rotations. As we remarked above, even for Algorithm 1 we precompute and save in
memory some values that are used several times during the execution. This explains the Memory
column for Algorithm 1. The following benchmarks were obtained in a machine with an Intel Core
i7-11700 and 16 GB of RAM.
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TABLE 1. Experimental comparison of algorithms with p = 2.

Algorithm 1

Algorithm 2

L J Memory LTime (secs) LChecks Memory LTime (secs) LChecks
1 416 bytes 0.000003 20 944 bytes 0.000007 1

2 496 bytes 0.000003 2! 1.281 KiB 0.000007 2

3 528 bytes 0.000004 22 1.625 KiB 0.000007 4

4 656 bytes 0.000004 2 2.031 KiB 0.000008 8

5 800 bytes 0.000005 24 2.484 KiB 0.000009 13
6 1.078 KiB 0.000007 s 3.062 KiB 0.000010 22
7 1.641 KiB 0.000015 26 4.609 KiB 0.000014 34
8 2.953 KiB 0.000039 27 6.875 KiB 0.000020 55
9 4.984 KiB 0.000098 28 9.906 KiB 0.000031 75
10 | 9.047 KiB 0.000258 2 14.969 KiB | 0.000052 113
11 || 17.047 KiB | 0.000624 210 26.891 KiB | 0.000091 163
12 || 33.031 KiB | 0.001353 211 46.859 KiB | 0.000149 205
13 || 65.062 KiB | 0.002805 212 94.297 KiB | 0.000249 276
14 || 129.125 KiB | 0.005688 213 174.297 KiB | 0.000411 357
15 || 257.125 KiB | 0.011601 214 347.703 KiB | 0.000740 455
16 || 513.453 KiB | 0.024495 AL 651.406 KiB | 0.001326 596
17 || 1.001 MiB 0.050667 216 1.249 MiB 0.002566 746
18 || 2.002 MiB 0.109405 i 2.502 MiB 0.004871 940
19 || 4.002 MiB 0.223869 218 5.171 MiB 0.009905 1122
20 || 8.002 MiB 0.483419 A 9.871 MiB 0.020577 1291
21 || 16.002 MiB | 1.196611 220 19.582 MiB | 0.049972 1521
22 || 32.002 MiB | 3.324997 pel 39.487 MiB | 0.120472 1786
23 || 64.002 MiB | 7.585174 222 77.900 MiB | 0.277792 2094
24 || 128.002 MiB | 17.896381 et 153.354 MiB | 0.613388 2456
25 || 265.002 MiB | 39.491887 224 302.916 MiB | 1.315770 2876
26 || 512.002 MiB | 91.082204 225 582.478 MiB | 2.686707 3198
27 || 1.000 GiB | 219.994560 226 1.149 GiB 6.546916 3532
28 ? ? ? 2.237 GiB 19.373952 | 3938
29 ? ? ? 4.413 GiB | 46.468393 | 4552
30 ? ? ? 8.762 GiB | 102.230161 | 5397
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TABLE 2. Experimental comparison of algorithms with p = 3.

Algorithm 1 Algorithm 2

L L J Memory LTime (secs) LChecks Memory LTime (secs) LChecks
1 416 bytes 0.000003 2.30 944 bytes 0.000007 2
2 528 bytes 0.000003 2.3t 1.312 KiB 0.000006 6
3 672 bytes 0.000004 232 1.766 KiB 0.000008 15
4 1.172 KiB 0.000008 2.33 3.234 KiB 0.000011 35
5 2.438 KiB 0.000041 2.34 5.484 KiB 0.000019 72
6 6.391 KiB 0.000141 2-3% 13.250 KiB 0.000040 127
7 17.750 KiB 0.000537 2.36 28.562 KiB 0.000093 230
8 52.188 KiB 0.001894 2.37 78.422 KiB 0.000210 370
9 || 1564.718 KiB | 0.005798 2.3% || 226.047 KiB | 0.000651 521
10 || 462.344 KiB 0.018401 2-3° 645.922 KiB 0.001177 765
11 1.353 MiB 0.058771 2310 1.7848 MiB 0.003614 1102
12 || 4.056 MiB 0.186331 2.3 5.166 MiB 0.008290 1515
13 || 12.165 MiB 0.659928 2312 14.989 MiB 0.026610 2086
14 || 36.492 MiB | 2.726438 | 2-3'3 || 45.609 MiB | 0.119359 2671
15 || 109.475 MiB | 9.682236 2.3 | 130.186 MiB | 0.397085 3397
16 || 328.442 MiB | 35.711725 2-3% || 390.363 MiB 1.326211 4296
17 || 985.263 MiB | 132.235027 | 2-3!6 || 1.105 GiB 4.999794 5663
18 ? ? ? 3.204 GiB 21.931799 7924
19 ? ? ? 9.514 GiB 77.184047 | 11336

TABLE 3. Experimental comparison of algorithms with p = 5.
Algorithm 1 Algorithm 2

L L J Memory LTime (secs) LChecks Memory LTime (secs) LChecks
1 432 bytes 0.000005 4.50 960 bytes 0.000007 4
2 656 bytes 0.000004 4.5t 1.438 KiB 0.000008 14
3 1.453 KiB 0.000010 4-52 3.234 KiB 0.000013 43
4 5.516 KiB 0.000077 4.53 11.109 KiB 0.000031 103
5 24.938 KiB 0.000510 4.5% 45.734 KiB 0.000112 263
6 || 122.688 KiB | 0.003043 4.5° 188.406 KiB | 0.000360 466
7 || 611.000 KiB 0.015977 45 927.953 KiB 0.001292 745
8 2.981 MiB 0.087240 4.57 3.965 MiB 0.005960 1266
9 || 14.902 MiB 0.543751 458 19.727 MiB 0.034570 2259
10 || 74.507 MiB 3.850998 4.59 90.717 MiB 0.221591 4274
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Table 3 (continued,).

Algorithm 1
Memory LTime (secs) LChecks

Algorithm 2
Memory LTime (secs) LChecks

11 || 372.530 MiB | 23.994012 | 4-5'° || 431.206 MiB | 1.177317 6107
12 1.819 GiB 165.095751 | 4 -5t 2.043 GiB 9.309871 8106
13 ? ? ? 10.389 GiB 57.875320 11906

TABLE 4. Experimental comparison of algorithms with p = 7.

Algorithm 1 Algorithm 2

L L J Memory LTime (secs) LChecks Memory LTime (secs) LChecks
1 448 bytes 0.000003 6-7° 976 bytes 0.000007 6
2 848 bytes 0.000005 67" 2.281 KiB 0.000008 21
3 3.203 KiB 0.000026 672 8.484 KiB 0.000021 67
4 || 19.312 KiB 0.000257 6-73 39.719 KiB 0.000075 154
5 || 131.812 KiB | 0.002181 6-74 197.453 KiB | 0.000358 395
6 || 919.750 KiB | 0.019089 6-7° 1.612 MiB 0.001976 874
7 6.284 MiB 0.138650 6-7° 8.668 MiB 0.011353 1430
8 || 43.983 MiB 1.703619 6-77 57.410 MiB 0.127027 2315
9 || 307.874 MiB | 14.556409 | 6-7% || 363.234 MiB | 0.915330 4277
10 || 2.105 GiB | 147.667029 | 6-7° 2.474 GiB 9.157338 11754
11 ? ? ? 16.624 GiB | 423.844096 | 23087

2.3.1.2. Some numerical phenomena observed. We start looking at some of the outputs the
algorithm returns. We use the following notation. For a fixed prime p, we write n; to indicate n
has Kubert type of the form p” 4+ 1 for some r > 1. Similarly, if p is odd, we write ni; if n has
Kubert type (p"+1)/2 for some r > 0. Finally, we write nrr , if n has Kubert type (¢"+1)/(g+1)
for some r > 1 odd and ¢ = p™. Whenever a number n can be realized using different Kubert
types, we use the subindex attending to the ordering I > II > III.

Running our algorithm for L = 30 we get the numbers:

{31> o1, 91, 11111, 131112,
17, 331, 431111, 97111,3, 651,
1291, 1711111, 20517172, 241117 4, 2571,
5131, 6831111, 993117 5, 10251, 2049;,
27311111, 32771110, 36411113, 40331116, 40971,
8193;, 109231171, 162571117, 163851, 327691,
436911y1 1, 52429117 5, 61681117 4, 65281111 5, 655371,
1310731, 174763111 1, 233017111 3, 2616331119, 2621451,

5242891,

699051117 1,

838861117.2,

1016801111 5,

1047553111.10,
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10485771, 20971534, 2796203111,1, 419225711111, 41943054,
83886091, 111848111111, 134217731112, 149130811113, 157903211171 4,
165191051116, 1677312111712, 167772171, 335544331, 447392431111,
67100673111,13, 671088657, 1342177294, 1789569711111, 2147483651112,
266354561111,7, 268419073111,14, 2684354571, 5368709131, 7158278831111,
9544371771113, 10412041931115, 10737090571171,15}-

As we can see, every number a for which the algorithm is not able to decide if M(2;a,1)
has non-finite Ggeon is actually of Kubert type, i.e. they verify M(p;a,1) has finite Ggeon- Since,
up to 239 — 1 > 10° we have checked only numbers of Kubert type have associated sheaf with
finite Ggeon, it is natural to conjecture that M(2;a, 1) has finite Ggeon if and only if a is of Kubert
type. This is precisely what Katz (see [Kat18]) and Rojas-Leén (see [RL19, Conjecture 1])
conjectured independently in 2017, using much less computational evidence than us. In fact, with
our implementation we were able to check this conjecture up to 10°. A much stronger theorem has
been recently proved by Katz and Tiep in [KT23, Theorem 10.2.6] which implies this conjecture
in particular (see the analysis for primes p = 3,5 and 7 below to get a taste of the content of this
recent theorem).

