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Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive

immunity. DCs have been historically considered as the most effective and

potent cell population to capture, process and present antigens to activate

naïve T cells and originate favorable immune responses in many diseases,

such as cancer. However, in the last decades, it has been observed that DCs

not only promote beneficial responses, but also drive the initiation and

progression of some pathologies, including inflammatory bowel disease

(IBD). In line with those notions, different therapeutic approaches have

been tested to enhance or impair the concentration and role of the

different DC subsets. The blockade of inhibitory pathways to promote DCs

or DC-based vaccines have been successfully assessed in cancer, whereas

the targeting of DCs to inhibit their functionality has proved to be favorable in

IBD. In this review, we (a) described the general role of DCs, (b) explained the

DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in

cancer and therapeutic approaches to promote immunogenic DCs and (d)

analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-

induced inflammation. Therefore, we aimed to highlight the “yin-yang” role

of DCs to improve the understand of this type of cells in disease progression.
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1 Introduction

Dendritic cells (DCs), the bridge between innate and adaptive immune responses, are

considered as the most potent antigen presenting cells (APCs) since they control both T

cell immunity and tolerance (1). DCs represent a heterogeneous cell population which is

differentiated from CD34+ hematopoietic precursors into other developed DC precursors.

DCs comprise subsets in both lymphoid and nonlymphoid tissues, such as monocyte-

derived DCs (moDCs) or inflammatory DC (infDC), plasmacytoid DCs (pDCs), and
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conventional DCs (cDC) 1 and cDC2s (also known as myeloid or

classical DCs) (2). DCs mainly induce immune responses by

capturing, processing and presenting unknown or self-antigens to

adaptive immune cells. External antigens derive from diseases such as

viral infections (3),or cancer (4), and self-antigens take part in

autoimmune diseases (5), which comprise a set of disorders

including (but not limited to) allergies, brain diseases, or

inflammatory bowel disease (IBD) (6–8). However, in the last

decades, it has been described that DCs have an interesting opposite

behavior depending on their environment. That means, DCs have

found to be widely downregulated in many diseases such as cancer

where are called tolerogenic DCs (9), playing an important role in

inducing peripheral tolerance via specific mechanisms, as activation of

Treg cells (10), suppression of effector T cells, and negative

modulation of Th1/Th2 immune responses. For this, DC has been

successfully targeted by using inhibitory drugs or DC-based vaccines

as immunotherapies (11, 12), whereas DC activation can play a
Frontiers in Immunology 02
contributing role in the pathogenesis of other disorders, including

IBD (13) (see Figure 1). Of note, DCs have also demonstrated both

beneficial and detrimental functions within the same disease (14).

The reasons why DCs have a ‘yin and yang’, dual role are not

still completely elucidated and may have important implications in

terms of therapeutic approaches. In this regard, it is known that the

transcription factor b-catenin induces different characteristics over

human moDCs in a dose-dependent manner, since its inhibition

leads to a pro-inflammatory state by increasing IL-12p70 and

reducing IL-10, whereas its activation enhances the nuclear b-
catenin, which is associated with low levels of IL-12p70, higher

IL-10 and the expression of inhibitory cell markers on DCs (15). C-

type lectin receptors (CLRs) can also drive different behaviors in

DCs. In fact, different nanovaccines have been designed to act on

the CLRs from DCs and induce a regulatory response in allergic

patients (16). Specifically, DC-specific ICAM-3–grabbing

nonintegrin (DC-SIGN, also known as CD209) is a CLR that
FIGURE 1

Dual role of dendritic cells in disease progression. Dendritic cells are the most effective antigen-presenting cells to initiate immune responses, which
lead to the activation of the cytotoxic machinery driven by T cells. This event is crucial to recognize tumor antigens and kill cancer cells. However, in
the environment produced by gut inflammation, dendritic cells have an opposite behavior and promote a cascade of proinflammatory signals that
ultimately induce inflammatory bowel disease.
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binds the nanovaccines changing the DC phenotype and improving

Treg proliferation (17).

