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Abstract
In the minimum-weight many-to-many point matching problem, we are given a set 
R of red points and a set B of blue points in the plane, of total size N, and we want 
to pair up each point in R to one or more points in B and vice versa so that the sum 
of distances between the paired points is minimized. This problem can be solved in 
O(N3) time by using a reduction to the minimum-weight perfect matching problem, 
and thus, it is not fast enough to be used for on-line systems where a large number 
of tunes need to be compared. Motivated by similarity problems in music theory, 
in this paper we study several constrained minimum-weight many-to-many point 
matching problems in which the allowed pairings are given by geometric restric-
tions, i.e., a bichromatic pair can be matched if and only if the corresponding points 
satisfy a specific condition of closeness. We provide algorithms to solve these con-
strained versions in O(N) time when the sets R and B are given ordered by abscissa.

Keywords Many-to-many matching · Dynamic programming · Melodic similarity · 
Geometric measure

1 Introduction

Given two finite sets of red and blue points in the plane, R and B, respectively, 
with total size N, a point matching between R and B pairs up red and blue points. 
Although matching problems have many applications, e.g. shape matching or 
color-based image retrieval, there has been an increase in the activity for study-
ing music score matching in the field of music information retrieval (MIR). MIR 
is actually a major research area whose main objective is to develop methods for 
finding musical information from a digitised collection of musical works, that is, 
encoded scores or audio recordings [1]. It is well known that melodies are rich in 
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features that allow distinguishing between them and people are able to recognize 
a large number of musical works from their principal melodies. Thus, comparing 
two melodies is one of the most critical research topics in the area. At this point, 
it is worth noting that even though MIR research has been carried out on main-
stream Western music, there is a great current interest in oral tradition musics 
where, in addition to basic parameters as pitch, duration, loudness and timbre, 
higher level music features, as voice leading, phrasing, and ornamentation, are 
required to be incorporated in the study of perceptual similarity [2, 3].

A common problem of a MIR system is to match two melodies and estab-
lish a similarity rank. In this way, a melody can be modeled as a set of points in 
the plane formed by the (on-set time, pitch) pairs [4] and the similarity between 
two melodies can be measured by the cost (or weight) of an optimal matching 
between the sets of points representing each melody. The cost of each pair in the 
matching is commonly measured using the Manhattan distance  [5, 6], although 
other metrics have also been tested: the Euclidean distance, the cosine metric, the 
Pearson correlation, and others. Also, a graph-based representation of symbolic 
musical data has been considered [7].

In this framework, some papers studied versions of the minimum-weight 
matching problem  [8–12]. For example, given two finite sets of red and blue 
points in the plane, R and B, respectively, in a many-to-one matching from R to 
B with |R| < |B| , each point of R is assigned to one or more points of B, and each 
point of B is assigned to only one point of R [9]. An O(|B|2) time algorithm based 
on a reduction to the problem of computing the single source shortest path prob-
lem in a weighted directed acyclic graph has been proposed in [8].

Other type of matching used is that in which each point of R (respectively, 
B) is assigned to at least one point in B (respectively, R), the many-to-many 
matching. The minimum-weight many-to-many matching problem or minimum 
bipartite edge cover was studied in [13]. It can be solved in O(N3) time using the 
Hungarian method proposed by Kuhn [14]. The many-to-many matching in the 
special case where R and B are points on the real line was addressed in [15]. They 
provided an O(N) time algorithm, assuming that the points are already sorted, 
and asked whether the minimum-weight many-to-many matching problem in the 
plane could be solved in o(N3) . The question has been open until a recent work 
[16] gave an O(N2poly(logN)) time algorithm that reduces the problem to an 
equivalent perfect matching problem.