For L = 16 we obtain the following:

{21, 4y, o11, 711,15 10;,

1447, 285, 4117, 611111, 731112,
821, 12211, 244y, 36511, 5471111,
7031113, 7301, 109417, 2188y, 328111,
4921117 1, 59051112, 64811114, 65621, 984211,
196845, 2952511, 442871111,  588071rrs, 590501,
8857411, 1771481, 26572111, 3985811111, 478297110,
5124611115, 530713116, 531442;, 79716211, 15943241,
239148511, 35872271111, 47807831117, 47829701, 4782971,
717445411, 143489081, 2152336177, 322850411111, 38742049111,
42521761117,4, 430401611178}

Every number is of Kubert type except 4782971 = (100000000000002)3. This tells us that
a = 4782971 is a strong candidate for M(3;a,1) to have finite Ggeon. However, this is illusory.
Once we reach L = 17 we find that z = 773005 = (1110021100211)3 is a witness with r = 17 of the
non-finiteness of Ggeon for M(3;a,1). With our algorithm we can check only Kubert types arise
up to L = 19 and again it is natural to expect that only Kubert types give M(3;a,1) with finite
Ggeon- This is the case and it follows from Katz—Tiep result.

For L = 13 the algorithm returns the following:

{217 3II7 615 77 13117
211, 261, 6311, 1261, 3131,
52111, 6011rr.2, 6261, 156311, 31261,
781311, 13021517,1, 155011173, 156261, 3906311,
781261, 19531311, 3255211111, 3756011112, 390001111 4,
3906261, 97656311, 19531261, 488281311, 81380211111,
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97625011115, 97656267, 244140637, 48828126y, 12207031311,
203450521 111,1, 2347506011112, 2422030011173, 2441250011116, 2441406261,
61035156311 }.

Again, every number except 7 = (12)5 is of Kubert type. This time, in contrast to what we
observed for p = 3, it does not matter how far we go with higher values of L, a = 7 will always
satisfy the inequalities. We show Ggeon for M(5;7,1) is finite in two steps:

LEMMA 2.3.1.2 ([KRL19, Lemma 2.3]). Let r > 1 be a positive integer and x € {0,...,5" —1}
an integer such that x (mod 5) # 2. Then [Tx]s < [z]5 + 2r.

PrROOF. We proceed by induction. For r < 2 it is checked manually. For » > 3 we proceed as
follows. Let z = Z::_Ol 2;5° be the base-5-expansion of z and split the proof in two cases:
Case 1: There exists j € {1,...,r — 1} such that z; # 2. We write z.; = Zf;é x;5° and
T>; = 22;871 l'i+j5i. Then
[72]s = [Twcj + 5 - Twsjls < [Toeyls + [Tes4]s < lwejls + 2 + [w34]s +2(r — j) = [a]s + 2
Case 2: x; =2 for all j € {1,...,7 —1}. Write 25, = S0 ;115" = 23— 5°. We evaluate
[Tz>1]5 explicitly. Observe that

r—1 r—2 r—2
Tos) =brs1 +2u51 =) 2-5+) 4.5 =445+ 2.5 4351,
=1 =0 =2

hence [Tz>1]s =4+ 1+ 2(r —3) +3 = 2(r + 1). From this we find:
[793}5 < [71‘0}5 + [71’21]5 = [7:60]5 + 2(7’ + 1) < [:170]5 + 2+ 2(7’ + 1)

=[zls+2(r—1)+2-3=[z]s+2 -3 <[z]5 +2r.
]
THEOREM 2.3.1.3 ([KRL19, Theorem 2.5]). The lisse Qy-sheaf M(5;7,1) has finite Ggeon.

ProoOF. We show Corollary 2.2.3.7 holds with A = 2. Let » > 1 and 0 < z < 5". If z
(mod 5) # 2, after our previous lemma we know [7z]5 < [z]s 4+ 2r < [z]s +2r +2. If z (mod 5) = 2
then

[7z]s = [7-52]s < [5a]5 +2(r + 1) = [a]s + 2r + 2.
]

The sheaf M(5;7,1) merits to be called sporadic for two reasons. First, it is a sheaf of type M
with finite Ggeon not of Kubert type. It was found for the first time by Rojas-Ledn after extensive
computer calculations. Moreover, we can also call it sporadic since the mondromy groups Ggeon
and Garitn of M(5;7,1) are both equal to a sporadic simple group (see [KRL19, Corollary 3.5]
for a precise statement). After that the problem of deciding (and realizing) which sporadic simple
groups can arise as monodromy groups of hypergeometric and related classes of sheaves started
and became an active area, still active today.

For L = 11 we find:

{2I7 4I17 817 25II7 43III,17
50z, 17211, 344+, 120141, 21011111,
23531110, 2402, 84041, 168081, 5882511,
1029431171, 1173071113,  117650s, 41177241, 823544,
288240117, 50442011171, 56495051170, 5762401rrr4, 57648021,
201768041, 403536081, 14123762517, 2471658431771, 2824584431175,
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2824752507, 98866337211 }.

One more time, the only values a that survive all the tests up to L = 11 are of Kubert types,
which we already know would give a sheaf with finite monodromy. It follows from the theorem of
Katz—Tiep that only numbers of Kubert type for p = 7 are the ones associated to sheaves with
finite monodromy group.

The question of whether for bigger primes p there are “sporadic” values of a, not of Kubert
type, such that M(p;a, 1) has finite Ggeon is known to have the answer: it only occurs for p = 5
and a = 7. This is the strong consequence that follows from Katz and Tiep’s theorem referenced
above (which further settles this question for other related sheaves we have not considered in this
work, namely, sheaves further tensored with a Kummer sheaf).

Now we report on the next phenomenon observed. If for each L > 0 we pay attention to the
biggest r € {1,2,...,L} where a witness was found, we would see we are far from using all the
information within the range {1,2,..., L}. Explicitly, Figures 1, 2, 3 below show the maximum r
where we have found a witness during the execution of the algorithm for input L.

FIGURE 1. The biggest value of r needed for L € {1,...,30} and p = 2.

FIGURE 2. The biggest value of r needed for L € {1,...,20} and p = 3.
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FIGURE 3. The biggest value of r needed for L € {1,...,13} and p = 5.

This might be misleading. We are not saying that we have not used the information from all
the values of r € {1,..., L}, we say that we have used much less information while determining
the non-finiteness of monodromy for the associated sheaves. Observe that whenever our algorithm
reaches an integer of Kubert type it is going to test all the inequalities since that number verifies
all of them. As a side remark, we see that running times of our algorithm are much longer than
actually needed since we spend most of the time checking that numbers of Kubert type pass the
tests, and we already know they do. Moreover, practical knowledge on the maximum value of r
needed for each L (which we still do not have) would be useful in reducing the memory consumption
of our implementation.

Finally, these observations suggest us to take a look at the size of the sets of integers within
the interval (0,p") N Z that verify the r-th inequality. More precisely, write

S, i={a€(0,p")NZ : [az]p, < [#]pr—+r(p—1)/2, VO<z <p"}.
Figure 4 shows the quantities |\S,|/(p” — 1) in black and 1—1S5,.|/(p” — 1) in red for different primes.

2.3.2. The sheaves M(p;a,b,1). Proceeding similarly as with M(p;a,1), we first study
what really matters while checking the non-finiteness of Garitn for M(p;a,b,1). Let r > 1 be a
positive integer, a,b € N and i,j € {0,1,...,r — 1}. We refer to the inequality [azx + by, <
[®]pr— + Wpr— + 7(p — 1)/2 as the r-th inequality associated to the pair (a,b) specialized at
(z,y) € (Z/(p" —1)Z)* . We have the following:

1. The pair (a,b) satisfies the r-th inequality [ax + bylp, < [@]pr— + [Ylpr— +7(0 —1)/2
for every 0 < z,y < p" — 1 not both 0, if and only if the pair (p'a (mod p" — 1), p’b
(mod p" — 1)) satisfies the same inequality for every 0 < z,y < p" — 1 not both 0. Indeed,
observe

laz + by]pm - [x}p,r,— - [y]p,r,— = [p"(azx + by)]pﬂ" - [z]pm— - [y]pm—
=[Pa-p e+ b p e — "y — [P Yl
To finish the argument use the bijectivity of the map
(z,y) € (Z/(0" = V)Z)* = (" 'z,p"y) € (Z/(p" - 1)Z)°

and that it sends (0,0) to (0,0).
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(A) p=2and 1 <r <26. (B) p=3and 1 <r <15

(¢) p=>5and 1 <r <10, (D) p=7and 1<r<8.

FIGURE 4. Graphs showing the density of the subsets S, C (0,p") N Z.

2. For every 0 < x,y < p" — 1, to specialize the r-th inequality associated to the pair (a,b)
at (p'x,py) is equivalent to specialize the same inequality at (x,p’ 'y (mod p" — 1)).
Assume without loss of generality that j > i. The statement follows from the following
equality:

la-p'z+b-pylpr — [P'Tlpr— — [P Ylpir— = P @z + - Y)lpr — [2pir— — [P Ylpr—
= [ax +0b- pj_iy]p,r - [x]pm— - [pj_iy]pm—'

After these two observations, we can propagate pairs (a,b) for which their associated r-th
inequality is not satisfied via rotations and congruences modulo p” — 1. Moreover, we can test
r-th inequalities up to rotations on the first component x. Using these observations an algorithm
analogous to Algorithm 2 can be designed (see the Appendix). This approach is not as performant
as its one-parametric analog, nevertheless, it is the best approach we have at our disposal at this
moment. For this reason, we do not give a detailed analysis of this approach and just proceed to
describe its output for small values of p and L.

