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Magnetic switching of spin-scattering centers in Dresselhaus [110] circuits
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Spin carriers subject to Dresselhaus [110] (D110) spin-orbit coupling (SOC) gather null spin phases in closed
circuits, contrary to usual Rashba and Dresselhaus [001] SOC. We show that D110 spin phases can be activated
in square circuits by introducing an in-plane Zeeman field, where localized field inhomogeneities act as effective
spin-scattering centers. Our simulations show rich interference patterns in the quantum conductance, which
work as maps for a geometric classification of the propagating spin states. We also find that disorder facilitates
low-field implementations.
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I. INTRODUCTION

Spin-orbit coupling (SOC) in two-dimensional electron
gases (2DEG) [1] is a strategic resource for quantum elec-
tronics and spin-based technologies [2–5]. The cases of
Rashba [6] and Dresselhaus [001] [7] SOC in zincblende
III-V compound semiconductor quantum wells have been
discussed extensively in the literature over the last decades.
Although they belong to different symmetry classes, both
Rashba and Dresselhaus [001] SOC present in-plane effec-
tive field textures exploited in, e.g., Aharonov-Casher (AC)
spin interferometry [8–20] and the manipulation of geometric
spin phases in electronic transport [11,17,21–23] by electrical
control of the corresponding SOC strengths [18,24,25]. By
contrast, Dresselhaus [110] (D110) SOC [7] has received rel-
atively little attention (with some notable exceptions [1,4,26–
32]). However, D110 offers a unique feature of practi-
cal interest: an effective field texture perpendicular to the
2DEG’s plane. Such a robust symmetry facilitates the devel-
opment of a so-called persistent spin helix (PSH) [31,33,34]
and the corresponding suppression of spin relaxation [27],
spin dephasing [35], spin Hall effect [36], and weak an-
tilocalization [26] for conduction electrons. One additional
consequence of utmost importance is the absence of AC in-
terference in D110 systems, as in any PSH. This is true not
only for III-V compound semiconductor 2DEGs but also for
group III and IV monochalcogenide monolayers. Moreover,
D110 has been proposed for realizing topological phases in
noncentrosymmetric superconductors that could host the cel-
ebrated (and elusive) Majorana modes [32].

In this paper, we discuss D110-based spin interferometry
and control in mesoscopic circuits of square shape. Due to
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its symmetry properties, D110 alone does not manifest any
sign of AC interference in electronic transport. We show that
the introduction of an additional in-plane Zeeman field acti-
vates complex spin dynamics leading to the development of
spin phases and interference effects that modulate the quan-
tum conductance. In polygonal circuits, the interplay between
D110 and Zeeman fields creates effective-field discontinuities
localized at the vertices that produce spin scattering. This
results in field-dependent phase differences between counter-
propagating spin carriers leading to rich interference patterns.
The effect is remarkable, as it enables the magnetic switch-
ing of spin-scattering centers in D110 circuits (difficult to
achieve with other SOC classes) and its characterization by
means of transport experiments. Furthermore, we show that
this result is robust against disorder and realizable at low
field strengths thanks to the Al’tshuler-Aronov-Spivak (AAS)
effect [37].

Here, we focus on the modeling of square D110 circuits
built on 2DEG lodged in III-V semiconductor heterostruc-
tures. Other geometries may work as well; still, we choose
square circuits based on its simple experimental realiza-
tion, modeling, numerical simulation, and interpretation.
Experiments have shown that rich conductance patterns
arise in Rashba squares [38–40]. Moreover, one-dimensional
(1D) models have been applied with success to Rashba
squares [41–45], resulting in excellent agreement with the
experimental observations. These models are especially suited
to large loop arrays [13,17,18,22,38,40], where higher slow-
propagating modes are more likely to decohere than lower
fast-propagating ones. The surviving interference observed in
experiments with loop arrays is well described by the physics
of one single (quasi-1D) orbital mode propagating along a
single mesoscopic loop [17,18,22,23,40].

II. MODEL

We consider a 1D square circuit contained in the xy plane
consisting of conducting segments of length L subject to
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FIG. 1. (a) Square circuit subject to D110 SOC. The arrows
represent the SOC field experienced by CCW propagating spin car-
riers. The field lies in the vertical direction, pointing up or down
depending on the carriers’ py momentum at each circuit’s section.
For CW propagating carriers, the SOC field inverts its sign due
to time-reversal symmetry. (b) The introduction of a Zeeman field
activates discontinuities in the effective-field direction localized at
vertices 2 and 4.