The existence of the ornamented parts of a melody justifies the use of a many-
to-many matching to compute melodic similarity because this matching is more 
versatile and can match several notes of either melody with a note of the other. 
Figure 1 shows a many-to-many matching between two excerpts of melodies to be 
compared via melodic similarity. The upper melody is less ornamented, and then 
a note could be matched with several of the more ornate melody. Unfortunately, 
computing the minimum-weight many-to-many matching is time consuming and, 
as a consequence, it is not very useful for online music retrieval systems [17]. 
Thus, this paper focuses on some geometric constrained versions of the mini-
mum-weight many-to-many matching in 2D that can be solved more efficiently.
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The constraints are derived from the assignment rules that define the melodic 
matching. It might make sense to assign a note to one or more notes located in its 
vicinity when both melodies have the same tempo. For example, a point of a melody 
could be matched only to the first point to the left or to the right in the other melody. 
Different similarity measures can be defined in melody-based MIR research, see for 
example [18]. On the other hand, for computational modeling of melodic similarity, 
the measures must be tested against human perception. We propose in this paper 
three geometric measures with constraints based on vicinity. The evaluation on their 
suitability for modeling the perceived melodic similarity through human judgements 
is out of the scope of this paper. Two examples where this type of study is carried 
out for flamenco cante and Indian art music are [19, 20], respectively. At this point, 
we would like to point out that, although the problems introduced here are inspired 
by MIR and, the metrics could be used to compare (among other things) melodic 
shapes, they are interesting in their own right in the area of discrete optimization. In 
this paper, we show that for some specific graphs G = (R ∪ B,E) , where E is the set 
of edges connecting permitted pairings, the minimum-weight many-to-many match-
ing can be solved in linear time.

The remainder of this paper is organized as follows. Section 2 provides a detailed 
description of the problems. Sections  4,  3 and  5 show the algorithms. Finally, in 
Sect. 6 we present our conclusions and provide suggestions for future work.

2  The constrained problems

Let B = {b1,… , bn} and R = {r1,… , rm} be sets of blue and red points, respec-
tively, in the time-pitch plane. In the following, we use the notation n + m instead of 
N since, in general, the computation time will be a function of n and m. We assume 
that no two points from R (or B) lie on a common vertical line since this happens in 
applications as melodic similarity for singing voice, where only a single note (point 
in the time-pitch plane) is emitted at a given time. Thus, t(b1) < t(b2) < ⋯ < t(bn) 
and t(r1) < t(r2) < ⋯ < t(rm) , where t(p) denotes the time coordinate (abscissa) of a 
point p ∈ R ∪ B . We also assume that the matching cost is the sum of the Manhattan 
distances between paired points. However, the proposed algorithms can be applied 
to any metric.

Fig. 1  Two pieces of music 
(extracted from [12]) and their 
representations as point sets in 
2D, along with the optimum 
many-to-many matching used 
for computing the melodic simi-
larity. In the ornamented parts 
(on the right side), one note is 
matched to several
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The variants studied in this paper come from restricting the allowed pair-
ings. Essentially, we limit the matching rule by considering, for example, some 
monotony properties with respect to time. Let r ∈ R and b ∈ B . In this con-
strained setting, we consider the following problems:

Problem 2.1 t-nearest many-to-many matching. Given R and B, find a minimum-
weight many-to-many matching M such that for every pair (r,  b) in M , r is the 
t-nearest red point of b or, b is the t-nearest blue point of r, where the t-nearest of a 
point p is the closest point to p of the other color with respect to the time.

Problem 2.2 t-monotone many-to-many matching. Given R and B, find a minimum-
weight many-to-many matching M such that for every pair (r, b) ∈ M , r is the first 
red point to the left or to the right of b; or b is the first blue point to the left or to the 
right of r.

Problem 2.3 Many-to-many matching in a tree. Given a bichromatic weighted tree 
where every edge connects vertices of different color, compute a many-to-many 
matching of minimum cost in the tree.

From now on, in Problems 2.1 and 2.2 we call a segment connecting a pair 
(r,  b) as a feasible edge for the matching. Note that a feasible edge for Prob-
lem 2.1 is also a feasible edge for Problem 2.2. The converse is not true. In Prob-
lem 2.3 a feasible edge is an edge of the tree. Note that the problems above can 
be stated in the graph theory framework as follows: Let G be an undirected graph 
with node set R ∪ B and edge set the feasible edges, find a minimum weight edge 
cover in G . The weights or costs of the edges of G correspond to the Manhattan 
distance between the ending points. In the following, let d(p, p�) denote the Man-
hattan distance between the points p, p� ∈ R ∪ B.

In Problems 2.1 and 2.2, G is a special graph that we will describe in the next 
sections and, in Problem 2.3, G is a generic tree.

Figure 2 shows optimal solutions (black edges) for Problems 2.1 and 2.2 con-
sidering the same sets of points R and B. Since the constraints of Problem 2.2 
are less stringent than those of Problem 2.1, the cost of an optimal solution for 
Problem 2.2 is guaranteed to be no larger for Problem 2.1.