In turn, DC-SIGN also promotes the serine/threonine protein

kinase RAF1 that may participate in the activation and proliferation

of T cells since the inhibition of RAF kinases could impair DC

activation in both human and mice, thus compromising T cell-

mediated immune responses (18). Then, we aimed to review the

dual behavior of DCs in two different microenvironments, cancer

and IBD, putting the focus on their dysregulation and their pro-

inflammatory function, respectively.
2 DC subsets and their role
in immunogenicity

2.1 Immunogenic and tolerogenic role
of DCs

Immunogenicity is the ability of proteinic substances (e.g.,

foreign antigens) to promote immune responses. Currently, it is

known that DCs activate their immunogenic machinery ex profeso

to sample antigens by phagocytosis, receptor-mediated endocytosis,

or micropinocytosis, and processing them for presentation to CD4+

T cells on major histocompatibility complex class II (MHC-II)

molecules and CD8+ T cells onMHC-I (19). However, the discovery

of the immunogenic capacity of DCs has been shown to be suitable

for cancer therapy (20) and for other pathologies (21). In the last

years, these immunogenic DCs have been used in personalized

treatments in patients with HIV receiving antiretroviral treatment

(22) or in ovarian cancer patients (23).

Another relevant aspect regarding immunogenicity is DC

maturation, since mature DCs use different molecular

mechanisms to tailor immune responses depending on the

stimulus (24). In this sense, mature DCs require a set of receptors

to have immunogenic properties including (but not limited to)

CD31, CD40, CD80, CD83 and CD86 (25).

In addition, DCs have a tolerogenic ability in different

immunological diseases (1). In this sense, DCs take part in the

central and peripheral tolerance by controlling effector and

regulatory mechanisms, especially self-reactivity associated to

autoimmunity (26). However, another tolerogenic effect of DCs is

their capacity to differentiate T cells into their regulatory phenotype

(Tregs) (27). Those functions are carried out by immature or semi-

mature DCs characterized by the expression of surface markers

such as PD-L1 or CTLA-4 and the downregulation of MHC

molecules, CD40, CD80 or CD86 (28, 29). Also, it has been

found that the production of anti-inflammatory cytokines (e.g.,

IL-10 and TGF-b) by DCs induces tolerogenic effects in this cell

population (30).
2.2 DC subtypes

Different DC subsets have been found depending on their

location in different tissues and lymphoid organs, including
Frontiers in Immunology 03
lymph nodes, spleen, thymus, gut, blood, or skin (31). In this

regard, DC plasticity makes their categorization difficult, but a

simplified classification based on the ontogeny divides this cell

population into cDCs, moDCs or infDCs, pDCs, and Langerhans

cel ls (LCs) (19) , which could have immunogenic or

tolerogenic effects.

In steady state, cDCs are in both non-lymphoid tissues and the

spleen marginal zone and have a high capacity to migrate to T-

lymphocyte zones (TLZs) of lymph nodes also during inflammation

(32). cDC1s can be found within the lymph node paracortex and

uptake cell-associated antigens (also dead cells) via receptors, such

as DEC205 (also known as CD205) or T cell immunoglobulin and

mucin domain-containing protein 3 (TIM3), preferentially by

cross-presentation on MHC-I to CD8+ T cells, an essential

pathway for both antiviral and antitumor immunity (33). cDC1s

are also characterized by high expressions of CD103 and toll-like

receptor (TLR) 3 (34), contribute to intracellular protection of T

helper (Th) 1 cells by producing interleukin (IL)-12 (35), and

promote Th17 responses in against influenza virus infection (36).

cDC2s uptake antigens in the skin and migrate to TLZs by different

pathways, including C-X-CMotif Chemokine Receptor 4 (CXCR4)-

or CC-chemokine receptor 7 (CCR7)-dependent manners. In

addition, cDC2s also uptake and cross-present tumor-associated

antigens (TAAs) under certain conditions (33), and also express

interferon regulatory factor 4 (IRF4), which makes cDC2s

particularly efficient for antigen processing and presentation on

MHC-II, thus inducing superior CD4+ T cell proliferation

compared with cDC1s (33, 37) and supporting Th2 and Th17

polarization (38). Interestingly, the colony stimulating factor-1

(CSF-1), which is found in the airway and alveolar

microenvironment, upregulates the expression of CCR7 on cDC2

(but not cDC1) in a IRF4-dependent manner in response to allergen

stimuli, promoting Th2 responses (39). In turn, the deletion of IRF4

has been found both to promote and inhibit Th17 responses (40).

Similar to IRF4 in cDCs, moDCs have demonstrated dual roles

by activating anti-tumoral CD8+ T cells (41) and suppressing

respiratory CD8+ T cell memory in viral immunity (42).