D110 SOC and Zeeman coupling, see Fig. 1. Each segment
connects vertices u and v (u, v = 1, . . . , 4) and is oriented
along the direction γ̂ = (cos γ , sin γ , 0), from u towards v.
The spin-carrier dynamics along each segment is given by the
Hamiltonian [1,4,29–31]:

Ĥvu = p2

2m∗ + β

h̄
pyσz + μB · σ, (1)

where p is the carrier’s linear momentum along γ̂ , β is the
(renormalized) linear D110 SOC strength, m∗ the carrier’s
effective mass, μ is the magnetic moment, and σ the vector
of Pauli matrices. Notice that the D110 SOC contribution—
second term on the right-hand side (r.h.s.) of Eq. (1)—appears
as a momentum-dependent magnetic field of magnitude
(β/h̄μ)py coupled to the spin along the z direction. Impor-
tantly, since py = p sin γ , the orientation of each segment
modulates the amplitude and sign of the D110 SOC strength.
This term establishes a PSH [31,33,34]. There is experimental
evidence [46] of a dominating linear-in-momentum contribu-
tion to D110 SOC.1 Still, higher-order p contributions can be
incorporated by introducing a renormalized β in Eq. (1) [4].
This suggests the possibility of controlling the D110 SOC
strength by electrical means, similar to what was recently
found in Dresselhaus [001] systems [18,25]. The in-plane
Zeeman field, B = Bb̂α , with b̂α = (cos α, sin α, 0), is com-
mon to all segments. Hence, the effective field undergone by a
spin-carrier traveling either clockwise (CW) or counterclock-
wise (CCW) around the square loop resembles a stroboscopic
Rabi driving, namely, a constant Zeeman field coexisting with
a normal D110 component that takes a sequence of discrete
values, see Fig. 1(b). Notice that the Zeeman field undermines
the PSH established by the D110 SOC field.

The square circuit of Fig. 1 is oriented such that, starting
from node 1, the directional angles are γ = {−π

4 , π
4 , 3π

4 , 5π
4 }.

This choice maximizes the amplitude of the D110 SOC field.
The resulting D110 field texture for a spin carrier traveling

1Notice that the lesser higher-order contribution proportional to
p3 sin 3ϕ σz [4], with ϕ the polar angle with respect to the x axis,
does not compromize the PSH since it acts along the z axis as well
as the linear contribution in Eq. (1).

FIG. 2. Tight-binding simulation of the quantum conductance (in
units of e2/h) for 1D square loops corresponding to (a) a symmetric
circuit in the ballistic regime and (b) a disordered circuit.

CCW is shown in Fig. 1(a). It represents a field oscillating
along the z direction, fixing a global spin quantization axis.
Under this circumstance, the spin phase gathered by a carrier
in a round trip is zero. Figure 1(b) shows how the introduction
of an external in-plane Zeeman field induces sudden changes
in the direction of the effective field at nodes 2 and 4, destroy-
ing the global quantization axis. This favors the development
of complex spin dynamics and phases due to the misalignment
of the local spin quantization axis at different segments. In this
way, vertices 2 and 4 act as effective spin-scattering centers.
In order to maximize interference effects, in the following
we study quantum transport between vertices 1 and 3. Any
other choice would undermine spin-dependent signatures (in
particular, symmetry dictates that flat interference patterns are
expected for transport between nodes 2 and 4). Still, misalign-
ments up to 30◦ between the leads and the crystallographic
axis x are acceptable. See Appendix A.

To study the quantum conductance as a function of D110
and Zeeman fields we implement a tight-binding model of
the square loop and use a Green’s function formalism. This
permits the inclusion of contact leads and accounts for all
possible propagation paths contributing to quantum transport
between contacts (see Appendix B). Following the Landauer-
Büttiker formalism [47], the zero-temperature conductance is
given by G = (e2/h)T , with T the quantum transmission be-
tween contacts evaluated at the Fermi energy, EF. Notice that
a suitable description of the experimental conditions requires
an energy average of the computed conductance to discard
resonances due to finite-size effects. We focus on the semi-
classical limit in which the Fermi wavelength of the electron,
λF = 2πk−1

F , with kF = √
2m∗EF the Fermi momentum, is

much smaller than the perimeter P = 4L, i.e., λF � P [11,22].

