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RESUMEN

Introducción

Durante los últimos años hemos sido testigos de la consolidación de las tecnologías

inalámbricas y móviles, en lo que ha venido a llamarse la “sociedad de la informa-

ción”. La enorme presencia de las redes inalámbricas ha sido posible gracias a desta-

cados logros en el campo del hardware. En el área de las comunicaciones móviles,

por ejemplo, el establecimiento de la Tercera Generación de sistemas celulares y la in-

minente llegada de los sistemas de Cuarta Generación han impulsado el estudio de

nuevas técnicas para dar respuesta a la demanda de mayores tasas de transferencia

de información, número de usuarios y movilidad. Cuando se desean mayores tasas

de transferencia es necesario emplear formatos de modulación más complejos, nor-

malmente con cada vez mayores anchos de banda [1]. El aumento en el número de

usuarios hace necesario minimizar la distorsión introducida por los circuitos inalám-

bricos para evitar interferencias de las señales de unos usuarios con las de otros en el

espectro limitado que les ha sido asignado [2]. Por último, la búsqueda de movilidad

exige sistemas altamente integrados en los que son prioritarios un bajo consumo y

coste [3].

De entre los más de un millón de transistores que contienen los dispositivos in-

alámbricos de bolsillo hoy en día, sólo una pequeña fracción opera en el rango de RF

y el resto realiza procesado de baja frecuencia de la señal de banda base, puesto que la

mayor parte de los sistemas actuales están basados en procesadores digitales de señal

(DSPs1) [4], [5], [6]. Sin embargo, la sección de RF analógica sigue siendo el cuello de

botella del transceptor completo [7]. De entre los bloques básicos que se incluyen en

1Al final del documento se puede encontrar una lista completa de las abreviaturas y símbolos que

se han usado en esta Tesis.
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un enlace típico transmisor-receptor para comunicaciones inalámbricas destacan los

amplificadores y mezcladores, que pueden dar lugar a importantes efectos no lineales.

La operación no lineal no es fácil de describir analíticamente, por lo que obtener dise-

ños optimizados es complejo. Entre los efectos de la distorsión no lineal, es necesario

tener en cuenta la distorsión de intermodulación y el recrecimiento espectral, puesto

que estos efectos no se pueden eliminar mediante filtrado y producen interferencia de

canal adyacente [8].

El diseño asistido por ordenador (CAD) juega un papel primordial como parte del

proceso de síntesis de circuitos no lineales, cuya principal motivación es desarrollar

productos competitivos en el menor tiempo posible [9]. Puesto que no existen ni méto-

dos ni modelos universales para los circuitos no lineales, cada modelo y cada técnica

de simulación resultarán adecuados sólo para aplicaciones específicas [10]. Sin em-

bargo, dos de las herramientas más extendidas para el análisis de sistemas no lineales

son el Balance Armónico [11], [12] y la representación mediante series de Volterra [13],

[14], [15], [16]. El Balance Armónico es una técnica iterativa para analizar el régimen

permanente con especial aplicación en el caso general de circuitos no lineales. Debido

a las limitaciones prácticas que presentan los desarrollos en series de Volterra para

circuitos fuertemente no lineales o de gran tamaño, el Balance Armónico es el método

preferido en esos casos. Puede verse como una extensión del análisis fasorial para el

caso no lineal y se ha convertido en una herramienta madura en el caso de entradas

senoidales que incluyen todas las herramientas CAD comerciales más importantes.

Presenta excelentes propiedades de convergencia cuando se combina con los algorit-

mos de Newton-Raphson para la resolución de los sistemas de ecuaciones no lineales

a los que se da lugar. La principal restricción para las técnicas clásicas de Balance Ar-

mónico es que el tipo de excitaciones que pueden manejar de forma eficiente se limita

a señales periódicas y cuasi-periódicas con un número limitado de componentes fre-

cuenciales.

Una figura de mérito que se ha venido empleando en el diseño de circuitos para

los sistemas de comunicaciones inalámbricas actuales es la relación de potencia en el

canal adyacente (ACPR). Sin embargo, la evaluación precisa de esta cantidad, y otras

características relacionadas, en amplificadores y mezcladores excitados por señales

moduladas digitalmente resulta una tarea con una complejidad computacional ele-

vada que hace ineficientes las técnicas clásicas de Balance Armónico. Por ello, se han

propuesto métodos de envolvente [17], [18], [19] o algoritmos de Balance Armónico

orientados a modulación [20], que tratan específicamente este problema y permiten

el análisis eficiente de circuitos con un gran número de líneas espectrales. A pesar

de esto, sigue siendo necesario disponer de métodos alternativos que consigan una

mayor reducción del tiempo de computación.
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Por otro lado, la representación en series de Volterra se ha empleado para describir

una amplia variedad de fenómenos no lineales. Normalmente se acepta que la apli-

cación de las series de Volterra se limita al estudio de sistemas débilmente no lineales

y bajas distorsiones. Sin embargo, las series de Volterra permiten obtener expresiones

cerradas que describen el comportamiento del sistema, frente a otras técnicas basadas

en algoritmos de iteración numérica. Este tipo de información resulta de gran interés

para llegar a comprender los mecanismos que producen los efectos de memoria [21].

Normalmente, los requisitos mencionados para los circuitos inalámbricos están

contrapuestos. Por ejemplo, para un amplificador de potencia en el transmisor o

receptor, la eficiencia suele disminuir a medida que se va ganando linealidad en el

circuito y, por tanto, disminuye la distorsión. La solución de compromiso consiste

en aplicar técnicas especiales para linealizar las características del amplificador sin

degradar la eficiencia [22], [23]. Sin embargo, un incremento en el ancho de banda

suele conducir a esquemas de linealización ineficaces debido al comportamiento de-

pendiente del ancho de banda o efectos de memoria que presentan los amplificadores

de potencia [24], [25].

Un asunto a tener en cuenta finalmente es que la mayor parte de los modelos para

dispositivos no lineales se obtienen a partir de medidas. En este trabajo se revisan

Los procedimientos para la caracterización no lineal y sus figuras de mérito asocia-

das, dado el importante papel que juegan. Puesto que los dispositivos no lineales

no cumplen con el principio de superposición, su respuesta presentará características

diferentes en función de cuál sea la excitación empleada [26]. Por eso, se consideran

principalmente tres tipos de entradas: un único tono, dos tonos y señales moduladas

de espectro continuo. De entre ellas, las medidas de intermodulación de dos tonos

ocupan una posición destacada y comprender sus particularidades centra la atención

de muchos investigadores [27], [28], [29]. Por un lado, se puede emplear una prueba

de dos tonos con separación variable entre los tonos para la caracterización experi-

mental de los efectos de memoria, siendo aconsejables medidas tanto de la magnitud

como de la fase de los productos de intermodulación. Por otro lado, partiendo de una

prueba de dos tonos es posible predecir el comportamiento de las componentes de

distorsión para señales multitono [30] y para modulaciones más complejas [31]

La presente Tesis pretende dar una visión amplia y detallada sobre el análisis de

circuitos no lineales para comunicaciones inalámbricas. Partiendo de una revisión

del estado del arte de los métodos de análisis no lineal, los enfoques estudiados in-

cluyen la aplicación del algoritmo de Newton Simplificado a la solución de circuitos

débilmente no lineales [32]. La aplicación de este método constituye una herramienta

novedosa adecuada para el análisis de circuitos que contengan tanto amplificadores

como mezcladores [33]. Como ventaja adicional del método de Newton Simplificado,
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se demuestra que permite la obtención de expresiones teóricas para modelar la depen-

dencia con la frecuencia de banda base de la distorsión de intermodulación en ampli-

ficadores con memoria [34], de forma análoga a la representación mediante series de

Volterra. La contribución final que se presentará consiste en un modelo basado en

impedancias para amplificadores con transistores FET o amplificadores comerciales,

propuesto para tener en cuenta los efectos de memoria en la intermodulación sin im-

portar cuál sea su naturaleza [35].

El objetivo principal de esta Tesis consiste en contribuir al estudio y desarrollo

de nuevas técnicas de análisis para sistemas no lineales aplicados a comunicaciones

inalámbricas. Este objetivo general se puede dividir en los siguientes:

• Desarrollo de una herramienta de análisis para circuitos débilmente no lineales

bajo señales de comunicaciones moduladas digitalmente de banda estrecha.

• Estudio de la dependencia del ancho de banda o efectos de memoria de la dis-

torsión de intermodulación.

• Caracterización experimental de la distorsión no lineal y los efectos de memoria

en amplificadores de potencia de RF.

Métodos basados en envolventes para sistemas no linea-

les de comunicaciones inalámbricas

Método de las Envolventes de Corriente

El Método de las Envolventes de Corriente (EC) [18] fue presentado por Borich et al.

en 1999 como una herramienta eficiente para la simulación de circuitos de comuni-

caciones operados en régimen débilmente no lineal. Este método puede considerar-

se una extensión eficiente del Método de las Corrientes No Lineales (NC) [13] para

señales de comunicaciones digitales.

Para conseguir una reducción considerable del tiempo de simulación, se asume

un comportamiento no lineal débil de los circuitos. Aunque los dispositivos amplifi-

cadores de microondas se emplean cada vez más próximos a la saturación para con-

seguir mayores potencias de salida y mejor eficiencia, sigue siendo necesaria una alta

linealidad para que obtener mejores prestaciones del sistema. Por eso, en muchos

casos los circuitos de comunicaciones inalámbricos se operan en un régimen débil-

mente no lineal. Los métodos basados en Balance Armónico o los métodos híbridos
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en tiempo-frecuencia convergen de manera más rápida para los circuitos débilmente

no lineales que para el caso fuertemente no lineal debido al menor número de itera-

ciones que son necesarias. Sin embargo, no se llega a explotar directamente la car-

acterística cuasi-lineal, de modo que la mejora en la velocidad de simulación sólo es

modesta. En el método EC se consigue una mejora significativa del tiempo de simu-

lación asumiendo una excitación de banda estrecha y una no linealidad débil.

Para la aplicación de este método se formula el problema a partir de las ecuaciones

procedentes del análisis nodal modificado del circuito equivalente para el dispositivo

a tratar. Se considera que las tensiones nodales del circuito vienen dadas por una suma

de tensiones incrementales:

v(t) = V0 + v1(t) + . . . + vn(t), (0.1)

donde la tensión V0 representa la componente de continua. Los elementos no lineales

se representan a través de series de potencias alrededor del punto de polarización con

un número finito N de términos:

ig(t) =
N∑

k=1

gkv
k(t),

ic(t) =
N∑

k=0

ckv
k(t)

dvc(t)

dt
,

i(t) =
N∑

k=1

gk0v
k(t) +

N∑

l=1

g0lu
l(t) +

N∑

k=1

3∑

l=1

gklv
k(t)ul(t).

(0.2)

De acuerdo con la suposición débilmente no lineal, se asume que las no linealidades de

los elementos son suficientemente suaves para que las corrientes de las conductancias,

las capacidades y las fuentes dependientes se puedan aproximar por los primeros

términos de sus desarrollos en series de potencias. En el método EC se extienden los

sumatorios hasta N = 3.

Las corrientes de excitación del circuito serán señales moduladas de banda es-

trecha de la forma:

is(t) = Re
{
ĩs(t)e

jωct
}

. (0.3)

En este caso, cualquier variable del circuito toma la siguiente forma para la iteración

de orden n:

xn(t) =
1

2

n∑

h=−n

x̃n(h, t)ejhωct, (0.4)

donde x̃n(h, t) es la envolvente compleja de la señal alrededor del h-ésimo armónico

de ωc. Nótese que estamos extendiendo los sumatorios hasta n, puesto que se aplica el

método NC y las corrientes no lineales que se emplean no superan el orden n coinci-

dente con la iteración realizada. Puesto que las componentes de xn(h, t) centradas en
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−ωc, . . . ,−nωc son los complejos conjugados de aquellas centradas en ωc, . . . , nωc, es

habitual tratar sólo con frecuencias positivas, cuya representación en el dominio de la

frecuencia es:

Xn(ω) =
n∑

h=0

X̃n,h(ω − hωc). (0.5)

En el método EC se realizan dos suposiciones básicas: la primera de ellas consiste

en realizar un tratamiento cuasi-periódico de las envolventes complejas alrededor de

cada armónico de ωc, es decir, aproximar las envolventes complejas por señales perió-

dicas representando cada envolvente compleja x̃n(h, t) mediante un número discreto

de sinusoides e introducir una representación mediante series de Fourier.

Bajo esta suposición, el sistema de ecuaciones en el dominio de la frecuencia equi-

valente al que se resuelve en el método NC puede expresarse:

Y(ω)Ṽn,h(ω − hωc) = Ĩn,h(ω − hωc) (0.6)

n = 1, . . . , N, h = 0, . . . , H,

donde Y(ω) es la matriz de admitancias de los nodos del subcircuito lineal aumen-

tado, formado por todos los elementos lineales junto con los términos lineales de la

representación en series de potencias de los elementos no lineales. Ṽn,h(ω − hωc) e

Ĩn,h(ω − hωc) son los vectores con las envolventes complejas de las tensiones de los

nodos y de las corrientes de excitación para la n-ésima iteración, evaluadas alrededor

del h-ésimo armónico. En principio, es posible resolver directamente el sistema de

ecuaciones (0.6) para encontrar Ṽn,h(ω − hωc), aunque éste no es un enfoque eficiente.

Las envolventes deben ser muestreadas para largos intervalos de tiempo, lo que suele

dar lugar a varios miles de componentes frecuenciales y supondría tener que realizar

la evaluación y factorización de Y(ω) en miles de puntos de frecuencia.

Por eso, la segunda suposición que se tiene en cuenta en este método se basa en el

hecho de que, si la excitación es de banda estrecha, el espectro de las formas de onda

del circuito se concentra en bandas estrechas alrededor de hωc. Así, es posible realizar

una expansión en serie de Taylor con un orden bajo de la representación en frecuencia

de la matriz de admitancia alrededor de cada armónico de ωc sin cometer un error

significativo. En este método se considera que una aproximación de primer orden es

suficiente en general, es decir:

Y(ω) ≃ Y(hωc) + ΩhY
′(hωc), h = 0, . . . , n (0.7)

Ωh = diag (ω − hωc)

aunque se pueden tener en cuenta desarrollos en serie de mayor orden si se desea

mayor precisión al predecir los cambios con la frecuencia de modulación que se pro-

ducen en las componentes de distorsión, es decir, para tratar los efectos de la memoria

de manera más rigurosa.
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Si se sustituye (0.7) en (0.6) y se realiza una transformada inversa de Fourier para

recuperar las expresiones de las tensiones de los nodos en el dominio de la frecuencia,

se obtiene la siguiente expresión:

[

Y(hωc) − jY′(hωc)
d

dt

]

ṽn(h, t) = ĩn(h, t), (0.8)

n = 1, . . . , N, h = 0, . . . , n

donde ṽn(h, t) es el vector solución con las formas de onda de las envolventes comple-

jas de las tensiones alrededor de hfc para la corriente no lineal de orden n-ésimo. La

aplicación de esta ecuación (0.8) constituye el método de las Envolventes de Corrien-

te. Para cada n y cada h, (0.8) es un sistema de ecuaciones diferenciales lineales en las

envolventes complejas de las tensiones de los nodos. Cuando se aplica este algoritmo

hasta N = H = 3, en total aparecen doce sistemas de ecuaciones, aunque algunos

tienen soluciones triviales y otros no resultan de interés. Finalmente, sólo es necesario

resolver cuatro sistemas de ecuaciones.

Las envolventes de corriente que aparecen en el lado derecho de (0.8) se obtienen

de sustituir en las expresiones de las corrientes no lineales del método NC la repre-

sentación en función de las envolventes complejas de las tensiones de los nodos que

hemos adoptado, (0.4), y después recoger todos los términos centrados en la frecuen-

cia hωc. Los resultados de este procedimiento son los siguientes:

• Para la solución del primer orden (n = 1), la envolvente de corriente es la envol-

vente de la fuente de señal original del circuito.

• Para el segundo orden (n = 2), hay dos envolventes de corriente correspon-

dientes a la componente de banda base y a la componente centrada en 2ωc. Las

expresiones que toman las envolventes de corrientes del segundo orden para los

distintos tipos de elementos no lineales son las siguientes:

– Para una conductancia no lineal:

ĩ2(0, t) = −
g2

2
|ṽ1(1, t)|

2 (0.9)

ĩ2(2, t) = −
g2

2
ṽ2

1(1, t)

– Para una fuente de corriente dependiente de dos tensiones:

ĩ2(0, t) = −
[g20

2
|ṽ1(1, t)|

2 +
g02

2
|ũ1(1, t)|

2 +
g11

2
Re{ṽ1(1, t)ũ

∗
1(1, t)}

]

(0.10)

ĩ2(2, t) = −
[g20

2
ṽ2

1(1, t) +
g02

2
ũ2

1(1, t) +
g11

2
ṽ1(1, t)ũ1(1, t)

]
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– En el caso de una capacidad no lineal se ha tenido en cuenta que las

derivadas pueden aproximarse actuando sólo sobre las portadoras (despre-

ciando la variación de las envolventes frente a la de la portadora) por lo

suponen la multiplicación de la contribución por el término jhωc. De este

modo, resultan las expresiones:

ĩ2(0, t) = −
c1

4

d

dt
(|ṽ1(1, t)|

2) ≈ 0 (0.11)

ĩ2(2, t) ≈ −jωc
c1

2
ṽ2

1(1, t)

• Para el tercer orden (n = 3) hay también dos envolventes de corriente corres-

pondientes a la componente fundamental y la componente centrada en 3ωc. Sin

embargo, la componente fundamental es la de mayor interés práctico. Las ex-

presiones de las envolventes de corriente del tercer orden son las siguientes:

– Para una conductancia no lineal:

ĩ3(1, t) = −

[
3g3

4
ṽ2

1(1, t)ṽ
∗
1(1, t) + 2g2ṽ1(1, t)ṽ2(0, t) + g2ṽ

∗
1(1, t)ṽ2(2, t)

]

(0.12)

ĩ3(3, t) = −
[g3

4
ṽ3

1(1, t) + g2ṽ1(1, t)ṽ2(2, t)
]

– Para una fuente de corriente dependiente de dos tensiones:

ĩ3(1, t) = −

{
3g30

4
ṽ2

1(1, t)ṽ
∗
1(1, t) +

3g03

4
ũ2

1(1, t)ũ
∗
1(1, t)+

2g20

[
1

2
ṽ∗

1(1, t)ṽ2(2, t) + ṽ1(1, t)ṽ2(0, t)

]

+

2g02

[
1

2
ũ∗

1(1, t)ũ2(2, t) + ũ1(1, t)ũ2(0, t)

]

+

g11

[
1

2
ṽ∗

1(1, t)ũ2(2, t) + ṽ1(1, t)ũ2(0, t) +
1

2
ũ∗

1(1, t)ṽ2(2, t) + ũ1(1, t)ṽ2(0, t)

]

+

g21

4

[
ṽ2

1(1, t)ũ
∗
1(1, t) + 2|ṽ1(1, t)|

2ũ1(1, t)
]
+ (0.13)

g12

4

[
ũ2

1(1, t)ṽ
∗
1(1, t) + 2|ũ1(1, t)|

2ṽ1(1, t)
]}

ĩ3(3, t) = −
{g30

4
ṽ3

1(1, t) +
g03

4
ũ3

1(1, t) +
g21

4
ṽ2

1(1, t)ũ1(1, t)+

g12

4
ũ2

1(1, t)ṽ1(1, t) + g20ṽ1(1, t)ṽ2(2, t) + g02ũ1(1, t)ũ2(2, t)+ (0.14)

g11

2
[ṽ1(1, t)ũ2(2, t) + ũ1(1, t)ṽ2(2, t)]

}
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– Para una capacidad no lineal:

ĩ3(1, t) ≈ −jωc

[c2

4
ṽ2

1(1, t)ṽ
∗
1(1, t) + c1ṽ1(1, t)ṽ2(0, t) +

c1

2
ṽ∗

1(1, t)ṽ2(2, t)
]

ĩ3(3, t) ≈ −j3ωc

[ c2

12
ṽ3

1(1, t) +
c1

2
ṽ1(1, t)ṽ2(2, t)

]

(0.15)

Para resolver el sistema de ecuaciones diferenciales lineales de las envolventes

complejas de (3.32) se muestrean las formas de onda de las envolventes en M pun-

tos a lo largo del intervalo de tiempo (M − 1)∆t, donde el paso de tiempo ∆t se elige

de forma adecuada. Al aplicar, por ejemplo, el método de discretización de Backward-

Euler, resulta el proceso iterativo:

[jY′(hωc) − ∆t · Y(hωc)] ṽn(h, tk+1) =

jY′(hωc)ṽn(h, tk) − ∆t · ĩn(h, tk+1) , (0.16)

ṽn(h, t0) = 0, n = 1, . . . , N, h = 0, . . . , n .

Se pueden emplear otras fórmulas de integración de mayor orden con similares

resultados. Las matrices de coeficientes [jY′(hωc) − ∆t ·Y(hωc)] son poco densas y se

factorizan una sola vez al principio del proceso de iteración. Se puede observar que

sólo es necesario almacenar y factorizar cuatro de estas matrices. Por tanto, una vez

que las matrices de coeficientes se han factorizado, casi todo el tiempo de simulación

se emplea en resolver sistemas lineales de ecuaciones triangulares poco densos. Esto

produce una reducción bastante considerable del tiempo de simulación.