It is worth mentioning that finding an optimal constrained many-to-many 
matching for sets of points on the plane cannot be solved by projecting the set 
of bicolored points to the time-axis, solving the optimal many-to-many matching 
on these points, and then lifting the solution thus obtained to the original point 
set. In the example illustrated in Fig.  3a, we show a bicolored point set such 
that the optimal solutions corresponding to Problems 2.1 and 2.2 match. How-
ever, the solution obtained by projecting the points onto the time-axis induces a 
many-to-many matching in the original point set that is not optimal; see Fig. 3b. 
The same assertion remains valid when we project onto the pitch-axis.
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3  t‑nearest many‑to‑many matching

Let G = (R ∪ B,E) be the graph whose edges are the feasible edges of a t-nearest 
many-to-many matching in R ∪ B . The main observation to efficiently solve Prob-
lem 2.1 is the following result that uses a special type of tree. A caterpillar is a tree 
in which all non-leaf vertices lie on a single path. The path, obtained by deleting the 
leaves of a caterpillar, is called the spine.

Lemma 3.1 Let G be the graph composed by all the feasible edges of a t-nearest 
matching. Then G is a forest. Furthermore, all the connected components of G are 
caterpillars.

Fig. 2  a Optimal matching for Problem 2.1, b Optimal matching for Problem 2.2. Dashed edges repre-
sent feasible edges that do not belong to the optimal solution

Fig. 3  a Optimal solution for 
Problems 2.1 and 2.2, b Optimal 
solution for the 1D problem 
studied in [15]
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Proof Suppose that G has h connected components. Let G be a connected compo-
nent of G with s vertices. For each vertex in G, the t-nearest matching induces an 
edge, therefore G has at most s edges. On the other hand, the edge of the t-nearest 
bichromatic pair in G, that is, the edge connecting two points of different colors 
which are mutually the closest ones with respect to the time, is counted twice. Then 
G has at most (s − 1) edges. Since G is connected, it must be a tree.

Now, we will prove that G is a caterpillar, i.e. every vertex in G with degree 
2 or more, lies on a single path (which is the spine of the caterpillar). The verti-
ces of G can be separated, from left to right, into maximal monochromatic slabs 
G0,G1,G2,… alternating colors (e.g G0 is blue, G1 is red, and so on). The t-nearest 
pair of vertices in G connects the rightmost vertex of a slab Gi with the leftmost 
vertex of the next slab Gi+1 . Since G is a tree, it is easy to check that all the verti-
ces in Gj , j ≤ i , are connected with the leftmost vertex in Gj+1 . Analogously, all the 
vertices in Gj , j > i , are connected with the rightmost vertex in Gj−1 . Notice that the 
leftmost vertices of G1,G2,… ,Gi+1 and the rightmost vertices of Gi,Gi+1,… are the 
vertices with degree 2 or more, and they conform the spine of the caterpillar. See 
Fig. 4 for an illustration of the proof.   ◻

Let G be the caterpillar forest induced by the set of feasible edges in the t-near-
est matching on R ∪ B . A minimum t-nearest many-to-many matching in G is the 
union of the optimal matching in each of its connected components. Therefore, 
we solve the problem for each tree of G.

Given G, a caterpillar tree of G , let S = (v1,⋯ , vk) be the vertices along the 
spine of G, see Fig. 4. Notice that the edges incident on leaves are always in the 
minimum t-nearest matching. Thus, the key question is which edges of the spine 
(vi, vi+1) should be taken to build the minimum t-nearest matching.

We say that a vertex vi of S is covered if it is connected to leaves, and we 
denote by w(i) the sum of weights corresponding to edges connecting vi with 
leaves. Note that, both endpoints of S, v1 and vk , are always covered. For non-cov-
ered vertices, we set w(i) = 0 . With all the above, The following result is straight-
forward and establishes a recurrence that allows to compute the minimum weight 
t-nearest matching on a caterpillar G using dynamic programming.

Fig. 4  An arrow from vi to vj indicates that vj is the t-nearest point of vi . The spine of the caterpillar is 
darker
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Lemma 3.2 For all, 1 ≤ i ≤ k , let c(i) denote the cost of the minimum t-nearest 
many-to-many matching in the sub-caterpillar formed by v1, v2,⋯ , vi (and their 
leaves). Set c(0) = 0 . Then, c(1) = w(1) , and for i = 2,… , k we have:

Another alternative formula is:

Note that, after progressively computing c(1), c(2),… , c(k) , it will result that the 
cost of the minimum t-nearest matching on caterpillar G is c(k). Now we are ready 
to set up the final result of this section.