Moreover, moDCs or infDCs and cDC2s express CD11b during

inflammation, making these cell populations phenotypically

difficult to distinguish (19). Human pDCs are based on the

coexpression of CD123 and CD303, whereas mouse pDCs are

B220+ and CD11c+. pDCs have specific functions because they

can recognize RNA and DNA viruses through TLR-7 and -9,

leading to cell activation, and release high amounts of type I

interferon (IFN-I) (43). In addition, pDCs not only have

demonstrated to play a key role in the development of acute

colitis and development of IBD, showing differences in the

distribution, phenotype and function in patients with Crohn’s

disease (CD) and ulcerative colitis (UC) (13), but also take part in

viral infections together with cDC1s (44) by inducing IFN-I and

recruiting natural killer (NK) lymphocytes (45). Additionally, LCs

are in the epidermis but share common ontogeny with

macrophages. LCs are needed for specific adaptive immune

responses when antigens are highly found in the epidermis (46),

and selectively promote the expansion and activation of skin-
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resident regulatory T cells (Tregs) to maintain the skin immune

homeostasis (46, 47).
3 DCs and cancer

Cancer is one of the most common causes of death worldwide

(48). Although the cancer death rate is continually falling every

year, it was expected to have almost 2,000,000 new cancer cases and

more than 600,000 cancer deaths in United States during the last

year (49). As explained above, DCs acts as professional APCs to

initiate immune responses. In cancer, the immunogenic capacity of

DCs is called “cancer-immunity cycle”, a multistep and metabolic

mechanism that explains how DCs capture, process and present

TAAs to naïve T cells, which are consequently activated and

infiltrated within the tumor microenvironment (TME) to kill

cancer cells by specifically recognizing similar antigens, leading to

the release of new TAAs and making the process starts over (50).

However, inhibitory factors affect anti-tumor DC activity, including

(but not limited to) tumor growth factor (TGF)-b (51), IL-10 (52),

cytotoxic T-lymphocyte antigen (CTLA)-4 (53) and programmed

cell death protein (PD)-1 expressions (51, 53), thus leading to

cancer progression.
3.1 ‘Yin-yang’ role of DCs in cancer

Of all existing types of DCs, pDCs and moDCs seem to have

contradictory roles in cancer immunity. Evidence has demonstrated

that pDCs infiltrate different types of tumors and are associated

with poor outcomes (54), due to the expression of inhibitory

markers including lymphocyte-activation gene (LAG)-3, PD-1,

and CTLA-4 (55–57), the release of immunosuppressive cytokines

(e.g., IL-10, TGF-b, and prostaglandin E2) (58) as well as the

expansion and Treg accumulation (59). However, it has been

suggested that pDCs may have a lytic ability against tumor cells

(60, 61). MoDCs are phenotypically similar to antitumoral cDCs

(62), and have demonstrated to mediate beneficial immune

responses (63, 64), but are also involved in the maintenance of

Th17 responses, which could induce a pro-tumoral state (65), and

are related to monocytic myeloid-derived suppressor cells (MDSCs)

(66), which have been correlated with tumor progression and poor

outcomes in many oncological settings (67–69).

By contrast, cDCs have demonstrated a preferential capacity to

promote antigen presentation to T cells in cancer (70). Specifically,

cDC1s, which are characterized by the expression of integrin aE

(also known as CD103) in mice or BDCA3 (CD141) in humans

(31), have a superior ability to transport TAAs to the draining

lymph node and cross-present antigens on MHC-I to activate

cytotoxic T cells (71). The key role of cDC1s in cancer have been

extensively supported by many studies in both humans and murine

models. For example, the presence of cDC1s has been correlated

with good outcomes in melanoma patients using anti-PD-1 (72).

Mice lacking CD103+ cDC1s have driven an impaired CD40L-
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overexpressing chimeric antigen receptor (CAR) T cell antitumor

response (73). Also, Batf3 DCs have shown to be necessary for

effective antitumor responses driven by monoclonal antibodies and

adoptive T cell therapy (74). On the contrary, cDC2s have a reduced

capacity to cross-present antigens to CD8 T cells and are more

efficient by priming CD4 T cells to induce antitumor immunity

(37). Migratory CD301b+ cDC2s have demonstrated to be essential

for an effective CD4 T cell priming (75). However, despite these

well-established notions, it has been recently known that the

deletion of MHC-II and CD40 in cDC1 also prevented early CD4

T cell priming and impaired tumor rejection in fibrosarcoma-

bearing mice, thus suggesting that cDC1s are also required for

CD4 T cell priming against TAAs (76).
4 Therapeutic approaches to promote
immunogenic DCs in cancer

4.1 Cancer immunotherapies

Immunotherapies have demonstrated to improve outcomes in

many different types of cancers (77, 78). Specifically, the infiltration

of DCs into tumors has been positively correlated with prognosis

and survival (79, 80), which has made the design of different

therapeutic approaches possible to increase both concentration

and functionality of DCs.