2.3.2.1. Results for small characteristics. Running the algorithm for small values of p and
L, the only unexpected pairs of exponents (a,b) for which we can not decide if M(p;a,b,1) has
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non-finite Ggeon are:
for p =2 and (a/a b) = (13111,2731) = (13111,273111,1);

for p =3 and (a,b) € {(7111,1,41), (T111,1, 21), (511, 41), (511, 21), (41, 21) }5
for p =5 and (a,b) = (311, 21).

Observe that, for p=3,2 =3% +1 = (3 + 1)/2 has Kubert types I and II, so the pair (4,2) may
be interpreted as a mixture of types. Actually, from all these pairs a sheaf with finite Ggeon arises.
In fact, for p = 3 we can say more, the sheaves M(3;7,4,2,1) and M(3;5,4,2,1) have finite Ggeon.
All these results have been already proven by Katz, Rojas-Leén and Tiep in [KRLT23]. More
precisely, the corresponding results from loc. cit. for M(2;13,3,1) are Theorems 32.3 and 32.4,
for M(3;7,4,2,1) are Theorems 32.1 and 32.2, for M(3;5,4,2,1) are Theorems 32.5 and 32.6 and
for M(5;3,2,1) are Theorems 32.7 and 32.8.

After Katz and Tiep’s theorem [KT23, Theorem 11.2.3] we know that these are all the unex-
pected tuples of exponents with finite Ggeon for M.

2.3.3. The sheaves B, ). As before, let us start with a brief comment on computational
simplifications. Let r > 1 be a positive integer, a,b € N and 4,5 € {0,1,...,7—1}. Again, we refer
to inequality

[@]pr,— + [y = (a+b)a]p,r,— + [br — Ylpr— + [=0T]pr— + [Ylp,r,— = 3r(p—1)/2

as the r-th inequality associated to the pair (a,b) specialized at (z,y) with 0 < z,y < p" — 1. We
have:

1. The r-th inequality associated to (a,b) is satisfied for every 0 < x,y < p" — 1, if and only
if the r-the inequality associated to (p'a (mod p™ — 1),p’b (mod p" — 1)) is satisfied for
every 0 < x,y < p" — 1. It follows from the equality

[x]p,r,— + [y - (a + b)]pﬂ“,— + [bz - y}p,r,— + [_bx}p,r,— + [y]p,r,—
= [@]p.r— + [Py — P (a4 b)alpr— + [P'bx — p'Ylpr— + [P b2]pr— + P Ylpir—

and the fact that the map (x,y) € Z/(p" — 1)Z — (x,p'y) is a bijection sending (0, 0)
to (0,0).

2. For every 0 < z,y < p" — 1, to specialize the r-th inequality associated to the pair (a,b)
at (p'x,py) is equivalent to specialize the same inequality at (x,p’ 'y (mod p" — 1)).
Assuming j > i, it follows from the equality:

[pim]p,r,— + [p7y —(a+b) 'pix]p,r,— +1[b- pix + pjy]p,r,— +[=b- pix}p,r,— + [pjy]p,r,—
= [z]pr,— + [pjiiy —(a+b)zlp,,— + [bx *Pjiiy]p,h— + [=bxlp,r,— + ijiiy]p,r,—-

In costrast to the situation for the sheaves M, we see that the propagation of pairs with non-
finite Ggeon for the sehaves B can only be done only multiplicating by the same power of p. This
makes our approach for this family of sheaves even less performant than the same strategy for
the sheaves M. For this reason we do not analyze here the performance of our approach, we just
describe some of the pairs not discarded by the algorithm and study if they really give rise to a
sheaf with finite monodromy group. An implementation is presented in the Appendix.

Fix the morphisms

2 G?n,k — Gk
(87t) — (S,—Sﬂf);

(725 . G’Iz”ﬂ,k? — an,k}
(Svt) — (87_57_5757t)'

For any arbitrary prime p, we find after computer calculations the following family:
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o (p",1)forn =0,1,.... Observe that the trace function of B,.,» 1) at some rational point
(s,t) € an’k(kr) with k, =TF,r is

1 n 1 n n
N Z Yp(sa2P (x — 1) +tx) = I Z Y (seP T — saP" 4 ta).
€k, z€k,

Then B(,,pn.1) = ¢* Myig(p; p™ +1,p", 1). Since the latter has finite Ggeon after an Artin-—
Schreier reduction, we conclude By, 1) has finite Ggeon. From this also follows that the
exponents (1,p") give rise to a sheaf with finite Ggeon-

Now we report the further families found for some small primes p :
By executing some code we get the following families and special cases:

e (2" +1,1) for n = 1,2,.... The trace function of B(a.on11 1) at (s,t) € anyk(k}) with
kr = FQT is

1
V2"

1
V2"

3 (s T e+ 1) b)) = -

€k,

37 (22D s 4 ),

€k,

Then Bgoni1,1) = ¢* Muig(2; 2(2"71 +1),2" + 1,1). The latter has finite Ggeon after an
Artin-Schreier reduction, hence our original sheaf has finite Ggeon too. We also deduce
(1,2" + 1) gives rise to a sheaf with finite Ggeon-

e (2" +1,2") for n = 1,2,.... The trace function of B(ggn1 9n) at (s,t) € an,k(kr) with
kr = ]ng- is

1
V2"

1
V2"

3 (s T (@ 1) + ) = —
€k,

> Gp(sz® D 42 4t).
€k,

Then Bgon41,1) = @ Muig(2; 271 41,27 +1,1). The latter has finite Ggeon hence our
original sheaf has finite Ggeon too. We also deduce (2",2" 4 1) gives rise to a sheaf with
finite Ggeon-

) (227;11“ ) forn =1,2..... Observe that 22;111“ +1= 22%. The trace function
of B(Q_M 1) at (s,t) € G2, ,(ky) with k, = For is
’ 2+1 s

22n+1+1 22 2271—1+1 22n+1+1

1 22t 1
v Z (2 (S$ 7T (x4 1) +tx) = T Z Pr (sx T fogxr 2T 4 tx).
z€k, z€k,

Then 8(2.22“1“ ) = " Mg (2; 22 227;111“, 227;111“'1, 1). The latter has finite Ggeon after
7T7

an Artin—Schreier reduction, hence our original sheaf has finite Ggeon too. We also deduce

22n+1+1
7

o (25 22mH) for n = 1,2.... Observe that (22"*! 4 1)/(2+ 1) + 22n+! = (2243 4

1)/(2 4+ 1). The trace function of 3(2,22,#1+1 22t1) at (s,t) € G2, (k) with k, = Fa- is

— m7
T 2F1

) gives rise to a sheaf with finite Ggeon-

92n41 4

€k,

22143 4 22n4+1

1
wr(sx 2T 4 gx 2F1 +t:c).
VT 2

€k,

2n+3 2n+1 .
Then 3(24 st ) = ©* Mg (2; %, 2 2+1+1 ,1). The latter has finite Ggeon, hence
E

our original sheaf has finite Ggeon too. We also deduce (22”“, %) gives rise to a
sheaf with finite Ggeon-
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. (%) 92n+1 4 1) forn =1,2.... The trace function of 3(2 ntisg 722n+1+1) at (s,t) €

G2, (k) with k, = Far is

)

224144 92n+1

ﬁz¢r(sx =T (z +1)(.I‘+1)—|—tgj)

€k,
22 22n+1+1 22n+3+1 22 22n 1+1 22n+1 +1
= E r (SIE T sy L syt T sy T o+ tm).
r
z€k,
o 09271 9204341 992n—14 1 o2ntl_ g
Then 8(2;227;4-14_171) = ¢ Mbig( 2 5F1 0 9%l 2 241 2%1 1) The latter

has finite Ggeon after an Artin—Schreier reduction, hence our original sheaf has finite

Ggeon t00. We also deduce (227! +1, 22;111“) gives rise to a sheaf with finite Ggeon-
e (a,a) for a such that M(2;a,1) has finite Ggeon. The trace function of B(g;q,q) at (s,t) €

Gk (kr) x AL (ky) with k, = Far is

Zwr x? + x)* + tx).

€k,

\/27

This case requires some work. Rewrite the exponential sum appearing in the trace func-
tion as follows:

S dils@® t o)t bix) = 3 wnlsy®) S dilte) DY sy YD w(uy)

x€k, y€Ek, rek, yek, u€k,
a:2+w:y w?+u=t?
a
= DD delsy +uy).
uck, ye€ky
u?4u=t?

Assume momentarily the validity of (). If we consider the finite morphisms a : Gy, i ¥
Al — Gpp x Al and B : Gy x AL — G x A} given by a(s,u) = (s,u® + u)
and B(s,t) = (s,t?), then B(2;0,a) = B*cuMusg(2;a,1). Indeed, observe that « is an étale
covering, hence the functor a; is exact and the stalk at any geometric point pt € G, i x A},
of a1 Myig(2;a,1) equals

(1 Myig(2; a, 1))B = @ Mbyig(2;a, 1)
Pt €Gyy, i XA,
a(pt')=pt
Moreover, since the morphism « is defined over k, we know the action of Frobenius on
the stalk of ayMyig(2;a,1) is fiberwise. In conclusion, we see that the trace function
of ayMyig(2;a,1) is obtained by integration of the trace function of Myig(2;a,1) over
fibers:
BT oy Moysg(2i0,1) ke (s,t) Z B Mg (25a,1) k(S5 )

u€k,
u2+u:t

Now we just take the pullback by 8 of cuMy;g(2;a,1) and obtain Ba,, 4). Since both
a and f are finite morphisms and we assume Mysg(2;a,1) with finite monodromy, the
monodromy remains finite.