Theorem  3.3 The t-nearest many-to-many matching problem can be solved in 
O(n + m) time.

Proof In a first sweep from left to right, we can determine the red/blue slabs of 
points. In a second sweep, we can determine the feasible edges and the caterpil-
lars (connected components) of the graph G . Additionally, in this second sweep, for 
every point vi forming part of some spine, we can compute w(i). This first phase of 
the algorithm takes O(n + m) time.

Now, focus on a single caterpillar G in G . Suppose that G has a spine 
S = (v1,… , vk) . For all 1 ≤ i ≤ k , let c(i) denote the cost of the minimum t-near-
est many-to-many matching in the sub-caterpillar formed by v1, v2,… , vi (and their 
leaves). Then c(1) = w(1) by Lemma 3.2. Now, we can compute c(i) progressively 
(in O(1) time) for all 2 ≤ i ≤ k using the previously computed values c(i − 1) and 
c(i − 2) , and the recurrence established by Lemma 3.2. At the end, c(k) holds the 
cost of the minimum t-nearest many-to-many matching on G and compute it took 
O(k) time. Note that the set all the vertices forming some spine is a subset of R ∪ B . 
Then, this phase takes O(n + m) time. The result follows.   ◻

4  t‑Monotone many‑to‑many matching

Let G = (R ∪ B,E) be the graph, where the set E is formed by all the feasible edges 
for a t-monotone many-to-many matching in R ∪ B . See Fig. 5 for an example. A 
remarkable property of G is that it is a connected graph that can be drawn on the 
plane without intersections. Before proving this property, we introduce some ter-
minology. First, separate the set of points R ∪ B into maximal monochromatic slabs 

c(i) =

{
w(i) +min

{
c(i − 1), c(i − 2) + w(i − 1) + d(vi−1, vi)

}
if vi is covered, and

c(i − 1) + d(vi−1, vi) otherwise.

c(i) =

⎧⎪⎨⎪⎩

w(i) +min
�
c(i − 1), c(i − 2) + d(vi−1, vi)

�
if vi is covered and vi−1 isn’t,

w(i) + c(i − 1) if vi and vi−1 are covered, and

c(i − 1) + d(vi−1, vi) otherwise.
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using vertical lines, as in Fig. 6a. In every slab, we call internal points the vertices 
between the left- and right-most point of the slab. Note that for the special case of 
the first (resp. last) slab, we consider that all the points are internal except the right 
(resp. left) most one. The rest of the vertices are named external.

Lemma 4.1 Let G = (R ∪ B,E) be the graph where E is composed by all the feasible 
edges for a t-monotone many-to-many matching. Then G is a planar graph.

Proof The idea of our strategy is to make a planar drawing of a subgraph of G , and 
then add the rest of G keeping planarity. Let G′ be the subgraph of G induced by the 
external points of R ∪ B , see Fig. 6b. Note that a planar drawing Γ of graph G′ can 
be easily done by ‘untangling’ every crossing from left to right. This will result on a 
connected graph which is sequence of convex quadrilaterals and paths, see Fig. 6c.

Fig. 5  The edges of G = (R ∪ B,E) are the feasible edges of a t-monotone many-to-many matching in 
R ∪ B . Note that G contains cycles

Fig. 6  a Vertical dotted lines separate maximal monochromatic slabs. The shaded regions contain the 
internal points. b G′ , the subgraph of G induced by the non-internal points of R ∪ B . c Planar drawing of 
G
′ , Γ . d Planar drawing of G
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We construct the planar drawing of G from Γ by placing each internal point on 
its corresponding slab, inside of the convex quadrilateral in Γ , as shown in Fig. 6d. 
Note that each quadrilateral Q has exactly two vertices that differ in color with the 
internal points within it. To complete the drawing, we join these corners with all the 
internal points in Q avoiding crossings.   ◻

We now describe the structure inherent to G that will be crucial to design our 
algorithm. For this, we numerate the external vertices in the following way. For the 
i-th separator vertical line, let 2i − 1 be the vertex to the right of the vertical line and 
2i be the vertex to the left of the vertical line, as illustrated in Fig. 7a. Note that, if 
the slab contains only one point, it receives two numbers. For the sake of simplicity, 
we have represented the internal points of a slab using a little square with a point 
inside using the corresponding color.