Inhibitory pathways and signals have been targeted since they

maintain low concentrations of DCs within the TME and lead to

tumor progression. Those mechanisms can be inhibited due to the

immunosuppressive conditions found in the TME, MDSCs have the

ability to decrease antitumor immunity (81). However, the PD-1/

PD-L1 immune checkpoint also impairs the activation,

proliferation, and cytotoxic function of T cells (82), which has

been successfully reverted by using anti-PD-1 therapies, especially

when combined with other treatments (83, 84). In addition, it has

been observed that DCs could be necessary to boost anti-PD-1

efficacy due to the production of IFN-g and IL-12 by this cell

population (85). Another inhibitory signal, vascular endothelial

growth factor (VEGF), has potent antiangiogenic properties and

blocks DC maturation and proliferation (86, 87). Therefore, the

inhibition of VEGF with targeted anti-VEGF therapies not only

prevents angiogenesis, but also improves the capacity of DCs to

carry out effective anti-tumor responses (88). IL-6 is another

cytokine that promotes cancer progression by up-regulating

different pathways that involve apoptosis, angiogenesis,

invasiveness, metastasis, or tumor cell metabolism, among others.

In fact, it has been reported that IL-6 inhibits anticancer immune

responses generated by cytotoxic chemotherapy (89), and promotes

breast cancer metastasis suppressing the anti-tumor immune

response via IL-6/JAK/STAT3 signaling (90). In line with this

notion, IL-6/JAK/STAT3 signaling has demonstrated to be a

promising therapeutic target for hepatocellular carcinoma (91).

On the contrary, although it has been shown that IL-10 levels are

altered in cancer as well as IL-4 and IL-35 (92), there is evidence
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that IL-10 has dual functions in cancer (93). In this line, IL-10

suppression enhances T cell antitumor immunity and responses to

checkpoint blockade in chronic lymphocytic leukemia (94).
4.2 Cancer DC-based vaccines

Other alternatives to improve anti-tumor immunity are DC

vaccines, that have been clinically evaluated and considered as safe

therapies due to limited toxicities either alone or combined with

other treatments (95–98). DCs are considered as the most effective

APCs and promote immunological T cell response (33). Altogether,

those characteristics made DCs as the most appropriate cell

population for the development of cancer vaccines. Specifically,

cDC1 vaccines have shown better anti-tumor efficacy compared

with MoDC vaccines (99, 100), whereas another study reviewed that

not only cDC but also pDC vaccines may be considered as more

potent alternatives compared with MoDC vaccines (101). Another

promising immunotherapeutic approach is the so-called in vivo

vaccination, which consist of targeting DCs with DC receptor

ligands, adjuvants, or other types of molecules that can accurately

bind to DCs to exert better effects on anti-tumor T cell responses

(102). In vivo vaccines target DC receptors such as TLRs (103), or

adenosine receptors (104), and has concluded with promising

results (105). Moreover, it has been demonstrated that DCs-

pulsed with sulforaphane, a natural compound presents in

cruciferous as broccoli induce T-cell activation through the

modulation of regulatory molecules, JAK/STAT3- and

microRNA-signaling in healthy conditions and in context of

pancreatic cancer-derived antigens, proposing the possibility to

use the sulforaphane in the co-treatment of cancer (106).
5 DCs and inflammatory
bowel disease

IBD is a disorder with high incidence (around 3.5 million

people in the last decade only considering North America and

Europe) and prevalence (currently exceeding 0.3%) (107). The

etiology of IBD remains unclear, although it is known that

involves the interaction between immune responses with genetic,

environmental, and microbial factors, geographical location, or an

inappropriate diet (108, 109). IBD is characterized by an altered

epithelial barrier function due to exacerbated and continuing

immune reactions toward the microbiota, including an improved

chronic relapsing, and the inhibition of both adequate

containments of luminal microorganisms and the ability to

absorb nutrients (110). Specifically, UC involves aspect of the

colon starting with mucosal inflammation in the rectum. Its main

symptoms are bloody diarrhea, abdominal pain, fecal urgency, and

tenesmus (111), whereas CD involves the whole gastrointestinal

tract (although distal ileum is the most frequently affected part). CD

presents periods of flares and remissions and causes transmural

pleomorphic inflammation, leading to fistulas, abscesses, and

granulomas (112).
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5.1 Inflammation-associated factors in IBD