La limitación principal de este método surge de la aproximación débilmente no

lineal que se ha tomado, por lo que el rango dinámico de aplicación del método se ve

afectado. Al comparar los resultados obtenidos mediante el método EC con los del

Balance Armónico, se observa que ambos coinciden bastante bien para niveles bajos

de potencia de entrada pero el método EC empieza a separase de la solución a me-

dida que el amplificador se adentra en la zona de saturación y su ganancia empieza

a comprimirse. Esto ocurre porque en la región de saturación los desarrollos en se-

ries de potencia de orden bajo que se han empleado no describen adecuadamente el

comportamiento del dispositivo. Para superar esta limitación y mejorar la precisión

del método de [18], en [36], [19] se propone un nuevo método de envolventes de co-

rriente con rango dinámico extendido (NEC) en el que también se representa la salida

del circuito como una suma de tensiones incrementales, aunque ahora cada una de

estas tensiones es la solución de un circuito lineal variante en el tiempo excitado por

una corriente no lineal. Para cada paso del proceso iterativo es necesario actualizar los

valores de los elementos del circuito (cuya topología se mantiene invariante), además

de las corrientes de excitación no lineales. Las principales ventajas de esta nueva téc-

nica son que presenta buenas propiedades de convergencia y mejor precisión que [18],

aunque aumenta el coste computacional.
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Figure 0.1: Circuito no lineal de un sólo nodo.

Método de Newton Simplificado para circuitos de comunicaciones débilmente no
lineales

Una de las contribuciones originales presentadas en esta Tesis es el método de New-

ton Simplificado (SN) propuesto en [32] para realizar un análisis eficiente de circuitos

débilmente no lineales excitados por señales de comunicaciones, que se basa en el

método EC. La principal ventaja del método propuesto es la reducción de los tiempos

de simulación que supone, al mismo tiempo que se consigue un buen ajuste de las

simulaciones con resultados experimentales. Esta necesidad de acelerar las simula-

ciones proviene del gran coste computacional que suponen las predicciones de ACPR,

de gran interés en procesos de diseño y optimización.

Durante décadas se han desarrollado diferentes métodos para evaluar las no-

linealidades de los circuitos de microondas que pueden aplicarse también a la predic-

ción de ACPR. Las técnicas de Balance Armónico usando el algoritmo de Newton-

Raphson (HB-N) o métodos de relajación (HB-R) son ejemplos de métodos de simu-

lación muy eficientes cuando se consideran señales periódicas o cuasi-periódicas y

circuitos no lineales generales [37], [38] y [39]. Los métodos basados en envolventes

suelen aplicar la aproximación de un comportamiento débilmente no lineal y resul-

tan más eficientes para señales de comunicaciones que el empleo de las técnicas de

Balance Armónico clásicas.

En este apartado se presenta un nuevo enfoque para el análisis de la distorsión

en circuitos débilmente no lineales excitados con señales de RF de banda estrecha

manteniendo la simplicidad del método EC, resultando aún más eficiente en tiempo

de simulación.

Por claridad, se considera el circuito no lineal de un sólo nodo de la Figura 0.1,

que contiene conductancias y capacidades no lineales controladas por tensión y que

es excitado por una única fuente. Sean las tensiones v(t) de los nodos del circuito

V (t) = V0 + v1(t) + . . . + vn(t) + δvn(t) (0.17)

donde la tensión V0 se corresponde con el término de continua. Los desarrollos en
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series de potencias de las fuentes de corriente no lineales, i(v), y las cargas no line-

ales, q(v), se expresan en este caso alrededor del punto de polarización de dc. Este

desarrollo realizado para la dc se mantendrá para todas las iteraciones, de modo que

es posible distinguir en cada uno de estos elementos un primer término lineal con

las tensiones de los nodos y un segundo término con una dependencia no lineal con

dichas tensiones:

• Para una conductancia no lineal:

i[v(t)] =
∞∑

k=1

gkv
k(t) = g1v(t) + iNL[v(t)] (0.18)

• Para una fuente de corriente dependiente de dos tensiones:

i[v(t), u(t)] =
∞∑

k, l
k+l≥1

gklv
k(t)ul(t) = g10v(t) + g01u(t) + iNL[v(t), u(t)] (0.19)

• Para una capacidad no lineal:

ic[v(t)] =
d

dt

∞∑

k=1

qkv
k(t) = c1

dv(t)

dt
+

dqNL[v(t)]

dt
(0.20)

La tensión del nodo en el circuito del ejemplo satisface la ecuación

L[V (t)] + I[V (t)] +
dq[v(t)]

dt
= Is + is(t), (0.21)

con L[·] un operador integro-diferencial que tiene en cuenta los elementos lineales del

circuito. Para la tensión continua se resuelve:

L[V0] + I[V0] = Is, (0.22)

mientras que se tiene la siguiente ecuación para el resto de los términos en la tensión:

L[v1(t) + δv1(t)] + I[v1(t) + δv1(t)] +
dq[v1(t) + δv1(t)]

dt
= is(t). (0.23)

Omitiendo la dependencia temporal explícita, se obtiene la siguiente ecuación li-

neal para la primera tensión incremental v1:

L[v1] + g1v1 + c0
dv1

dt
= is (0.24)

De nuevo, v1 se calcula del mismo modo que el término lineal en el método NC con-

vencional y en el método NEC. La primera tensión residual δv1 satisface la ecuación

L[δv1] + g1δv1 + iNL(v) + c0
dδv1

dt
+

dqNL(v)

dt
= 0. (0.25)

xv



Teniendo en cuenta que δv1 = v2 + δv2, se puede evaluar la segunda tensión incre-

mental v2 resolviendo la siguiente ecuación lineal:

L[v2] + g1v2 + c0
dv2

dt
= i2(v̄1) (0.26)

con

i2(v̄1) = −iNL(v̄1) −
dqNL(v̄1)

dt
(0.27)

Al generalizar estos resultados, se obtiene la siguiente ecuación para calcular cada

tensión incremental vn:

L[vn] + g1vn + c0
dvn

dt
= in(v̄n−1) (0.28)

con

in(v̄n−1) = − [iNL(v̄n−1) − iNL(v̄n−2)] −

[
dqNL(v̄n−1)

dt
−

dqNL(v̄n−2)

dt

]

(0.29)

Podemos observar que en cada iteración se realiza el desarrollo en series de Taylor

alrededor del punto de polarización, por lo que en todas ellas se está resolviendo

el mismo circuito lineal invariante, formado por los elementos lineales junto con los

términos lineales de los elementos no lineales, como en el método EC. En cambio, las

corrientes aplicadas difieren de las empleadas en el método NC, ya que en éste las

expresiones de las corriente no lineales se obtienen despreciando todos los términos

de orden mayor que la iteración que se está contemplando. El motivo de esto es que el

método NC fue propuesto para la obtención de las funciones de transferencia no line-

ales que aparecen en las descripciones en series de Volterra. Por tanto, las corrientes

empleadas en el método propuesto suponen una mejor aproximación de las corrientes

no lineales reales que las del método NC al contemplar términos de mayor orden.

En resumen, para obtener las tensiones incrementales en un circuito genérico con

más de un nodo es necesario resolver el siguiente sistema de ecuaciones:

L[vn] = in, n = 1, 2, . . . , N. (0.30)

donde L[·] representa un operador lineal genérico en forma matricial. Este sistema de

ecuaciones integro-diferenciales se obtiene mediante un análisis nodal del subcircuito

lineal ampliado. Las fuentes de corriente in que se aplican al circuito lineal invariante

en el tiempo de (0.30) son como sigue:

1. En la primera iteración (n = 1), la corriente de excitación es la fuente de corriente

original.
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2. La fuente de corriente no lineal para la segunda iteración (n = 2) es

i2 = −iNL(v1) −
dqNL(v1)

dt
= −

∞∑

k=2

gkv
k
1 −

d

dt

∞∑

k=2

ck−1

k
vk

1 (0.31)

3. Para obtener las fuentes de corriente no lineales de la tercera iteración se tiene

en cuenta que:

i3 = −[iNL(v2 + v1) − iNL(v1)] −

[
dqNL(v2 + v1)

dt
−

dqNL(v1)

dt

]

(0.32)

Considerando que la tensión incremental v2(t) es pequeña comparada con el tér-

mino lineal v1(t), la corriente de excitación se puede aproximar por su desarrollo

en serie de Taylor de primer orden y expresar

i3 = −
diNL(v)

dv

∣
∣
∣
∣
v=v1

· v2 −
d

dv

dqNL(v)

dt

∣
∣
∣
∣
v=v1

· v2 −
dqNL(v)

dv

∣
∣
∣
∣
v=v1

·
dv2

dt
. (0.33)

4. Este procedimiento se podría generalizar para obtener las fuentes de corriente

no lineales para la n-ésima iteración

in = −
diNL(v)

dv

∣
∣
∣
∣
v=vn−2

· vn−1 −
d

dv

dqNL(v)

dt

∣
∣
∣
∣
v=vn−2

· vn−1 −
dqNL(v)

dv

∣
∣
∣
∣
v=vn−2

·
dvn−1

dt
.

(0.34)

En el método propuesto el número de iteraciones para el algoritmo de (0.30) se

restringe hasta N = 3, asumiendo un comportamiento débilmente no lineal.

En el caso de que la excitación aplicada sea una señal de RF modulada de banda

estrecha, se puede seguir un procedimiento similar al del método EC y obtener el

siguiente sistema lineal de ecuaciones para las envolventes complejas de las tensiones

incrementales para el armónico h y la n-ésima iteración:

[

Y(hωc) − jY′(hωc)
d

dt

]

ṽn(h, t) = ĩn(h, t) . (0.35)

Una vez que se han determinado las envolventes complejas de las corrientes no li-

neales, se pueden muestrear las formas de ondas con un paso temporal ∆t y em-

plear el método de discretización de Backward-Euler para resolver el sistema de ecua-

ciones (3.76) para cada iteración y cada armónico

[jY′(hωc) − ∆t · Y(hωc)] ṽn(h, tk+1) = jY′(hωc)ṽn(h, tk) − ∆t · ĩn(h, tk+1) . (0.36)

Además, la extensión de este procedimiento para incluir más armónicos y términos

de mayor orden en el desarrollo en series de potencias de las corrientes no lineales se
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puede conseguir de un modo bastante simple. Basta con resolver un cierto número de

sistemas de ecuaciones como el de (3.76) para n = 1, . . . , N y h = 0, . . . , H , excepto en

la última iteración, en la que sólo será necesario considerar el primer armónico para

hallar respuestas dentro de la banda de interés y, por lo tanto, sólo habrá que resolver

un sistema de ecuaciones.

Para ilustrar la eficiencia del método propuesto, podemos comparar la convergen-

cia de este método con la del método EC de un modo teórico. En términos del conjunto

de ecuaciones algebraicas que es necesario resolver, podemos decir que el método EC

resulta un método subóptimo puesto que se están despreciando los términos de orden

mayor que n en el miembro de la derecha de las ecuaciones. En cambio, el método

propuesto implementa un proceso iterativo basado en un algoritmo de Newton Sim-

plificado, en el que el Jacobiano que se calcula para la primera iteración de DC se

reutiliza para todas las iteraciones. De este modo, la convergencia del método pro-

puesto resulta algo más lenta que en el algoritmo de Newton-Raphson, aunque la

carga computacional de cada iteración es mucho menor, por lo que en términos glo-

bales se produce una reducción del tiempo de simulación.

Por otro lado, la principal desventaja del enfoque de Newton Simplificado es que

presenta una región de convergencia reducida que produce que, si la solución inicial

del proceso iterativo no está lo suficientemente cerca de la solución final, es posible

que este método no converja. Es decir, si el circuito que se está analizando tiene un

comportamiento fuertemente no lineal la convergencia del método no está garanti-

zada. Sin embargo, se han realizado simulaciones en las que ha sido posible predecir

satisfactoriamente el comportamiento no lineal de un amplificador con un nivel de

potencia cercano al punto de compresión de 1 dB, donde exhibe un comportamiento

no lineal moderado, por lo que no se trata de una restricción demasiado estricta.

Finalmente, es importante resaltar que con este método podemos encontrar una

tensión nodal incremental para la envolvente compleja en torno al primer armónico

desde la segunda iteración, por lo que únicamente es necesario resolver dos sistemas

lineales de ecuaciones para encontrar una corrección a la predicción lineal para la en-

volvente compleja del primer armónico. Además, la adecuada correspondencia entre

el regeneración espectral calculado y el medido permiten una predicción fiable de

ACPR.

Métodos de Envolventes de Corrientes para señales de comunicaciones en mez-
cladores

El análisis no lineal de mezcladores es una de las tareas más exigentes en la simu-

lación de circuitos de microondas, dado su fuerte comportamiento no lineal y la gran
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Figure 0.2: Circuito no lineal de un nodo excitado como mezclador.

cantidad de componentes espectrales que se generan. Por tanto, los algoritmos em-

pleados para resolver las ecuaciones no lineales en estos circuitos suelen converger de

forma lenta y cada iteración requiere una elevada carga computacional y de almace-

namiento. Para el caso de señales de RF moduladas, son necesarios aún más recursos

computacionales, haciendo que las técnicas de Balance Armónico no sean eficientes.

Puesto que el oscilador local es normalmente una señal de mayor amplitud que la

señal de entrada, es usual considerar la excitación de entrada como una perturbación

alrededor de la respuesta del sistema al oscilador local. Ejemplos de estos procedi-

mientos aplicados a mezcladores son los trabajos clásicos de [40] y [41]. Otras generali-

zaciones del método empleado en éste último que usan series de Volterra variantes en

el tiempo han sido presentadas en [42] y [43]. Sin embargo, la naturaleza aleatoria de

los datos recomienda simular largas secuencias de símbolos, que dan lugar a cientos

de miles de componentes frecuenciales. En [44] y [45], se hace hincapié en la obtención

de métodos eficientes para analizar mezcladores con señales moduladas de banda

estrecha.

Para exponer los principios teóricos de los métodos estudiados se considera el cir-

cuito simple de un sólo nodo de la Figura 0.2, que representa un mezclador y, por

tanto, es excitado por dos fuentes de corriente independientes: el oscilador local io(t)

sinusoidal, que incluye la polarización, y la señal de RF is(t). En este caso, la tensión

del nodo satisface la ecuación

L[v(t)] + i[v(t)] +
dq[v(t)]

dt
= io(t) + is(t), (0.37)

donde el operador L[·] denota la ecuación integro-diferencial que representa el subcir-

cuito lineal y se representa en el dominio de la frecuencia por la admitancia Yg.

En primer lugar, la tensión del nodo v(t) se representa como una suma de tensiones

incrementales

v(t) = v0(t) + v1(t) + · · · + vn(t) + δvn(t) = v̄n(t) + δvn(t), (0.38)
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donde ahora v0(t) es la solución de la ecuación (0.37) cuando sólo está presente la

fuente del oscilador local io(t), i.e.

L[v0] + i(v0) +
dq(v0)

dt
= io. (0.39)

De esta forma, el número de componentes frecuenciales a considerar ha sido drásti-

camente reducido y es fácil conseguir la convergencia de métodos como HB-N. Por

tanto, es posible asumir que v0 es conocida. Entonces, se puede obtener la siguiente

ecuación para la primera tensión incremental, si se aproximan i(v) y q(v) por sus de-

sarrollos de primer orden alrededor de v0:

L[v1] + g(v0)v1 +
d

dt
[c(v0)v1] = is. (0.40)

La ecuación (3.96) representa un sistema lineal variante en el tiempo de forma cuasi-

periódica, para el que se puede hallar la solución empleando el concepto de matrices

de conversión [8] y considerar conocidos los términos v1 y v̄1 = v0 + v1.

A continuación, se presentarán dos enfoques para resolver el resto de las itera-

ciones para n ≥ 2, que dan lugar a dos métodos distintos para evaluar la distorsión

no lineal en mezcladores con señales de comunicaciones:

• Método NEC para señales de comunicaciones en mezcladores

Este algoritmo fue propuesto en [46] y puede verse como una extensión del

método NEC presentado en [19] para el análisis de señales moduladas digital-

mente en mezcladores, por tanto nos referiremos a él como NEC-M. Su principal

ventaja frente al Balance Armónico multitono es una reducción del tiempo de

computación y un uso más eficiente de los recursos.

A partir de la segunda iteración, en el método NEC-M se resuelven ecuaciones

del tipo de:

L[vn] + g(v̄n−1)vn +
d

dt
[c(v̄n−1)vn] = in(v̄n−1), (0.41)

donde

in(v̄n−1) = i0 + is − L[v̄n−1] − i(v̄n−1) −
dq(v̄n−1)

dt
= (0.42)

=

{

g(v̄n−2)vn−1 +
d

dt
[c(v̄n−2)vn−1]

}

−

[

i(v̄n−1) − i(v̄n−2) +
dq(v̄n−1)

dt
−

dq(v̄n−2)

dt

]

.

En estas ecuaciones se analiza siempre el mismo circuito variante en el tiempo,

linealizado en torno a las formas de onda que toma la tensión en las iteraciones

previas, que en este caso no son periódicas sino cuasi-periódicas. Para consi-

derar señales moduladas, se emplean representaciones mediante transformadas
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discretas de Fourier (DFT) bidimensionales, es decir,

vn(t) =
1

2

∑

h,m

ṽn(h,m, t)ej(hωc+mωo)t . (0.43)

De este modo, las variables del algoritmo correspondientes a las tensiones en

cada nodo serán vectores columna con (2H + 1) × (2M + 1) filas, donde H y

M son el número de armónicos del oscilador local y de la frecuencia intermedia

relevantes, respectivamente. El aumento de complejidad con respecto al caso de

una sola entrada es, por tanto, evidente.

• Método PHB extendido para señales de comunicaciones en mezcladores

El segundo enfoque consiste en una extensión del método de Balance Armónico

Paramétrico (E-PHB) que fue propuesta en [33] para reducir aún más el coste

computacional. En este caso, a partir de la segunda iteración se mantienen los

desarrollos en serie de i(v) y q(v) en torno a v0 durante el resto de las iteraciones,

de forma similar al enfoque SN. De este modo, para obtener la tensión incremen-

tal de la iteración n-ésima es necesario resolver el mismo circuito lineal variante

en el tiempo de (0.40), ahora con la corriente

in(v̄n−1) = i0 + is − L[v̄n−1] − i(v̄n−1) −
dq(v̄n−1)

dt
= (0.44)

=

{

g(v0)vn−1 +
d

dt
[c(v0)vn−1]

}

−

[

i(v̄n−1) − i(v̄n−2) +
dq(v̄n−1)

dt
−

dq(v̄n−2)

dt

]

.

Para el caso de señales moduladas de RF, además, se introducen algunas simpli-

ficaciones adicionales con respecto al caso anterior que consisten en emplear un

algoritmo de relajación por el que se resuelve cada armónico de la frecuencia in-

termedia por separado y considerar sólo los términos con |h| ≤ H y 0 ≤ m ≤ M ,

obteniendo el resto a partir de ellos. Así, las variables empleadas son vectores

columna con sólo (2H + 1) filas, lo que supone una reducción en el coste com-

putacional. Sin embargo, la convergencia del método NEC-M es mejor que la

del enfoque E-PHB.

Comparación con medidas experimentales

Técnicas de caracterización no lineal básicas

Mientras para el comportamiento lineal existen figuras de mérito para representar las

características observables de los dispositivos bien establecidas, sus equivalentes no
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lineales están aún bajo desarrollo y sometidas a debate [26]. Al no cumplir el prin-

cipio de superposición, la respuesta de un sistema no lineal a una determinada en-

trada puede variar considerablemente dependiendo del tipo de entrada empleada.

Por tanto, es aconsejable emplear entradas similares a las excitaciones esperadas en la

operación real. Las señales de prueba más prácticas para los dispositivos no lineales

empleados en circuitos de comunicaciones son aquellas con una densidad espectral de

potencia (PSD) limitada en banda que contienen gran número de líneas espectrales.

La aproximación más simple a estas señales consiste en concentrar toda la poten-

cia en una sola línea espectral, x(t) = Ai cos(2πft), dando lugar a la prueba de un

tono. En el caso de un dispositivo no lineal, la salida producida ante este estímulo

contiene, además de la frecuencia fundamental, nuevas componentes de frecuencia

en los armónicos de la entrada:

yNL(t) =
∞∑

h=0

Aoh(f,Ai) cos[2πhft + φoh(f,Ai)]. (0.45)

A partir de esta salida, las principales figuras de mérito asociadas a las pruebas de un

tono son:

• Conversión AM-AM: en la que se representa las variaciones de la amplitud de

la salida en la frecuencia fundamental al cambiar el nivel de entrada.

• Punto de compresión de 1 dB, P1dB: se define como el nivel de potencia para

el que la potencia de salida está 1 dB por debajo del valor que se obtendría al

extrapolar la característica lineal de pequeña señal.

• Conversión AM-PM: representa la variación en la fase de la salida fundamen-

tal de un dispositivo no lineal ante una entrada con amplitud variable para una

frecuencia fija, ya que las componentes de distorsión no lineales se suman vecto-

rialmente a la salida fundamental. Esta característica es exclusiva de sistemas no

lineales dinámicos o con memoria, incluyendo aquellos normalmente llamados

sistemas casi sin memoria [47].

• Distorsión Armónica Total, THD: se define como el cociente entre la potencia

total debida a componentes armónicas y la potencia de la componente funda-

mental.

Los montajes más comunes para realizar las pruebas de un tono consisten en un

generador de onda continua conectado a un Analizador Vectorial de Red (VNA) [48],

[49], aunque se puede emplear también un Analizador de Espectros (SA) [50], [51],

siendo éste último necesario en caso de realizar una caracterización de THD. Otras
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alternativas con equipamiento especial de laboratorio también son posibles, por ejem-

plo, haciendo uso de Analizadores de Transición de Microondas o de Analizadores

Vectoriales de Red No Lineales (NVNA).