In Fig. 7b, a simplified planar diagram of the numerated structure in Fig. 7a is 
shown. Note that vertices with two assigned numbers (single-point slabs) are rep-
resented by two points connected with a bold-light segment. This structure is a 

Fig. 7  a Internal points of the slabs are represented by little squares. First and last vertex of the slabs 
have been numerated. b G as a concatenation of boxes, a diamondback graph. c Graph until the second 
box. d Graph until the second wedge including internal points. e Graph until the second wedge without 
internal points
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concatenation of boxes1 that we call a diamondback-snake graph or diamondback-
graph, for short,2 which allows to build the minimum-weight t-monotone matching 
with a dynamic programming approach.

The key idea is that we can progressively compute, for i = 1, 2,… , the minimum 
t-monotone matching until the i-th box, that is, the box with left vertical edge on the 
i-th slab separator. Figure 7c shows the structure until the second box ( i = 2).

Let c(i) denote the cost of the minimum t-monotone matching until the i-th 
box. Let c◦(i) denote the cost of the minimum t-monotone partial matching until 
the i-th box where all the points are matched except the top-right vertex of the i-th 
box, labeled as 2i + 1 . Let c

◦
(i) denote the cost of the minimum t-monotone partial 

matching until the i-th box where all the points are matched except the bottom-right 
vertex of the i-th box, labeled as 2i + 2 . And finally, let c◦

◦
(i) denote the cost of the 

minimum t-monotone partial matching until the i-th box where all the points are 
matched except the top- and bottom-right vertices of the i-th box ( 2i + 1 and 2i + 2 ). 
For the sake of simplicity, we refer by c-costs until the i-th box to the values c(i), 
c◦(i) , c

◦
(i) and c◦

◦
(i).

For the base case, we introduce an artificial 0-th box ending at the edge (1, 2). 
Note that all the internal points of the first slab (if there are any) must be matched 
with 1 and taking into account the combinatorics of using or not the vertical edge 
(1, 2), the computation of the c-costs until the 0-th box can be done in O(p0) time, 
where p0 denotes the number of internal points in the first slab. Denoting by I the 
sum of the weights of the edges connecting 1 with the internal points in the first 
slab, we have:

In the rest of this section we show how to calculate the c-costs until the i-th box 
from the c-costs until the (i − 1)-th box.

The easy case is when the i-th box corresponds to a single-point slab:

(1)

c(0) = I + d(1, 2)

c◦(0) = ∞ (it is impossible matching 2 without matching 1)

c
◦
(0) =

{
I if there are internal points in the first slab,

∞ otherwise

c◦
◦
(0) =

{
0 if there is not internal points in the first slab,

∞ otherwise

(2)

c(i) = min{c◦(i − 1), c(i − 1)} + d(2i + 1, 2i + 2)

c◦(i) = c(i − 1)

c
◦
(i) = ∞ (it does not make sense)

c◦
◦
(i) = c◦(i − 1).

1 A box is composed by a quadrilateral with vertices in alternating colors and the corresponding internal 
points. Note that the vertical lines of the boxes match the slab separator vertical lines.
2 https:// www. natio nalge ograp hic. com/ anima ls/ repti les/ facts/ easte rn- diamo ndback- rattl esnake.

https://www.nationalgeographic.com/animals/reptiles/facts/eastern-diamondback-rattlesnake
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If the i-th box is not single-point slab, then denote the i-th wedge as the triangle cor-
responding the top-left half of the i-th box. Additionally, to simplify the formulae, 
we separate the analysis of the wedges on: considering the internal points of the box 
and without the internal points of the box, as shown in Fig. 7d, e, respectively.

Considering the wedge without internal points (Fig. 7e), we introduce the following 
notation: Let w(i) denote the cost of the minimum t-monotone matching until the i-th 
wedge. Let w◦(i) denote the cost of the minimum t-monotone partial matching until the 
i-th wedge where all the points are matched except the top-right vertex of the i-th box 
( 2i + 1 ). Let w

◦
(i) denote the cost of the minimum t-monotone partial matching until 

the i-th wedge where all the points are matched except the bottom-left vertex of the 
i-th box (2i). And finally, let w◦

◦
(i) denote the cost of the minimum t-monotone partial 

matching until the i-th wedge where all the points are matched except the top-right and 
bottom-left vertices of the i-th box ( 2i + 1 and 2i). By simplicity, we refer by w-costs 
until the i-th wedge to the values w(i), w◦(i) , w