Traditionally, it has been believed that gut inflammation has

been only promoted by T helper cells (Th) 1, Th2, Th17 and Tregs,

but now we known that inflammation is also induced by other

immune cells, cytokines and processes, including macrophages,

DCs, tumor necrosis factor (TNF), inflammasome activation, or

autophagy (113–117). Particularly, autophagy deficiency decreases

antigen sampling, increases DC maturation, and promotes pro-

inflammatory DCs (118). Atg16l1 autophagy gene deficiency

promotes the bacterial translocation of DSS-induced colitis in

vivo and regulates autophagy and phagocytosis, which lead to an

exacerbation of the intestinal inflammation (119). The immune

microenvironment of UC inflamed colon is composed not only by

follicular Th cells and IL17A+ Tregs, but also by memory cells

(CD4+ T, IL17A+CD161+ T, and B cells), HLA-DR+CD56+

granulocytes, M1 macrophages, activated mast cells, neutrophils,

and both resting and activated DCs (120, 121). In CD patients,

peripheral blood mononuclear cells have high expression of IL-1B

in the Treg, DC and monocyte fractions (121), whereas the inflamed

mucosa of those patients is characterized by IL-1B in HLA-

DR+CD38+ T cells, TNF+IFN-g+ naïve B cells, and pDCs (121).

5.1.1 DCs as an inflammation-associated factor
in IBD

DCs promote IBD by expressing different markers in both

human and mice (Figure 2). cDC subsets have been observed in

gut mucosa from both human and mice in steady state (122),

although the interaction with T cells to initiate immune responses

seems conflicting (123), which could imply that some cell

populations and cytokines play a dual role in the pathogenesis of

IBD. In line with this notion, TGF-b not only has shown to play an

unfavorable function by increasing collagen production and

regulating fibrosis in CD patients with stricture (124) but also has

been suggested to be necessary to inhibit inflammation in IBD

(125). The role of TNF-a is essential in the immunological response

of IBD (126). In fact, TNF-a regulates IL-22BP expression by

colonic DCs and dampened IL-22-driven restitution of colonic

epithelial functions in model of experimental colitis (127). Of

note, DCs stimulated in vitro with TNF-a could not improve the

activation and maturation of DCs compared with E. coli-stimulated

DCs, which may suggest altered interactions between DCs and

intestinal microflora in patients with UC and CD (116).

Intestinal SIRPa−CD103+ cDC1 constitute a small cell

population in the human intestine and are molecularly similar to

cross-presenting CD141+CLEC9A+CADM1+ cDC1, whereas

SIRPa+CD103+ cDC2 are the main population in the small

intestine in both mice and humans, and SIRPa+CD103− cDC2

predominate in the colon. CD103-expressing DCs have also been

found in CD patients (128). CD103+ DC subsets with high

expression of PD-L1/2 could be induced by the deficiency of the

Smad7 protein, a negative regulator of TGF-b signaling (129). Also,

CD103+ DCs have a colitogenic role and show impaired ability to

produce Tregs (130) but generate Th1/Th2/Th17 responses through

the induction of a huge variety of cytokines, including IFN-g, IL-13,
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IL-6, IL-23, IL-12p35, IL-12p40, and TNF (131–133). The CD83

expression in DCs have also been found in IBD patients (134).

Moreover, high expression of Receptor-interacting serine/threonine

kinase 2 (RIPK2) signaling in DCs is a new therapeutic target in IBD

(135, 136). In turn, the upregulation of other molecules, such as

CXCL10 and CCL3 were positively correlated with activated DCs in

CD and UC (128, 137), postulating them as effective diagnostic

biomarkers in IBD. These molecules were found in UC patients

compared with their CD counterparts following the exposure to

cigarette smoke extract (CSE) in vitro, thus demonstrating that CSE

modulates DC phenotypes and alters DC function, which results in

Th1 polarization and increased levels of Foxp3+CD4+ T cells in UC

(138). Of note, mutations (e.g., in NOD2fs gene) also promote a

dys func t iona l pheno type in DCs and inc r ea s e CD

susceptibility (139).