Sin embargo, las pruebas de un tono sólo pueden producir componentes es-

pectrales armónicamente relacionadas con la frecuencia de entrada. Para superar

este inconveniente se emplean pruebas de dos tono, donde la señal de entrada está

formada por dos tonos de igual amplitud dentro de una cierta banda de interés,

x(t) = Ai1 cos(2πf1t)+Ai2 cos(2πf2t). La salida contiene un gran número de productos

de mezcla

yNL(t) =
∞∑

r=1

Aor cos(2πfrt + φor), donde fr = mf1 + nf2 y m,n ∈ Z, (0.46)

de los cuales, los de orden impar pueden dar lugar a distorsión dentro de la banda si

m + n = 1. Entre ellos destacan los productos de intermodulación (IM) de orden n-

ésimo, IMn, que dan lugar a la distorsión de intermodulación (IMD). Entre las figuras

de mérito asociadas a esta prueba se encuentran:

• Relación de intermodulación, IMR, que se define como el cociente entre la po-

tencia de salida a la frecuencia fundamental y la potencia de los productos de

IM de tercer orden, IM3.

• Punto de intercepto de tercer orden, IP3, que es el punto ficticio que se obtiene

cuando la línea extrapolada de pendiente 1 dB/dB de la potencia a la frecuencia

fundamental corta la línea extrapolada de pendiente 3 dB/dB de la potencia de

IM3. También se pueden definir los puntos de intercepto IP5 o IP7.

• Rango dinámico libre de espurias, SFDR, que es el cociente entre el nivel de po-

tencia a la salida para la frecuencia fundamental y el ruido o el nivel de potencia

de IMD.

Por otro lado, una señal de dos tonos se puede ver como una portadora a frecuencia

fc =
f1 + f2

2
con una modulación de amplitud de doble banda lateral con portadora

suprimida (DSB-SC) donde la envolvente compleja es una señal coseno con frecuencia

proporcional a la separación entre los tonos fm =
∆f

2
. De este modo, queda patente

la relación que existe entre la separación entre los dos tonos y la frecuencia de banda

base, haciendo que la medida de IMD con señales de dos tonos variando ∆f sean

adecuadas para tener en cuenta los efectos de memoria.

El equipo usual para las pruebas de dos tonos es un SA, normalmente junto con

dos generadores de señal que dan lugar a los dos tonos que se aplican al dispositivo
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bajo prueba (DUT) mediante un combinador o acoplador direccional. De este modo,

las fase de los tonos generados están incorreladas [26].

El principal inconveniente de la prueba de dos tonos es la dificultad para evaluar la

distorsión en las frecuencias fundamentales. Por eso, es usual emplear señales modu-

ladas limitadas en banda para medir la distorsión cocanal, o incluso otras señales que

se les parezcan, como las señales multitono de espectro discreto o el ruido limitado en

banda. El espectro de una señal no lineal consiste en agrupaciones de componentes

centradas en los diferentes armónicos. Si nos centramos en la distorsión dentro de

la banda, las nuevas componentes generadas por la distorsión no lineal dan lugar al

recrecimiento espectral. Por eso, las principales figuras de mérito asociadas a este caso

son:

• Relación de intermodulación multitono, MIMR, que generaliza el concepto de

IMR para las señales multitono.

• Relación de potencia en el canal adyacente (ACPR) y potencia en el canal ad-
yacente (ACP): existen varias figuras de mérito aceptadas para caracterizar la in-

terferencia potencial introducida en los canales adyacentes por las componentes

del recrecimiento espectral. Entre ellas, podemos mencionar la relación de po-

tencia de canal adyacente total, que se define como el cociente entre la suma

de las potencias de los canales adyacentes superior e inferior y la potencia en

el canal de interés, o la relación de potencia únicamente en el canal adyacente

inferior o superior. Otra alternativa es definir la potencia en el canal adyacente,

ACP, para un ancho de banda predefinido o en las bandas correspondientes a los

canales adyacentes primero, segundo, etc.

• Relación de potencia de ruido, NPR, que es una forma indirecta de caracteri-

zar la distorsión cocanal. En una prueba de potencia de ruido se eliminan las

componentes fundamentales en una cierta banda muy estrecha, de forma que

las componentes observadas a la salida en esa posición se deben a la distorsión

cocanal.

• Magnitud del Error Vectorial, EVM, que se define como el error cuadrático

medio entre los valores de la envolvente compleja medida y los valores teóri-

cos, para cada uno de los símbolos.

Para la generación de señales de prueba moduladas digitalmente se suelen em-

plear generadores de formas de onda arbitraria. Las medidas de ACPR se suelen

llevar a cabo mediante SAs [52], mientras que las medidas de EVM suelen requerir

Analizadores Vectoriales de Señal (VSAs) [53].
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Otro concepto indispensable para una completa caracterización del compor-

tamiento de un dispositivo no lineal es la memoria. El término de memoria fue pro-

puesto por Chua [54] para describir que en la salida para un instante t de un sistema

influyen no sólo la entrada a ese instante, sino también un rango finito de valores

pasados de la señal de entrada para instantes t − τ . La longitud de la memoria viene

determinada por el mayor de los retrasos considerados, τ . Al hablar de efectos de

memoria en un sistema no lineal estamos describiendo, esencialmente, un compor-

tamiento dinámico del sistema que puede darse en una escala de tiempos similar a la

frecuencia de la señal — memoria a corto plazo — o a tasas mucho menores — memo-

ria a largo plazo. Por eso, los sistemas que sólo presentan efectos de memoria a corto

plazo son considerados sistemas casi sin memoria por muchos autores [24], para los

que las distorsiones de amplitud y fase se modelan mediante conversiones AM-AM

y AM-PM estáticas o funciones de transferencia no lineal (NLTF) de valores comple-

jos pero constantes. En cambio, se considera que los sistemas no lineales con efectos

de memoria a largo plazo presentan características AM-AM y AM-PM dinámicas y

NLTFs dependientes de la frecuencia.

Los efectos de memoria se pueden observar como desplazamientos en la amplitud

y la fase de las componentes de IM al cambiar la frecuencia de modulación [24], o

también por la presencia de histéresis en las gráficas AM-AM y AM-PM [55]. Otras

formas de referirse a estos fenómenos en la literatura es como comportamiento de

IMD dependiente del ancho de banda [25], efectos dinámicos del sistema [56], efectos

dependientes de la tasa [57] o efectos no cuasi-estáticos (NQS) [9], [58]. Una diferencia

entre los productos de IM superior e inferior para una entrada de dos tonos o entre

los canales adyacentes superior e inferior para una entrada modulada se conoce como

una asimetría, y es otra indicación de la existencia de efectos de memoria. Los efectos

de memoria en amplificadores de potencia de RF se clasifican en [27], [58]:

• Efectos de memoria a corto plazo: son producidos por las reactancias asociadas

al transistor (a través de su modelo circuital) y por las redes de adaptación em-

pleadas, ya que suelen construirse con componentes reactivos o líneas de trans-

misión.

• Efectos de memoria a largo plazo: se producen por tres causas principales, que

son los efectos térmicos que se suelen dar para frecuencias de modulación por

debajo de 100 kHz, los estados trampa producidos por imperfecciones en los

semiconductores que dan lugar a variaciones en la escala de los kilohertzios a

los megahertzios y las redes de polarización, que proporcionan caminos de baja

impedancia para la dc a la vez que una alta impedancia para la señal de RF.

Tradicionalmente, las hojas de especificaciones de los circuitos de microondas y RF
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comerciales muestran el comportamiento no lineal mediante distintas figuras usando

un ancho de banda arbitrario para la modulación. Sin embargo, los niveles de IMD

variarán mucho en función del ancho de banda de las señales empleadas debido a

complejas interacciones dentro del dispositivo no lineal o entre este y el resto del

circuito. Estos efectos pueden llegar a hacer que algunos métodos de linealización

se vuelvan completamente ineficientes, especialmente los que se basen en reducir la

IMD aplicando una excitación que contenga una distorsión similar pero de fase op-

uesta, como puede ser el caso de la predistorsión digital desde un punto de vista

simplificado.

A pesar de todo, la caracterización de los efectos de memoria no es una práctica ex-

tendida fuera del campo de la investigación en la actualidad y, aunque se ha propuesto

un número reducido de figuras de mérito para cuantificar los efectos de memoria, aún

no están bien establecidas.

Descripción de la plataforma de medidas

Como parte de esta Tesis, se ha desarrollado una plataforma para la caracterización

automática de dispositivos no lineales, empleando equipamiento de laboratorio es-

tándar de comunicaciones, cuya foto se muestra en la Fig 0.3. Los elementos más

destacados del montaje son los siguientes:

• Analizador de espectros ESA E4407B de Agilent, con opción de análisis de mo-

dulación.

• Generador de señal SMIQ02B de Rhode & Schwarz, con capacidad para la gene-

ración de formas de ondas arbitrarias integrada.

• Generador de señal SMR20 de Rhode & Schwarz.

• Dos fuentes de alimentación de dc: una 6622A de Agilent y una TPS-4000D de

Topward Electric Instruments.

Los instrumentos se controlan mediante un software comercial instalado en un PC

mediante una interfaz GPIB. También se incluye en el montaje un test-fixture para la

colocación de los circuitos de microondas que van a ser caracterizados, así como otros

elementos que puedan ser necesarios para medidas particulares, como redes de po-

larización comerciales (bias-Tees), filtros, atenuadores, divisores y combinadores de

potencia, acopladores direccionales, etc.

xxvi



Figure 0.3: Fotografía del equipamiento de la plataforma para la caracteri-

zación no lineal de circuitos.

Las principales ventajas del montaje empleado son la velocidad que se consigue

gracias a la automatización de las medidas y la simplificación que introduce la inter-

faz gráfica de usuario diseñada. Otro aspecto positivo es la posibilidad de disponer

de forma inmediata de los resultados de medida en el PC, tanto en formato gráfico

como numérico, para integrar los datos experimentales de forma fácil con las técnicas

de simulación y modelado. En la Figura 0.4 se muestra una captura de pantalla del

software diseñado.

Entre las características de las medidas que permite dicha plataforma destaca la

posibilidad medir tanto la magnitud como la fase relativa en pruebas de dos tonos,

algo aconsejable para una completa caracterización de IMD. Previamente se han pro-

puesto distintos métodos para la medida de la fase de la IMD basados en VNAs [27],

[59], [60], o en un Generador Vectorial de Señal y un NVNA [61]. Su principal desven-

taja es que requieren montajes sofisticados y equipos altamente especializados. Otros

métodos propuestos emplean como excitación señales de dos tonos incorrelados es-

tándar [62], [63], o correlados [64], junto con técnicas basadas en el promediado es-

tadístico de ventanas de señal o filtrado espectral. Por último, existen métodos am-

pliamente aceptados basados en generadores con capacidad para formas de onda ar-

bitrarias y la adquisición de las muestras de salida con osciloscopios digitales [65],

VSAs [66], [67], [68] o un SA [69].

El método experimental empleado en la plataforma fue presentado en [70] y sigue

esta última tendencia de muestreo de banda ancha, empleando equipos de comunica-

ciones estándar. Se basa en la generación de dos tonos mediante una señal modulada

DSB-SC, gracias a la utilización de un generador de señal con opción de modulación
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Figure 0.4: Ventana principal del software implementado para controlar el

montaje de medidas automatizado.

arbitraria. La ventaja de este método no es sólo el uso de un único generador de señal

para producir los dos tonos, sino que la fase relativa entre ellos se puede controlar me-

diante la definición por software de la señal moduladora. Una limitación que presenta

es que existen respuestas generadas por el procesado digital de la señal. Sin embargo,

estas respuestas están más de 65 dB por debajo de los tonos y permiten suficiente mar-

gen para medir la IM sin error apreciable en las situaciones prácticas. Las muestras

de la señal en banda base a la salida son adquiridas en un analizador de espectros

con opción de análisis de modulación para recuperar su espectro, que contiene infor-

mación tanto de la magnitud como de la fase. Por tanto, mediante una transformada

de Fourier es posible obtener las fases de los productos de IM con respecto a la de

los tonos. Esta es otra de las restricciones del método propuesto, que no es posible

medir valores absolutos de la fase, sino relativos a la fase de los tonos. La máxima

separación entre los tonos posible de acuerdo con la tasa de muestreo del analizador

de espectros es de 10 MHz, pero si se tiene en cuenta que IM3 e IM5 muestran sepa-

raciones mayores, de 3∆f y 5∆f en cada caso, la separación máxima entre los tonos

no debe superar los 3.3 MHz y 2 MHz, respectivamente. Finalmente, se realiza un

post-procesado para corregir la fase que elimina el retraso de tránsito de la señal.

Para realizar medidas de la fase de los productos de IM se construyó un amplifi-

cador usando una red de polarización diseñada expresamente para mostrar una reso-
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Figure 0.5: Medida de la magnitud de IM3 e IM5 (rojo y azul) y de la difer-

encia en magnitud entre los tonos (verde). Red de polarización

resonante.
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Figure 0.6: Medida de la fase de IM3 e IM5 (rojo y azul) y de la diferencia en

fase entre los tonos (verde). Red de polarización resonante.
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Figure 0.7: Circuito equivalente de tres nodos empleado para el análisis del

MESFET CFB0301 de Celeritek y el HEMT EPB018A5-70 de Ex-

cellics.

nancia en torno a 130 kHz, de forma que se pudiera observar alguna dependencia de

IM3 e IM5 con la frecuencia. Las medidas de la magnitud y la fase de los productos

IM3 junto con la diferencia en magnitud y fase entre el producto de IM superior y el

inferior se muestran en las Figuras 0.5 y 0.6. Las medidas de la fase de IM3 e IM5 han

demostrado ser más adecuadas en muchos casos para detectar efectos dependientes

de la frecuencia o asimetrías, enfatizando la importancia de la caracterización en fase

de la IMD.

Resultados de los métodos de análisis basados en envolvente

Para demostrar las prestaciones de los métodos descritos en el Capítulo 3, se han apli-

cado al análisis de circuitos simples de amplificadores y mezcladores basados en un

único dispositivo MESFET CFB0301 de Celeritek o HEMT EPB018A5-70 de Excellics.

Se ha empleado el circuito equivalente de tres nodos mostrado en la Figura 0.7. Entre

los modelos no lineales de gran señal usados para los dispositivos señalados destacan

los modelos de Curtice cúbico [71] y Angelov [72]. Entre los elementos del circuito

equivalente, Rg, Rs, Rd, Lg, Ls, y Ld forman el circuito extrínseco. Con respecto al

circuito intrínseco, Ri es la resistencia intrínseca o resistencia de la región del semi-

conductor bajo la puerta, entre la fuente y el canal. Cds es la capacidad de drenador

a fuente, que viene dominada por la capacidad de metalización y se trata por tanto

como una constante. Cgs y Cgd son las capacidades de puerta a canal. Nótese que las

ramas que contienen las parejas Ri-Cgs y Rds-Crf introducen una dependencia en fre-

cuencia similar a la de un filtro, por lo que tienen en cuenta efectos NQS o de memoria.

Ids es la fuente de corriente no lineal del canal. Se acepta generalmente que la fuente
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de no linealidad dominante en los transistores MESFET y HEMT es la corriente de

drenador a fuente Ids(Vgs, Vds) [9], [21], [28], [73], [74].

Los métodos EC y SN tienen en común que ambos analizan el mismo circuito lineal

aumentado durante todas sus iteraciones. Por tanto, ambos pueden ser resumidos en

el siguiente proceso iterativo:

[jY′(hωc) − ∆t · Y(hωc)] ṽn(h, tk+1) = (0.47)

jY′(hωc)ṽn(h, tk) − ∆t · ĩn(h, tk+1) ,

donde se considera un número de iteraciones N en cada caso. La matriz de admitan-

cias y su primera derivada con respecto a ω para el ejemplo de la Figura 0.7 toman las

expresiones siguientes:

Y(hωc) =






Y11(hωc) Y12(hωc) Y13(hωc)

Y21(hωc) Y22(hωc) Y23(hωc)

Y31(hωc) Y32(hωc) Y33(hωc)




 , (0.48)

con

Y11(hωc) =
1 + jhωcRiCgs

Zs + Rg + jhωcLg

+
jhωcCgd (1 + jhωcRiCgs)

1 + jhωcRgdCgd

+ jhωcCgs,

Y12(hωc) = −
jhωcCgd

1 + jhωcRgdCgd

,

Y13(hωc) =
1

Zs + Rg + jhωcLg

,

Y21(hωc) = g10 −
jhωcCgd (1 + jhωcRiCgs)

1 + jhωcRgdCgd

, (0.49)

Y22(hωc) = g01 +
1

ZL + Rd + jhωcLd

+
jhωcCgd

1 + jhωcRgdCgd

+ jhωcCds +
jhωcCrf

1 + jhωcRdsCrf

,

Y23(hωc) =
1

ZL + Rd + jhωcLd

,

Y31(hωc) = −g10 − jhωcCgs,

Y32(hωc) = −g01 − jhωcCds −
jhωcCrf

1 + jhωcRdsCrf

,

Y33(hωc) =
1

Rs + jhωcLs

,

y

Y′(hωc) =






Y ′
11(hωc) Y ′

12(hωc) Y ′
13(hωc)

Y ′
21(hωc) Y ′

22(hωc) Y ′
23(hωc)

Y ′
31(hωc) Y ′

32(hωc) Y ′
33(hωc)




 , (0.50)

con

Y ′
11(hωc) =

jRiCgs

Zs + Rg + jhωcLg

−
jLg (1 + jhωcRiCgs)

(Zs + Rg + jhωcLg)
2 +
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+
jCgd (1 + jhωcRiCgs)

(1 + jhωcRgdCgd)
2 −

hωcRiCgsCgd

1 + jhωcRgdCgd

+ jCgs,

Y ′
12(hωc) = −

jCgd

(1 + jhωcRgdCgd)
2 ,

Y ′
13(hωc) = −

jLg

(Zs + Rg + jhωcLg)
2 ,

Y ′
21(hωc) = −

jCgd (1 + jhωcRiCgs)

(1 + jhωcRgdCgd)
2 +

hωcRiCgsCgd

1 + jhωcRgdCgd

, (0.51)

Y ′
22(hωc) = −

jLd

(ZL + Rd + jhωcLd)
2 +

jCgd

(1 + jhωcRgdCgd)
2 + jCds +

jCrf

(1 + jhωcRdsCrf )
2 ,

Y ′
23(hωc) = −

jLd

(ZL + Rd + jhωcLd)
2 ,

Y ′
31(hωc) = −jCgs,

Y ′
32(hωc) = −jCds −

jCrf

(1 + jhωcRdsCrf )
2 ,

Y ′
33(hωc) = −

jLs

(Rs + jhωcLs)
2 .

Las incógnitas del problema son las envolventes complejas de las tensiones, tal

como se expresa en el siguiente vector:

ṽn(h, t) =






ṽgs,n(h, t)

ṽds,n(h, t)

ṽs,n(h, t)




 , (0.52)

y la tensión de salida es:

ṽout,n(h, t) =
ZL [ṽds,n(h, t) + ṽs,n(h, t)]

ZL + Rd + jhωcLd

. (0.53)

Con el dispositivo MESFET CFB0103 de Celeritek se construyó un amplificador a

2 GHz, usando una polarización VDS = 2 V y ID = 25 mA. Se tuvo especial cuidado

en el proceso de modelado para obtener una adecuada precisión de las características

no lineales. Se consideró únicamente la fuente de corriente no lineal Ids para la que

se utilizó un modelo de Angelov con seis coeficientes (P2 = 0), cuyo ajuste se hizo

empleando medidas de la magnitud de IMD para dos señales a frecuencias de 150 y

151 MHz siguiendo un enfoque de series dobles de Volterra [42].

Además, se construyó otro amplificador con el HEMT EPB018A5-70 de Excellics,

al que se le aplicó una polarización con VGS = −0.24 V y VDS = 2 V, para obtener una

corriente de drenador de 15 mA, mediante sendas bias-Tees ZFBT-6G de Minicircuits.

Los valores de los coeficientes de un modelo de gran señal de Curtice cúbico propor-

cionado por el fabricante para Ids fueron readaptados a un modelo de Angelov de seis
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coeficientes (con λ = 1) debido a que aparecían imprecisiones no despreciables con

el modelo del fabricante. Con este mismo dispositivo HEMT, se construyó también

un mezclador de puerta. El punto óptimo de polarización se obtuvo de forma expe-

rimental como VGS = −0.45 V para la tensión de drenador recomendada VDS = 2 V.

Se emplearon señales de RF a una frecuencia fRF = 2 GHz y del oscilador local a una

frecuencia fLO = 1.86 GHz con un nivel PLO = −4.5 dBm, que se aplicaron mediante

un acoplador direccional.