We still have to show equality (), i.e. 30,2, ¥r(tz) =37 21,2 ¥r(uy) for every
t,y € k.. If x € k, satisfies that 22 + 2 = y then (x + 1)2 + (x + 1) = y as well. Hence,
(L=1r(t) - 2424wy ¥r(tz) = 0. Analogously, (1 —1r(y)) - >,z 42 ¥r(uy) = 0. Hence
if ¢, (t) = —1, L.e. tracey ,x(t) = 1, then 3° 2, _ ¥.(tz) = 0. But tracey, ,(t%) =
tracey, /;(t) = 1 hence the equation u? + u = ¢* has no solutions in k, (see [LN94,
Theorem 2.25]) and ) >, ¥r(uy) = 0 as well. Analogously, if ¢,.(y) = —1 then
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both 3 2y, ¥r(tz) =37 2 yy2 ¥r(uy) = 0. Assume from now on that tracey, /x(t) =
tracekr/k(y) = 0 and let z1,u; € k, be solutions of the equations z? + 2z = y and
u? + u = t2 respectively (invoking loc. cit.). Then

Z Ur(tz) = Pp(ter) +r(t(@1 + 1)) = (14 4 (1)) (tz1) = 20 (tz1)
z2+z=y
and analogously

Z Vr(uy) = 29 (yuy).
u?+u=t?

We need the equality ¥,.(tz1) = 1, (yu1), which follows from the manipulations:
Yr(ter) = e (P2?) = ¥r((u + wi)ai) = v (uiad)er(ual)
= (w1 (ur(z1 +y)) = Yr(wrz1)*dr (yur) = P (yua).
e (12,1). The trace function of B(s.12.1) at (s,t) € G}, (k) with k, = Far is

(s 4 sx'? 4 tx).
Ly

€k,

Then Ba;12,1) = ©* Myig(2;13,12,1). The latter has finite Ggeon after an Artin-Schreier
reduction, hence our original sheaf has finite Ggeon too. We also deduce (1,12) gives rise
to a sheaf with finite Ggeon-

‘We have:
3"—

d (3”2“,1) for n = 1,2,.... Observe that % +1= 3%. The trace function of
at (s,t) € G2, ;. (ky) with k, = Fyr is

8(3;3”1’1)
3741 1 gn—144 3741
Z wr(sx p x—1)+tx> =—— Z wr(sx?’ T — sy 2 +tx).
3r €k, 3 €k,
Then B 5.8741 1) = @*Mbig(3;3%, 32—“, 1). The latter has finite Ggeon after an
Hans

Artin—Schreier reduction, hence our original sheaf has finite Ggeon too. We also deduce

(1, 3n2+1) gives rise to a sheaf with finite Ggeon-
d (7371;173”) for n = 0,1,.... Observe that L;l +3" = % The trace function of
6(3,3%&) at (s,t) € G2, ;. (k) with k, = F3 is

1 3741, an 1 antlig 3741
— Uy <Sl‘ = (2 — 1)+ tas) =—— Uy (sx T —sr 2 + tm).
2 2
r€k, €k,

Then B(glg,n+1 371,) = go*./\/lbig(?); %, 3"2—"’1, 1). The latter has finite Ggeon, hence our
a5,

original sheaf has finite Ggeon too. We also deduce (3”7 Sn; 1) gives rise to a sheaf with

finite Ggeon-
. (3”;1,3” +1) for n =1,2,.... The trace function of 8(3;#7371“) at (s,t) € an’k(kr)

with k, = F3- is

Zwr (sx n‘jl( 1)z —1) thx)

€k,

\/37

n+1 n— 1
= 3rzz/}r( xa 2“—533 1+sa: 2 +tm)
€k,
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Then B(?YSW,+1 3n1) = ¢* Mg (3; 33n2+1, 3“21“ , 3371'721“, 372';1 ,1). The latter has finite
el

Ggeon after an Artin-Schreier reduction, hence our original sheaf has finite Ggeon too. We
also deduce (3" + 1, ?’HTH) gives rise to a sheaf with finite Ggeon-
e (4,1). The trace function of Bs,41) at (s,t) € ng’k(kr) with k. = Fs- is

_\/137wz 1/JT(83c4(x -1) +tx) = —\/13712 ¢r<sx5 — st —|—tx).

S €k

Then Bs,4,1) = ©* Muig(3;5,4,1). The latter has finite Ggeon, hence our original sheaf
has finite Ggeon too. We also deduce (1,4) gives rise to a sheaf with finite Ggeon-
e (6,1). The trace function of Bs,,1y at (s,t) € an’k(kr) with &k, = F3- is

1 —_L -
_\/? xgk:r Uy (sx6(aj — 1) + tx) = \/37 :6%]6; d)r (3x7 $$6 + tx).

Then Bz.4,1) = ©*Mpig(3;7,6,1). The latter has finite Ggeon after an Artin-Schreier
reduction, hence our original sheaf has finite Ggeon too. We also deduce (1,6) gives rise
to a sheaf with finite Ggeon-

® (2,2). The trace function of Bs 9) at (s,t) € G2, ;(k,) with k, = Far is

1 1
- Z Uy (sxz(x —1)% + tx) =— Z Uy (sw4 + sz + sz? + tx).
\/3> xekr \/3> JCEkT

Then B(s2,0) = ®* Myig(3;4,3,2,1), where @ : (s,t) € G2, — (s, s,5,t) € Gp,. The latter
has finite Ggeon after an Artin-Schreier reduction, hence our original sheaf has finite Ggeon

too.
e (4,3). The trace function of Bz 3) at (s,t) € an’k(kr) with k, = F3- is
1 1
T Z ¢r(8$4(a:3—1)+tx) =—— Z wr(sx7—sx4+tx).
\/37 €k, \/37 €k,

Then B3y = ©* Muig(3;7,4,1). The latter has finite Ggeon, hence our original sheaf
has finite Ggeon too. We also deduce (3,4) gives rise to a sheaf with finite Ggeon-

We have:

e (2,1). The trace function of Bs1) at (s,t) € an’k(kr) with &k, = Fs- is

—\/157 %;wr(sxz(x—l)-i-tx) :—\/157 Z wT(sx3—sx2+tx).

€k

Then B,y = ¢* Muig(5;3,2,1). The latter has finite Gigeon, hence our original sheaf
has finite Ggeon too. We also deduce (1,2) gives rise to a sheaf with finite Ggeon-

REMARK 2.3.3.1. In all the proofs above we claimed that we have an equality between lisse
Qy-sheaves just from an equality between trace functions. This result is not trivial and it follows
from [Lau87, Proposition 1.1.2.1] which assures us that the equality of trace functions for every
extension k,./k implies that the underlying lisse sheaves are isomorphic. |



CHAPTER 3

Applications to coding theory and cryptography

In this chapter we expose some topics from coding theory and cryptography which are related
to the Q,-sheaves M from the previous chapter. The Handbook [MP13] was useful while learning
about the theory to be exposed below and deciding which aspects are included here.

3.1. Review of coding theory

Let p be a prime and F, be a finite field of characteristic p. Given a vector & = (z1,...,2,) €
[y, define the Hamming weight of « by the formula wt(z) = [{i € {1,...,n} : ; # 0}|. Given two
vectors x,y € Fy we define the distance between them as dist(z,y) = wt(z — y).

3.1.1. Linear codes. Let C C Fj be a linear subspace. We say that C is a linear code of
length n over Fy. If C has dimension k£ and the minimum distance between vectors of C is d*, we
say that C is a (n, k,d*), code. The vectors ¢ € C are called codewords of C.

Given a (n, k,d*), code C, a k x n matrix G with entries in F, is called a generator matriz of
C if its row space is C. A (n — k) x n matrix H with entries in F is said to be a parity check matric
of C if Het = 0 for every c € C.

Given a (n, k,d*), linear code C, we define the dual linear code as follows:

ct= {:L' ey :(z,c)= inci =0Vce C}.
i=1
The dimension of C* is n — k. Moreover, if H is a parity check matrix of C, then H is a generator
matrix of C*.

3.1.2. Cyclic codes. Given a vector & = (xg,...,Tp_1) € [y, the cyclic shift of x is defined
by ox = (zp—_1,%0, ..., Tn—2). A linear (n, k,d*), code C is said to be cyclic if for every codeword
c € C then oc € C too.

We identify the IF;-vector spaces Fyy and Fy[z]/(#" — 1) via the Fy-linear isomorphism

F? = Fll/e - 1)
v= (o, v0s1)  — pol(v)(2) = Yi) via!

1 ,
vec(p) = (po,---sPn-1) — p(x) = Z;L:o pixt.

Despite we have named explicitly both isomorphisms, for the ease of notation, we usually identify
both sides and it will be always clear from the context which one we refer to.

