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Two qubits of a W state violate Bell’s inequality beyond Cirel’son’s bound

Adán Cabello*
Departamento de Fı´sica Aplicada II, Universidad de Sevilla, 41012 Sevilla, Spain

~Received 30 May 2002; published 22 October 2002!

It is shown that the correlations between two qubits selected from a trio prepared in aW state violate the
Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state.
Such a violation beyond Cirel’son’s bound is smaller than the one achieved by two qubits selected from a trio
in a Greenberger-Horne-Zeilinger state@A. Cabello, Phys. Rev. Lett.88, 060403~2002!#. However, it has the
advantage that all local observers can know from their own measurements whether or not their qubits belong
to the selected pair.
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I. INTRODUCTION

The Bell inequality@1# proposed by Clauser, Horne, Sh
mony, and Holt~CHSH! @2#, points out that in any local-
realistic theory, that is, in any theory in which the local va
ables of a particle determine the results of local experime
on this particle, the absolute value of a combination of fo
correlations is bound by 2,

uC~A,B!2mC~A,b!2nC~a,B!2mnC~a,b!u<2. ~1!

In inequality ~1!, A anda are two observables taking value
21 or 1 on particlei, and B and b are two observables
taking values21 or 1 on a distant particlej; m andn can be
either21 or 1.

The CHSH inequality~1! is violated for certain quantum
states and certain choices of the observablesA, a, B, andb
@2#. Therefore, the conclusion is that no local-realistic the
can reproduce the predictions of quantum mechanics@1#.

Later on, Cirel’son@3# showed that, according to quantu
mechanics, for any two-qubit systemprepared in a quantum
state, the absolute value of the combination of correlatio
appearing in the CHSH inequality~1! is bound by 2A2
~Cirel’son’s bound!. This bound is also the maximum viola
tion predicted by quantum mechanics for the two-qubit s
glet state~or any other two-qubit Bell state! @2#. Indeed, this
is the violation of Bell’s inequality traditionally tested in re
experiments involving systems of two qubits prepared i
quantum state@4–9#.

However, as shown in Ref.@10#, according to quantum
mechanics the CHSH inequality can be violated beyo
Cirel’son’s bound. The reason is the following. Bell’s in
equalities are derived assuming local realism, without a
mention to quantum mechanics. Therefore, when searc
for violations of a Bell’s inequality, one is not restricted
studying correlations between ensembles of systemspre-
pared in a quantum state; instead, one can study any e
semble of systems, irrespective of whether such an ense
is meaningful in quantum mechanics or not~i.e., irrespective
of whether it can be described by a quantum state or n!.
For instance, one can consider trios of qubits prepared
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certain quantum state and then assume local realism to s
a pair of qubits in each trio, and calculate, using quant
mechanics, the correlations between these two qubits.
whole procedure makes sense and can be translated into
experiments as long as one can obtain the required cor
tions and probabilities for the two selected qubits from t
data obtained in a real experiment with three qubits prepa
in a quantum state.

In Ref. @10#, a violation of the CHSH inequality~1! be-
yond Cirel’son’s bound is presented for certain subensem
of two qubits of an ensemble of trios prepared in
Greenberger-Horne-Zeilinger~GHZ! state@11#. In this paper,
we shall investigate whether a violation beyond Cirel’so
bound could be found for pairs of qubits selected from tr
prepared in aW state@12#.

The structure of the paper is as follows. In Sec. II, we w
find that, for a certain choice of observables, theW state
violates the CHSH inequality~1! beyond Cirel’son’s bound.
The observables used in Sec. II do not provide the maxim
achievable violation using aW state. In Sec. III, we explain
the reason behind this choice of observables. In addition,
violation in Sec. II is smaller that the one obtained in R
@10# using a GHZ state. However, in Sec. IV, we will see th
there are some reasons that make the violation provided
the W state more interesting than that provided by the G
state. Finally, in Sec. V, we discuss how to obtain the
quired probabilities for the two selected qubits from the d
obtained in a real experiment with three qubits.

II. THE W STATE VIOLATES THE CHSH INEQUALITY
BEYOND CIREL’SON’S BOUND

Let us consider three distant qubits 1,2,3, prepared in
W state

uW&5
1

A3
~ u122&1u212&1u221&), ~2!

whereszu6&56u6&. For each three qubits prepared in th
W state~2!, we are going to concentrate our attention ontwo
of them, namely,those two in which, if we had measuredsz ,
we would have obtained the result21. These two qubits will
be called i and j hereafter, while the corresponding thir
qubit ~the one in which, if we had measuredsz , we would
©2002 The American Physical Society14-1
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have found the result~1! will be called k. In quantum me-
chanics, the result of measuringsz is not predefined and
therefore this prescription for choosing pairs is meaningle
However, the prescription makes sense in a local-reali
theory.