Método de las Envolventes de Corriente

Se empleó el amplificador construido con el MESFET CFB0301 de Celeritek. Se han

tenido en cuenta las siguientes corrientes no lineales:

• Para el caso lineal, n = 1, sólo se tiene en cuenta la zona de la frecuencia funda-

mental con h = 1:

ĩ1(1, t) =








ṽg(t)

Zs + Rg + jωcLg

0

0








. (0.54)

• Para la segunda iteración, n = 2, es necesario considerar dos envolventes de

corrientes para h = 0 y h = 2:

ĩ2(0, t) =






0

−ĩd,2(0, t)

ĩd,2(0, t)




 , (0.55)

ĩ2(2, t) =






0

−ĩd,2(2, t)

ĩd,2(2, t)




 , (0.56)

con

ĩd,2(0, t) =
g20

2
|ṽgs,1(1, t)|

2 +
g02

2
|ṽds,1(1, t)|

2 +
g11

2
Re{ṽgs,1(1, t)ṽ

∗
ds,1(1, t)}, (0.57)

ĩd,2(2, t) =
g20

2
ṽ2

gs,1(1, t) +
g02

2
ṽ2

ds,1(1, t) +
g11

2
ṽgs,1(1, t)ṽds,1(1, t). (0.58)

• Para la tercera iteración, n = 3, de nuevo se consideran dos envolventes de co-

rriente para h = 1 y h = 3, aunque la última sólo es necesaria porque se busca

una predicción del tercer armónico:

ĩ3(1, t) =






0

−ĩd,3(1, t)

ĩd,3(1, t)




 , (0.59)
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ĩ3(3, t) =






0

−ĩd,3(3, t)

ĩd,3(3, t)




 , (0.60)

con

ĩd,3(1, t) =
3g30

4
ṽ2

gs,1(1, t)ṽ
∗
gs,1(1, t) +

3g03

4
ṽ2

ds,1(1, t)ṽ
∗
ds,1(1, t)+

2g20

[
1

2
ṽ∗

gs,1(1, t)ṽgs,2(2, t) + ṽgs,1(1, t)ṽgs,2(0, t)

]

+

2g02

[
1

2
ṽ∗

ds,1(1, t)ṽds,2(2, t) + ṽds,1(1, t)ṽds,2(0, t)

]

+

g11

[
1

2
ṽ∗

gs,1(1, t)ṽds,2(2, t) + ṽgs,1(1, t)ṽds,2(0, t)+ (0.61)

+
1

2
ṽ∗

ds,1(1, t)ṽgs,2(2, t) + ṽds,1(1, t)ṽgs,2(0, t)

]

+

g21

4

[
ṽ2

gs,1(1, t)ṽ
∗
ds,1(1, t) + 2|ṽgs,1(1, t)|

2ṽds,1(1, t)
]
+

g12

4

[
ṽ2

ds,1(1, t)ṽ
∗
gs,1(1, t) + 2|ṽds,1(1, t)|

2ṽgs,1(1, t)
]
,

ĩd,3(3, t) =
g30

4
ṽ3

gs,1(1, t) +
g03

4
ṽ3

ds,1(1, t) +
g21

4
ṽ2

gs,1(1, t)ṽds,1(1, t)+ (0.62)

g12

4
ṽ2

ds,1(1, t)ṽgs,1(1, t) + g20ṽgs,1(1, t)ṽgs,2(2, t) + g02ṽds,1(1, t)ṽds,2(2, t)+

g11

2
[ṽgs,1(1, t)ṽds,2(2, t) + ṽds,1(1, t)ṽgs,2(2, t)]

La Figura 0.8 muestra la salida para la frecuencia fundamental, segundo y tercer

armónicos en un rango de potencias de entrada. También se ha probado el amplifi-

cador con una señal W-CDMA QPSK correspondiente al 3GPP a 2 GHz, con una tasa

de 3.84 Mchip/s y pulso coseno alzado con un factor de roll-off de 0.22. La Figura 0.9

compara el espectro medido a la salida con las simulaciones realizadas mediante el

método EC para dos niveles de potencia de entrada, el primero lo suficientemente

bajo para que las no linealidades no sean apreciables, y el segundo más cercano al

punto de compresión de 1 dB, donde es más apreciable el recrecimiento espectral que

produce interferencia de canal adyacente. Todas las simulaciones se ajustan satisfac-

toriamente a las medidas, por lo que se puede concluir la validez de los métodos

basados en envolvente.

Enfoque de Newton Simplificado para circuitos débilmente no lineales

En este caso, se empleó el amplificador basado en el HEMT EPB018A5-70 de Excellics,

para el que se han tenido en cuenta los coeficientes tanto de la fuente no lineal de
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Figure 0.8: Potencia de salida a la frecuencia fundamental y los armónicos se-

gundo y tercero. Puntos, medidas; línea continua: simulaciones

con el método EC.

corriente de drenador como de la capacidad no lineal de puerta a fuente. Hasta la

segunda iteración, éstos son:

• Para el caso lineal, n = 1, sólo se tiene en cuenta la zona de la frecuencia funda-

mental con h = 1:

ĩ1(1, t) =








ṽg(t)

Zs + Rg + jωcLg

0

0








. (0.63)

• Para la segunda iteración, n = 2, hay que considerar cuatro envolventes de co-

rriente para h = 0, 1, 2, y 3:

ĩ2(h, t) =






−ĩc,2(h, t)

−ĩd,2(h, t)

ĩd,2(h, t) + ĩc,2(h, t)




 , (0.64)

con

ĩd,2(0, t) =
g20

2
|ṽgs,1(t)|

2 +
g02

2
|ṽds,1(t)|

2 +
g11

2
Re{ṽgs,1(t)ṽ

∗
ds,1(t)} (0.65)

ĩd,2(1, t) =
3g30

4
|ṽgs,1(t)|

2ṽgs,1(t) +
3g03

4
|ṽds,1(t)|

2ṽds,1(t) +
g21

4
ṽ2

gs,1(t)ṽ
∗
ds,1(t)+

+
g21

2
|ṽgs,1(t)|

2ṽds,1(t) +
g12

4
ṽ2

ds,1(t)ṽ
∗
gs,1(t) +

g12

2
|ṽds,1(t)|

2ṽgs,1(t) (0.66)
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Figure 0.9: Constelación and PSD a la salida de un amplificador MESFET para

dos niveles de potencia de entrada con pulsos coseno alzado. Pun-
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ĩd,2(2, t) =
g20

2
ṽ2

gs,1(t) +
g02

2
ṽ2

ds,1(t) +
g11

2
ṽgs,1(t)ṽds,1(t) (0.67)

ĩd,2(3, t) =
g30

4
ṽ3

gs,1(t) +
g03

4
ṽ3

ds,1(t)+ (0.68)

+
g21

4
ṽ2

gs,1(t)ṽds,1(t) +
g12

4
ṽ2

ds,1(t)ṽgs,1(t)

ĩc,2(0, t) = 0 (0.69)

ĩc,2(1, t) =jω
c2

4
|ṽgs,1(t)|

2ṽgs,1(t) (0.70)

ĩc,2(2, t) =jω
c1

2
ṽ2

gs,1(t) (0.71)

ĩc,2(3, t) =jω
c2

4
ṽ3

gs,1(t) (0.72)

La Figura 0.10 muestra la potencia a la salida para el tono superior e IM3 frente a

la potencia de entrada para una excitación de dos tonos separados 1 MHz. Se puede

observar un buen rango dinámico, incluso cuando sólo se resuelven dos sistemas de

ecuaciones hasta la segunda iteración. Los tiempos de simulación en estos casos es-

tán por debajo de 2 segundos en un PC Pentium IV. Cuando se considera una señal

de comunicaciones W-CDMA de UMTS 3GPP con una tasa de 3.84 Mchip/s, como

en la Figura 0.11 la predicción del recrecimiento espectral es adecuada y muestra una

buena correspondencia con la del método EC. Cuando sólo se tiene en cuenta hasta

la segunda iteración en el enfoque SN se consigue una reducción del 50% del tiempo

de computación. La precisión lograda en las predicciones del recrecimiento espec-

tral para un amplio rango dinámico y los reducidos tiempos de simulación permiten

realizar simulaciones de ACPR como la mostrada en la Figura 0.12.

Dos enfoques alternativos para señales de comunicaciones en mezcladores

Para comparar las prestaciones de los métodos NEC-M y E-PHB se empleó el mez-

clador construido con el HEMT EPB018A5-70 de Excellics. La Figura 0.13 muestra

los resultados para la ganancia de conversión obtenida con una excitación de dos

tonos a 2 y 2.001 GHz, variando la potencia de entrada. Se puede observar que las

predicciones de los métodos E-PHB y NEC-M se aproximan mucho a los resultados

experimentales, incluso para niveles bastante por encima del punto de compresión de

1 dB. Además, se han hecho predicciones para una señal W-CDMA de UMTS 3GPP

a 2 GHz, con una tasa de 3.84 Mchip/s, en la que se ha medido la salida a frecuencia

intermedia para diferentes niveles de entrada. La Figura 0.14 muestra el recrecimiento

espectral de la salida a frecuencia intermedia. La coincidencia entre los datos medidos

y simulados con el enfoque E-PHB es destacable, aún con la reducción computacional
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que supone. Por último, la Figura 0.15 presenta una comparación entre los valores

medidos y predichos para la potencia cocanal y el ACP de los dos canales adyacentes

superiores e inferiores en un amplio rango de potencias de entrada. El ajuste es muy

adecuado, considerando que con el enfoque E-PHB se emplearon unos 5 minutos de

tiempo de simulación por nivel de potencia.

Modelado de la distorsión de intermodulación

Los métodos tradicionales de modelado no pueden estimar la dependencia de la IMD

con el ancho de banda y, en cambio, es necesario tener en cuenta estos efectos para

satisfacer los requisitos exigidos en el diseño de amplificadores cada vez para mayores

anchos de banda. Por tanto, está justificada la necesidad de modelo que permitan

predecir los efectos de memoria. El método predominante para el análisis teórico del

comportamiento débilmente no lineal es la representación mediante series de Volterra,

tanto convencionales [28], [21], [75], [76], como dinámicas [59]. El principal motivo es

que sus resultados pueden escribirse en expresiones cerradas que contribuyen a la

comprensión del fenómeno de la IMD. Estudios de este tipo como [28] o [21] indican

que las impedancias de terminación en banda base son las principales causas de las

asimetrías y los efectos de memoria observados en los productos de IM. Siguiendo este

enfoque, en este trabajo se ha aplicado el enfoque de Newton Simplificado al análisis

de la IMD para señales de dos tonos en amplificadores HEMT bajo la suposición de

banda estrecha e incluyendo hasta términos de quinto orden. Esto ha permitido hallar

expresiones teóricas cerradas para IM3 e IM5.

Enfoque de Newton Simplificado aplicado al análisis de los productos de intermo-
dulación

Para el análisis de los productos de IM en amplificadores HEMT se ha considerado el

circuito equivalente simplificado de dos nodos que se muestra en la Figura 0.16, donde

sólo se considera la no linealidad principal. Las impedancias de fuente y carga, Zs(f) y

ZL(f), incluyen los elementos de las redes de polarización y de adaptación. Al aplicar

el enfoque SN, tendremos en cuenta que la corriente de drenador se puede escribir

ids(t) = g10vg(t) + g01vd(t) + iNL[vg(t), vd(t)], donde g10 y g01 son las conductancias line-

ales incluidas en el circuito lineal aumentado y el término de la contribución no lineal

viene dado por iNL[vg(t), vd(t)] =
∞∑

k=2

gk0v
k
g (t) +

∞∑

l=2

g0lv
l
d(t) +

∞∑

k,l=1

gklv
k
g (t)vl

d(t), donde

las sumas se han truncado suponiendo que gk0 = 0 , g0l = 0 para k, l > 5 y gkl = 0

para k + l > 3.
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Figure 0.16: Circuito equivalente de dos nodos empleado en el análisis de IM

de un amplificador HEMT, donde sólo se ha considerado la no

linealidad principal.

Un análisis nodal del circuito cuyas incógnitas son las tensiones de los nodos en el

dominio de la frecuencia da lugar a:

Y(f)V(f) = I(f), (0.73)

donde

Y(f) =

[

Ȳs(f) −j2πfCgd

Ymd(f) ȲL(f)

]

, (0.74)

y las siguientes definiciones se han tenido en cuenta:

ȲL(f) = YL(f) + j2πf(Cds + Cgd) + g01, (0.75)

Ymd(f) = −j2πfCgd + g10, (0.76)

Ȳs(f) = Ys(f) + j2πf(Cgs + Cgd). (0.77)

Considérese que se aplica una señal de dos tonos de RF expresada mediante su

envolvente compleja:

vs(t) =
1

2
ṽs(t) ej2πfct +

1

2
ṽ∗

s(t) e−j2πfct , (0.78)

donde

ṽs(t) = Aej2πfmt + Ae−j2πfmt = 2A cos(2πfmt) , (0.79)

y se asume banda estrecha, i.e., mfm ≪ fc para m ≤ 5. Con esta fuente de excitación,

en cualquier paso del algoritmo SN las variables del circuito para la iteración n-ésima

tomarán la forma general

vn(t) =
1

2

∞∑

h=−∞

ṽn(h, t)ej2πhfct =
1

2

∞∑

h,m=−∞

ṽn(h,m)ej2π(hfc+mfm)t . (0.80)

Estas señales se aproximarán por señales cuasi-periódicas tomando un número finito

de armónicos H .
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En el régimen permanente cuasi-periódico, la expresión equivalente en el dominio

de la frecuencia para el método SN es Y(hfc + f) Ṽn(h, f) = Ĩn(h, f), para cada itera-

ción n y cada armónico h. Una vez que se ha hallado el punto de reposo del circuito

y se han realizado los desarrollos en serie de potencias de las fuentes no lineales, se

dejan a circuito abierto todas las fuentes de corriente y se resuelve el análisis nodal del

circuito lineal aumentado para la primera iteración (n = 1). En este caso sólo existen

términos a frecuencias para h = 1 y m = ±1:

ṽg1(1,±1) = Hg1A

ṽd1(1,±1) = H1A.
(0.81)

donde Hg1 y H1 son las funciones de transferencia lineales que relacionan las tensiones

de entrada con las de los nodos de puerta y drenador, respectivamente, ambas eva-

luadas a la frecuencia de la portadora fc.

Para la segunda iteración, se cortocircuita la fuente de corriente externa y se aplican

las corrientes no lineales. A partir de la expresión de la corriente no lineal i2(t) =

−iNL[vg1(t), vd1(t)] se obtienen las componentes envolventes de corriente ĩ2(h,m), de

las cuales las más relevantes son las correspondientes a la zona de dc:

ĩ2(0,±2) = −
[
γ20A

2 + 3γ40A
4
]
, (0.82)

ĩ2(0,±4) = −
3

4
γ40A

4 ,

y de la frecuencia fundamental:

ĩ2(1,±1) = −

[
9

4
γ31A

3 +
25

4
γ51A

5

]

,

ĩ2(1,±3) = −

[
3

4
γ31A

3 +
25

8
γ51A

5

]

, (0.83)

ĩ2(1,±5) = −
5

8
γ51A

5 .

Las componentes de las tensiones incrementales a las frecuencias hfc+mfm se pueden

expresar como

ṽg2(h,m) = Zg(hfc + mfm)̃i2(h,m) ≈ Zghĩ2(h,m) ,

ṽd2(h,m) = Z(hfc + mfm)̃i2(h,m) ≈ Zhĩ2(h,m) ,
(0.84)

donde Zg(f) y Z(f) son las impedancias que relacionan componentes de las corrientes

no lineales con las componentes de vg(t) y vd(t), respectivamente. Para la zona de dc

Zg(mfm) ≈ 0 pero Z(mfm) = Z̄L(mfm), que representa la impedancia de carga vista

por la fuente de corriente de drenador a frecuencias de banda base, de forma que se

cumplen las relaciones

ṽg2(0,m) = 0 ,
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ṽd2(0,m) = Z̄L(mfm)̃i2(0,m) , (0.85)

para m par. En otras zonas de frecuencia, se hacen las aproximaciones Zg(hfc+mfm) ≈

Zg(hfc) = Zgh y Z(hfc +mfm) ≈ Z(hfc) = Zh que implican que la impedancia es plana

a la frecuencia fundamental y para sus armónicos. En cambio, presenta variaciones

a frecuencias de banda base, lo que se suele dar para las características típicas de la

carga y las redes de polarización y de adaptación empleadas en amplificadores de RF.

Las contribuciones de la tensión incremental de segundo orden para la zona de la

fundamental resultan:

ṽd2(1,±1) = −

[
9

4
γ31Z1A

3 +
25

4
γ51Z1A

5

]

,

ṽd2(1,±3) = −

[
3

4
γ31Z1A

3 +
25

8
γ51Z1A

5

]

, (0.86)

ṽd2(1,±5) = −
5

8
γ51Z1A

5 .

Para la tercera iteración es necesario evaluar la corriente no lineal i3(t) =

−
[

iNL [vg1(t) + vg2(t), vd1(t) + vd2(t)] − iNL [vg1(t), vd1(t)]
]

. Para ello se realiza una

aproximación de la misma mediante un desarrollo en serie de Taylor de primer orden,

resultando i3(t) = −
{

2g20vg1(t)vg2(t)+g11 [vd1(t)vg2(t) + vg1(t)vd2(t)]+2g02vd1(t)vd2(t)
}

.

Siguiendo un procedimiento análogo al de la segunda iteración se obtienen las con-

tribuciones de la tensión incremental de drenador de tercer orden.

Como resumen, en la Tabla 0.1 se presentan los términos de la tensión incremen-

tal de drenador en la zona de la frecuencia fundamental. Sumando las tensiones in-

crementales para todas las iteraciones consideradas, se puede expresar la tensión de

drenador a las frecuencias de los tonos f = fc ± fm como

Vdu,l
= H1A +

[
9

4
γ3 + γ′

20Z̄L(±∆f)

]

A3 +

[
25

4
γ5 + 3γ′

40Z̄L(±∆f)

]

A5 , (0.87)

donde la notación Vdl
/Vdu

se emplea para denotar las frecuencias de los tonos infe-

rior/superior, respectivamente; y los coeficientes γ, que cambian con la polarización

pero son constantes con la frecuencia de banda base, están definidos en el Apéndice C.

De forma similar, se obtiene IM3 a las frecuencias f = fc ± 3fm como

Vd3u,3l
=

[
3

4
γ3 + γ′

20Z̄L(±∆f)

]

A3 +

[
25

8
γ5 + 3γ′

40Z̄L(±∆f) +
3

4
γ′

40Z̄L(±2∆f)

]

A5 ,

(0.88)

e IM5 a las frecuencias f = fc ± 5fm como

Vd5u,5l
=

[
5

8
γ5 +

3

4
γ′

40Z̄L(±2∆f)

]

A5 . (0.89)
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Table 0.1: Términos de Vdn
para la zona de la frecuencia fundamental (h = 1)

m = ±1

n = 1 H1A

n = 2 −9
4
γ31Z1A

3 − 25
4
γ51Z1A

5

n = 3 3
2
γ′

22Z1A
3 + γ′

20Z̄L(±∆f)A3+

+
[
5γ′

42Z1 + 3γ′
40Z̄L(±∆f)

]
A5

m = ±3

n = 1 0

n = 2 −3
4
γ31Z1A

3 − 25
8
γ51Z1A

5

n = 3 1
2
γ′

22Z1A
3 + γ′

20Z̄L(±∆f)A3+

+
[

5
2
γ′

42Z1 + 3γ′
40Z̄L(±∆f) + 3

4
γ′

40Z̄L(±2∆f)
]
A5

m = ±5

n = 1 0

n = 2 −5
8
γ51Z1A

5

n = 3
[

1
2
γ′

42Z1 + 3
4
γ′

40Z̄L(±2∆f)
]
A5
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Por tanto, las variaciones de IM3 e IM5 sólo dependen de las variaciones de la

impedancia de carga banda base con la separación entre los tonos ∆f , siendo este

termino la fuente principal de los efectos de memoria del dispositivo. Por otro lado,

las expresiones (0.87)- (0.89) dan lugar a valores distintos para las frecuencias inferio-

res y superiores puesto que la impedancia de carga Z̄L puede tomar valores distintos

para las frecuencias de banda base positivas y negativas. Por lo tanto, se obtienen las

siguientes expresiones para las asimetrías de IM3 e IM5:

A3 =

1 +
4γ′

20

3γ3

Z̄L(∆f) +

[
25

6

γ5

γ3

+ 4
γ′

40

γ3

Z̄L(∆f) +
γ′

40

γ3

Z̄L(2∆f)

]

A2

1 +
4γ′

20

3γ3

Z̄∗
L(∆f) +

[
25

6

γ5

γ3

+ 4
γ′

40

γ3

Z̄∗
L(∆f) +

γ′
40

γ3

Z̄∗
L(2∆f)

]

A2

, (0.90)

A5 =

1 +
6γ′

40

5γ5

Z̄L(2∆f)

1 +
6γ′

40

5γ5

Z̄∗
L(2∆f)

. (0.91)

La novedad introducida por estas expresiones es que los resultados propuestos in-

cluyen efectos de quinto orden, dando lugar a una descripción más detallada de la

asimetría de IM3 y permitiendo la predicción de IM5.

Para comprobar los resultados de las predicciones proporcionadas por las expre-

siones anteriores, se han comparado con las medidas realizadas sobre un amplificador

HEMT EPB018A5-70 de Excellics. Para poder realizar simulaciones hasta quinto or-

den fue necesario emplear un modelo de Curtice de cinco coeficientes, en lugar del

modelo de Curtice cúbico proporcionado por el fabricante.

En primer lugar se midió el amplificador usando la red de polarización resonante

indicada previamente. En las Figuras 0.17 y 0.18 se muestran resultados correspon-

dientes a la asimetría de fase de IM3. La dependencia en frecuencia mostrada por

la impedancia de carga de banda base se observa claramente en ambas gráficas, pro-

duciendo una asimetría de fase en torno a 130 kHz. Tanto las medidas como la ca-

racterística calculada muestran también un cambio en la fase a la frecuencia ∆f
2

, que

indica la contribución de los términos de quinto orden a IM3. Este efecto se describe

de forma aproximada mediante el procedimiento propuesto en la Figura 0.17 (línea

discontinua), mientras que no es posible cuando se emplea un enfoque convencional

basado en series de Volterra como el aplicado en [21] (línea punteada). La coincidencia

de las simulaciones con las medidas puede mejorarse usando un modelo más detalla-

do de la red de polarización, incluyendo el factor Q de sus elementos, y unos valores

optimizados de los coeficientes γ para mejorar el modelo no lineal del HEMT, como

se muestra con línea continua en la Figura 0.17. La Figura 0.18 representa medidas

de la asimetría de fase de IM3 para dos valores diferentes de la tensión VGS a una po-

tencia Pin = −12.4 dBm, en las que se puede observar una inversión en la fase entre
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ambas polarizaciones y que la asimetría es más pronunciada para la polarización con

VGS = −0.4 V.