◦
(i) and w◦

◦
(i) . Taking into account the 

combinatorics of using the top edge of the i-th box (2i + 1, 2i − 1) , we can compute the 
w-costs until the i-th wedge from the c-costs until the previous box as follows:

Now, considering the wedge with its internal points (Fig. 7d), we denote the ŵ-costs 
until the i-th wedge as the values ŵ(i) , ŵ◦(i) , ŵ

◦
(i) and ŵ◦

◦
(i) , analogous to w(i), 

w◦(i) , w
◦
(i) and w◦

◦
(i) , respectively, but considering that all the internal points in the 

i-th box (if there is any) are matched to the top-right or the left-bottom corner of the 
i-th box.

To compute the ŵ-costs until the i-th wedge, we need to introduce some addi-
tional notation. Let I(i) be the cost of assigning the internal points in the i-th box in 
a greedy manner, i.e., assigning each point to its nearest neighbor. Let I ↓ (resp. I ↑ ) 
denote the cost of assigning all the internal points to the left-bottom (resp. top-right) 
vertex of the i-th box. Let I ↕ (i) denote the cost of the assignment with minimum cost 
such that the top-right and the left-bottom vertices of the i-th box are both covered by 
the set of internal points. If the set of internal points contains a single point then it is 
matched to both corners (top-right and left-bottom); if it contains more than one point, 
then they are assigned in a greedy manner except maybe one point q which is force-
fully switched from one corner to the other to fulfill the covering of both corners (q 
is the point with minimum cost of switching from one corner to the other). Note that 
I(i) ≤ min

{
I ↑ (i), I ↓ (i), I ↕ (i)

}
 and, in case that making a greedy assignment, both 

corners result covered: I(i) = I ↕ (i).
We are ready to establish the formulae for ŵ . If the i-th box does not contain inter-

nal points then the ŵ-costs coincide with the w-costs. If the box does contain internal 
points then the ŵ-costs can be computed as follows:

(3)

w(i) = c(i − 1) + d(2i + 1, 2i − 1)

w◦(i) = c(i − 1)

w
◦
(i) = min{c

◦
(i − 1), c◦

◦
(i − 1)} + d(2i + 1, 2i − 1)

w◦

◦
(i) = c

◦
(i − 1)
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Finally, having computed the ŵ-costs until the i-th wedge, we only need to consider 
the combinatorics of using the vertical right edge (2i + 1, 2i + 2) or the horizontal 
bottom edge (2i, 2i + 2) of the i-th box to compute the c-costs until here:

Equations on (1), (2), (3), (4) and (5) establish a recurrence to compute progres-
sively via dynamic programming the c-costs until the i-th box. This approach leads 
us to the following result:

Theorem  4.2 The t-monotone many-to-many matching problem can be solved 
in O(n + m) time. Furthermore, the cost of the minimum t-monotone many-
to-many matching is c(k) if the last slab does not contain internal points and, 
min

{
c(k), c

◦
(k)

}
+ J , otherwise, where k is the number of boxes and J is the cost 

of assigning the internal points of the last slab (to the bottom-right vertex of the last 
box).

Proof In a first sweep, from left to right, we can determine the red/blue slabs. In a 
second sweep we can establish the feasible edges, the internal and external points, 
and the boxes with their vertices. With one more sweep we can compute the values 
I(i), I ↓ (i) , I ↑ (i) and I ↕ (i) for every box with internal points.

All these operations can be performed in O(n + m) time.
In O(1) time, we compute the c-costs of the artificial 0-th box by following the 

formula (1). After that, we can progressively compute the c-costs until the i-th box 
for 1 ≤ i ≤ k , where k is the number of boxes in the diagram. If the i-th box is a 
single-point box, the associated c-costs can be computed in O(1) time using (2). 
If it is not, then compute the associated w-costs following (3) in O(1) time. Then, 
using these values, compute the ŵ-costs associated to the i-th box in O(1) time using 
(4), and finally, use (5) to compute the c-costs until the i-th box using the already 

(4)

ŵ(i) = min

⎧⎪⎨⎪⎩

w(i) + I(i)

w◦(i) +min
�
I ↕ (i), I ↑ (i)

�
w
◦
(i) +min

�
I ↕ (i), I ↓ (i)

�
w◦

◦
(i) + I ↕ (i)

ŵ◦(i) = min
�
w◦(i),w◦

◦
(i)
�
+ I ↓ (i)