Under this bijection, a linear code C is cyclic if and only if it is an ideal in F,[z]/(z™ — 1)
(observe that cyclically shifting a codeword correspond to multiplication by = on the polynomial
side). Since Fy[z] is a principal ideal domain, it follows that every ideal of Fy[z]/(z" — 1) is a
principal ideal. Assume that C is a cyclic code (i.e. an ideal) and let g € Fy[z]/(z™ — 1) be a
generator of the ideal. If g is monic, we say that g is the generator polynomial of the code. The
following properties of cyclic codes and generators are known [MS77, Chapter 7, Theorem 1]:

(a) g is a divisor of 2™ — 1.
(b) If k = deg g then C has dimension n — k.

59
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(c) Write g(x) = Zf:o giz®. Then the matrix

go 91 92 --- Gk 0O 0 ... 0
0 g9 91 - g1 g 0 ... 0
0O 0 0 ... g ¢ g2 ... Gk

is a generator matrix of C.
Consider the polynomial h(z) = (z" — 1)/g(z) = 70 ha?, which has deg h = n — k. It is
called the parity check polynomial of C. Observe that, if ¢(z) = Z?:_Ol c;xt € C then c(x)h(x) =0
in Fy[z]/(z™ — 1). Looking at the coefficients of the polynomial ¢(x)h(z), we obtain the equalities
Z?;()l ¢ihj—; (moa ny =0 for j =0,1,...,n — 1. Consider

0 ... 0 0  hyp ... hy hi ho
0 ... 0 hoogk hpneer ... b1 ho O
H: . . . . . . .
Bk oo he he ... 0 0 0

We have seen that, if ¢ € C then Hce! = 0. But H has rank k, then the condition Hx! = 0 is
sufficient for & to be in C. In conclusion, H is a parity check matrix for C. Moreover, with this we
show that C* is again a cyclic code with a generator (not monic in general) given by x"~*h(x1),
the reverse polynomial of h.

3.1.3. F, codes from F,~ codes. Fix an integer m > 1. If C is a (n, k,d"*)ym linear code
over Fym, we can construct linear codes of length n over F, in the following ways:

1. Subfield subcodes: Define
C(Fy) ={ceC:ceF;} =CnFy.

It is called the Fg-subfield subcode of C. Our notation C(F,) is not standard, it tries to
recall that we are just looking at F,-rational points of a scheme defined over Fym.
2. Trace code: Define

traceg,,, 5, C = {(trace]pqm JE,(C1), ... tracep . r, (cn)) t (c1,...,¢n) € C} .
It is called the trace code of C over FFy.

Delsarte’s theorem relates these two constructions:

THEOREM 3.1.3.1 ([MS77, Chapter 7, Theorem 11]). Let C be a Fym-linear code. Then the
dual of the IFy-subfield subcode is the trace code of the dual of the original code over Fym. In symbols:

C(F,)* = traceg, . /s, C*. O
3.2. M-sequences and cyclic binary codes

We begin by introducing the so-called mazimal length sequences (m-sequences for short). As
before, p is a prime number and n € Z~.

DEFINITION 3.2.0.1 ([GGO5, Definition 4.6 and Corollary 4.6]). Let o € Fpn be a primi-
tive element and § € F,,. an arbitrary non-zero element. A (p-ary) m-sequence is any sequence
(8:)i=o0,1,... with values in F,, of the form

s; = tracer,, /r, (ﬂai).

Every m-sequence is periodic of period p™ — 1 since we choose o € F,» to be a primitive
element, i.e. with order p™ — 1.
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3.2.1. Autocorrelation of m-sequences and simplex codes. One of the most interesting
properties of m-sequences is that they allow us to produce in a deterministic way p-ary sequences
which simulate randomness (see [GGO05, Chapter 5] for more details). The property of interest for
us is the one concerning the auto-correlation function. We fix the additive character ¢ : I, = C*
given by ¢(a) = exp(2mia/p), and denote by ), : Fpn — C* the additive character obtained from
¥ by precomposition with tracer,, /r,-

DEFINITION 3.2.1.1. Let s = (s;); be a periodic sequence with values in F,, of period P. The
auto-correlation function associated to the periodic sequence s is defined at the phase shift ¢t € Z>g
by the formula

!

P—

ACs(t) = Y W(sipe) (i) = Y (sie — i)

=0

Ju

Il
o

i

The auto-correlation function of a m-sequence s = (tracer,, /r, (Bat)); can only take two
values due to the orthogonality of characters:

p"—2
ACo(t) = D Yal(Ba™ = Ba’) = D" u((Ba’ — 1)2)
=0 mGIF:n

=—14 Y vau((Baf —1)z) =

2EF -1 otherwise.

{p" -1 ifat=p71,

3.2.1.1. Simplex codes. Let a € Fpn be a primitive element. We begin by making some easy
observations about the set

C(F,)* = {(traceﬁpnﬂpp(ﬁai))igz . Be Fpn} )

First of all, observe that for 8 = 0 we get the zero vector of length p™ — 1. Moreover, since the
trace is IF,-linear we know the set C (IFp)l is a [Fp-linear subspace of an_l. Finally, observe that
this lineal code is cyclic because if we rotate cyclically the codeword (tracempn JF, (ﬁai))i , we get
(tracer,, /x, (5aai))i which is again in C(F,)*. From this last observation we get the description

C(F,)* = {(tracer,, v, (@) 0% : t=0,...,p" — 2} U{0},

i.e. the set of the first p™ — 1 terms of all rotations of the m-sequence with 8 = 1 together with
the zero vector of length p™ — 1.

When p = 2 we can easily understand the consequence of the fact that any two nonzero
codewords of C(Fy)* are uncorrelated. Indeed, observe that now 1 (-) = (—1)() and, if we write
u; = tracep,, /r, ('), v; = tracep,, r, (') with ¢ 0 (mod 2" —1) for i = 0,...,2" — 2, we see
that

2" 2

-1= Z U (o 4 o)
i=0

= |{Z € {Oa ceey 2" — 2} : tI‘aCG]F2n /Fa (042) = tracern/]F2 (ai+t)}|

- |{z €{0,...,2" — 2} : tracep,, /r, () # tracern/Fz(aiH)H
=2"—-1-—2-dist(u,v)
where u = (u;)2 5% v = (v;)% ;2 and dist(u,v) is the Hamming distance between these two
binary codewords. From the previous identity it follows that dist(u,v) = 2"~! ie. any two
rotations of a fixed m-sequence differ at exactly 2" ! indices within a period. Taking into account
that every nonzero codeword of C(F3)* has precisely 2"~! nonzero entries (this follows easily from
the orthogonality of characters), we see that any two codewords of C(Fy)* differ at exactly 271
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indices, and this justifies why these codes are called simplex codes. This same property is satisfied
for every prime p in general (see [PW72, §8.5] for further details).
To explain our notation, consider the 1 x (p™ — 1) matrix with entries in F,» given by:

Hy = (1 a o .- avaQ)'

Let C be the Fpn-linear code with parity check matrix #;. Now consider the F,-subfield subcode
of C, i.e.
C(Fp) :=={(co,.-.,cpn_2) €C : ¢; € F, Vi}.

Now we use the identification between F£" = and F[z]/(2?" ~* —1) such that ¢ = (co, . .., cpn_2) is
identified with its associated polynomial pol(c)(z) := f;g ?¢;2%, and every polynomial modulo

2P" =1 — 1 is identified with the word obtained from its coefficients. Then ¢ € C(F,) if and only
if Zf;f c;a® = 0, which is equivalent to pol(c)(a) = 0. Hence, under this bijection, we se that
C(F,) is the ideal in F,[x]/(zP"~! — 1) generated by the minimal (primitive) monic polinomial
m1(x) of a. In particular, C(F,) is a cyclic code. To show that the code C(F,)" is precisely the
dual code of C(F,) as the notation suggests we invoke Delsarte’s theorem 3.1.3.1 to deduce that
the codewords of C(F,)" are obtained from the codewords of C* by applying the trace function
componentwise. Since a generator matrix of C* is Hy, the codewords of C* are the F,»-multiples
of (1,a,...,aP"=2)t Tt follows that

C(F,)* = {(tracer,, /v, (Ba’)! " : B € Fyn}.

This code is a cyclic code with parity check polynomial 2™m;(1/x), which coincides with m_;(z)
the minimal primitive polynomial of o~ ?.

3.2.2. Cross-correlation of m-sequences and cyclic binary codes. As we saw before,
the auto-correlation of m-sequences can be computed explicitly, so it is natural to ask if we can
compute the correlation between two different m-sequences. We introduce the concept of cross-
correlation here:

DEFINITION 3.2.2.1. Let r = (r;); and s = (s;); be two periodic sequences with values in F,,
and both of period P. The cross-correlation function associated to r and s is defined at the phase
shift ¢ € Z>¢ by the formula

v
L
v
L

CCrs(t) == 1/)(7"i+t)$(51‘) = PY(rige — Si)-

i

Il
<
Il
<

i
Now let o, o € Fpn be two primitive elements and 3, 5" € .. Since a and o are primitive

elements, there exists an integer 0 < d < p™ — 1 such that gcd(d,p™ — 1) = 1 and o/ = a?. With
this notation we can express the cross-correlation between the m-sequences (trace]ppn JF, (50#))

i

and (trace]Fpn JF, (ﬁ’o/i))i as follows:

p—2 pt—2

D Un(Ba = Fla) = Y L (Ba’tt — Flat)
i=0 =0

= > n(Botz — f'z?)
z€F,n
=1+ > ¢n(Ba’z— Bz,
T€F,n

an expression that involves the trace function of My;g(p;d,1) on G, X Gy, at the rational
point (=4, Ba’) € Fju x F ..
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It is known [Hel76, Theorem 4.1] that, as soon as d & {1,p,p?,...,p" '}, i.e. a?is not a root
of the minimal polynomial mi(x) of a over IF,,, then the cross-correlation function between any two
m-sequences constructed with a and o takes at least three different values. It is an interesting
problem to study which values of d give a cross-correlation that has exactly three different values.
For example, let k£ € N be a positive integer such that n/gcd(n, k) is odd. For p = 2, the exponents
d = 2¥ + 1 (Gold numbers) and d = 2¥(2¥ — 1) + 1 (Kasami-Welch numbers) give three valued
crosscorrelation functions [HK98, Theorem 5.3]. Observe that 2¥ 4+ 1 has Kubert type I and
2F(2F —1) + 1 = (2%% +1)/(2¥ + 1) has Kubert type I11,k for p = 2.