Cuando se polarizó el amplificador usando una bias-Tee comercial ZFBT-6GW de

Minicircuits, los resultados obtenidos tanto para la magnitud como para la fase de los

productos IM3 e IM5 se muestran en las Figuras 0.19 y 0.20, incluyendo las asimetrías

de tercer y quinto orden. En este caso, se extrajo el modelo de la bias-Tee comercial

empleada a partir de medidas del parámetro s11 en un VNA y la impedancia de carga

obtenida se empleó en las simulaciones. Aunque se observa un buen ajuste general

con las medidas, existe una desviación evidente para separaciones entre los tonos por

debajo de 30 kHz. Esto sugiere que la dependencia con la frecuencia observada en

dicha zona podría haber sido causada pr efectos de memoria de origen térmico o de-

bidos a estados trampa y de ionización por impacto.

Discusión sobre los resultados teóricos

En muchos trabajos, sólo se consideran asimetrías en la magnitud de los productos de

IM, sin prestar atención a las asimetrías en la fase. Por otro lado, aunque la existen-

cia de asimetría es otra indicación de efectos de memoria, no todos los sistemas con

memoria presentarán asimetrías espectrales. Por eso, se han estudiado las circunstan-

cias que es necesario que se den para que se observen asimetrías en magnitud y/o

fase en los productos de IM. Para ello se ha partido de una expresión simplificada que

retiene la dependencia con la impedancia de carga de banda base de las expresiones

(0.90) and (0.91):

Fasym =
1 + γZ̄L

1 + γZ̄∗
L

. (0.92)

En la Tabla 0.2 se ilustran los diferentes escenarios que se pueden dar. Se puede con-

cluir que:

• Si la impedancia de carga de banda base Z̄L es real no son posibles efectos de

memoria ni asimetrías, ni de magnitud ni de fase.

• Si la impedancia de carga de banda base Z̄L tiene una parte imaginaria no des-

preciable, el dispositivo siempre presentará asimetría de fase.

• Sólo cuando los coeficientes γ y la impedancia de carga de banda base Z̄L son

complejos aparecerá una asimetría tanto en magnitud como en fase.

• Si los coeficientes γ son despreciables, el término constante dominará los vec-

tores resultantes y no será posible observar asimetrías. En este caso, aunque la

variación de la IMD con ∆f no sea evidente, el amplificador sigue presentando

efectos de memoria.
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Table 0.2: Diferentes situaciones de asimetría con respecto a γ y Z̄L.

γ ∈ R

Z̄L ∈ R Z̄L es imaginario puro Z̄L ∈ C, Z̄L = |Z|ejψ

Z̄∗
L = Z̄L Z̄∗

L = −Z̄L Z̄∗
L = |Z|e−jψ

|Fasym| = 1, φasym = 0 |Fasym| = 1, φasym 6= 0 |Fasym| = 1, φasym 6= 0

g gZ = ZL L

*

IM =u IM l

gZL

gZL

*

IM u

IM l

gZL

gZL

*

IM u

IM l

y
y

Simetría Simetría en magnitud Simetría en magnitud

Asimetría en fase Asimetría en fase

γ ∈ C, γ = |γ|ejϕ

Z̄L ∈ R Z̄L es imaginario puro Z̄L ∈ C, Z̄L = |Z|ejψ

γZ̄∗
L = γZ̄L γZ̄∗

L = −γZ̄L γZ̄L = |γZ|ej(ϕ+ψ)

γZ̄∗
L = |γZ|ej(ϕ−ψ)

|Fasym| = 1, φasym = 0 |Fasym| 6= 1, φasym 6= 0 |Fasym| 6= 1, φasym 6= 0

g gZ = ZL L

*
IM =u IM l

gZL

gZL

*

IM u

IM l

j gZL

gZL

*

IM u

IM l

y
y

j

Simetría Asimetría en magnitud Asimetría en magnitud

y en fase y en fase

l



• Si la característica observada en un analizador de espectros presenta asimetría

(de magnitud), entonces se puede afirmar que el amplificador tiene memoria.

Pero no se puede asegurar que cualquier dispositivo con memoria presente

asimetría de magnitud ni que un dispositivo que no presente asimetrías en mag-

nitud no tenga memoria.

Modelo de IM3 basado en impedancia para los efectos de memoria electrotérmicos

Las discrepancias observadas entre las medidas y las predicciones proporcionadas por

el enfoque SN para los productos de IM sugieren la necesidad de considerar modelos

para los efectos de memoria a largo plazo producidos por causas térmicas, ionización

por impacto o estados trampa. Para ello, en [77] se propuso un modelo simplificado

basado en la obtención de una impedancia de carga equivalente que pudiera explicar

dichas discrepancias. Algunos trabajos recientes que tienen en cuenta los efectos de

memoria térmicos lo hacen mediante elementos térmicos en el modelo del transis-

tor [78], [79], [80], [81], o mediante un modelo de comportamiento térmico acoplado

al circuito equivalente del dispositivo. Otros efectos de memoria a largo plazo cuyo es-

tudio ha sido afrontado recientemente son los estados trampa, que se suelen modelar

mediante funciones de transferencia dependientes de ∆f y las tensiones de polariza-

ción [82], [83]. El modelo propuesto en este caso trata mediante un modelo eléctrico, el

de una hipotética impedancia de carga equivalente, cualquier tipo de efecto de memo-

ria sin importar cuál sea su origen. Dicho modelo se obtiene a partir de la comparación

de las medidas experimentales de los productos de IM con las expresiones teóricas

obtenidas con el método SN, en las que se han despreciado los efectos de quinto or-

den. Se ha trabajado con las expresiones siguientes de la magnitud y la fase de los

productos IM3 relativas a la de los tonos, puesto que se disponía de medidas de fase

relativa:

F3 =

[
3

4
γ3 + γ′

20Z̄L(±∆f)

]

A2

H1 +

[
9

4
γ3 + γ′

20Z̄L(±∆f)

]

A2

, (0.93)

Recordemos que el único término dependiente de la frecuencia en estas expre-

siones es Z̄L(±∆f), de modo que la impedancia de carga juega un papel predominante

en la generación de los efectos de memoria. La idea básica del enfoque propuesto con-

siste en extraer los valores de una impedancia de carga equivalente que proporcione

un ajuste adecuado de las medidas incluso en presencia de efectos dispersivos de baja

frecuencia. Parte de dicha impedancia de carga equivalente será conocida, i.e., los ele-

mentos del modelo intrínseco del HEMT conectados al drenador, la impedancia de la

red de polarización y la impedancia de salida. Por eso, su valor puede eliminarse e in-
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Figure 0.21: Modelo propuesto de la impedancia de carga equivalente Z̄L (a) y

de la impedancia hipotética Zth (b) para el modelo equivalente de

un amplificador HEMT utilizado en el análisis.

troducir el término restante como una impedancia hipotética Zth que tenga en cuenta

los efectos electrotérmicos no incluidos en el modelo del dispositivo.

Para ilustrar el procedimiento propuesto, se aplicó a las medidas y el modelo del

amplificador construido con el HEMT EPB018A5-70 de Excellics para dos polariza-

ciones, VGS = −0.24 V y VGS = −0.4 V, siendo VDS = 2 V, y diferentes niveles de

entrada que se aplicaron mediante bias-Tee ZFBT-6GW de Minicircuits. Como ya

ha sido mencionado, las simulaciones con el enfoque SN sólo ajustan los resultados

de las medidas por encima de unos 30 kHz. Por ello, se extrajeron los valores de la

impedancia equivalente de carga Z̄L que producía ajuste perfecto con las medidas en

el rango completo y, tras extraer la parte conocida de dicha impedancia, se consigu-

ieron los mejores resultados al modelar la impedancia hipotética Zth debida a efectos

electrotérmicos como una impedancia en serie situada entre el modelo intrínseco del

amplificador y la red de polarización, tal como se muestra en la Figura 0.21(a). Final-

mente, se probaron varias topologías simples de circuitos para Zth, obteniéndose los

mejores resultados para un circuito RC en paralelo con dos polos, como el mostrado

en la Figura 0.21(b). En todas las pruebas realizadas para distintas condiciones de

funcionamiento del amplificador se encontró que el mejor ajuste se producía para la

misma configuración de Z̄L y la misma topología de Zth. En la Figura 0.22 se pueden

observar los valores hallados para la impedancia equivalente de carga Z̄L y para la

impedancia hipotética Zth. Aunque los modelos circuitales simples propuestos sólo

producen un ajuste moderado, los resultados logrados al introducirlos en las simula-

ciones de la magnitud y la fase de los productos de IM son más que aceptables, como

puede comprobarse de las Figuras 0.23 y 0.24, en los trazos con línea continua. Cabe

destacar que los cambios con ∆f que caracterizan a los efectos de memoria se obser-

van más claramente en fase que en magnitud. Otra característica a resaltar es que el

circuito que modela Zth resulta ser un filtro paso bajo, de manera que juega un papel

análogo al de una impedancia térmica como las propuestas en [27] o [78].
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Figure 0.22: Carta de Smith con los valores extraídos de Zth (triángulos) para

un amplificador HEMT con Pin = −7 dBm (a) y Pin = −5 dBm (b)

para una tensión de polarización VGS = −0.24 V. La línea continua

representa la impedancia del circuito resonante paralelo RC que

mejor aproxima los valores extraídos y la impedancia de carga

equivalente (Z̄L) incluyendo este circuito RC.
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Extensión del modelo basado en impedancia para amplificadores comerciales

Los resultados teóricos obtenidos para un dispositivo HEMT se pueden generalizar

para amplificadores con circuitos más complejos, para los que se propone la siguiente

extensión [84]:

V3u,3l =
∑

n=3
n−odd

[an + bnZeq(±∆f)] An , (0.94)

donde los parámetros an y bn dependen de la frecuencia de portadora, mientras que la

impedancia equivalente Zeq modela la dependencia de los productos de IM con la fre-

cuencia. El modelo fue aplicado para el caso de un amplificador comercial MAX2430

de MAXIM, al que se le realizaron medidas de IM3 tanto en magnitud como en fase,

tomando cuatro valores para la potencia de entrada entre −25 y −10 dBm y 15 valo-

res para la separación entre los tonos para cada nivel. Las medidas se han ajustado al

modelo propuesto mediante un procedimiento de optimización no lineal por mínimos

cuadrados, puesto que no se tiene conocimiento de la estructura interna del circuito.

Los valores de la impedancia Zeq(∆f) que minimizan el error cuadrático se mues-

tran en la Figura 0.25. Puesto que dicha curva en la carta de Smith resulta similar

a la de un circuito resonante paralelo, Zeq(∆f) se ha aproximado por la impedancia

equivalente de un circuito RLC, tal como se dibuja en trazo continuo sobre la misma

figura. Finalmente, se han realizado simulaciones con el modelo incluyendo el circuito

resonante propuesto junto con los coeficientes calculados {an, bn}, cuyos resultados se

muestran en las Figuras 0.26 y 0.27 para la asimetría en fase de IM3 y la magnitud del

producto IM3 superior, respectivamente. Para conseguir ajustar en este caso el mode-

lo en el elevado rango dinámico de las medidas fue necesario emplear 6 coeficientes

{an, bn}. Como se puede observar, el ajuste entre las medidas y el modelo es muy

bueno, incluso cuando el amplificador se opera cerca de saturación.

Conclusiones y líneas futuras de investigación

Después de la investigación llevada a cabo en esta Tesis, en la que el enfoque de New-

ton Simplificado se podría ver como el hilo común de todas las técnicas propuestas,

es posible extraer tres ideas fundamentales:

1. Es posible aplicar un nuevo método de Newton Simplificado para analizar

los fenómenos de distorsión en circuitos débilmente no lineales excitados por

señales de comunicaciones inalámbricas. El método de Newton Simplificado es

un enfoque iterativo basado en la resolución de un circuito lineal aumentado

excitado por corrientes no lineales diferentes para cada iteración, al igual que

lv



0.
1

0.
2

0.
3

0.1

0.2

15
0°

16
0°

17
0°

18
0°

0.
00

0.
01

0.
02

0.
03

Figure 0.25: Zoom de la carta de Smith con los valores extraídos de Zeq(∆f)

(triángulos) para un amplificador comercial. Línea continua:

impedancia del circuito resonante RLC en paralelo que mejor

aproxima los valores extraídos.

−25
−20

−15
−10

0  

0.5

1  

1.5

2  
−150

−100

−50 

0   

50  

100 

Input level per tone (dBm)

∆f (MHz)

P
ha

se
 d

iff
er

en
ce

 o
f I

M
3 (

de
g) ∠ (IM

3l
) − ∠ (IM

3u
) 

Figure 0.26: Medida de la asimetría de fase de IM3 (puntos) y predicción

(malla) usando los valores extraídos de Zeq y 6 parámetros

{an, bn}.

lvi



−25
−20

−15
−10

0  

0.5

1  

1.5

2  
−60

−50

−40

−30

−20

−10

0  

Input level per tone (dBm)
∆f (MHz)

M
ag

ni
tu

de
 o

f I
M

3u
 (

dB
c)

Figure 0.27: Medida de la magnitud del producto IM3 superior (puntos)

y predicción (malla) usando los valores extraídos de Zeq y 6

parámetros {an, bn}.

otros métodos basados en envolvente. Su principal ventaja radica en el hecho

de que las corrientes no lineales derivadas mediante este método constituyen

una mejor aproximación de la no linealidad real, ya que incluyen términos de

mayor orden. A pesar de que la reducida región de convergencia del algoritmo

de Newton Simplificado, se han alcanzado predicciones satisfactorias de las ca-

racterísticas de amplificadores con no linealidades medias. En general, se puede

conseguir una reducción del tiempo de computación gracias a la reutilización

del Jacobiano, lo que permite simulaciones de ACPR eficientes para un rango

amplio de niveles de potencia.

Una aplicación específica de este método se puede diseñar para mezcladores,

donde el espectro de salida más complejo aconseja algunas simplificaciones

adicionales para reducir el coste computacional y las necesidades de almace-

namiento. En este caso, la excitación de entrada es considerada como una pertur-

bación en torno a la respuesta a la gran señal del oscilador local, lo que conduce

a la resolución de un subcircuito lineal aumentado que varía periódicamente con

el tiempo por medio de la matriz conversión de admitancias.

2. El enfoque de Newton Simplificado se puede usar también para obtener expre-

siones cerradas para la IMD en amplificadores. Estas expresiones teóricas resul-

tan una alternativa al método convencional de las series de Volterra que tienen la

característica de tratarse de un algoritmo de convergencia más rápida sin perder
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la posibilidad de generar expresiones cerradas. Esta cualidad permite, no sólo

incluir términos de órdenes mayores en la expresión de IM3 que incorporan de-

pendencia con la amplitud a la asimetría de IM3, sino también hacen posible

evaluar la magnitud y la fase de IM5. Asimismo, queda patente la influencia

de la impedancia de terminación en banda base sobre los efectos de memoria

y las asimetrías observadas. Este análisis da lugar a algunas observaciones que

permiten comprender mejor el comportamiento de la IM.

3. Es necesario profundizar más en el modelado de gran señal de los circuitos para

tener en cuenta los efectos de dispersión a baja frecuencia en las expresiones

teóricas de la IMD. Un enfoque prometedor que debería probarse es la extrac-

ción de un modelo basado en impedancias tanto para amplificadores FET como

comerciales. El uso de una impedancia equivalente dota al modelo de un sig-

nificado estructural, ya que lo identifica con un elemento circuital con un papel

importante en la generación de efectos de memoria, sin importar su naturaleza.

Es interesante resaltar que el circuito de impedancia hipotética equivalente mo-

delado para la inclusión de los efectos de memoria de baja frecuencia toma una

forma análoga a la de algunas redes dispersivas mencionadas en la literatura.

Algunos de los resultados presentados en esta Tesis son susceptibles de futuras

extensiones, al mismo tiempo que se abren nuevas líneas de investigación:

• Sería recomendable extender las estrategias propuestas para mejorar la eficien-

cia de las técnicas de análisis no lineal al caso de señales moduladas multiporta-

dora, por ejemplo las empleadas en estándares de comunicaciones inalámbricos

modernos como son WiMAX o la familia 802.11. Por otro lado, la reducción

computacional alcanzada con el método de Newton Simplificado sugiere unos

prometedores resultados al ser aplicado para circuitos de muy gran tamaño o

sistemas de comunicaciones completos.

• Sería recomendable investigar la aplicación de técnicas para la mejora de la ca-

lidad de las medidas realizadas con la herramienta de caracterización diseñada,

como la recientemente propuesta en [85] para extender el ancho de banda de los

bancos de pruebas de amplificadores de RF.

• Podría ser interesante evaluar las implicaciones de eliminar la suposición de

banda estrecha en los resultados obtenidos, de gran importancia para tec-

nologías como UWB (ultra-wideband).

• La suposición realizada en este trabajo de que las impedancias en un amplifi-

cador FET son planas en los anchos de banda estrechos de las señales de comu-

nicaciones en torno a las frecuencias de la fundamental y el segundo armónico
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ha sido aplicada con éxito en [86] para la deducción de un modelo de compor-

tamiento basado en series de Volterra, para el que se obtiene una reducción con-

siderable en el número de coeficientes involucrados. Este hecho ha abierto una

nueva línea de investigación dirigida al estudio comparativo entre las diferen-

tes estructuras de modelos de comportamiento, su precisión, su efectividad al

manejar efectos de memoria o la idoneidad de los procedimientos de identifi-

cación de los kernels asociados.

• Aún quedan múltiples opciones por explorar con relación a dotar a los modelos

circuitales de gran señal de capacidad para modelar los efectos de memoria, in-

cluyendo efectos térmicos, de ionización por impacto o de estados trampa, entre

otros fenómenos dispersivos.
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ABSTRACT

In this Thesis, a study of nonlinear analysis and experimental characterization tech-

niques for wireless communications systems is made. Starting from a review of the

more relevant general-purpose steady-state nonlinear analysis methods, including

Harmonic Balance analysis and Volterra series representation with the Nonlinear Cur-

rents methods for the obtention on nonlinear transfer functions, evidence is given that

classical techniques turn to be inefficient for circuits excited with digital modulations.

After that, more efficient envelope-based methods, such as the Envelop [sic] Tran-

sient, modulation-oriented Harmonic Balance, and Envelope Currents methods, are

presented to specifically address the issue of simulating nonlinear circuits with com-

munications signals.

The Simplified Newton approach is proposed for the analysis of weakly nonlinear

communications circuits. This is an iterative approach based on solving an augmented

linear subcircuit driven by different nonlinear current sources for each iteration, which

result a better approximation for the real nonlinearity than in the Envelope Currents

method. It is applied to the study of both weakly nonlinear amplifiers and mixers,

obtaining a reduction of the computational time that allows efficient ACPR simula-

tions for a wide range of input power levels. In the case of mixers, a comparison is

made between the performance achieved by using an standard Newton approach —

the New Envelope Currents method for mixers — and a Simplified Newton approach

— the Extended Parametric Harmonic Balance.

Experimental measurements are accomplished, with which the simulation tech-

niques are satisfactorily compared. For this purpose, an explanation on the different

kinds of nonlinear characterization techniques and their associated figures of merit

is presented, including the concept of memory effects. The proposed measurement

setup, which implements a technique for the phase characterization of third- and

fifth-order intermodulation products with non-sophisticated communications equip-
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ment, is described and illustrated by several examples. Among the characterizations

made, the two-tone intermodulation distortion measurements including magnitude

and phase, as well as the evaluation of the spectral regrowth and ACPR for UMTS

W-CDMA QPSK modulated signals could be remarked.

Additionally to other advantages, it is also demonstrated that the same Simpli-

fied Newton approach allows the obtention of closed-form expressions to model the

baseband-frequency dependence of the intermodulation distortion in power ampli-

fiers with memory, analogously to Volterra series representation. These theoretical

expressions are employed to gain an insight into the impact of the baseband termina-

tion impedance, leading to some conditions that need to be met so that an asymmetry

in magnitude and/or phase can be observed between the intermodulation products.