CD14+ cDCs have been found in the inflamed mucosa of IBD

patients but are limited in mesenteric lymph nodes (MLNs), which

have been less studied in relation to the DC phenotypes (122). By

contrast, during the early stage of murine IBD, high levels of both

mDCs and pDCs expressing CD11b and B220 have been found in

colon (approximately, 50% of each subset) and MLNs (mainly

mDCs) (140), but high levels of pDCs in MLNs has also been

reported in other cases (141). Conversely, CD14-HLA-DRint pDCs
Frontiers in Immunology 06
have shown to be the most abundant subset in MLNs either

expressing CD11c+ or not (122), especially in CD (141). High

expression of CD11c have also been observed in CD103+ DCs

(13) and CD123–HLA-DR+ DCs, which produce more IL-23 in CD

patients than in their UC counterparts (142), demonstrating the

importance of CD11c in the pathogenesis of IBD. In this sense, the

chromofungin (CHR), a chromogranin-A derived peptide, CHR has

demonstrated protective properties against intestinal inflammation

by regulating CD11c of DCs (143). More CD14- DC subsets

have been found in IBD by using transcriptomic analysis

and high-dimensional phenotypic mapping , such as

CD14−CD64dimCD11b+CD36+CD11c+ and CD14−CD64−CD163−

DCs (141).

In addition, both CD103+ and CD11c- DCs have been

associated with different levels of TLR expression (144). UC-

derived DCs secrete pro-inflammatory cytokines and chemokines

via activation of TLRs. TLRs induce infiltration of polymorphic

neutrophils and activation of other innate immune cells, as well as

the differentiation of naïve T cells to Th1 cells and the activation of

DC to release IL-12 (140). In connection with this, regulatory or

tolerogenic DCs increase the levels of colon-infiltrated Tregs and

inhibited Th1 and Th17 cell-driven colon inflammation in a

Galectin-3:TLR-4:Kynurenine-dependent manner, which
FIGURE 2

Types of dendritic cells with their most common pro-inflammatory surface markers in mice and humans with inflammatory bowel disease.
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demonstrated the importance of both TLR and galectin 3 in the

immunosuppressive functions of Tregs (145). Similarly, another

protein of the galectin family, galectin 1, has demonstrated to limit

the immunogenic activity of DCs in a murine IBD, such as CD and

UC (146).
6 Therapeutic approaches to inhibit
DCs in IBD

DCs are emerging as central players since its levels tend to

increase in the colonic mucosa and could have important functions
Frontiers in Immunology 07
in regulating response to gut microflora (13). There is a wide variety

of cell-based therapies to improve outcomes in IBD (147), but we

will focus on treatments that modulate or reduce DCs producing

tolerogenic DCs (Table 1).
6.1 Antibodies

The first successful therapies for IBD consisted of targeting

TNF-a, including infliximab or adalimumab (148). Antibodies

against IL-12/IL-23 p40 (risankizumab) and IL-23 p19

(ustekinumab) have been tested to reduce the effects in IBD
TABLE 1 Effects on DCs caused by different therapeutic approaches in inflammatory bowel disease.

Type
of therapy

Name Effects on DCs from IBD
References

Antibodies

Vedolizumab cDC and pDC localization was blocked in the intestinal epithelium (148)

Risankizumab IL-12/IL-23 p40, which is produced by DC, was blocked (133)

Ustekinumab IL-23 p19, which is produced by DCs, was blocked (133)

Natalizumab pDC level was reduced in peripheral blood (148)

Immunomodulatory
agent

Thalidomide
TNF-a production and antigen-presenting ability of epidermal LCs
were inhibited

(149)

G-CSF CD123+ pDCs were increased in lamina propria and gut mucosa (150)

Hormones

Glucocorticoids MHC-II expression on DCs was reduced (151)

Vitamin 1,25(OH)2 D Pro-inflammatory DC activity was decreased (152)

Vitamin D3 Beneficial effects on monocytic precursors of mo-DCs in vivo (153)

Thiopurine-
based treatments

Azathioprine or 6-mercaptopurine Migratory defects in autophagy-deficient DCs were restored
(154)

Biodrugs Mesenchymal stem cells
Serum levels of pro-inflammatory cytokines (IL-1b, IL-6) were reduced
Expression of CD80 and CD86 was decreased on mDCs
IL-10 production was improved in pDCs

(155)

Probiotics

Lactobacillus salivarius, Bacillus coagulans,
Bacillus subtilis and Bifidobacterium bifidum (Bb)