3.2.2.1. Cyclic codes with two zeroes. Now we proceed as in §3.2.1.1 and show how the cross-
correlation of m-sequences is useful to study the weight distribution of codewords for certain cyclic
codes. Let € Fpn be a primitive element and denote by m;(z) € Fp[z] the minimal polynomial
of a’. We fix an integer 0 < d < p™ — 1 coprime with p™ — 1 (so a¢ is a primitive element as well).
Now consider the 2 x (p™ — 1) matrix with entries in Fpn given by

<1 a a2 .. ort-2 )
Hoa=\ 1 0 o0 . qden-2 ]
C1,q is defined as the Fpyn-linear code with parity check matrix H; 4. Define Ci 4(F,) as the Fp-
subfield subcode of C; 4 which consists of those codewords of C; 4 whose entries lie in IF,,. Observe
that ¢ = (co, ..., cpn_2) € C1 q(Fp) if and only if Zf:o_z ciat = Zf:o_z ciad =0 and ¢; € F,, for
every index i. Equivalently, if and only if pol(c)(a) = pol(c)(a?) = 0. Hence, C; 4(F,) is, seen as
a subset of F,[z]/(x?"~! — 1), the ideal generated by the polynomial m;(x)mg(x) and it is a cyclic
code.

Its dual is a cyclic code with parity check polynomial z%"m;y(1/x)mg(1/z) = m_1(z)m_4(z).
Using Delsarte’s theorem 3.1.3.1, we know that this dual consists of the codewords obtained from
the codewords of Cf:d by applying the trace componentwise. Since

cl, = <(17a7 B L .,ad<P"—2>)t>
s Fpn

because it has H1 4 as generator matrix, we obtain the equality

. . n_go
Cl,d(IE‘p)J' = {(tracern/Fp (Bra' Tt — 620/11))1;:0 : B1,B2 € Fpn} .

When p = 2, we can relate the Hamming weight of codewords in Cj 4(F2)* with the cross-
correlation of two m-sequences. Explictly, observe that for 51, 82 # 0

2" —2
Z U (Bra’T + Baa™) = |{i € {0,...,2" — 2} : tracep,, r, (B1a' T + Boa®) = 0} }]
=0
—|{i €{0,...,2" — 2} : tracep,, ¥, (Bra™™ + Bra®t) = 1}
=2" —1-2-ut(u)

where u = (tracep,, /r, (S0 + ﬂgozdi))flf2 and wt(w) is the Hamming weight of the binary
codeword u. If we fix a square root /2 of 2, the left-hand side of the previous equality can be
expressed as —1—2"/2-trMbig(g;d)lmzn (=2, B1at), considering the Q,-sheaf My;ig(2;d, 1) as defined

on the variety G, 7, X Gy 1, -

3.3. Almost Perfect Nonlinear (APN) functions

We review some concepts in order to explain the relation between cryptography and the study
of monodromy groups of the lisse Q,-sheaves M(2;d,1).
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3.3.1. Rinjdael cipher and the differential attack. In 2001, the U.S. National Institute of
Standards and Technology (NIST) established the Advanced Encryption Standard (AES) based on
the Rijndael cipher. Here we explain the most basic setup for Rijndael, namely with block length
128 and key length 128, which is actually the most common one. We follow closely Lenstra’s
well-written notes [Len] and Smart’s textbook [Sma, §8.3].

Rijndael is a block cipher which applies certain operations on some given plaintext a prescribed
number of rounds (usually 10) involving certain keys obtained following some key schedule. Any
element of Fy is called bit and any element of F§ is called byte. We identify F§ with the finite field
Fys defined by the primitive polynomial 28 + z* + 23 4+ = + 1. Rijndael operates on an internal
4 x 4 matrix of bytes S, i.e. with entries in Fas, called the state matriz and each round key K; is
held analogously. The four operations that take place within an encryption round are the following
(observe that we do not describe decryption since it is analogous):

e SubBytes: Write

S00 So1  So02 S03
510 S11 S12 S13
820 821 S22 S23
530 S31 S32 533
We associate to every nonzero byte s;; € IFQXB its inverse and associate 0 € Fys to 0.

Rewrite the bytes obtained this way as vectors of 8 bits, say z7zg...x129. Now apply
the affine transformation

10001111 Zo 1
11000111 T

11100011 o 0
11110001 T3 0
11111000 M@o,
01111100 5 !
00111110 T !
00011111 z7 é

where @ denotes xor addition, and save the result as a byte y € Fas.
e ShiftRows: This operation performs cyclic shifts on rows of the state matrix. For our
version of Rijndael it can be described as follows:

S00 So1  S02 S03 S00 So1  S02 S03
S10 S11 S12 S13 . S11 S12 S13 S10
$20 S21 S22 S23 S22 S23  S20 S21
$30 S31 S32  S33 $33  S30 S31  S32

o MizColumns: Let (ag,a1,az,a3)t be a column of the state matrix S. Then we can define
the operation as the matrix product

« 1+« 1 1 ag
1 o 1+« 1 a
1 1 o 1+« as ’

1+« 1 1 « as
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where a is a root of the primitive polynomial 28 +z* 423+ 241, i.e. a primitive element
of Fys. This operation is not applied at the 10th round.

e AddRoundKey: This is just componentwise xor addition between the state matrix and
the key matrix corresponding to the round.

The operation SubBytes is usually known as the S-box of Rijndael cipher. It should be observed
that it is the only operation which involves a non-linear transformation, namely the map a € FJs —
a~!. For this reason this operation have to be properly choosen. This motivates the next topic.

3.3.1.1. APN functions. In 1991 Biham and Shamir [BS91] described the differential crypt-
analysis for breaking iterated block cryptosystems. This statistical attack consists in the study of
the non-linearity properties of the corresponding S-box with the aim of identifying pairs of texts
on which the S-box is particularly weak. Specifically, given a function F': Fon — Fon and a € Fan
we define the derivative of F' with respect to a as the function

DaF : F2n — F2n
x —  F(xz+a)+ F(x).

For any pair of elements a,b € Fan we consider the quantity d(a,b) = |{z € Fan : D, F(z) = b}|.
The differential uniformity of F is defined by the formula

O(F) = maxqe£0, 0(a,b).

If we use F' in the design of our S-boxes we want F' to not be as linear as possible, which can be
formalized by requiring §(F') to be as small as posible.

Since Fan has characteristic 2, §(a, b) is even for every a,b € Fan with a # 0. Indeed, if t € {x €
Fon : Do F(z) = b}, then F(t+a)+F(t) = b and hence F((t4+a)+a)+F(t+a) = F(t)+F(t+a) = b,
sot+a € {x € Fan : D F(x) = b}. It follows that the differential uniformity of F, §(F), is an even
number and bigger or equal than 2. This motivates the following definition:

DEFINITION 3.3.1.1. A function F : Fan — Fan is called almost perfect nonlinear if its differ-
ential uniformity 0(F’) takes its least possible value, i.e. 6(F) = 2.

Observe that this definition is equivalent to the condition |{D,F(z):x € Fan}| = 2771 for
every a # 0. Indeed, note that im(D,F) = {D,F(x) : x € Fan} and, for b € Fan, (D, F)~1(b) = {z €
Fon : D, F(x) = b}. Taking into account that

2" = |F2"| = ‘Ubern (DaF)_l(b)‘ = ‘UbGim(DaF)(DaF)_l(b)‘ = Z ‘(DaF)_l(b)
b€im(D, F)

)

we see that both conditions are equivalent. Hence, this implies that we do not obtain any sta-
tistical information by fixing the difference of two plaintexts and analyzing the difference of the
corresponding outputs.

For example, we can ask if the function z € F, — 27,0 — 0, used in the implementation
of Rijndael with n = 8 is APN or not. This question was answered by Kaisa Nyberg [Nyb94,
§4], and the answer is that the inversion mapping given by x € Fan +— 22" =2 is APN if and only
if n is odd. When n is even, this power transformation is not too far from being APN since its
differential uniformity equals 4.

3.3.2. APN polynomials and binary codes. In [CCZ98, Theorem 5] the APN polynomial
functions F' : Fon — Fan are characterized using coding theory. We review here this result which
will allow us to find connections between monomial APN functions, cyclic codes and m-sequences.

THEOREM 3.3.2.1 ([CCZ98, Theorem 5.(i) and (ii)]). Let F' € Fan[z] be a polynomial of degree
less than 2™ — 1 such that F(0) = 0 and consider it as a function from Fan to itself. Let o € Fon be
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a primitive element. Define Cp(F2) to be the binary code of length 2™ — 1 defined as the Fo-subfield
subcode of the Fon-linear code with parity check matrix

e 1 o a? a?' 2
NP F) Fet) - Ry
Denote by dy, its minimum distance. Then

(a) dp €{3,4,5}.
(b) F is APN if and only if d} = 5.