Finally, an impedance-based model for the inclusion of electrothermal memory

effects in intermodulation (regardless their nature) is presented for FET amplifiers,

and then extended for commercial amplifiers with no knowledge of their internal

structure. The methodology is based on extracting an equivalent hypothetical load

impedance that provides the model with an structural significance. It is shown that

there is an analogy between the modelled equivalent impedance circuit and some of

the networks found in literature to model low-frequency dispersion phenomena.

lxii



CONTENTS

Agradecimientos i

Acknowledgements iii

Resumen v

Abstract lxi

Contents lxiii

List of Figures lxix

List of Tables lxxv

1 Introduction 1

1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Steady-State Analysis Methods for Nonlinear Systems 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Frequency-domain methods . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Numerical solution of nonlinear equations . . . . . . . . . . . . . . . . . 13

2.2.1 Newton-Raphson method . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 14

lxiii



2.2.3 Simplified Newton-Raphson methods . . . . . . . . . . . . . . . . 15

2.2.4 Continuation methods . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Circuit equations: modified nodal analysis . . . . . . . . . . . . . 20

2.3.2 Nonlinear circuit elements representation . . . . . . . . . . . . . . 24

2.4 Harmonic Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Historical development . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Harmonic Balance analysis . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Solution algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3.1 Optimization methods . . . . . . . . . . . . . . . . . . . 36

2.4.3.2 Relaxation methods . . . . . . . . . . . . . . . . . . . . . 37

2.4.3.2.1 Splitting . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3.2.2 Gauss-Jacobi-Newton Harmonic Relaxation . . 38

2.4.3.3 Newton’s methods or Harmonic Newton . . . . . . . . 41

2.4.4 Example: Harmonic Balance analysis of a FET amplifier . . . . . 45

2.4.5 Matrix methods for solving the Harmonic Balance iteration . . . 48

2.4.6 Multitone inputs in Harmonic Balance analysis . . . . . . . . . . 51

2.5 Volterra series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.1 Volterra series representation . . . . . . . . . . . . . . . . . . . . . 56

2.5.2 Multitone input analysis using Volterra series . . . . . . . . . . . 60

2.5.3 Volterra series representation of bandpass nonlinear systems

with memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.4 Nonlinear transfer functions determination . . . . . . . . . . . . . 67

2.5.4.1 Probing or Harmonic Input method . . . . . . . . . . . . 67

2.5.4.2 Nonlinear Currents method . . . . . . . . . . . . . . . . 75

2.6 Brief overview of envelope-based methods . . . . . . . . . . . . . . . . . 82

2.7 Comparison of analysis techniques . . . . . . . . . . . . . . . . . . . . . . 83

lxiv



3 Envelope-based Methods for Nonlinear Wireless Systems 87

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.1 Modulated signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Envelop Transient method . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.1 Multi-rate partial differential equation methods . . . . . . . . . . 93

3.3 Modulation-oriented Harmonic Balance . . . . . . . . . . . . . . . . . . . 94

3.4 Envelope Currents method . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Envelope currents method with extended dynamic range . . . . . . . . . 102

3.6 SN method for weakly nonlinear communications circuits . . . . . . . . 106

3.7 Envelope Currents methods for communications signals in mixers . . . . 115

3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.7.1.1 Parametric Harmonic Balance . . . . . . . . . . . . . . . 116

3.7.2 Description of the procedure . . . . . . . . . . . . . . . . . . . . . 118

3.7.2.1 NEC method for communications signals in mixers . . . 119

3.7.2.2 Extended PHB approach for communication signals in

mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.7.3 Comparison of NEC-M and E-PHB with other methods . . . . . . 124

4 Comparison with Experimental Measurements 127

4.1 Basic nonlinear characterization techniques . . . . . . . . . . . . . . . . . 127

4.1.1 One-tone characterization tests . . . . . . . . . . . . . . . . . . . . 128

4.1.2 Two-tone characterization tests . . . . . . . . . . . . . . . . . . . . 131

4.1.3 Band-limited continuous spectra characterization tests . . . . . . 133

4.1.4 Memory effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Measurement setup description . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.1 Illustrative examples of nonlinear distortion characterization . . 145

4.3 Results for envelope-based analysis methods . . . . . . . . . . . . . . . . 150

4.3.1 Employed large-signal models for MESFET and HEMT devices . 150

lxv



4.3.1.1 Illustrative examples of large-signal modelling . . . . . 154

4.3.2 Envelope Currents method . . . . . . . . . . . . . . . . . . . . . . 159

4.3.3 SN approach for weakly nonlinear communication circuits . . . . 164

4.3.4 Two alternate EC approaches for communication signals in mixers169

4.4 Phase characterization of intermodulation products IM3 and IM5 . . . . 172

4.4.1 Phase correction considering delay . . . . . . . . . . . . . . . . . . 176

4.4.2 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5 Modelling of Intermodulation Distortion 185

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2 SN approach applied to the analysis of IM products . . . . . . . . . . . . 186

5.2.1 Discussion about theoretical results . . . . . . . . . . . . . . . . . 194

5.3 Correspondence of predicted asymmetries with experimental results . . 197

5.4 Impedance-based IM3 model with electrothermal memory effects . . . . 203

5.4.1 HEMT amplifier experimental results . . . . . . . . . . . . . . . . 206

5.4.2 Memory effects in FET amplifiers including dispersive phenom-

ena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.5 Extension of the impedance-based model for commercial amplifiers . . . 212

5.5.1 Commercial amplifier results . . . . . . . . . . . . . . . . . . . . . 213

6 Conclusions and Suggestions for Future Work 217

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.2 Suggestions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A List of Publications 223

B Expressions for the nonlinear envelope currents in the SN method 225

lxvi



C Incremental envelope voltages in the SN analysis of two-tone IM products 229

C.1 First-order iteration: linear iteration . . . . . . . . . . . . . . . . . . . . . 230

C.2 Second-order iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

C.3 Third-order iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Bibliography 243

List of Abbreviations and Symbols 265

lxvii



lxviii



LIST OF FIGURES

1.1 Block diagram of a typical wireless communications transmitter-

receiver link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Newton-Raphson method illustrated. . . . . . . . . . . . . . . . . . . . . 14

2.2 Parallel-chord method illustrated. . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Simplified Newton-Raphson method illustrated. . . . . . . . . . . . . . . 17

2.4 Example of a linear circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Example of a circuit with nonlinear elements. . . . . . . . . . . . . . . . . 23

2.6 Nonlinear circuit elements. (a) Nonlinear conductance. (b) Nonlinear

capacitance. (c) Nonlinear current source controlled by voltage. . . . . . 24

2.7 Nonlinear circuit divided into linear and nonlinear subcircuits. . . . . . 31

2.8 Circuit interpretation of the splitting method applied to HB. . . . . . . . 40

2.9 Circuit interpretation of the block Gauss-Jacobi-Newton method ap-

plied to HB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Circuit interpretation of the Newton’s method applied to HB. . . . . . . 44

2.11 Equivalent circuit for the large-signal model of a FET. . . . . . . . . . . . 45

2.12 Equivalent circuit of a FET amplifier for large-signal HB analysis. . . . . 46

2.13 Approximation to x(t) by a succession of rectangular pulses. . . . . . . . 57

2.14 Model of nonlinear circuit suggested by the Volterra series representation. 59

2.15 Simplified equivalent circuit of a FET amplifier. . . . . . . . . . . . . . . . 69

2.16 Alternative representation of Figure 2.15, with linear elements in paral-

lel with nonlinear current sources. . . . . . . . . . . . . . . . . . . . . . . 70

lxix



2.17 Envelope-based simulation process. Picture taken from [87]. . . . . . . . 83

3.1 Spectrum of a narrowband RF signal after a nonlinear circuit. . . . . . . 90

3.2 Single-node nonlinear circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Different approaches for the simulation of microwave nonlinear cir-

cuits. (a) NC method. (b) NEC method. . . . . . . . . . . . . . . . . . . . 104

3.4 Single-node nonlinear circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5 Single-node nonlinear circuit driven as a mixer. . . . . . . . . . . . . . . . 118

4.1 Spectral regrowth observed in a nonlinear system excited by a narrow-

band modulated stimulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Illustration of the output power spectral density of a noise power ratio

test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Photograph of the nonlinear circuits characterization setup. . . . . . . . 144

4.4 Diagram of the nonlinear circuits characterization setup. . . . . . . . . . 145

4.5 Main window of the implemented software controlling the automated

measurement setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6 Current consumption for a MAXIM 2430 power amplifier versus input

power level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.7 Output power for the fundamental frequency and first harmonics for a

MAXIM 2430 power amplifier illustrating AM-AM characterization. . . 148

4.8 Conversion gain measurement for a MAXIM 2430 power amplifier. . . . 148

4.9 Output power at fundamentals and IM3 components versus input level

for a MAXIM 2430 power amplifier for a two-tone excitation with ∆f =

2 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.10 Measurements of in-band power and ACP of a MAXIM 2430 power

amplifier with a 3GPP UMTS W-CDMA signal. . . . . . . . . . . . . . . . 149

4.11 Output PSD traces for a MAXIM 2430 power amplifier with a QPSK

3GPP UMTS W-CDMA signal and two power input levels. . . . . . . . . 150

4.12 Equivalent three-node circuit employed to analyse the MESFET

CFB0301 of Celeritek and the HEMT EPB018A5-70 of Excellics. . . . . . . 151

4.13 Measurement setup for large-signal characterization of a MESFET am-

plifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

lxx



4.14 IM products level measured at the input of the SA. . . . . . . . . . . . . . 158

4.15 Output power for a MESFET amplifier at the fundamental frequency,

second and third harmonics using the EC method. . . . . . . . . . . . . . 160

4.16 Power gain of a MESFET amplifier at 2 GHz using the EC method. . . . 161

4.17 Constellation and output PSD of a MESFET amplifier with a raised-

cosine filter using the EC method. . . . . . . . . . . . . . . . . . . . . . . 162

4.18 Constellation and output PSD of a MESFET amplifier with a root-

raised-cosine filter using the EC method. . . . . . . . . . . . . . . . . . . 163

4.19 Power gain of a HEMT amplifier for an input of two-tones using the SN

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.20 IM products for a HEMT amplifier as a function of input power level

using the SN approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.21 Spectral regrowth prediction for a HEMT amplifier with a 3GPP UMTS

W-CDMA signal. Comparison of SN with two iterations and EC with

three iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.22 Spectral regrowth prediction for a HEMT amplifier with a 3GPP UMTS

W-CDMA signal. Comparison of SN and EC both with three iterations. . 167

4.23 Spectral regrowth prediction for a HEMT amplifier with a 3GPP W-

CDMA signal and an input level near the 1-dB compression point using

SN approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.24 ACP prediction for a HEMT amplifier with a 3GPP UMTS W-CDMA

signal versus the input level using SN approach. . . . . . . . . . . . . . . 168

4.25 Conversion gain of the HEMT gate mixer for two-tone input using the

E-PHB and NEC approaches. . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.26 Two-tone IMD of the HEMT gate mixer versus input power using the

E-PHB and NEC approaches. . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.27 Spectral regrowth prediction for a 3GPP UMTS W-CDMA signal using

the E-PHB approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.28 Spectral regrowth prediction of a 3GPP UMTS W-CDMA strong signal

applied to a HEMT gate mixer using the E-PHB and NEC approaches. . 171

4.29 In-band power and adjacent channel power prediction for a 3GPP

UMTS W-CDMA signal using the E-PHB and NEC approaches. . . . . . 172

lxxi



4.30 Proposed setup in [27] for measuring amplitude and phase responses

of IM products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.31 Proposed setup in [59] for measuring amplitude and phase responses

of IM products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.32 Proposed setup in [61] for measuring amplitude and phase responses

of IM products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.33 Equipment setup for two-tone IMD characterization . . . . . . . . . . . . 174

4.34 Schematic diagram of the post-process carried out with the acquired

baseband samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.35 IM characteristic of a HEMT amplifier without (dotted line) and with

predistortion using the measured phase (solid line). . . . . . . . . . . . . 178

4.36 Measured magnitude of IM3 and IM5 for a commercial bias-Tee. . . . . . 180

4.37 Measured phase of IM3 and IM5 for a commercial bias-Tee. . . . . . . . . 180

4.38 Measured magnitude of IM3 versus VGS for a commercial bias-Tee. . . . 181

4.39 Measured phase of IM3 versus VGS for a commercial bias-Tee. . . . . . . 181

4.40 Circuit model for the constructed resonant bias network. . . . . . . . . . 182

4.41 Measured magnitude of IM3 for a resonant bias network. . . . . . . . . . 182

4.42 Measured phase of IM3 for a resonant bias network. . . . . . . . . . . . . 183

4.43 Measured magnitude and phase of IM3 versus input power level for a

resonant bias network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.1 Simplified two-node model of a HEMT amplifier with only the most

significant nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.2 Asymmetries imply memory effects, but the converse is not true. . . . . 197

5.3 Measured and calculated phase of lower IM3 and phase difference at

two bias points using a commercial bias-Tee. . . . . . . . . . . . . . . . . 198

5.4 Measured and calculated phase of IM3 lower product for a HEMT am-

plifier with a resonant bias network. Results calculated with the SN

method are plotted with a solid line. . . . . . . . . . . . . . . . . . . . . . 200

5.5 Detail of measured and calculated phase difference between IM3 prod-

ucts with resonant bias network. . . . . . . . . . . . . . . . . . . . . . . . 200

lxxii



5.6 Phase difference of IM3 for a HEMT amplifier with a higher input level

with resonant bias network. Comparison of models. . . . . . . . . . . . . 201

5.7 Measured and simulated phase difference of IM3 for the recommended

bias point and for VGS = −0.4 V. . . . . . . . . . . . . . . . . . . . . . . . . 201

5.8 Measured and simulated magnitude and magnitude difference of IM3

and IM5 using a commercial bias-Tee. . . . . . . . . . . . . . . . . . . . . 202

5.9 Measured and simulated phase and phase difference of IM3 and IM5

using a commercial bias-Tee. . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.10 Equivalent circuit of a HEMT amplifier, including the proposed model

for the equivalent load impedance. . . . . . . . . . . . . . . . . . . . . . . 205

5.11 Smith Chart with the extracted values of Zth and its RC circuit model

for a HEMT amplifier with a bias voltage VGS = −0.24 V. . . . . . . . . . 207

5.12 Measured magnitude of upper IM3 products for a HEMT amplifier at

input levels of −7 and −5 dBm and a bias voltage VGS = −0.24 V, in-

cluding predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.13 Measured phase and phase difference of IM3 products for a HEMT am-

plifier at different input levels and bias voltages, including predictions. . 209

5.14 Equivalent circuit of a model including dispersive phenomena. . . . . . 211

5.15 Zoom in the Smith Chart with the extracted values of Zeq and its RLC

circuit model for a commercial amplifier. . . . . . . . . . . . . . . . . . . 213

5.16 Measured and predicted magnitude and magnitude difference of IM3

at an input level of −10 dBm. . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.17 Measured and predicted phase and phase difference of IM3 at an input

level of −10 dBm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.18 Measured two-tone phase asymmetries and prediction for a commercial

amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.19 Measured magnitude of upper IM3 products and prediction for a com-

mercial amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

lxxiii



lxxiv



LIST OF TABLES

2.1 Comparison of nonlinear microwave circuits techniques. . . . . . . . . . 85

3.1 Comparison between the second-order nonlinear currents for EC and

SN approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Incremental drain voltage terms for the fundamental frequency zone

(h = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.2 Different asymmetry situations with respect to γ and Z̄L. . . . . . . . . . 196

lxxv



lxxvi



CHAPTER 1

INTRODUCTION

1.1 Foreword

During the last years we have witnessed the consolidation of wireless and mobile

technologies in what has been called the “information society”. This ubiquity of wire-

less networks has been possible thanks to remarkable achievements in the field of

hardware and technology, which have provided us with the best quality, improved

and brand-new services, while maintaining user-friendliness and affordable prices.

Regarding mobile communications, for example, the establishment of the Third-

Generation cellular systems and the imminent advent of the Fourth-Generation mo-

bile systems have propelled the study of novel techniques in wireless communica-

tions in order to give solutions to the challenges associated to the rapid increase in the

information transfer rates, the number of users, and their mobility. When higher in-

formation transfer rates are desired, more complex modulation formats are required,

often with increasingly growing bandwidths [1]. The rise in the number of users urges

the need for minimising the distortion introduced by wireless circuits, so that every

user’s signals do not interfere with the other’s in the limited spectrum allocated to

them [2]. Lastly, the search for mobility demands highly integrated systems where

low consumption and cost are top priorities [3].

Among the more than one million transistors contained in today’s pocket wire-

less devices, only a very small fraction operates in the RF range and the rest per-

form low-frequency baseband signal processing. This baseband signal processing

has undergone a substantial evolution over the last years that has led to the complex

modern systems based on digital signal processors (DSPs1) and microprocessors [4],

[5], [6]. However, the analog RF section is still the design bottleneck of the entire

transceiver [7]. RF and microwave front-ends used in communications systems re-

1A complete list of the abbreviations and symbols used in this Thesis can be found at the end of the

document.
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Figure 1.1: Block diagram of a typical wireless communications transmitter-

receiver link.

quired diverse types of passive and active circuits, linear and nonlinear. Considering

the scenario given by a typical wireless communications transmitter-receiver link, as

shown in Figure 1.1, the relevance of two active subsystems is remarked, namely am-

plifiers and mixers. Since the system’s nonlinear behaviour is heavily dependent on

the input signals employed, advanced knowledge of the digital world is more than

advisable for the modern RF engineer. Modern wireless communications systems are

designed to operate with digital signals that have large bandwidths and high peak-to-

average power ratios. Important nonlinear effects are generated in the circuits by the

envelope variations of these signals. Nonlinear operation cannot be easily described

analytically, therefore optimised designs are complex. In addition to the changes in

amplitude and phase shifts typically observed in linear systems, spurious compo-

nents are generated in nonlinear circuits, distorting the amplifier or mixer behaviour.

Among the effects of nonlinear distortion, intermodulation distortion and spectral re-

growth should be taken into account since they cannot be eliminated by filtering and

produce detrimental adjacent channel interference [8].

Within the field of nonlinear analysis and sinthesis, computer-aided design (CAD)

plays a key role. The basic motivation for using circuit simulation as part of the de-

sign process is to develop competitive products in the shortest possible time [9]. One

of the most important drawbacks of nonlinear circuits is that there are neither univer-

sal analysis methods nor universal models. Therefore, every model and simulation
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technique will perform in a specific application only [10]. However, two of the most

extended tools for the analysis of nonlinear systems are Harmonic Balance [11], [12]

and Volterra series representation [13], [14], [15], [16]. Harmonic Balance is an iterative

technique to analyse the steady state with applicability for the general case of nonlin-

ear circuits. Due to the practical limitations of Volterra series expansion for strongly

nonlinear or very large circuits, Harmonic Balance is the preferred method in these

cases. It can be seen as an extension of phasor analysis from the linear to the nonlinear

field. Harmonic Balance analysis has become a mature tool for nonlinear analysis with

sinusoidal inputs and all the major commercial CAD software include it. It presents

excellent convergence properties when combine with the Newton-Raphson solution

algorithms. The main restriction for standard Harmonic Balance techniques is that the

kind of excitation that they can efficiently handle is usually restricted to periodic or

quasi-periodic signals with a limited number of frequency components.

Adjacent channel power ratio is being used as a determinant figure of merit in

the design of circuits for modern wireless communications systems. However, pre-

cise evaluation of this quantity and other related characteristics in nonlinear ampli-

fiers and mixers, when excited by digitally-modulated signals, results a task of a high

computational complexity that renders standard Harmonic Balance techniques inef-

ficient. Circuit envelope methods [17], [18], [19] or modulation-oriented Harmonic

Balance [20] algorithms have been proposed to specifically address this issue and al-

low RF designers to efficiently analyse circuits with a large number of spectral lines.

Despite that, some alternative methods that achieve a further reduction of the compu-

tation time are demanded.

On the other hand, Volterra series representation has been used to described a wide

variety of nonlinear phenomena including the nonlinearities in microwave and RF cir-

cuits for communications. The application of Volterra series restricted to the study of

weakly nonlinear systems and low distortions is widely accepted, due to the cum-

bersomeness of the high-order nonlinear transfer functions. However, Volterra series

enable the obtention of closed-form expressions describing the system behaviour, in

contrast with other techniques based on numeric iteration algorithms. This kind of

information proves to be of invaluable interest to gain an insight into the mechanisms

producing memory effects [21].

The aforementioned specifications for wireless circuits are usually opposed. Take

a power amplifier in a transmitter or receiver, for example. In typical power am-

plifier topologies, the efficiency drops as the circuit is designed for higher linearity

and, therefore, lower distortion. The trade-off solution consist in applying special

techniques in order to linearise the amplifier characteristics with negligible degrada-

tion in efficiency [22], [23]. However, a bandwidth increase to allow higher trans-

3
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fer rates usually leads to ineffective linearization schemes. The reason for this is

the bandwidth-dependent behaviour or memory effects exhibited by power ampli-

fiers [24], [25]. These phenomena are the result of complex interactions inside the ac-

tive devices and with the rest of the circuit, which should be modelled to satisfactorily

accomplished the design of high performance amplifiers.

As a final subject to be account for, we should keep in mind that most of the mod-

els for nonlinear devices are derived from measurements. The procedures for nonlin-

ear characterization and their associated figures of merit play a fundamental role on

the correct specification of electronic devices. Since nonlinear devices do not comply

with superposition, their response will present different characteristics depending on

the excitation used [26]. Three main inputs are usually considered in nonlinear mea-

surements: single-tone, two-tone and continuous spectra modulated signals. Among

them, two-tone intermodulation measurements occupy an outstanding position, and

understanding its particularities centres many researchers attention [27], [28], [29].

On the one hand, a two-tone test with varying tone separations can be used for exper-

imental characterization of memory effects, being advisable measurements for both

magnitude and phase of the intermodulation products. On the other hand, starting

with a two-tone test it is possible to predict the nonlinear distortion components be-

haviour for multisine signals [30] and more complex modulations [31].