For reasons that will be explained in Sec. III, we are
terested in the correlations when we chooseA5Zi , a5Xi ,
B5Zj , andb5Xj , whereZq andXq are the spin of qubitq
along thez and x directions, respectively. In addition, th
particular CHSH inequality~1! we are interested in is the on
in which m5n5xk , wherexk is one of the possible results
21 or 1 ~although we do not know which one!, of measur-
ing Xk . With this choice we obtain the following CHSH
inequality:

uC~Zi ,Zj !2xkC~Zi ,Xj !2xkC~Xi ,Zj !2C~Xi ,Xj !u<2,
~3!

which holds for any local-realistic theory, regardless of t
particular value, either21 or 1, ofxk .

The next step is to use quantum mechanics to calcu
the four correlations appearing in inequality~3! for the sub-
ensemble of two qubitsi and j taken from three qubits pre
pared in theW state~2!.

For the subensemble of two qubitsi and j defined above,

C~Zi ,Zj !51, ~4!

because, for theW state~2!,

PZ1Z2Z3
~1,21,21!5

1

3
, ~5!

PZ1Z2Z3
~21,1,21!5

1

3
, ~6!

PZ1Z2Z3
~21,21,1!5

1

3
, ~7!

wherePZ1Z2Z3
(1,21,21) means the probability of qubit 1

giving the result 1, and qubits 2 and 3 giving the resu
21 when measuringsz on all three qubits.

By the definition of qubitsi and j,

C~Zi ,Xj !52xk , ~8!

because, for theW state~2!,

PZ1X2X3
~21,1,21!1PZ1X2X3

~21,21,1!50, ~9!

PX1Z2X3
~1,21,21!1PX1Z2X3

~21,21,1!50, ~10!

PX1X2Z3
~1,21,21!1PX1X2Z3

~21,1,21!50. ~11!

Analogously, using Eqs.~9!–~11!,

C~Xi ,Zj !52xk . ~12!

Finally, for theW state~2!,
04211
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PX1X2X3
~1,1,1!5

3

8
, ~13!

PX1X2X3
~21,21,21!5

3

8
, ~14!

PX1X2X3
~1,1,21!5

1

24
, ~15!

PX1X2X3
~21,21,1!5

1

24
, ~16!

PX1X2X3
~1,21,1!5

1

24
, ~17!

PX1X2X3
~21,1,21!5

1

24
, ~18!

PX1X2X3
~21,1,1!5

1

24
, ~19!

PX1X2X3
~1,21,21!5

1

24
. ~20!

From Eqs.~13! and ~14!, the contribution of casesx15x2
5x351 is cancelled by the contribution of casesx15x2
5x3521; from Eqs. ~15! and ~16!, the contribution of
casesx15x252x351 is cancelled by the contribution o
casesx15x252x3521, etc. Therefore, irrespective o
whetheri and j are qubits 1 and 2, or 1 and 3, or 2 and
we conclude that

C~Xi ,Xj !50. ~21!

Correlations~4!, ~8!, ~12!, and ~21! violate the CHSH
inequality~3!. The violation~3 vs 2! goes beyond Cirel’son’s

bound (2A2).

III. WHY X AND Z?

A particular type of local-realistic theories are those
which the only local experiments whose results are assu
to be predetermined are those which satisfy the criterion
‘‘elements of reality’’ proposed by Einstein, Podolsky, an
Rosen~EPR!: ‘‘If, without in any way disturbing a system
we can predict with certainty (i.e., with probability equal t
unity) the value of a physical quantity, then there exists
element of physical reality corresponding to this physic
quantity’’ @13#.