PrOOF. We only prove part (b) of the theorem to illustrate the sort of ideas involved. Ob-
serve that a codeword ¢ = (cg,...,con_2) € F2 71 is in Cp(Fy) if and only if 272;82 ot =
Zf:a 2 ¢iF () = 0. Since the minimum distance of a linear binary code is equal to the minimum
Hamming weight of a codeword, we only need to see what means for Cr(F2) to have codewords
with Hamming weight 3 or 4.

This way, assume that there exists four distinct elements x,y, z’,y’ € Fan such that

z4+y+a2 +y =0and F(z) + F(y) + F(z') + F(y) = 0.

If we write a := 2’ + ¢’ and b := F(2') + F(y’), observe that a # 0 and z +y = a, F(x) + F(y) = b.
Since both (x,y) and (2/,y’) satisfies these two relations, we conclude |(D,F)~*(b)| > 4, so F is
not APN. The converse is analogous. In conclusion, Cr(Fz) does not contain codewords of weight
< 5 if and only if F'is APN, hence 5 < d}, < 5 if and only if F" is APN.

O

When F(x) € Fan[z] is an APN polynomial with F(0) = 0, then the code Cr(F2) has dimension
2" — 1 —2n (see [CCZ98, §3.2, Corollary 1]).

3.3.2.1. APN monomials, cyclic binary codes and m-sequences. In general, while implementing
the S-box of a block cipher like AES we use a table with precomputed values of the non-linear
function F. However, if the function is a power function, i.e. F(z) = ¢ for some 1 < d < 2" — 1,
then it is easy to implement it directly with electronic circuits. For this reason, APN monomials
or APN power functions are so interesting and a lot of research have been developed around them.

After Theorem 3.3.2.1 we know that F(z) = z¢ is APN if and only if the code Cr(F2) has
minimum distance 5. In this case, we know that Cp(F2) has dimension 2" —1—2n. Since Hp = Hi,q4
it follows that Cp = Ci 4q(F2). Hence its dual has dimension 2n and parity check polynomial
m_1(x)m_g(x), it follows that a? is a primitive element of Fon and in particular ged(d, 2" —1) = 1.

The combination of §3.5 Theorem 10, §3.2 Theorem 5.(ii) and Corollary 1.(iii) from [CCZ98]
shows that Gold numbers d = 2¥ + 1 with gcd(k,n) = 1 and Kasami numbers d = 2¥(2F — 1) + 1
with ged(k,n) = 1 give rise to an APN power function, the same numbers that give special cross-
correlation functions if we further assume n odd.

3.3.3. Exceptional APN monomials and geometry. We are interested in knowing if a
power function F' = x¢ € Fy[z], when understood as a transformation F : Fgn — Fan, can be APN
for infinitely many values of n. We name those special monomial functions:

DEFINITION 3.3.3.1. Let F(z) = x%. The exponent d is called exceptional if F is APN on
infinitely many extensions of Fs.

Lets see that exceptionality is a geometric property [HM11]. Recall that F(z) = 2% is APN
over Fon if and only if, for any fixed primitive element o € Fon, the Fo-subfield cyclic code Cq 4(F2)
with parity check matrix 71 ¢ has minimum distance equal to 5. As we saw above, this is equivalent
to C1,4(F2) not having codewords of Hamming weight less than 5. We already know that codewords
of C1 4(F2) with Hamming weight 3 or 4 correspond to rational points over Fan of the zero locus
of the polynomial

fal@,y,2) =2+ y 4+ 20 4 (2 4y + 2)?
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with distinct coordinates. Observe that the polynomial f; is divisible by = + y,x + 2,y + z and
we are interested in Fan-rational points outside the union of the varieties they define, hence we
consider the polynomial

fd(x?yvz)
z+y)(z+2)(y+z)

ga(z,y,2) = (

We are requiring g4 = 0 to not have Fan-rational points for infinitely many extensions Fon /Fy. The
following Theorem is the key result to establish the relation between exceptional APN monomials
and monodromy:

THEOREM 3.3.3.2 ([JW93, Propostion 1 and Corollary]). If the polynomial gq(x,y, z) is ab-
solutely irreducible, i.e. if it is irreducible in Fy8[x] with T3¢ an algebraic closure of Fy, then the
monomial x — % is APN only for finitely many extensions Fon. ]

The previous discussion can be carried out more generally for polynomials p(z) € Fa[z] such
that p(0) = 0 because p : Fan — Fan is APN if and only if the associated code has minimum distance
equal to 5. In this more general case, we consider fy(z,y,2) := p(z) +p(y) +p(z) + p(z +y+2) €
Folz,y, 2] and g,(z,y,2) := % € Fylx,y, 2]. In order for the transformation defined
by p to be APN for infinitely many extensions Fo» the polynomial g, should not be absolutely
irreducible.

3.4. Exceptional APN polynomials and monodromy

For a given polynomial p € Fy[z] such that p(0) = 0, denote by F, the Q,-sheaf on G, p, X A]}2
constructed in Proposition 2.2.1.1, i.e. Rlﬂ'lzgﬁw(sp(m).t,_m) where w13 @ G, X A]}? X A}FQ —
Gm,r, X Ag, is the projection onto the first two factors (observe that we do not Tate twist the
sheaf). We already know that F,, is a lisse geometrically irreducible Q,-sheaf and pure of weight
1. Denote the trace function of F, at the rational point (s,t) € F3. x Fan by ¢, (s,t). Applying
formula 2.1.1 we find that

2

Zs;éo,te]FQn en(s, t)Qgpn(s, t)

M4(Gm7]}r2 X A]%-y]‘—p) =1lim, o 5in = M4(Gm_’[g2 X A[lpzaMbig(2§ d, 1))

Taking into account that we are working in characteristic 2, the sum in the previous formula can
be written as follows:
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Z |<pn(57t)|4

Z Z U (s(p(@) + -+ + p(w))) Z P (t(a + -+ w))

s#0,t€Fon z,y,z,WEFsn SEF;n t€Fon
= Z (2" —1) an(t(x—l—y—&—z—i—w))
z,y,z,wEFan teFon

p(z)+-+p(w)=0

- > > Un(tlz+y+z+w))

z,y,z,wWEFan  tEFsn
p(@)+-+p(w)#0

=2". > > Un(tlz+y+z+w))

z,y,z,WEFan  tEFyn
p(@)++p(w)=0

= > D taltz+y+ztw)

z,y,z,WEFan tEFyn

+eow=0,
=22, ‘{(%y,z,w) € Fon : p<:f>+~-+z<w):0}’

o) B w0}

= 2" |{(x,y,2) € Fon : fplx,y,2) = 0} — 2"

= 2" [{(z,y,2) € Fau : (z +y)(x + 2)(y + 2)gp (@, y, 2) = O} | — 2"
=24+0)2"+0 (2%")

where C' is equal to the number of absolutely irreducible components of the algebraic variety
{(z,y,2) € F3. : gp(x,y, 2) = 0}, equality that is valid for n divisible enough and such that all the
absolutely irreducible factors of g,(x,y, z) over ]F;lg are defined over Fa». In conclusion, we obtain
the formula

My(Gpw, X Af,, Fp) = 2+ # abs. irr. comp. of {g, = 0}.

Therefore, information about the geometric monodromy representation associated to F,, i.e. know-
ing the geometric monodromy group Ggeon(C) and in which representation Ggeon(C) — GL(r, C),
we can obtain the number of absolutely irreducible components of g, = 0 and study the APN-ness
exceptionality of p.

3.4.1. Exceptional APN monomials and M(2;d,1). Using the ideas introduced above
and the determination of the monodromy groups for the sheaves M(2;d, 1) due to Such [S00] (but
also see [RL19, Corollary 6]), we are able to rule out several exponents d which does not give rise
to an APN exceptional power function. Specifically, when p = 2, if the monodromy group Ggeon
of M(2;d,1) is not finite, then it is Sp(d — 1) in its standard representation (we always assume
d coprime to the prime p). This means that the representation p : ™" (Ay ) — GL(d — 1,C)
associated to M(2;d,1) factors through Ggeon(C) = Sp(d — 1,C) — GL(d — 1,C) where the last
arrow is the standard representation, which we denote by std : Sp(d — 1,C) — GL(d — 1, C).

Write Glg)igm to denote the geometric monodromy group of Mysg(2;d, 1) as a sheaf over G, r, X
AIng and keep the notation Ggeon for the geometric monodromy group of M(2;d, 1) as a sheaf over
Ag. . Recall that M(2;d,1) = 1* Muig(2;d, 1) where ¢ : Ay = Gy, X A is the slice ¢ — (1,t).
It follows that Ggeon C G;i%m. Since we assume Ggeon nNon-finite, it is equal (via the standard
representation) to Sp(d — 1). But the trace function of My;ig(2;d, 1) assume real values as well,
hence it is self-dual and it follows that Ggegs can be realized inside Sp(d — 1) via the standard
representation too. We conclude that Myi(2; d, 1) has geometric monodromy group Sp(d — 1) in its
standard representation.
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In conclusion, when M(2;d,1) has not finite geometric monodromy group, we know that
the 4-th geometric moment My(Gyy, 5, X Af , Mpig(2;d, 1)) is actually the 4-th moment My (Sp(d —
1,C), std). This moment is easily computed as follows. We want to compute dimc Endgp(4—1,c)(std®
std). It is well-known that std ® std = A’(std) & Sym?(std), and for the standard representation
of Sp(d — 1,C) we know A*(std) = 1@ A*(std)/1, where \*(std)/1 is an irreducible representa-
tion and 1 the trivial one. Using Schur’s lemma we conclude that My(Sp(d — 1,C), std) = 3 since
dimc Endgy(q—1,c)(std ® std) equals the sum of the squares of the multiplicities of the irreducible
constituents of std and all 1, A*(std) and Sym2(std) are irreducible representations of Sp(d—1,C)
with multiplicity 1. Combining all these observations we arrive at

PROPOSITION 3.4.1.1 ([RL19)). Let d € Z~¢ be a positive integer. If the Q,-sheaf M(2;d,1)
does not have finite geometric monodromy group, then the monomial function x — x% is not APN
exceptional.