III. RESULTS

In Fig. 2 we show the computed conductance as a function
of kDP ≡ (βm∗/h̄2)P and kZP ≡ (μBm∗/h̄2kF)P. These pa-
rameters are chosen to coincide with the spin phases gathered
by a spin carrier propagating along a straight quantum wire of
length P oriented along the y axis due to the action of the D110
and Zeeman fields, respectively, with a flight time Pm∗/h̄kF.
Figure 2(a) shows results for a symmetric square identified
with ballistic transport through a regular array of square loops.
Notice, however, that a typical sample consists of hundreds of
loops, so that a more realistic description of the experimental
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conditions requires a self-averaging over disorder realizations
(modeled here by introducing segments of fluctuating lengths
taken from a random distribution). We plot the corresponding
tight-binding results in Fig. 2(b).

Our numerical simulations show that spin interference
effects appear as periodic patterns in the quantum conduc-
tance over a wide range of field strengths. However, here
we focus our attention on relatively low kZP and kDP val-
ues, according to the limited field strengths accessible in
experiments [22,40]. In both cases—ballistic, Fig. 2(a), and
disordered, Fig. 2(b)—we observe that the coexistence of
D110 and Zeeman fields is essential for the emergence of
spin interference effects: D110 or Zeeman fields alone do
not imprint any relevant spin phase contributing to interfer-
ence due to the existence of global spin quantization axes
(along ẑ and b̂α , respectively), so that the conductance is spin
independent.

In contrast, the interplay between D110 and Zeeman fields
produces discontinuities in the direction of the local spin-
quantization axis at vertices 2 and 4, Fig. 1(b), that turn
on spin-scattering processes and spin phases contributing to
interference. When both fields are comparable in magnitude,
spin interference leads to a periodic series of lobes corre-
sponding to minimum, Fig. 2(a), or maximum, Fig. 2(b),
conductance. Notice that disordered circuits display split
lobes with respect to the ballistic case, with a periodicity
of order 2

√
2/3π along the diagonal kDP = kZP. The lobe

splitting is a manifestation of the AAS effect [37] due to
dominant time-reversed interfering paths in disordered loops,
also related to weak (anti)localization in disordered thin lay-
ers [48,49]. This has dramatic consequences for experimental
verification, since it allows for detection of active field discon-
tinuities for 50% lower field magnitudes if one focuses on the
first split lobe.

In-plane magnetic fields of 2.5T lead to kZP ≈ 2π in
square loops with perimeter P = 2.8 µm built on 2DEGs
lodged in InGaAs quantum wells (QW) [40]. Moreover, in
single-mode QWs of width w one can approximate β ≈
γD(π/w)2 [29], with γD the bulk-inversion asymmetry co-
efficient running from 11 eVÅ3 in GaAs and InGaAs [50]
to 490 eVÅ3 in InSb [51]. The QWs can be as narrow as
5–10 nm [25,29]. Moreover, the carriers’ effective mass m∗
runs from 0.014 in InSb to 0.023 in InAs, 0.041 in InGaAs,
and 0.067 in GaAs (in units of the electron mass m0) [1]. To
be conservative, for square loops with P = 2.8 µm built on
a w = 10 nm InGaAs QW we find kDP ≈ π . These values
could be tuned on the same sample by building arrays of
square loops with different perimeter P, to be tested in trans-
port experiments. The electrical tuning of the renormalized β

(through cubic terms) can also contribute with a tuning range
proportional to γD [18,25].

We point out that the interference patterns shown in Fig. 2
for D110 squares are essentially different from those reported
in Ref. [40] for Rashba squares. There, the Rashba SOC lead
to AC interference patterns subject to additional modulation
by an in-plane Zeeman field (with lobes centered on the
Rashba axis). Here, instead, no AC interference arises as a
consequence of D110 SOC: both D110 and Zeeman fields are
necessary for the emergence of interference patterns (with no
lobes on the D110 axis).

FIG. 3. (a) Direct paths, V+ and V−, and (b) time-reversed paths,
U+ and U−, for a square loop. (c) Quantum conductance G1 from
direct paths, corresponding to the ballistic case of Fig. 2(a). (d) Quan-
tum conductance G2 from time-reversed paths, applicable to the
disordered case of Fig. 2(b). The dashed lines indicate field settings
such that U± = I, also defining winding-number transitions for the
spin states. We show sectors with ω = 1, 3, 5, and 7. The ω is
undefined for vanishing Zeeman or D110 fields. All conductances
are in units of e2/h.