The present Thesis is intended to give a wide and detailed vision on the analysis of

nonlinear circuits for wireless communications. Starting from a review of the state-of-

the-art nonlinear analysis methods, the studied approaches include the application of

the Simplified Newton algorithm to the solution of weakly nonlinear circuits by cal-

culating successive incremental voltages in an iterative process [32]. Although the use

of the Simplified Newton algorithm in Harmonic Balance is already well-known [10],

[88] and it can be found in literature for other research fields such as antennas and

propagation [89] or computer aided simulation of power systems [90], to the best of

the author’s knowledge, no use has been reported in which it has been combine with

an envelope formulation in order to reduce the computation time as required with

communications signals. Thus, this constitutes a novel tool suitable for the analysis of

circuits including both amplifiers and mixers [33]. As an additional advantage of the

Simplified Newton approach, it is demonstrated that it allows the obtention of theoret-

ical expressions to model the baseband-frequency dependence of the intermodulation

distortion in power amplifiers with memory [34], analogously to Volterra series rep-

resentation. The final contribution consists in an impedance-based model for FET and

commercial amplifiers, which is proposed in order to account for memory effects in

intermodulation, regardless their nature [35]. The explained methodology has been

applied to a series of simple examples involving surface mounted amplifiers and mix-
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ers in microstrip circuits, for which the correspondence between the predictions of the

studied techniques and experimental data is demonstrated.

1.2 Aims and scope

Considering the previous work made in this research field, the basic aim of the present

Thesis consist in contributing to the study and development of new analysis tech-

niques for nonlinear systems applied to wireless communications. This general objec-

tive can be split into the following primary aims:

• Development of an analysis tool for weakly nonlinear circuits subject to

digitally-modulated narrowband communications signals.

• Study of the bandwidth-dependence or memory effects of the intermodulation

distortion.

• Experimental characterization of the nonlinear distortion and memory effects in

RF power amplifiers.

The problem of the analysis of nonlinear circuits is a large one, with many facets

and avenues for research. In order to make the scope of this Thesis reasonable, a series

of boundaries have been adopted.

Nonlinear phenomena could be studied in an enormous diversity of systems. The

types of systems herein studied are non-autonomous, time-invariant weakly nonlin-

ear circuits consisting of a set of lumped elements and sources. We will consider an

element to be lumped if it is accurately modelled with an algebraic function of a finite

number of network variables. A non-autonomous circuit is that with, at least, one ex-

ternal input source. When referring to weakly nonlinear circuits, it is assumed that the

nonlinear component of the currents and voltages of the circuit is sufficiently small so

that the currents in the nonlinear conductances, capacitances and dependent sources

used to modelled nonlinear microwave devices can be approximated by means of the

first terms of their Taylor-series expansions.

The input signals of interest are bandpass narrowband digitally-modulated com-

munications signals, that is, bandpass signals whose centre frequency is much higher

than the occupied bandwidth so that they can be expressed in terms of their complex

envelopes. An additional implication of the narrowband restriction for two-tone sig-

nals is that the tones separation about the centre frequency cannot exceed a certain

limit.
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There are three fundamental approaches to nonlinear analysis of communications

circuits and systems: system-level or behavioural approaches, circuit-level approaches

and device- or physical-level approaches. System-level methods model the input-

output relationships for the quantities of interest, typically the complex envelopes of

the source and load waveforms, whilst the structural details of the nonlinear circuit are

ignored. Circuit-level methods view the nonlinear circuit as the collection of its struc-

tural elements, usually conferring this methods a better accuracy and comprehension

of the system’s behaviour. Finally, physical-level approaches achieve the best accuracy

by means of computationally expensive solution of the electromagnetic equations of

the real scenario. The present work will be focused on circuit-level techniques, seeking

for a convenient trade-off between accuracy and computational cost.

Regarding the variety of semiconductor substrates and construction technologies

for the transistors, the used devices will be restricted to GaAs MESFETs and HEMTs

because of their relevance in the RF and microwaves field. Therefore, only those large-

signal equivalent circuit models especially conceived for GaAs MESFETs and HEMTs

will be considered.

1.3 Thesis overview

This Thesis pursued objectives are developed throughout four chapters, whose struc-

ture is detailed next.

Chapter 1 has introduced the general field in which this Thesis is framed. The

increasing demands on the specifications of designs for wireless communications have

been discussed and the key role of power amplifiers has been remarked. The interest

for accurate and efficient analysis techniques which enable nonlinear characterization

including memory effects has been justified.

Chapter 2 presents a review of the more relevant steady-state methods for the anal-

ysis of nonlinear systems, where the Harmonic Balance method and the Volterra series

analysis are highlighted. In the first sections, basic ideas regarding the numerical so-

lution of nonlinear equations and the conventions adopted for the formulation of the

problem are presented. After that, the Harmonic Balance iterative technique is de-

tailed, paying attention to its various possibilities devised in order to achieve a trade-

off between accuracy and computational cost. The proposed solution algorithms and

matrix methods for solving the Harmonic Balance iteration are presented. Special

considerations required in the case of multitone inputs are pointed out. Afterwards,

Volterra series representation of nonlinear systems is presented. Two sections are ded-

icated to cases of particular interest, namely multitone inputs and bandpass systems

6
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with memory. The methods of Harmonic Input and Nonlinear Currents for the obten-

tion of nonlinear transfer functions are also reviewed. This chapter ends with a brief

overview of the characteristics of envelope-based methods and a comparison between

the considered techniques.

Chapter 3 is devoted to envelope-based methods specifically devised to efficiently

deal with communications signals. The background in the field of envelope-based

methods is reviewed. The Envelop [sic] Transient method, Modulation-Oriented Har-

monic Balance, and Envelope Currents methods are summarised in a first part. Then,

an alternative Simplified Newton approach is presented as one of the main contribu-

tions of this Thesis. The Simplified Newton approach is applied to the study of both

weakly nonlinear amplifiers and mixers. In the case of mixers, a comparison is made

between the performance achieved by using an standard Newton approach — the

New Envelope Currents method for mixers — and a Simplified Newton approach —

the Extended Parametric Harmonic Balance.

Experimental measurements, with which the simulations techniques are com-

pared, are obtained in Chapter 4. A first definition of the different kinds of non-

linear characterization techniques and their associated figures of merit is presented,

including the concept of memory effects. Later, the proposed measurement setup

is described and illustrated by several examples. After a brief presentation of the

large-signal models employed, the good correspondence of the simulations accom-

plished by the proposed envelope-based analysis methods with the experimental data

is demonstrated by means of some examples. In the last section, a technique for the

phase characterization of third- and fifth-order intermodulation products is proposed

by using non-sophisticated communications equipment.

In Chapter 5, the Simplified Newton approach is applied to the analysis of two-

tone intermodulation products under the assumption that the tone spacing is suffi-

ciently small, i.e., the narrowband assumption. The information derived from the

obtained theoretical expressions is then discussed. Once a good correspondence of

the predicted intermodulation asymmetries to measurements is shown except for the

lower frequency separations, an impedance-based model for the inclusion of elec-

trothermal memory effects is presented for FET amplifiers, and then extended for

commercial amplifiers with no knowledge of their internal structure.

Finally, the proposed conclusions and suggestions for future work are gathered.

Three appendixes are included at the end of this dissertation. The first of them is a

list of the author’s publications related with the present Thesis. Appendix B contains

the expressions for the nonlinear envelope currents derived following the Simplified

Newton approach. Lastly, Appendix C details the obtention of the incremental en-
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velope voltages employed in the analysis of two-tone intermodulation following the

Simplified Newton approach.
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CHAPTER 2

STEADY-STATE METHODS FOR THE

ANALYSIS OF NONLINEAR CIRCUITS

AND SYSTEMS

2.1 Introduction

Accurate computer simulation has helped to reduce the cost and time required to

complete many new integrated circuit products, because a design can be corrected

and its performance tuned faster and more economically by using Computer Aided

Design (CAD) than by the repeated fabrication and testing of prototypes. However,

microwave circuit designers require the computer simulation programs to be efficient

computing steady-state quantities, such as harmonic distortion, for nonlinear circuits

with a widely spread spectrum response, which often include distributed devices.

This is a challenging and important problem that has motivated the work of many

researches in the last decades.

Steady-state analysis of microwave circuits is typically of more interest to a de-

signer than transient analysis. This is because microwave systems performance is

studied in terms of quantities that are best measured in steady state such as distor-

tion, power, frequency, noise, and transfer characteristics like gain and impedance.

For that reason, the methods chosen in this chapter for the analysis of nonlinear cir-

cuits are steady-state methods.

In the most general terms, a steady-state solution of a differential equation is one

that is asymptotically approached as the effect of the initial condition dies out. A

differential equation may not have a steady-state solution, or can have any number

of steady-state solutions. If there are multiple steady-state solutions, the steady-state

that is asymptotically approached will depend on the initial condition. There is a

region of attraction for every steady-state solution for which, if the initial condition
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2. STEADY-STATE ANALYSIS METHODS FOR NONLINEAR SYSTEMS

is contained in the associated region, then the solution approaches the given steady-

state solution. A solution is referred to as being asymptotically stable when it returns to

a given steady-state solution after being slightly perturbed from the same steady-state

solution.

Among the different kinds of steady-state behaviour, we should emphasise the

following due to their primary interest. The simplest case is dc steady state, where the

solution is an equilibrium point of the circuit and does not vary with time. Asymptot-

ically stable linear circuits driven by sinusoidal sources eventually exhibit a sinusoidal

steady-state solution, which is characterised by being purely sinusoidal except possi-

bly for some dc offset. If the steady-state response of a circuit consists solely of a

linear combination of a dc offset and a possible infinite number of harmonically re-

lated sinusoids, the circuit is said to be in periodic steady-state. Periodic steady-state

solution results either from self oscillations or as a response to periodically varying

inputs. If a nonlinear circuit is driven by several periodic sources at incommensurate1

frequencies, it will typically have a quasiperiodic steady-state response, consisting of a

linear combination of sinusoids at the sum and difference frequencies of a finite set of

fundamental frequencies and their harmonics. The fundamental frequencies usually

correspond to these of the input signals, though sometimes they are even multiples of

them or they result from self oscillations. Quasiperiodic steady-state includes periodic

steady-state as a special case. Finally, there are steady-state responses that do not fit

into any of the above classifications. These occur, for example, in the case of circuits

with noise as the stimulus.

The analysis methods that will be reviewed in this Thesis only compute periodic

and quasiperiodic solutions. In addition, these methods do not distinguish between

solutions that are asymptotically stable from those that are not, being necessary other

methods to determine the stability of the solutions, such as those presented in [91]

and [92]. However, in most practical cases, circuits that are carefully designed will

achieve a periodic or quasiperiodic steady-state from any condition, assuming that

the inputs and outputs are periodic or quasiperiodic.

Among the common tools to simulate analog circuits, we can refer to those based

on time-domain transient analysis. It is possible to calculate the steady-state response

of these circuits by integrating numerically the differential equations that describe

them, starting from a certain initial condition until the transient behaviour dies out.

The time-domain transient analysis is the most intuitive method for the computation

of the steady-state in nonlinear circuits, since it is the natural domain for human per-

ception. Because of that, both nonlinear models and input excitation signals are de-

scribed in the time-domain. However, this general approach can become impractical

1Two frequencies fp and fq are said to be incommensurate if their quotient is a rational number.
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because it implies a huge computational cost when the ratio of the highest to the low-

est frequency present in the steady-state solution is large. In these cases, the num-

ber of discretization time-steps used by the numerical integration algorithm will be

enormous, because the time interval over which the differential equations must be

numerically integrated is set by the lowest frequency, but the size of the time-steps is

constrained by the highest frequency response.

An example where the aforementioned disadvantage arises is when we are study-

ing nonlinear circuits excited by multi-carrier signals. Let us consider the most simple

example for this case: that of a two-tone input x(t) = A1 cos(2πf1t) + A2 cos(2πf2t),

where f1 and f2 are relatively large but close frequencies. Taking into account Nyquist

theorem, it is necessary to sample the input signal at a sample rate Rm ≥ 2f2, although

higher rates are advisable. This makes necessary the use of rather narrow time-steps, a

fact that would not be a problem provided that the time interval over which we must

integrate is short. But, since f1 ≈ f2, the intermodulation product at the difference

frequency f2−f1 makes necessary to consider an integration time of at least T = 1
f2−f1

,

that tends to infinity and implies a very large computational cost.

Conventional transient analysis can be accelerated by exploiting those features

typical of each kind of circuit and the applied excitation. This way, authors like Pet-

zold [93] and Kundert [94] suggest approximating the same problem by developing an

integration method that follows the envelope of the solution rather than the solution

itself. However, there are a wide variety of methods that directly compute the steady-

state solution more efficiently than integrating numerically the differential equations

that describe the circuit from some initial condition. In the time domain, it is possi-

ble to derive faster algorithms if the steady-state problem is recast to one of finding

an initial condition for which the solution to the differential equation is immediately

the steady-state. These type of problems are called boundary-value problems. There are

also frequency-domain methods, in which case a finite number of coefficients for the

Fourier-series expansion of the steady-state solution are calculated.

The advantage of frequency-domain methods over time-domain methods is their

flexibility to incorporate distributed devices easily, since the partial differential equa-

tions included in the time-domain definition of distributed devices are transformed

into complex algebraic equations in the frequency domain. Their disadvantage is that,

if the problem shows a strong nonlinearity, a large number of terms is required in the

series expansions so that the frequency-domain methods can be accurate, and this fact

makes them inefficient. Nevertheless, several microwave circuits, such as low-noise

amplifiers or instrumentation amplifiers, show quite commonly a weakly nonlinear

behaviour. This means that distortion levels, though significant, are very small com-

pared to the main signal. In addition, signals applied to most communication circuits
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are narrowband signals. In general, time-domain methods cannot exploit features de-

rived from the weakly nonlinear behaviour of this kind of circuits or the narrowband

condition of the excitations, consequently they are usually less efficient in these cases.

2.1.1 Frequency-domain methods

In frequency-domain methods, solutions are represented by means of a finite number

of coefficients of their Fourier-series expansion. The advantage of this representation

is particularly compelling when the steady-state solution is quasiperiodic, as it is usual

in the case of weakly nonlinear microwave circuits, since the number of required co-

efficients to represent this kind of signals will decrease and the approximation made

when the Fourier series are truncated will be better fitted. The use of Fourier series to

represent solutions implies that only the steady-state behaviour of the system is rep-

resentable and thus the initial transient behaviour is avoided. Furthermore, the circuit

can be simulated even if it is unstable.

On the other hand, the analysis of linear time-invariant circuit devices, regard-

less they are lumped or distributed components that can be described by a frequency

response, proves to be easy in the frequency-domain since it exploits the principle of

superposition. Computing the coefficients of the response of nonlinear devices is more

difficult than for linear devices, because the principle of superposition no longer ap-

plies and each of the coefficients of the response depends on all the coefficients of the

stimulus in a more complex way. In practice, the coefficients of the response are calcu-

lated approximately by converting frequency-domain representations of voltages and

currents into time samples by means of the inverse Fourier transform. Nonlinear de-

vices are more easily evaluated in the time domain and then the results are converted

back into the frequency domain by using the forward Fourier transform.

Usually, frequency-domain methods applied to nonlinear circuits are referred to as

Harmonic Balance methods (HB). The name stems from the employed approach, which

is based on balancing the existing currents between the linear and nonlinear circuits.

In HB, the nonlinear integro-differential equations describing the circuit are replaced

by a system of algebraic nonlinear equations, whose solution is an approximation to

the steady-state response of the circuit. These equations are solved iteratively.

HB is sometimes considered a mixed-domain method, because the nonlinear de-

vices are evaluated in the time domain while the linear devices are evaluated in the

frequency domain. However, evaluating the nonlinear devices in the time domain is

not a fundamental part of the algorithm. Thus, HB can be summarised as just being

the method where Kirchhoff’s current law is formulated in the frequency domain.
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2.2 Numerical solution of nonlinear equations

2.2.1 Newton-Raphson method

Algebraic nonlinear equations are not solvable explicitly. Instead, it is necessary to use

some kind of iterative method of successive approximations to the solution, in which

the iterative process is repeated until the solution satisfies the equations with an er-

ror smaller than a specified tolerance. The approach of the Newton-Raphson method

to solve nonlinear equations starts with an initial solution to which some correction

terms are added. These are obtained by solving the system of equations generated

when the circuit is linearised about a certain solution. In this way, solving the non-

linear problem is converted into solving a sequence of linear problems constructed in

such a form that the sum of the partial solutions to all the iterations converges to the

solution of the nonlinear problem.

Let us consider the following implicit nonlinear system of equations

f(x̂) = 0 (2.1)

where x̂ ∈ R
N and f : R

N → R
N is a Lipschitz continuously differentiable vector-

valued function, i.e., ‖f(x, t) − f(y, t)‖ ≤ K‖x − y‖ ∀ x, y ∈ R
N and K is a constant

value. By Taylor’s expansion, an initial guess x(0) must satisfy

f(x̂) = f(x(0)) +
df(x(0))

dx
(x̂ − x(0)) + O

((
x̂ − x(0)

)2
)

(2.2)

Taking into account that both x and f are N -dimensional vectors, the derivative df(x)
dx

can be represented by the Jacobian matrix Jf (x), if it exists.

df(x)

dx
= Jf (x) =

[
∂fm(x)

∂xn

]

, m, n = 1, 2, . . . , N. (2.3)

O(·) is a function that represents the higher order terms and is such that lim
α→0

‖O(α)‖

α
is bounded. Equation (2.2) suggests that if (x̂ − x(0)) is small, then the root of

flin(x(1)) = f(x(0)) + Jf (x
(0))(x(1) − x(0)), (2.4)

will be close to x̂, where flin(x) is the linearised approximation to f(x) (it represents

the hyperplane that is tangent to f(x) at x(0)). Therefore, an improved approximation

to x̂ will be the value x(1) that satisfies flin(x(1)) = 0, that is to say,

x(1) = x(0) − J−1
f (x(0))f(x(0)). (2.5)
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This procedure is repeated iteratively until the specified convergence criteria are sat-

isfied.

x(i+1) = x(i) − J−1
f (x(i))f(x(i)). (2.6)

The sequence generated by (2.6) is illustrated in Figure 2.1 for a one-dimensional case.

It converges to x̂ if f is continuously differentiable, Jf (x̂) is nonsingular and x(0) is

sufficiently close to x̂ [95] [96]. If the i-th iteration error is defined as ε(i) = ‖x(i) − x̂‖

and there are two constants p and α 6= 0 such that

lim
i→∞

ε(i+1)

(ε(i))p
= α, (2.7)

then p is called the rate or order of convergence. For Newton-Raphson method,

when Jf (x) is a Lipschitz function, p ≥ 2, i.e., the asymptotic convergence is at least

quadratic. However, in general, there is no way to assure that the initial value x(0) is

sufficiently close to the solution x̂, and consequently convergence can be elusive.

f(x)

x

J (x )f
( )1

f(x )( )0

x^

J (x )f
( )0

f(x )( )1

x( )0x( )2 x( )1

Figure 2.1: Newton-Raphson method illustrated.

2.2.2 Convergence criteria

As a practical matter, it is necessary to terminate the Newton-Raphson iteration after

a finite number of iterations. In a general way, the process is stopped when

‖f(x(i))‖ < εf (2.8)

where εf is some positive real number. In fact, there are several stop criteria for itera-

tive algorithms, although two largely used error functions are the minimum squared
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error, ‖f(x(i)) · f ∗(x(i))‖, and the norm of the error function used in equation (2.8),

‖f(x(i))‖. In order to see how this convergence criterion affects the error in the solu-

tion, let assume that the true solution is x̂ and that ‖f(x(i))‖ ≤ εf . By expanding f

about x(i), it is easy to show that

Jf (x
(i))[x̂ − x(i)] ≈ −f(x(i)). (2.9)

Therefore, the quantity ∆x(i) = −J−1
f (x(i))f(x(i)) is a first-order estimate of the error

in the solution. Notice that this quantity has been previously computed in (2.6), so the

additional convergence criterion can be incorporated to directly control the error in

the adopted solution:

‖∆x(i)‖ < εx . (2.10)

It is recommended to use both convergence criteria, (2.8) and (2.10), for the Newton-

Raphson algorithm because if only (2.8) is used it is possible to nearly satisfy (2.1) but

still have a large error in the solution, situation that might happen if the Jacobian of

the function were an ill-conditioned matrix. Furthermore, if only the criterion (2.10)

is used, it is possible to prematurely terminate the iteration process when (2.6) is far

from being satisfied because the progress toward the solution in one step is small and

that causes ∆x to be small. This last situation is referred to as false convergence.

2.2.3 Simplified Newton-Raphson methods

Previously defined Newton-Raphson method requires at each iteration, not only the

obtention of the N components of f(x(i)), but also the construction and factorization

of the (N × N) Jacobian matrix. There are several cases in which these operations can

be very expensive computationally. In the case of microwave circuits, for example,

the aforementioned situation can be found when highly nonlinear circuits are solved

in the frequency domain, since it is necessary to consider a great amount of mixing-

frequency terms that generate large size matrices. In addition to this, the construction

and factorization of the Jacobian can be avoided under certain circumstances, leading

to various simplified Newton-Raphson methods which have been developed over the

years to increase the efficiency of the algorithms [10], [32].

The simplified Newton-Raphson methods are related to the parallel-chord method

[95], in which function f can be replaced at some approximation x(0) of its solution x̂

by a linear function

flin(x) = f(x(0)) + A(x − x(0)), (2.11)

with a constant nonsingular matrix A defining an hyperplane in the multidimensional

problem. Note that, if the matrix A were the Jacobian Jf (x) this expression would be
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identical to the one used in the Newton-Raphson method. Therefore, taking the root

of flin(x) as a new approximation x(1) to the solution x̂, and repeating this procedure

with a fixed A, the iteration of the parallel-chord method is obtained (see Figure 2.2)

x(i+1) = x(i) − A−1f(x(i)). (2.12)

f(x)

xx^

A

f(x )( )1

f(x )( )0

x( )2 x( )1 x( )0

A

Figure 2.2: Parallel-chord method illustrated.