ŵ
◦
(i) = min

�
w
◦
(i),w◦

◦
(i)
�
+ I ↑ (i)

ŵ◦

◦
(i) = ∞

(5)

c(i) = min

⎧
⎪⎨⎪⎩

ŵ(i) +min {d(2i, 2i + 2), d(2i + 1, 2i + 2)}

ŵ◦(i) + d(2i + 1, 2i + 2)

ŵ
◦
(i) + d(2i, 2i + 2)

ŵ◦

◦
(i) + d(2i, 2i + 2) + d(2i + 1, 2i + 2)

c◦(i) = min
�
ŵ◦(i), ŵ◦

◦
(i)
�
+ d(2i, 2i + 2)

c
◦
(i) = ŵ(i)

c◦
◦
(i) = ŵ◦(i)
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computed ŵ-costs. It will take O(k) time, that is, O(n + m) time, to compute the val-
ues c(k) and c

◦
(k) (needed to apply the formula stated in the claim).

Finally, computing the cost of assigning the internal points of the last slab (to the 
bottom-right vertex of the last box) takes O(pk+1) time where pk+1 denotes the cardi-
nality on the set of internal points in the last slab. Thus, the result follows.   ◻

5  Many‑to‑many matching in a tree

In the above problems, we considered that the set of feasible edges for the matching 
lie on a specific type of graph (a caterpillar forest or a diamondback graph). In this 
section, we assume that such a graph is a generic tree and, for the sake of simplicity, 
with a matching we refer to a many-to-many matching on the tree.

In this section we show how to solve Problem  2.3 in linear time. Consider-
ing that the set of feasible edges in Problem 2.1 conforms a forest (Lemma 3.1), 
the approach of this section can be applied to solve Problem 2.1 in linear time 
as well. However, procedure shown in Sect. 3 use some nice intrinsic properties 
(e.g., the connected components of the feasible edges graph are caterpillar) which 
do not hold for generic trees, allowing to build simpler recurrence formulae for 
Problem 2.1.

Let T be a bichromatic tree of size n + m that we assume to be rooted at a 
node r. Let v be an arbitrary node. Let Tv be the subtree of T rooted at v. Given a 
matching M, we denote by M|Tv the set of edges in M connecting two vertices of 
Tv . Note that v could be matched by M|Tv (i.e., v is matched in M, at least, by one 
of its children in T) or not (i.e., v is matched in M by its parent in T).

Let Mv,0 denote the minimum matching in Tv⧵{v} and let Mv,1 denote the mini-
mum matching in Tv . In the following, we will show how to compute Mv,0 and 
Mv,1 for every v by using the matching sets Mw,0 and Mw,1 , where w is a children 
of v in T.

From now on, assume that the children of a node v are in some sequential 
order. Let Ti

v
 denote the subtree of T formed by v and the subtrees rooted at the 

first i children of v. Extending the previous notation, let Mi
v,0

 and Mi
v,1

 denote 
the minimum matching in Ti

v
⧵{v} and Ti

v
 , respectively. Following this notation, 

Tv = Tc
v
 , where c is the number of children of v in T.

It is easy to prove by contradiction the following result:

Lemma 5.1 Let M be a minimum matching. Let v be an arbitrary node with c chil-
dren ( c = 0 if v is a leaf). If M|Ti

v
 (with 1 ≤ i ≤ c ) matches v then there is no better 

matching than M|Ti
v
 in Ti

v
 . If M|Ti

v
 does not match v, then there is no better matching 

than M|Ti
v
 in the forest Ti

v
⧵{v}.

Let Ci
v,0

 and Ci
v,1

 denote the cost of a minimum matching in Ti
v
⧵{v} and Ti

v
 , 

respectively. Set Cv,0 = Cc
v,0

 and Cv,1 = Cc
v,1

 , where c denotes the number of chil-
dren of v. Note that Cr,1 holds the cost of the minimum matching in T.
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Lemma 5.2 Let v be a node in T and let c denote the number of children of v in T. 
The values Cv,0 and Cv,1 can be computed in O(c) time in a bottom-up fashion using 
the values Cu,0 and Cu,1 of each node u, child of v in T.