Finally, the conductance shows no dependence on the angle
α, namely, the results of Figs. 2(a) and 2(b) are valid for any
orientation of the in-plane Zeeman field (see Appendix C for
a demonstration).

IV. DISCUSSION

To gain further physical insight on the exact numerical
results presented above, we make use of a 1D model that cap-
tures the spin dynamics along the loop, disregarding orbital
backscattering at the vertices [40,44]. The solutions of the 1D
Schrödinger equation along a segment based on Eq. (1) are
plane waves such that the spinor wave function propagates
from vertex u towards vertex v along the direction γ̂ as

|ψ (�)〉 = e−ikF�e−ikD� sin γ σz−ikZ�b̂α ·σ |ψ (0)〉, (2)

where � parametrizes the distance from vertex u, with � = L
at vertex v. The prefactor kF� corresponds to the kinetic phase
of the carrier associated to the charge dynamics, while the
remaining factors represent the spin phase due to spin pre-
cession in the presence of D110 and Zeeman fields. Notice
that the D110 SOC field inverts its sign for counterpropagating
carriers. Indeed, since γ̂ points from v to u, the sign reversal
of the D110 contribution is made explicit in Eq. (2) by noting
that sin(γ + π ) = − sin γ .

According to Eq. (2), the spin evolution along a full seg-
ment is given by the spin rotation operator:

Rvu = exp[−ikDL sin γ σz − ikZLb̂α · σ]. (3)

By using the labeling shown in Figs. 3(a) and 3(b), we
define the spin evolution operators U+ = R14R43R32R21,
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U− = R12R23R34R41, V+ = R32R21, and V− = R34R41, with the
subindex + (−) indicating CCW (CW) propagation. The
unitary U± represent full round trips with origin in vertex
1, whereas V± correspond to direct paths from vertex 1 to
vertex 3. We resort again to the Landauer-Büttiker formal-
ism and obtain the conductance, G = (e2/h)T , by computing
the transmission T for two different dominating interference
processes. In the first case, T is computed from the inter-
ference between the direct paths V+ and V−, see Fig. 3(a).
This contribution is dominant for geometries preserving a
twofold reflection symmetry along the axis connecting the
contact leads. It requires symmetric and clean samples as, e.g.,
the ballistic ones discussed in Fig. 2(a). In the second case, the
transmission is computed as T = 2 − R after noting that the
reflection coefficient R follows from the interference between
paths U+ and U−, see Fig. 3(b). This contribution dominates in
disordered samples, as those discussed in Fig. 2(b), since U+
and U− describe the spin evolution along time-reversed paths.

Figures 3(c) and 3(d) show the conductances G1 and G2

calculated from direct and time-reversed path contributions,
respectively, as a function of kZP and kDP. We find that these
lower-order semiclassical models reproduce very well the
fully quantum numerical results of Fig. 2 for the ballistic (G1)
and disordered (G2) cases. In particular, the agreement be-
tween the disordered tight-binding simulations, Fig. 2(b), and
the results from time-reversed path contributions, Fig. 3(d),
demonstrates that the lobe splitting has its origin in the AAS
effect.

Moreover, an inspection of U± unveils relevant geometric
characteristics of the spin states. We find that U± reduces
to the SU(2) identity σ0 whenever k̃P = 2nπ , with k̃ =√

k2
Z + k2

D/2 and n integer. Notice that the carriers gather no
net spin phase in a full round trip for these particular field set-
tings. The condition defines a series of lines that split the lobes
in Figs. 3(c) and 3(d). Interestingly, we find that such lines
also define topological transitions for the textures displayed
by the spin modes |�(�)〉 in the Bloch sphere (with |�(0)〉
an eigensolution of U±). This is demonstrated by defining the
winding number ω around the Zeeman-field axis b̂α as

ω = 1

2π

∫ P

0
d�

(
n̂ × dn̂

d�

)
· b̂α, (4)

where n̂(�) is the normalized projection of the spin texture
ŝ(�) = 〈�(�)|σ|�(�)〉 on the plane orthogonal to b̂α (see
Appendix D for further details). We find that the spin states
organize in sectors with definite odd ω, with only one single
lobe per sector in Fig. 3(d). This finding suggests that the
interference pattern in the quantum conductance can work as
a map for the geometric characterization of the spin states.