Expression of CD80, CD86 and integrin ß8 was enhanced
TLR-4, TLR-9 and IL-12p40 expression was reduced
TGF-b and IL-10 production was improved

(14)

Saccharomyces boulardii

Th1 polarization induced by CD1c+CD11c+CD123-mDCs was
inhibited
TNF-a and IL- 6 production was reduced
The expression of CD40, CD80, and CCR7 was reduced on mDCs

(156, 157)

Lactobacillus casei Shirota
Gut DC ability to imprint homing molecules on T cells and IL-22
production were improved

(158)

Lactobacillus plantarum The function of altered gut DCs was reversed (159)

Apheresis
Adacolumn apheresis

CD16 mDCs, pDCs, and TNF-a were reduced
IL-10 production was increased

(160)

Lymphocytapheresis CD83+ DCs, IL-6, and IL-8 were downregulated (161)

Saccharides

Lipopolysaccharides
Pro-inflammatory cytokine production and antigen-presenting ability
for MHC-II were diminished when cultured with GLM in vitro

(162)

Fructo-oligosaccharides
IL-10+, TLR2+, and TLR4+ DCs were increased
IL-6+ DCs were reduced

(163, 164)

Nutraceuticals Sulforaphane
Preventive/therapeutic applications due to its activating effect of the
AMPK signaling pathway

(106)
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(133). Other antibodies target the a4 chain of integrin heterodimers

on leukocytes (e.g., natalizumab), a4b7 integrin, which may reduce

the inflammation by blocking the recruitment of pro-inflammatory

monocytes and DCs to the intestine (e.g., vedolizumab) (148) or

immunomodulatory agents such as thalidomide (149) and G-

CSF (150).
6.2 Glucocorticoids and thiopurine-
based therapies

Alternative therapies such as the use of glucocorticoids can

inhibit cytokine secretion, as well as both T cell and DC activation

by reducing the expression of MHC-II molecules in UC (151).

Others such as thiopurine-based treatments have demonstrated to

restore the migratory defects in autophagy-deficient DCs, thus

improving DC-T cell interactions and the cytoskeletal regulation

(154). Moreover, mesenchymal stem cell (MSC) administration

reduced serum levels of inflammatory cytokines (e.g., IL-1b, IL-6,
and IL-12) in mice with DSS-induced UC, thus improving the

phenotype and function of colon infiltrating DCs (155). In CD,

MSCs not only decreased the expression of CD80 and CD86 on

mDCs and the production of IL-12 and TNF-a, but also improved

the production of IL-10 via (165).
6.3 Antibiotics and probiotics

Antibiotics reduce the concentration of gut lumen bacteria such

as Escherichia coli strains, Bacteroides spp, and Mycobacterium

avium, that have been linked, together with DCs, to chronic

inflammation in IBD (166). Specifically, betalactam antibiotics

have demonstrated to alter DC maturation in allergic patients via

MAPK and NF-kB signaling pathways (167). IBD is also promoted

by DC migration and maturation, so the targeting of DCs with

betalactam antibiotics may improve clinical outcomes in the disease

(115, 116, 168). Probiotics have also been successfully proposed to

modulate the gut microbiota in IBD (169). In this sense, Ghavami

et al. (2020) studied the role of Lactobacillus salivarius, Bacillus

coagulans, Bacillus subtilis and Bifidobacterium bifidum (Bb),

concluding that the expression of CD80 and CD86 was enhanced

by most of the probiotics in UC patients and only by Bb in CD

patients. Also, DCs from UC patients increased the production of

IL-10 and TGF-b and reduced the expression of TLR by using all

probiotics except Bb, and DCs from CD patients increased the

expression of integrin ß8 and reduced the expression of TLR-4,

TLR-9, and IL-12p40 (14). Saccharomyces boulardii promoted

epithelial restitution in IBD patients by improving IL-8 levels,

inhibiting Th1 polarization induced by CD1c+CD11c+CD123-

mDCs, and reducing TNF-a and IL-6 levels, as well as the

expression of CD40, CD80, and CCR7 on mDCs (156, 157).