Proof Starting by the base case: v is a leaf and we have that Cv,0 = 0 , and Cv,1 = ∞ 
because Tv is formed by a single node and it does not allow a matching of v. In case 
v is an inner node, we compute Ci

v,0
 and Ci

v,1
 ( 1 ≤ i ≤ c ) in a left-right fashion as 

follows.
Let u be the i-th child of v in a left-right ordering and denote by w(v, u) the weight 

of the edge connecting v and u. The following formulae can be easily deduced:

• If i = 1 then: 

• If i > 1 then: 

(6)
C1
v,0

= Cu,1

C1
v,1

= min{Cu,1,Cu,0} + �(v, u).

(7)

Ci
v,0

= C
(i−1)

v,0
+ Cu,1

Ci
v,1

= min

{
min

{
C
(i−1)

v,0
,C

(i−1)

v,1

}
+ �(v, u) +min{Cu,0,Cu,1}

C
(i−1)

v,1
+ Cu,1

Fig. 8  Illustration of the subroutine process(Sv)
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The formulae above allow us to use a linear-time dynamic programming algorithm 
to find the cost of a minimum matching in the subtree in O(c) time, where c is the 
number of children of v.   ◻

To explicitly find that matching, for every node v, we maintain a set Sv containing 
all the children of v matched by v in the minimum matching of Tv . Note that if u is 
the i-th child of v then u ∈ Sv if and only if:

Thus, an optimal matching M could be constructed with the following procedure: 
We start by M = � . For a node v of T, we call process(Sv ) the following subrou-
tine (Fig. 8).

For all children u of v: 

1. if u ∉ Sv , then call process(Su),
2. if u ∈ Sv , set M = M ∪ {(v, u)} and

• if Cu,1 < Cu,0 , then call process(Su),
• if Cu,1 ≥ Cu,0 , then, for every u′ child of u, call process(Su′).

Applying process(Sr ), where r is the root of T, all the vertices are visited once 
and a set of edges corresponding to a minimum matching is obtained. Thus, we 
arrive to the last result of this work:

Theorem  5.3 The Many-to-many matching in a tree problem can be solved in 
O(n + m) time.

6  Conclusions and one open problem

This paper presents some constrained versions of an optimization problem that has 
been considered both in computational geometry and graph theory. For example, the 
problem has been studied in a geometric setting inspired by computational studies in 
musical theory. Given a bichomatic point set S in the plane, the many-to-many point 
matching on S looks for pairing up each point of one color to one or more points of 
the other color and vice versa so that the sum of distances between the paired points 
is minimized.

On the other hand, the problem can also be defined in a graph theoretical frame-
work when a complete bipartite graph G is given and the goal is to find a subset of 
edges of G with minimum total weight such that each vertex of G is an endpoint of 
some edge in the subset. This is named the minimum-weight bipartite edge cover 
problem.

Since the problem is time consuming in the plane, we showed that some con-
strained versions can be solved in linear time if the point set is given ordered from 

Ci
v,1

= min
{
C
(i−1)

v,0
,C

(i−1)

v,1

}
+ �(v, u) +min{Cu,0,Cu,1} (see equation (7)).
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left to right. The constrained versions appear, for example, in the area of melodic 
similarity, where the melodic contour is defined by a set of ordered notes in the 
pitch-time plane. Our restrictions limit the geometric matching rule by considering 
some monotony properties with respect to time, which leads to the set of feasible 
edges for the matching being in a specific type of graph. These restrictions make 
sense in musical similarity where the alignment of one note must not be to another 
far away in time.

We leave as an open problem whether the following variant of the many-to-many 
matching problem can also be solved in linear time.

Problem 6.1 Merged many-to-many matching problem. Given R and B, find a min-
imum-weigh many-to-many matching such that if bi is matched with rj then bi+1 is 
matched with rj′ such that j′ ≥ j . Analogously, if rj is matched with bi then rj+1 is 
matched with bi′ such that i′ ≥ i.

Figure 9 shows the difference between a non-restricted many-to-many matching 
and a merged many-to-many matching. The question is to know whether this prob-
lem can be solved with a subquadratic algorithm.

We include here a quadratic-time approach. Let A[i, j] denote the best matching 
between the sequences b1,… , bi and r1,… , rj . It is easy to see (by definition of this 
constrained matching) that (b1, r1) and (bi, rj) are in the matching. We can also prove 
that:

where �(⋅, ⋅) is the cost function. Note that using the formula above, having at hand 
the values A[i − 1, j − 1] , A[i − 1, j] and A[i, j − 1] , the value of A[i, j] can be com-
puted in O(1) time. Thus, a dynamic programming approach solves the problem in 
O(nm) time.
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