V. CONCLUSIONS AND OUTLOOK

We show that the combined action of D110 SOC and
Zeeman fields is a resourceful tool for the manipulation of
spin carriers in quantum circuits. This is demonstrated in
square circuits as a proof of concept, though other geome-
tries may work as well. When either field dominates over the
other, transport is spin independent (differing from previous
results with Rashba squares displaying AC interference [40]).

By contrast, the application of D110 and Zeeman fields of
similar magnitude turns on effective spin-scattering centers
that trigger complex spin dynamics and the development of
spin phases modulating quantum transport. The resulting in-
terference pattern in the conductance works as a guide through
the geometry of the propagating spin states. Remarkably, the
presence of disorder facilitates the experimental realization in
loop arrays at relatively low field strengths due to the AAS
effect. This also provides a way to determine the magnitude
of the D110 SOC strength in a 2DEG. Our results provide
crucial information about the action of D110 SOC fields on
spin carriers and show how spin dynamics can be activated in a
controlled fashion, demonstrating a potential for applications
in spintronics and spin-based quantum technologies.

We further notice some alternative implementations. Sim-
ilar effects could be found in usual Rashba and Dresselhaus
[001] square circuits (with in-plane effective SOC fields)
provided that a PSH is established by setting equal SOC
strengths [4]. This, however, has the disadvantage of re-
quiring a fine tuning of the SOC fields (contrary to D110
circuits where the PSH is built in). Moreover, group-III metal-
monochalcogenide monolayers such as GaSe and GaS display
threefold symmetric, cubic-in-momentum D110 [52], which
could be optimally exploited by using, e.g., triangular or
hexagonal circuits. Recently, it has been suggested [53] that
group-IV monochalcogenide MX monolayers (M = Sn or Ge
and X = S, Se, or Te) develop D110 PSHs originated by
in-plane ferroelectricity that can be controlled electrically,
appearing as possible platforms. An interesting alternative
would be electron spin resonance (ESR) experiments in D110
zigzag ballistic channels instead of D110 square loops [54].
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APPENDIX A: SPIN DYNAMICS
IN OTHER CONFIGURATIONS

Given the orbital anisotropy of the D110 spin-orbit term,
the orientation of the sample with respect to the crystal-
lographic axis affects the results. Here we focus on the
dependence with the angle of orientation, θ , of the conduc-
tances G1 and G2 obtained using the spin-rotation model
presented in the main text. Figures 4(a)–4(d) and 4(e)–4(h)
show results for G1 and G2, respectively, corresponding to θ =
{0, π/6, π/3, π/2} as a function of the Zeeman and D110
strengths. The strongest modulation is obtained for θ = 0 with
contacts in vertices 1 and 3 (sharing the same y coordinate),
Figs. 4(a) and 4(e), which corresponds to the configuration
studied in the main text. As θ grows, interference contrast
decreases. For θ = π/2, Figs. 4(d) and 4(h), the interference
disappears.

The sharp difference between the θ = 0 and θ = π/2 cases
is a consequence of the D110 strength being proportional to
py. Following Eq. (3) of the main text the spin evolution along
a length L and orientation γ segment is given by the unitary
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FIG. 4. Quantum conductance G1 [G2] for sample orientation angle: (a) [(e)] θ = 0, i.e., the main-text configuration, (b) [(f)] θ = π/6,
(c) [(g)] θ = π/3, and (d) [(h)] θ = π/2. Insets: Our semiclassical model considers spin carriers propagating along paths starting in one red
spot and ending in the opposite one for G1 or, for G2, starting and ending at the red spot. All conductances are in units of e2/h.