As can be easily checked, the violation reported in Sec
is not the maximal violation of the CHSH inequality~3! for
two qubits in theW state~2!. For instance, considering loca
spin observables on planex-z and assumingA5B and a
5b, we find a maximum violation of 3.046@by choos-
ing A5cos(0.628)sx2sin(0.628)sz and a5cos(1.154)sx
1sin(1.154)sz]. Why then have we chosenA5Zi , a5Xi ,
B5Zj , andb5Xj? The reason is that these observables
not only local observables but, for theW state~2!, they also
satisfy EPR’s criterion of elements of reality.
4-2
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From Eqs.~5!–~7!, it can be immediately seen thatz1 , z2,
and z3 are elements of reality, since any of them can
predicted with certainty from spacelike separated meas
ments ofsz on the other two qubits. In addition, from Eq
~9!–~11!, it can easily be seen that, ifzi521 then, with
certainty,xj5xk . Therefore, ifzi521, then by measuring
xj (xk) one can predictxk (xj ) with certainty. Therefore, if
zi521, thenxj andxk are elements of reality. Ifzi51 then,
using Eqs.~5!–~7!, it can immediately be seen thatzj5
21. Therefore, following the previous reasoning,xi andxk
are elements of reality~althoughxi could have ceased to b
an element of reality after measuringsz on particle i ). In
conclusion, for trios of qubits in theW state~2!, z1 , z2 , z3 ,
x1 , x2, andx3 are EPR elements of reality and thus, acco
ing to EPR, they should have predefined values21 or 1
before any measurement.

The violation of the CHSH inequality~3! presented in
Sec. II is thus not only a proof of the impossibility of loc
hidden variables, but also proves a more powerful result:
apparently mild condition proposed by EPR is inconsist
with quantum mechanics.

IV. WHY W?

As was shown in Ref.@10#, two qubits belonging to a
three-qubit system in a GHZ state can provide a higher v
lation ~4 vs 2, instead of 3 vs 2! of the CHSH inequality~3!,
even using observables that satisfy EPR’s criterion of e
ments of reality. Why then use aW state?

One reason is because a test of the violation of Be
inequalities beyond Cirel’son’s bound could be achieved
practice in the near future. Sources ofW states based on
parametric down-converted photons are now available
real experiments@14# and some new proposals to prepareW
states via cavity quantum electrodynamics have rece
been presented@15#.

Another reason is because this violation beyo
Cirel’son’s bound is, in one sense, surprising. TheW state is
the genuine three-qubit entangled state whose entangle
has the highest robustness against the loss of one qubit@12#.
In particular, from a single copy of the reduced density m
trix for any two qubits belonging to a three-qubitW state,
one can always obtain by means of a filtering measureme
state that is arbitrarily close to a Bell state. Therefore, o
might think that any two qubits belonging to aW state will
not lead to a higher violation of the CHSH inequality~3!
than that for two qubits in a Bell state, and thus it is
interest to realize that this is not the case.

There is, however, another subtler reason for preferr
theW state instead of the GHZ state for a test of violation
Bell’s inequalities beyond Cirel’son’s bound. Any test of th
kind requires a prescription for selecting a pair of qub
from each trio prepared in a quantum state. Such a pres
tion assumes local realism. In the violation of the CHS
inequality~3! presented in Sec. II, this prescription is simp
qubitsi andj are those two in which, if we had measuredsz ,
we would have obtained the result21. However, in the
violation of the CHSH inequality~3! using a GHZ state de
scribed in Ref.@10#, the prescription is not so simple: ther
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qubits i and j are either those two in which, if we had me
suredsz , we would have obtained the result21, or any
two, if we had obtained the result 1 for all three qubits if w
had measuredsz . This means that, for theW state, any local
observer could know whether or not his qubit belonged
the selected pair just by measuringsz , while for the GHZ
state, the fact that whether or not a qubit belongs to
selected pair cannot be decided with certainty from a m
surement on that qubit, but requires knowledge of the res
of measurements on the other two qubits. From the pers
tive of local realism, for theW state, one of the elements o
reality carried by each qubit determines whether or no
belongs to the selected pair; while for the GHZ state, t
information is not local since it is distributed among dista
elements of reality.

V. EXPERIMENTAL CH INEQUALITY

The result in Sec. II opens the possibility of using sourc
of three-qubitW states@14,15# to experimentally test the
CHSH inequality. The main advantage of an experiment l
this ~or that proposed in Ref.@10#! is that it will admit a
direct comparison with the dozens of previous experime
with two qubits @4–9# and thus goes beyond any previo
experiments to test local realism using sources of three
bits @16,17# inspired by proofs of Bell’s theorem withou
inequalities @11# or by Bell’s inequalities for three qubits
@18,19#.

However, in any real experiment using three qubits,
experimental data consist of the number of simultaneous
tections by three detectorsNABC(a,b,c) for various observ-
ablesA, B, andC. This number is assumed to be proportion
to the corresponding joint probability,PABC(a,b,c). There-
fore, in order to make inequality~3! useful for real experi-
ments, it would be convenient to translate it into the la
guage of joint probabilities.