Lactobacillus casei Shirota restored the stimulatory role of DCs in

UC patients (170, 171) by improving gut DC ability to imprint

homing molecules on T cells and promoting IL-22 production

(158). Furthermore, Lactobacillus plantarum has reversed the

function of altered gut DCs in UC patients (159).
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6.4 Apheresis

Selective granulocyte/monocyte apheresis (SGMA) has been

tested to remove DCs from IBD patients (172). Adacolumn

apheresis (AA) could lead to a higher tolerogenic status since a

significantly lower level of lymphocytes, pDCs and mDCs has been

found in acute UC (160). In addition, AA increased IL-10 and

reduced circulating TNF-a and CD16 expression on both mDC and

pDCs in UC patients (173). Lymphocytapheresis has demonstrated

to be clinically safe in those patients and contributed to

downregulate CD83+ DCs, IL-6, and IL-8 (161).
6.5 Vitamin D

Vitamin D also seems to have a role in the modulation of DCs.

In fact, vitamin D metabolites are frequently used in protocols to

develop therapeutic DC therapies for autoimmune diseases, such as

IBD (174). Vitamin 1,25(OH)2 D has improved IBD outcomes, at

least in part, by decreasing DC activity, inducing antimicrobial

peptide secretion, and increasing the anti-/pro-inflammatory

cytokine ratio (152). Vitamin D3 was positively associated with

low disease activity in CD patients and had beneficial effects in vivo

on the monocytic precursors of moDC (153).
6.6 Saccharides

In the same line, vitamin D deficiency has been suggested to

contribute to the inflammatory process in CD based on data from in

vitro experiments by stimulating mo-DC with lipopolysaccharides

(LPS) (162). Conversely, LPS-activated DCs has been cultured with

GLM, a luteolin derivative, downregulating pro-inflammatory

cytokine production or antigen-presenting ability for MHC-II

complex on DCs from UC (175). Other molecules with natural

origin as fructo-oligosaccharides, have significantly increased the

number of IL-10+, TLR2+, and TLR4+ DCs, and reduced IL-6+ DCs

in CD patients, but the clinical benefit remains contradictory

(163, 164).
6.7 Sulforaphane

Another molecule, sulforaphane, with anticancer properties

(106), has preventive or therapeutic applications in some

intestinal inflammatory diseases due to its activating effect of

AMPK signaling pathway in mice (176), although more evidence

would be necessary to confirm the role of this natural compound

on DCs.
7 Concluding remarks

DCs have a crucial role in the establishing and maintaining

immune homeostasis of the organism, because link innate and
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adaptive immunity since they initiate immune responses by taking

up both antigens and pathogens, and migrating to secondary

lymphoid organs, where DCs finally present molecules to naïve T

cells, which are activated. This essential immune process is

employed as therapeutic intervention tool to the cure or mitigate

of many diseases such as cancer seeking to enhance the cytotoxic

machinery of T cells to kill tumor cells. Conversely, under certain

conditions, DCs have shown to play a key role in the induction and

maintenance of chronic inflammation in other pathologies,

including IBD, resulting in the so-called “yin-yang” role of DCs.

It is clear that not only DCs promote a pro-inflammatory state in

the intestine, but also other recruited immune cells such as

neutrophils, monocytes or macrophages. In this sense, monocytes

and macrophages could be difficult to distinguish from some DC

subsets because they express the same markers depending on their

differentiation stage in the myeloid lineage. Even so, activated DCs

have found to be accumulated at sites of intestinal inflammation

expressing a wide variety of characteristics markers, including (but not

limited to) CD80, CD86, CD103, CD83, IRF4 or TLRs, and producing

cytokines such as IL-6, IL-8, IL-12, IL-23, TNF-a, which produce

disruptions in the immune system and drive IBD progression.

Based on the existing evidence on the role of DCs in IBD, we

strongly believe that this cell population can be considered as a good

biomarker for the disease. In fact, most of in vivo and in vitro

experiments have shown that DCs could be a valuable therapeutic

target, since its depletion as well as the production of some

cytokines (e.g., IL-10 or TGF-b) have been positively associated

with good results, which could support the manipulation of DCs to

generate DC-specific therapies. For that purpose, we would also

need to fully understand the mechanisms that are promoted by DCs

in the balance between immune cells, since the pro-inflammatory

state in the intestine could be increased. In addition, further

research is needed to better clarify the importance of some DCs

markers in the disease (e.g., CD1c, CD11c, or CD123) since both

their expression and lack on the cell surface have been associated

with positive results in the disease. Moreover, the role of moDCs or
Frontiers in Immunology 09
infDCs and LCs has been less studied and may play a critical role in

the pathogenesis of IBD, so those DCs subset would also need to be

more investigated to reach innovative strategies to enhance their

clinical efficacy in both IBD and cancer.
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