Rvu = exp[−i(kDL sin γ ẑ + kZLx̂) · σ] with the Zeeman field
along the x axis. Having nonzero weight in both factors is
essential for the transformations on different segments being
noncommutative, leading to phase differences for different
traveled paths. For the conductance G1 the interference is
between the two direct paths from vertex 1 to vertex 3 [see
V± in Fig. 3(a)]: either via vertex 2 or via vertex 4. For sample
orientation θ = 0 the first path (V+) is defined by the segment
orientations γ = {−π/4, π/4}, whereas the second (V−) is
defined by γ = {π/4,−π/4}. This leads to sin γ = ±1/

√
2

and phase differences depending on the particular values of
kD and kZ. This configuration maximizes the phase differ-
ences and the amplitude of the interference pattern. On the
other hand, for sample orientation θ = π/2, as the contacted
vertex 1 and 3 become vertically aligned, the first path has
γ = {π/4, 3π/4} and the second path has γ = {3π/4, π/4}
with sin γ = 1/

√
2 in all cases. This means that both paths

produce an identical spin transformation, leading to construc-
tive interference for the quantum transmission from vertex
1 to vertex 3, resulting in maximum conductance for any
value of kD and kZ. An analogous analysis can be extended
to explain that for θ = π/2 the conductance G2 is minimized
independently on kD and kZ: resulting from an identical se-
quence of sin γ values for both interfering paths generating
constructive interference of the return transmission to vertex
1 [see time-reversal paths U± in Fig. 3(b)]. On the other
hand, for θ = 0, the two paths relevant for G2 have different
sequences of sin γ , namely, {−1/

√
2, 1/

√
2, 1/

√
2,−1/

√
2}

and {1/
√

2,−1/
√

2,−1/
√

2, 1/
√

2}; as shown in Fig. 4(d),
this is the orientation generating the strongest interference-
pattern modulation, induced by the coexistence of kD and kZ.

APPENDIX B: TIGHT-BINDING APPROACH

We focus on 1D circuits of polygonal shape. Each seg-
ment of an N-sided regular polygon is discretized in Ns + 1
sites labeled j = {0, 1, . . . , Ns} and separated by the lattice

distance a0 = P/(NNs). The unit vector γ̂ defines the angular
orientation for a segment from vertex u to vertex v, thus the
coordinate for site j is r j = ru + ja0γ̂ , with ru the coordi-
nate of vertex u. By applying the customary finite difference
method to the segment Hamiltonian of Eq. (1) one gets the
following 1D tight-binding Hamiltonian:

Ĥvu =
Ns∑
j=0

∑
σσ ′

(2thσ0 + μB · σ )σσ ′ ĉ†
jσ ĉ jσ ′

+
Ns−1∑
j=0

∑
σσ ′

[(itD cos γ σz − thσ0)σσ ′ ĉ†
j+1,σ ĉ jσ ′ + H.c.],

(B1)

where σ0 is the SU(2) identity matrix, ĉ jσ (ĉ†
jσ ) refers to

the annihilation (creation) operator for an electron in site j
with spin σ = {↑,↓} along the z direction, th = h̄2/(2m∗a2

0)
is the hopping energy, and tD = β/(2a0) is the D110 hopping
energy. The Hamiltonian for the full polygon, Ĥp, simply
follows from the sum of the Hamiltonians of the N segments
(avoiding double counting local terms at the N vertices).

The system is connected to a source contact lead and a
drain contact lead, labeled η = s, d, modeled by semi-infinite
tight-binding chains parametrized by the hopping energy tη
and the site energy εη. The retarded Green’s function eval-
uated at the energy ε for the edge site of each semi-infinite
chain is ĝr

η(ε), having a local and spin-trivial matrix element,
gr

η(ε), which is easily obtained numerically or analytically
from the continuous fraction equation 1/gr

η(ε) = ε + i0+ −
εη − t2

η gr
η(ε). Each lead is connected to a particular vertex

of the system (e.g., vertices 1 or 3 for the N = 4 polygon
shown in Fig. 1) by a spin-independent hopping operator T̂η;
which is proportional to the hopping energy tη,h. The effect
of the leads is encoded in the retarded self-energy operators
�̂r

η(ε) = T̂ †
η ĝr

η(ε)T̂η, which allow us to obtain the retarded

Green’s function, Ĝr (ε), from the equation [ε + i0+ − Ĥp −
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�̂r
d(ε) − �̂r

s (ε)] · Ĝr (ε) = I. In what follows, for simplicity,
we do not explicitly write the dependence with ε of these op-
erators. The zero-temperature linear conductance is computed
using the Landauer-Büttiker formula,

G = e2

h
Tr[�̂sĜr�̂dĜa], (B2)

where the advanced operators, having superscript a, are the
adjoint of the retarded operators Ôa = (Ôr )†, the lead rates
operators have matrix elements �̂

η

jσ, j′σ ′ = i(�̂r
η−�̂a

η ) jσ, j′σ ′ ,
and all the operators inside the trace are evaluated at the
Fermi energy, i.e., taking ε = EF. Importantly, the G obtained
from (B2) is exact and thus it contains all the interfering paths
from the source to the drain.