Taking into account that

PZiZj
~21,21!5

1

4
@12C~Zi !2C~Zj !1C~Zi ,Zj !#,

~22!

PZiXj
~21,2xk!5

1

4
@12C~Zi !2xkC~Xj !1xkC~Zi ,Xj !#,

~23!

PXiZj
~2xk ,21!5

1

4
@12xkC~Xi !2C~Zj !1xkC~Xi ,Zj !#,

~24!

PXiXj
~xk ,xk!5

1

4
@11xkC~Xi !1xkC~Xj !1xk

2C~Xi ,Xj !#,

~25!

whereC(Zi) is the mean of the results of measuringsz on
qubit i, and assuming physical locality@i.e., assuming that
C(Zi) is independent of whethersz or sx is measured on
qubit j, that is, assuming that the value ofC(Zi) is the same
in Eqs.~22! and~23!, etc.#, the CHSH inequality~3! between
correlations can be transformed into a Clauser-Horne~CH!
inequality @20# between joint probabilities,
4-3
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21<PZiZj
~21,21!2PZiXj

~21,2xk!2PXiZj
~2xk ,21!

2PXiXj
~xk ,xk!<0. ~26!

As can be easily checked, the boundsl of the CHSH inequal-
ity ~3! are transformed into the bounds (l 22)/4 of the cor-
responding CH inequality~26!. Therefore, the local-realistic
bound in the CH inequality~26! is 0 and Cirel’son’s bound is
(A221)/2'0.207.

For qubitsi and j of a system in theW state~2!,

PZiZj
~21,21!51, ~27!

PZiXj
~21,2xk!50, ~28!

PXiZj
~2xk ,21!50, ~29!

PXiXj
~xk ,xk!5

3

4
. ~30!

Therefore, probabilities~27!–~30! violate the CH inequality
~26!. Such a violation~0.25 vs 0! is beyond the correspond
ing Cirel’son’s bound~0.207!.

On the other hand, since we do not know which ones
qubits i and j, we cannot obtain the four joint probabilitie
~27!–~30! just by performing measurements on two qubi
Therefore, we must show how the joint probabilities of q
bits i andj are related to the probabilities of the three qub

As can easily be seen from the definition of qubitsi andj,

PZiZj
~21,21!5PZ1Z2Z3

~1,21,21!1PZ1Z2Z3
~21,1,21!

1PZ1Z2Z3
~21,21,1!

1PZ1Z2Z3
~21,21,21!. ~31!

Therefore, in order to experimentally obtainPZiZj
(21,

21), we must measure the four probabilities in the rig
hand side of Eq.~31!. In theW state~2!, the first three prob-
abilities in the right-hand side of Eq.~31! are expected to be
1/3 and the fourth is expected to be zero.

On the other hand,PZiXj
(21,2xk) and PXiZj

(2xk ,21)
are both less than or equal to
s

-

A

04211
re
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PZ1X2X3
~21,1,21!1PZ1X2X3

~21,21,1

1PX1Z2X3
~1,21,21!1PX1Z2X3

~21,21,1!

1PX1X2Z3
~1,21,21!1PX1X2Z3

~21,1,21!.

~32!

Therefore, in order to experimentally obtainPZiXj
(21,

2xk) and PXiZj
(2xk ,21), we must measure~using three

different setups! all six probabilities in sum~32!. In the W
state ~2!, each of these six probabilities is expected to
zero.

Finally,

PXiXj
~xk ,xk!5PX1X2X3

~1,1,1!1PX1X2X3
~21,21,21!.

~33!

Therefore, in order to experimentally obtainPXiXj
(xk ,xk),

we must measure the two probabilities in the right-hand s
of Eq. ~33!. In theW state~2!, each of them is expected to b
3/8.

VI. CONCLUSIONS

Two qubits selected from a trio prepared in aW state
violate the CHSH inequality, or the corresponding CH i
equality, more than two qubits prepared inany quantum
state. Such violations beyond Cirel’son’s bound are sma
than those achieved by two qubits selected from a trio i
GHZ state@10#. However, for theW state the argument is
simpler, since all local observers can know from their ow
measurements whether or not their qubits belong to the
lected pair.

The importance of these arguments relies on the fact
they suggest how to use sources of three-qubit quantum
tangled states to experimentally reveal violations of the
miliar two-qubit Bell inequalities beyond those obtained u
ing sources of two-qubit quantum states.
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