PROOF. Indeed, after Such and the previous discussion, if Glgeon 1s infinite for M(2;d, 1) then
Goi&,(C) = Sp(d — 1,C) in its standard representation. We obtain the equality
3 =24 # abs. irr. comp. of {gq = 0},
i.e. the polynomial g4(z,vy,2) = 24 +y?+ 2+ (x+y+2)? is absolutely irreducible. After Theorem

3.3.3.2 we see that z +— 27 is APN for finitely many extensions Fyn /F5, hence it is not APN

exceptional.
|






APPENDIX

Implementations with Julia Programming Language

In this appendix we present the full implementation of our algorithms (even the ones not
explictly described in Section 2.3) using Julia Programming Language.

The first two routines are used in all the programs.

The following piece of code is used to (pre)compute the smallest representatives of necklaces
(see [CRS'00)):

function necks(k::Int64,
n::Int64,
C::Float64,
a::Vector{Int64},
pows: :Vector{Int64},
t::Int64=1,
p::Int64=1,
res::Vector{Tuple{Int64,Int64,Int64}}=empty([(0,0,0)]1))
O@inbounds begin

if t>n
s=sum(a)
if nYp == 0 && s<C
push! (res, (sum(@view(a[n+1-i]) [1]*Q@view(pows[i+1]) [1] for i=0:n-1),s,p))
end
else

Qview(alt+1]) [1]=@view(a[t-p+1]) [1]
necks(k,n,C,a,pows,t+1,p,res)
for j=(@view(alt-p+1]) [1]+1):(k-1)
eview(alt+1]) [1]1=]
necks(k,n,C,a,pows,t+1,t,res)
end
end
end
return res
end

The next piece of code is used to compute the sum of digits in base p and with expansion of length
at most [ :

function sd(p::Int64,1::Int64)
O@inbounds begin
res::Array{Int64,1}=fi11(0,pAl)
for i = 1:pA(1-1)
view(res,p*(i-1)+1:p*i) .+= res[i]:(res[i]+p-1)
end
end
return res
end

71
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Code for M(p;a,1)

function main monomial(p::Int64,1::Int64)
Otime begin
Q@inbounds begin

#pre—-computations:
digitsum=sd(p,1l) # list with [i] p for =0,1,...,pAl-1
pows=cumprod(p for i = 1:1)
mod=pows.-fill(1,1) # list with pA% for i=1,2,....1
pushfirst! (pows,1) # list with pA< for i=0,1,....1
modl=0view(mod[1]) [1] # pAl-1
Cs=cumsum((p-1)/2 for i=1:1) # list with <(p-1)/2 for i=1,...,1
dtjs=£i11(0,1+1) # auziliary array

good=falses(modl) # boolean array for sieving
£ill! (view(good,p:p:modl) ,true) # discarding indices divisible by p

# array with smallest representatives of necklaces
necklaces=[necks(p,r,@view(Cs[r]) [1],£fil11!(dtjs,0) ,pows) for r=1:1]

# actual program
checks=0
for d = 1:modl
if !'@view(good[d]) [1]
checks+ =1
for r = 1:1
tmod=0view(mod[r]) [1]
dt=(d-1)%tmod+1 # d (mod pAr-1) with representative in {1,...,pAr-1}
C=0view(Cs[r]) [1]
t::Float64=0
for (x,s) in @view(@view(necklaces[r])[1][2:end])
#t = [de] {p,r}-[z] {p,r,-}-r(p-1)/2
t=0view(digitsum[((dt*x-1)%tmod)+1+1]) [1]-s-C
if t>0
for j = 1:r
dt=(p*dt-1)%tmod+1
# propagate ’pAj*a’ modulo pAr-1
£ill! (view(good,dt:tmod:modl) ,true)
end
break
end
end
if t>0
break
end
end
end
end
end
end
println("I checked $(checks) numbers.")
println("There are $(length(findall(!,good))) bad numbers. They are the following:")
println(findall(!,good))
end
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Code for M(p;a,b,1)

function main binomial(p::Int64,1::Int64)
Otime begin
@inbounds begin

#pre-computations:
digitsum=sd(p,1)
pows=cumprod(p for i = 1:1)
modulos=pows.-£fill1(1,1)
modl=@view (modulos[1]) [1]
pushfirst! (pows,1)
Cs=cumsum((p-1)/2 for i=1:1-1)
atjs=£il11(0,1)
btjs=£i11(0,1)

goods=trues (modl,modl)
fill!(view(goods,p:p:modl,:) ,false)
£ill! (view(goods, :,p:p:modl) ,false)

necklaces=[necks(p,r,r*(p-1)+1.0,atjs,pows) for r=1:1-1]

# actual program
checks=0
for ind in CartesianIndices((modl,modl))
if @view(goods[ind]) [1]
checks+ =1
for r = 1:1-1
tmod=0view(modulos [r]) [1]
at=(ind[1]-1)%tmod+1
bt=(ind [1]-2)%tmod+1
pa=r
pb=r
@view(atjs[1]) [1]=at
Q@view(btjs[1]) [1]1=bt
for k = 2:r
eview(atjs[k]) [1] = (@view(atjs[k-1]) [1]*p-1)Jtmod+1
if @view(atjs[k]) [1]==0view(atjs[1]) [1]

pa=k
break
end
end
for k = 2:r
Qview(btjs[k]) [1] = (@view(btjs[k-1]) [1]*p-1)%tmod+1
if @view(btjs[k]) [1]==0@view(btjs[1]) [1]
pb=k
break
end
end

at=minimum(view(atjs,1l:pa))
bt=minimum(view(btjs,1:pb))
C=0view(Cs[r]) [1]
t::Float64=0
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for (m,sm) in @view(@view(necklaces([r])[1][2:end]),
(n,sn) in @view(@view(necklaces[r])[1][1:end-1])
if m==tmod && n==

continue
else
t=0view(digitsum[mod(at*m-bt*n,tmod)+1]) [1]-sm+sn+C
end
if t<0
if m==tmod
for j = 1:pb
fill! (view(goods,
Qview(btjs[j]) [1] :tmod:modl),
false)
£ill! (view(goods,
Qview(btjs[j]) [1] :tmod:modl),
false)
end
elseif n==
for j = 1:pa
f£ill! (view(goods,
Oview(atjs[j]) [1] :tmod:modl),
false)
fill! (view(goods,
@view(atjs[j]) [1] :tmod:modl),
false)
end
else
for ja = 1l:pa, jb = 1:pb
fill! (view(goods,
@view(atjs[jal) [1] :tmod:modl),
Qview(btjs[jbl) [1] :tmod:modl),
false)
f£ill! (view(goods,
Qview(btjs[jbl) [1] :tmod:modl),
Oview(atjs[jal) [1] :tmod:modl),
false)
end
end
break
end
end
if t<0
break
end
end
end
end
end

end
println("I checked $(checks) numbers.")
println("There are $(length(findall(goods))) bad numbers. They are the following:")
println([(d[1],d[2]) for d in findall(good)])
end
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Code for B,.q,)

function main tworoots(p::Int64,1::Int64)
Otime begin
@inbounds begin

#pre—computations:
digitsum=sd(p,1)
pows=cumprod(p for i = 1:1)
modulos=pows.-£il1(1,1)
modl=Q@view (modulos[1]) [1]
pushfirst! (pows,1)
Cs=cumsum((p-1)/2 for i=1:1-1)
dtjs=£i11(0,1)
etjs=£il1(0,1)

goods=trues (modl,modl)
fill!(view(goods,p:p:modl,p:p:modl) ,false)

# actual program
checks=0
for ind in CartesianIndices((modl,modl))
if @view(goods[ind]) [1]
checks+ =1
for r = 1:1-1
tmod=0view(modulos[r]) [1]
dt=(ind[1]-1)%tmod+1
et=(ind[1]-2)%tmod+1
C=0@view(Cs[r]) [1]
t::Float64=0
s::Float64=0
for x = 0:tmod-1, y = 0O:tmod-1
t=(0view(digitsum[x+1]) [1]+
Q@view(digitsum[y+1]) [1]+
@view(digitsum[mod (y-dt*x-et*x,tmod)+1]1) [1]+
Oview(digitsum[mod(et*x-y,tmod)+1]) [1]+
Oviews(digitsum[mod(-et*x,tmod)+1]) [1]-
3%C)
s=(0Oview(digitsum[x+1]) [1]+
@view(digitsum[mod (- (dt+et)*x,tmod)+1]) [1]-
C)
if t<0 || s<0
for j = 1:r
dt=(p*dt-1)%tmod+1
et=(pxet-1)%tmod+1
£ill! (view(goods,
dt:tmod:modl),
et:tmod:modl),
false)
end
break
end
end
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end

APPENDIX. IMPLEMENTATIONS

if t<0 || s<0
break
end
end
end
end
end

end
println("I checked $(checks) numbers.")
println("There are $(length(findall(goods))) bad numbers.
println([(d[1],d[2]) for d in findall(goods)])

They are the following:")
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