The simulations presented in Fig. 2 are obtained as follows.
We set N = 4 and take EF/th ≈ 0.2. The latter implies that
λF/a0 ∼ 13.75, i.e., the Fermi wavelength is well resolved
by the discretization. Besides, since we choose Ns = 512, the
semiclassical regime is ensured as the perimeter, P = 2048a0,
is much larger than the Fermi wavelength, P/λF ≈ 149. To
simulate contact leads with a broad energy bandwidth we set
tη = 2.5th and choose εη to set the working energy at the
center of the band. To minimize scattering the intermediate
hopping energies are set to the average of the hopping in the
lead and in the polygon, i.e., tη,h = (tη + th)/2. We perform a
Fermi energy average of the conductance in order to discard
resonance-induced variations due to finite-size effects. Such
average energy window includes the Fermi wave vector range
kF ∈ [2π (n0 − 2)/P, 2π (n0 + 2)/P], with n0 = 149, thus en-
suring averaging over several orbital resonances. The ballistic
case presented in Fig. 2(a) follows directly by considering all
four segments being of equal length, i.e., L0 = P/4. Instead,

for the case of Fig. 2(b), we also average the conductance over
disorder realizations, thus simulating the self-averaging of the
disorder that arises when measuring the conductance over the
full array of hundreds of squares. Each disorder realization
is generated by randomly modifying the segment lengths of
the four-sided polygon, i.e., L = L0(1 + δl ), where δl is taken
from a [−0.1, 0.1] uniformly distributed probability density.

APPENDIX C: SPIN DYNAMICS IN SQUARE LOOPS:
ANALYTICAL DERIVATION

The spin dynamics for CCW and CW propagating carriers
in a full round trip around a square circuit of perimeter P = 4L
is determined by the unitary operators U± introduced in the
main text. The conductance G2 presented in Fig. 3(b) follows
from G2 = e2/h(2 − Tr[�0�

†
0]), with �0 the overlapped evo-

lution along time-reversed paths:

U+ = R14R43R32R21, U− = R12R23R34R41,

�0 = U+ + U−
2

. (C1)

Here we focus on θ = 0 sample orientation with the Dres-
selhaus and Zeeman fields’ directions chosen as shown in
Fig. 1. As py ∝ sin γ , i.e., each segment angle controls the
amplitude and sign of the D110 term, it can be seen that the
same spin transformations apply for segments with γ = π/4
or γ = 3π/4 (γ = −π/4 or γ = −3π/4) because both have
positive (negative) sin γ being identical to +1/

√
2 (−1/

√
2).

Taking into account the latter consideration in Eq. (3), the spin
evolution operators for different segments can be grouped as
follows:

R+ = R41 = R12 = R32 = R43 = exp [−iv+ · σL], R− = R34 = R23 = R21 = R14 = exp [−iv− · σL], (C2)

where the vectors v± represent the two possible effective fields, which can be written as:

v± = k̃v̂±, k̃ ≡
√

k2
Z + 1

2
k2

D, v̂± ≡ 1

k̃

(
kZ cos α, kZ sin α,± 1√

2
kD

)
. (C3)

By expanding the matrix exponentials R± = exp[−iv± · σL] one obtains:

R± = aσ0 + [xσx + yσy ± zσz], (C4)

where

a = cos k̃L, x = −i
kZ cos α

k̃
sin k̃L, y = −i

kZ sin α

k̃
sin k̃L, z = − i√

2

kD

k̃
sin k̃L (C5)

with a ∈ R and x, y, z ∈ C. The two possible pairwise products of the R± operators can be written as follows:

R+R− = Aσ0 + (B − iC)σx + (D + iE )σy, R−R+ = Aσ0 + (B + iC)σx + (D − iE )σy,

U+ = R+R−R−R+ = (A2 + B2 + C2 + D2 + E2)σ0 + 2A(Bσx + Dσy) + 2(CD + EB)σz,

U− = R−R+R+R− = (A2 + B2 + C2 + D2 + E2)σ0 + 2A(Bσx + Dσy) − 2(CD + EB)σz, (C6)

where we have introduced the definitions: A = a2 + x2 + y2 − z2, B = 2ax, C = 2yz, D = 2ay and E = 2xz. Proceeding to
calculate �0 leads to

�0 = 1
2 (U+ + U−) = (A2 + B2 + C2 + D2 + E2)σ0 + 2A(Bσx + Dσy). (C7)
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The conductance G2 then becomes:

G2 = e2

h
(2 − Tr[�0�

†
0])

= 2e2

h
− 2e2

h
(A2 + B2 + C2 + D2 + E2)2

+ 2e2

h
4A2(B2 + D2), (C8)

which in terms of kZ and kD reads:

G2

2e2

h

=1−
(
k2

D/2 + k2
Z cos k̃P

)2

k̃4

−(
kZk2

D sin k̃P
2 + k3

Z sin k̃P
)2

k̃6
.

(C9)

As discussed in the main text, these analytical results
show that G2 is independent of the in-plane Zeeman field’s
orientation α.

APPENDIX D: GEOMETRICAL INTERPRETATION
OF RESULTS

Here, we investigate the relation between the conductance
of the square circuit discussed in the main text (θ = 0) and the
topology of the spin textures determined by the propagating
spin modes in a round trip, |�(�)〉, with � ∈ [0, P] a linear
parametrization of the circuit’s perimeter. Such propagating
spin modes are found after diagonalizing the CCW evolution
operator, U+, and obtaining the eigensolutions evaluated at
vertex 1, which are then propagated along the sequence of
segments using Eq. (2) from the main text. The spin texture of
the solution is readily obtained from ŝ(�) = 〈�(�)|σ|�(�)〉,
which describes a periodical trajectory on the Bloch sphere.
The topological characterization of the solutions is made in
terms of the winding number of their spin texture around
the direction of the Zeeman field.2 Such winding number is
computed as [40],

ω = 1

2π

∫ P

0
d�

(
n̂ × dn̂

d�

)
· b̂α (D1)

where n̂(�) is the normalized projection of ŝ(�) on the plane
orthogonal to the Zeeman field direction b̂α .

Figure 5(a) shows that the topology of the spin textures as
a function of kZP and kDP defines zones of increasing odd
winding number. Figures 5(c)–5(d) show that the boundaries
between different topological numbers are correlated with the
interference patterns of the conductances. For the conductance
G2, as shown in Fig. 5(d), each lobe of maximal conduc-
tance is enclosed by a zone of constant winding number.
We find that the boundaries between regions with different
winding numbers satisfy the condition U± = σ0, leading to
G2 = 0 due to the constructive interference of time-reversed
paths. More explicitly, G2 = e2/h(2 − Tr[�0�

†
0]) = 0 since

�0 = (U+ + U−)/2 = σ0. This condition is satisfied when-
ever (R+R−)−1 = R−R+ which, from Eqs. (C6), requires that
D = B = 0. The latter imposes k̃P = 2nπ with n integer,
lying exactly at the winding-number boundaries.

2One can take any of the two CCW or CW solutions to perform this
calculation because they all share the same winding number.

FIG. 5. (a) Spin textures’ winding number, ω, along the direc-
tion of the applied Zeeman field. (b) Zoom on zone A, a boundary
between two different topological numbers: see the corresponding
spin textures in Fig. 6. (c) Winding number overlapped with the con-
ductance G1. (d) Winding number overlapped with the conductance
G2. All conductances are in units of e2/h.

In Fig. 6 we present a series of spin textures undergoing
a topological transition along the zone shown in Fig. 5(b).
The spin textures in this D110 square circuit involve two
overlapping conelike trajectories, which are seen as eightlike
trajectories around the direction of the applied magnetic field.
A similar behavior is known to appear in two-level systems
subject to a Rabi drive [55–57], where the interplay of a
constant magnetic field (here the Zeeman field contained in
the xy plane) coexisting with a normal oscillating sinusoidal
component (here D110 along the z axis, which in this case
takes a sequence of discrete values instead of varying contin-
uously) gives rise to spin textures with an analog structure.

FIG. 6. (Top) Spin textures of propagating modes in the Bloch
sphere for different SO strengths at the zone A shown in Fig. 5(b).
(Bottom) Projection of the spin textures on the normal plane to the
Zeeman field direction. The color indicates the circulation of the
local spin states as the carrier propagates through the perimeter, from
red to violet. The insets show the direction of the applied Zeeman
field with respect to the Bloch sphere’s top and bottom perspectives.
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