The crucial point in applying the iteration (2.12) is the proper choice of A. A par-

ticularly simple possibility is A = αI with I the identity matrix of range N and α 6= 0

an scalar, so that, in essence, a one-dimensional iteration is applied to each compo-

nent of f separately. A more sophisticated choice is motivated by the fact that in one

dimension the slope df(x(0))
dx

of the tangent of f at x(0) is a reasonable selection for α.

If we take A = Jf (x
(0)), the obtained method is referred to as a simplified Newton-

Raphson method. There are many possible choices for the matrix A in the parallel-

chord method, although an underlying requirement for any A is that the iteration

(2.12) be at least locally convergent. This means that when x(0) is sufficiently close to

a solution x̂ of f(x) = 0, then we should be assured that lim
i→∞

x(i) = x̂.

In this Thesis, we are interested in the simplified Newton-Raphson method in

which the Jacobian is formed and factorised only for the first iteration, and then it

is reused for the rest of the iterations (see Figure 2.3)

x(i+1) = x(i) − J−1
f (x(0))f(x(i)). (2.13)

If the function f is nearly linear, then the changes in the Jacobian from iteration to

iteration are small and the first Jacobian computed is a close approximation to the real
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Jacobian in the subsequent steps. In this case, the simplified method converges to the

correct solution. The Jacobian is only used to generate the new solutions of each iter-

ation, but is not used to confirm the convergence, so that the errors derived from the

approximations in the Jacobian only affect the rate and region of convergence, not the

accuracy of the final solution. The simplified Newton-Raphson method can be con-

siderably faster than the conventional Newton-Raphson method to solve large nearly-

linear systems of equations, even though they usually require a greater number of it-

erations, because each iteration is less expensive computationally. Nevertheless, the

region of convergence is often smaller than with the conventional Newton-Raphson

method.

f(x)

xx^

J (x )f
( )0

f(x )( )1

f(x )( )0

x( )2 x( )1 x( )0

J (x )f
( )0

Figure 2.3: Simplified Newton-Raphson method illustrated.

In order to increase the region of convergence over that of the simplified Newton-

Raphson method, it is possible to reevaluate the Jacobian every k iterations rather than

using the initial Jacobian until the convergence is achieved. This method, referred to

as Samǎnskii’s method, may be considered a k-step method, where each iteration is

composed of one Newton-Raphson step and k − 1 simplified Newton-Raphson steps.

Traud and Samǎnskii [95] demonstrated that the sequence formed by every k-th iter-

ation converges with a rate k + 1. Therefore, if k = 2, i.e., the Jacobian is updated

every other iteration, then cubic convergence is achieved. As expected, this rate of

convergence is inferior to that of conventional Newton-Raphson, where the sequence

formed by every other iterations converges quarticly.

The advantages of the simplified Newton-Raphson iterations are combined with

the large region of convergence of the conventional Newton-Raphson method if the
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sequence {‖f(x(i))‖} is monitored and simplified Newton-Raphson iterations are used

while a sufficient reduction in this norm is achieved. If the reduction in an itera-

tion is insufficient, the iteration and the Jacobian should be discarded and a complete

Newton-Raphson step should be carried out.

2.2.4 Continuation methods

Continuation methods provide a way for obtaining starting points that are sufficiently

close to the real solution to assure convergence in the Newton-Raphson methods. In

this case, a dependence with some parameter p is included in the system function

f(x, p) = 0 (2.14)

where f(x, 1) = f(x), i.e., when the parameter is set to p = 1, we consider the par-

ticular system for which the solution is desired; while f(x0, 0) = 0, i.e., for p = 0 the

system has a known solution x0. In other words, equation (2.14) can be written as a

function of p f(x(p), p) = 0.

The aim of this kind of methods is to compute the response of the circuit to a

certain excitation when it is initialised with x(0)(p). The solution x(p) can be found for

an increasing sequence of values of p, 0 = p0 < p1 < p2 < · · · < ps = 1. If x(p) is a

continuous function of p, then it is always possible to choose ps close enough to ps−1

so that if x(ps−1) is used as a starting point, it is sufficiently close to x(ps) to assure

convergence. Therefore, a finite sequence of problems is generated, the solution to the

first of which is known, and such that the solution of each problem is close enough to

the solution of the next to be within the region of convergence of the Newton-Raphson

method.

The step size ps − ps−1 is adjusted at each step to minimise the total number of

Newton iterations. Linear extrapolation is normally used with continuation methods

to reduce the number of steps required. After the first steps, a simple form of linear

extrapolation can be used based on the solution at the previous two steps.

x(0)(ps) = x(0)(ps−1) +
ps − ps−1

ps−1 − ps−2

[x(0)(ps−1) − x(0)(ps−2)]. (2.15)

When computing the dc operating point of a circuit, it is very common to use as

a continuation parameter the fraction of the dc source voltages and currents applied

to the circuit. In almost all circuit simulators, when all potentials are zero no current

flows through any device except sources. Thus, when all sources are turned off, cir-

cuits are guaranteed to have a solution with zero potential at every node and zero

current through every branch. From this known solution, the source levels can be
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slowly increased and the circuit solved at each step, until the desired source levels are

attained. Continuation implemented in this manner is generally referred to as source

stepping.

The advantage of continuation methods is that they guarantee that, if a solution

exists, it can be obtained from another one previously calculated. A disadvantage of

these methods is that, for some nonlinear systems, it is necessary to complete a large

number of continuation steps until the final solution is obtained. Consequently, the

continuation methods are usually associated to other methods in order to increase

their region of convergence.

2.2.5 Discretization

Nonlinear circuits are modelled by using a system of nonlinear differential equations.

However, in general it is not possible to solve numerically systems of nonlinear differ-

ential equations directly and discretization is required. Discretization approximates

a system of differential equations with a system of difference equations. In other

words, the time interval of interest [0, T ] is divided into a finite number of possi-

bly nonuniform subintervals with a monotonically increasing sequence of time-points

[t0, t1, · · · , tK ], where t0 = 0 and tK = T . The subintervals are called time-steps and

denoted by hk = tk − tk−1. At tk , the solution of the discretised system is an approx-

imation to the solution of the original differential equation. At each time-point, an

algebraic system of equations must be solved, thus discretization converts a differen-

tial equation into a sequence of algebraic equations. One commonly used approach to

get this conversion is to replace the derivatives
dnx

dtn
with one of the following finite-

difference approximations:

Forward difference:
dnx(tk)

dtn
≃

1

hn
k

n∑

r=0

(−1)r

(
n

r

)

x(tk+n−r) ,

Backward difference:
dnx(tk)

dtn
≃

1

hn
k+1

n∑

r=0

(−1)r

(
n

r

)

x(tk−r).

(2.16)

For the case of first-order derivatives, the simplest methods of this type are the one-

step explicit and implicit Euler algorithms, defined by taking n = 1 in the previous

expressions

Explicit or forward Euler:
dx(tk)

dt
≃

x(tk+1) − x(tk)

hk

,

Implicit or backward Euler:
dx(tk+1)

dt
≃

x(tk+1) − x(tk)

hk+1

,

(2.17)
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although we can also consider the generalized finite difference expression for one-

sided multipoint discretization rules

dx

dt
=

R∑

r=0

αrx(tn−r) . (2.18)

Implicit or backward Euler method presents the advantage of being stable even

if the differential equations being solved have widely separated time constants. The

integration of differential equations is conveniently carried out by applying methods

like explicit and implicit Euler starting at t0 and progressing forward toward tk be-

cause, when computing the solution at tk, it is only necessary to know the solution at

previous values of time.

2.3 Formulation of the problem

2.3.1 Circuit equations: modified nodal analysis

Systematic methods for the formulation of circuit equations are desirable when com-

plicated networks are being analysed. In general, these methods are based on the

incidence, cut-set, and loop matrices, which are derived by using topological con-

siderations. Taking into account that electronic circuits generally present much more

loops than nodes, it is a common practice to resort to nodal analysis.

As it was mentioned in Section 1.2, in this Thesis we will consider time-invariant

nonlinear circuits consisting of an arbitrary set of lumped linear elements such as re-

sistors, capacitances and inductances, lumped nonlinear elements and sources. Tradi-

tionally, a lumped device is one whose physical dimensions are much smaller than the

wavelength of the signal present in the circuit. In this Thesis, a device is considered

lumped if it is accurately modelled with an algebraic function of a finite number of

network variables. Any device that is not lumped is distributed. The inclusion of dis-

tributed linear elements in the present analysis is relatively straightforward and will

be discussed shortly. We will also consider non-autonomous or forced circuits only,

that is, circuits with at least one nonconstant periodic or quasiperiodic input source.

Formulation of the problem will be based on the circuit equations to be solved, which

will be obtained by means of a modified nodal analysis. That is to say, circuit equations

are posed in terms of their node voltages, also including as unknowns the currents in

inductances, voltage sources and current-controlled elements. To do so, it is necessary

that each element of the circuit has an admittance representation in which current is

expressed as a function of voltage.

20



2.3. FORMULATION OF THE PROBLEM
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R1 C1
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Figure 2.4: Example of a linear circuit.

In order to illustrate the nodal formulation of circuit equations, let us consider the

following example based on the circuit shown in Figure 2.4.

Let

x(t) =











v1(t)

v2(t)

v3(t)

is(t)

iL(t)











(2.19)

be the vector of unknown circuit variables which contains the voltages of all the nodes

in the circuit, together with the currents through the independent voltage source, is(t),

and through the inductance, iL(t). When Kirchhoff’s voltage law is taken into account

for all the circuit nodes, the following system of equations is obtained, expressed in

matrix form:

Gx(t) +
d

dt
Cx(t) = b(t), (2.20)

where

G =











1
R1

− 1
R1

0 1 0

− 1
R1

1
R1

0 0 0

0 0 1
R2

0 1

1 0 0 0 0

0 0 1 0 0











, C =











0 0 0 0 0

0 C1 −C1 0 0

0 −C1 C1 + C2 0 0

0 0 0 0 0

0 0 0 0 −L











and b(t) =











0

0

0

vs(t)

0











.

(2.21)

Matrix G includes the contribution of the resistive elements and, in addition, con-
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tains connectivity information for the inductor and the independent voltage source.

Matrix C accounts for the reactive elements. And, finally, vector b(t) involves the

independent sources.

It can be observed that the first three equations in the system (2.20) involve node

voltages only. When circuit equations can be formulated solely in terms of node volt-

ages, the method is referred to as nodal analysis. In the example shown in Figure 2.4,

the presence of an ideal voltage source makes necessary to include its branch current

as an unknown. Moreover, the inductor current is included as an unknown, because

it is more convenient to use a first order differential equation to describe this element

rather than adding an integral of the unknowns vector to the left-hand side of (2.20) in

order to account for the presence of the inductor. When it is necessary or convenient

to include other variables as unknowns besides node voltages, the method is referred

to as modified nodal analysis.

The advantage of the modified nodal analysis is that it is possible to deduce general

rules to construct the matrices and vectors G, C and b(t) directly. These rules can be

implemented in computer-aided design programs, being the modified nodal analysis

methods adopted in many commercial circuit simulators.

Let now consider the circuit in Figure 2.4 in the frequency domain. The new vector

containing the unknowns will be the following:

X(t) =











V1

V2

V3

Is

IL











, (2.22)

which includes the complex phasors of each of the node voltages and currents that

formed the vector of the unknowns in the time domain. Similarly, let B denote the

phasors corresponding to the sources vector b(t). It is straightforward to verify that,

in the frequency domain, equation (2.20) becomes

Y(ω)X = B, (2.23)

where matrix Y(ω) is known as modified node admittance matrix and it is defined as

Y(ω) = G + jωC. (2.24)

We can deduce from the previous equations that the inclusion of distributed ele-

ments or linear multiport devices is quite straightforward in the frequency domain. It

is only necessary to obtain the admittance matrix of the new device and add it to the
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Figure 2.5: Example of a circuit with nonlinear elements.

appropriate elements of Y(ω), considering the position inside the circuit where the

new device is inserted.

In order to complete the description about the formulation of the problem, let con-

sider that two nonlinear elements are inserted in the circuit of the aforementioned

example, as it is shown in Figure 2.5.

In this case, new terms must be added to equation (2.20) in order to include the

nonlinear elements, resulting

Gx(t) +
d

dt
Cx(t) +

d

dt
q[x(t)] + i[x(t)] = b(t), (2.25)

where

q[x(t)] =











0

q[v2(t)]

0

0

0











and i[x(t)] =











0

0

i[v3(t)]

0

0











. (2.26)

Vectors d
dt
q[x(t)] and i[x(t)] account for the currents that flow through the nonlinear

elements, and the functions i and q must be differentiable.

Another way to express the nodal circuit equations that is convenient for the inclu-

sion of distributed elements is given as

d

dt
q[x(t)] + i[x(t)] +

∫ t

−∞

y(t − τ)x(τ)dτ = b(t). (2.27)

In this expression, y(t) is obtained by inverse Fourier transforming the modified

node admittance matrix Y(ω), in which only the linear elements of the circuit have

been included and all the nonlinear elements have been removed.
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2.3.2 Nonlinear circuit elements representation

In order to accomplish the nonlinear analysis of an electronic circuit, whose devices

include inherent nonlinearities, it is necessary to replace each device with an equiva-

lent model. The more usual nonlinear elements included in the models of the devices

which are going to be treated in this Thesis are nonlinear conductances, nonlinear ca-

pacitances and nonlinear controlled sources. For all these cases, the current depends

nonlinearly on one or more voltages and the elements can be appropriately charac-

terised by a power series about the bias point.

In Figure 2.6(a), a nonlinear conductance is shown whose voltage-current relation-

ship can be expressed as

iG(t) = g [vG(t)] . (2.28)

If VG and IG denote the voltage and current in the operation point, respectively, the

power series expansion of the function g [·] about the bias point can be written as:

iG(t) = IG +
∞∑

k=1

gk [vG(t) − VG]k , (2.29)

where gk is the k-th coefficient of the power series. If we make use of the definition

of incremental currents and voltages ig(t) = iG(t) − IG and vg(t) = vG(t) − VG, equa-

tion (2.29) can be reduced to

ig(t) =
∞∑

k=1

gkv
k
g (t). (2.30)

In the case of the nonlinear capacitance shown in Figure 2.6(b), we can write cur-

rent as a function of charge by applying the chain rule

iC(t) =
dqC(t)

dt
=

dqC(t)

dvC(t)
·
dvC(t)

dt
= C [vC(t)]

dvC(t)

dt
, (2.31)

+

-

v (t)
G

Gi t( )

g v t[ ( )]G

( )a

+

-

v (t)
C

Ci ( )t

C[ ( )]v tC

( )b

+

-

v (t) i v t[ ( )]

(c)

Figure 2.6: Nonlinear circuit elements. (a) Nonlinear conductance. (b) Nonlin-

ear capacitance. (c) Nonlinear current source controlled by voltage.
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where C [vC(t)] is the incremental capacitance. Let assume that the nonlinear capac-

itance admits a power series expansion about the bias point, then it can be written

as:

C [vC(t)] = c0 +
∞∑

k=1

ck [vC(t) − VC ]k =
∞∑

k=0

ckv
k
c (t), (2.32)

where vc(t) = vC(t) − VC is the incremental voltage. Current is expressed in terms of

the coefficients of the nonlinear capacitance as

iC(t) =
∞∑

k=0

ckv
k
c (t)

dvC(t)

dt
. (2.33)

In order to write this expression as a function of the incremental voltages and currents,

it is enough to rewrite (2.33) in the following equivalent form:

ic(t) − IC =
∞∑

k=0

ckv
k
c (t)

d [vc(t) + VC ]

dt
. (2.34)

Taking into account that IC = 0, since it is a dc current, and that VC is a constant, it can

be concluded that

ic(t) =
∞∑

k=0

ckv
k
c (t)

dvc(t)

dt
. (2.35)

Finally, it is necessary to consider the case of a nonlinear current source voltage-

controlled, as the one shown in Figure 2.6(c). For the case of a nonlinear current source

controlled by a single voltage, the power series expression for the current is

i [v(t)] =
∞∑

k=0

gkv
k(t), (2.36)

and for the case of a nonlinearity depending on two voltages, the power series of the

current is expressed as

i [v(t), u(t)] =
∞∑

k=0

∞∑

l=0
k+l≥1

gklv
k(t)ul(t) . (2.37)

For the nonlinear circuits based on FET devices that have been analysed and whose

results will be shown in this Thesis, the main nonlinearity appears in the current that

flows through the drain ids [vgs, vds] and it has been modelled as a nonlinear controlled

source expressed as shown in (2.37), due to the importance of the cross-terms gkl

demonstrated in several research papers [97]. Note that in this case, the gk0 coeffi-

cients are related to the nonlinear controlled source that depends on vgs, while the g0l
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are the coefficients of the nonlinear output conductance. Therefore, sometimes the fol-

lowing expression, equivalent to (2.37), that considers separately those effects in three

different terms is preferred:

i [v(t), u(t)] =
∞∑

k=1

gk0v
k(t) +

∞∑

l=1

g0lu
l(t) +

∞∑

k=1

∞∑

l=1

gklv
k(t)ul(t). (2.38)

In summary, the typical nonlinear elements in circuits include:

• Nonlinear conductance:

ig(t) =
∞∑

k=1

gkv
k
g (t). (2.39)

• Nonlinear capacitance:

ic(t) =
d

dt

∞∑

k=1

qkv
k
c (t) =

∞∑

k=1

k qkv
k−1
c (t)

dvc(t)

dt
=

∞∑

k=0

ckv
k
c (t)

dvc(t)

dt
. (2.40)

• Dependent nonlinearity:

i(t) = i[v(t), u(t)] =
∞∑

k=0

∞∑

l=0
k+l≥1

gklv
k(t)ul(t) =

∞∑

k=1

gk0v
k(t) +

∞∑

l=1

g0lu
l(t) +

∞∑

k=1

∞∑

l=1

gklv
k(t)ul(t).

(2.41)

in which v and u denote voltages at different points in the circuit.

Regarding the obtention of the power series coefficients gk or gkl, in this Thesis the

traditional approach based on the Taylor series expansion around the circuit bias point

will be used, so that they are defined as:

gk =
1

k!

dki[v(t)]

dvk

∣
∣
∣
∣
v=VDC

, (2.42)

gkl =
1

k! l!

∂k+li[v(t), u(t)]

∂vk ∂ul

∣
∣
∣
∣
v=VDC ,u=UDC

. (2.43)

However, an alternative approach is proposed in [98] that uses Chebyshev series ex-

pansion instead of Taylor series expansion in order to get the polynomial approx-

imation of the nonlinear functions describing the devices. In this case, although a

more complex procedure provides values for the coefficients gk or gkl which are dif-

ferent from those obtained with equations (2.42) and (2.43), the power series structure

is maintained for the nonlinear elements representation. Therefore, equations (2.39)-

(2.41) remain aplicable.
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2.4 Harmonic Balance

2.4.1 Historical development

Harmonic Balance (HB) was originally considered an approximate technique for find-

ing analytically the nearly-sinusoidal solution of a differential equation [99]. Baily

formulated HB as a numerical method in 1969 [100]. Since then, it has been refor-

mulated into an accurate method for finding numerically the solution of a differential

equation driven by single or multiple sinusoids. The conventional approach begins

by partitioning the circuit into linear and nonlinear subcircuits. The linear subcir-

cuit is evaluated in the frequency domain while the nonlinear subcircuit is evaluated

in the time domain. The problem then becomes that of finding the voltages on the

nodes of both subcircuits that result in Kirchhoff’s current law being satisfied in those

nodes. In 1974, Egami showed that it is possible to solve these equations by using

Newton-Raphson [101]. Gwarek and Kerr solved the equations by using nonlinear

relaxation [102] [103], and Nakhla and Vlach used optimization methods [104]. Varia-

tions of these approaches have been presented by a large collection of authors [11].

In 1985, Kundert and Sangiovanni-Vincentelli proposed a method, referred to as

Harmonic Relaxation-Newton, that combines most of the advantages of both relaxation

and Newton-Raphson methods; and in 1986 they proposed an alternative relaxation

method called Gauss-Jacobi-Newton Harmonic Relaxation with superior convergence

properties [38].

Until 1984, HB was only used to analyse circuits with a periodic response. That

year Ushida and Chua showed that a transform for the quasi-periodic signals present

in mixers could be developed by starting from the matrix form of the Discrete Fourier

Transform (DFT), but more than the normal number of time-points were needed in

the sampled time-domain waveforms [105]. Although this approach allowed HB to

be applied in mixers, it had some disadvantages because the extra time samples rep-

resented a computational burden and the number of samples in excess required the

use of least-squares methods to perform the transformation of signals to and from the

time and frequency domains, being this method ill-conditioned. Also in 1984, Gilmore

and Rosenbaum [106] [107] presented a completely different transform that exploited

sparsity in a spectrum, with which quasiperiodic signals can be analysed because, in

practice, this type of signals is zero at almost all harmonics, i.e., the spectrum is sparse.

In 1987, Sorkin, Kundert and Sangiovanni-Vincentelli [108] [109] showed that us-

ing equally spaced samples in the time domain leads to ill-conditioning in the trans-

form that could only be remedied by either using more than the theoretical mini-
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mum number of time samples or using unequally spaced samples. In addition, an

approach based on multidimensional Fast Fourier Transforms (FFTs) was proposed

by Bava et al. [110] and later presented by Rizzoli [111], [112], Ushida [113], and

Heron [39]. Another method for the analysis of nonlinear microwave circuits driven

by non-harmonically related generators is the Spectral Balance, proposed by Gayral and

Ngoya in 1987 [114], [115]. In this method, a generalised Fourier series and the cor-

responding method to get its complex coefficients are employed, where the involved

frequencies have no particular relation.

A significant departure from conventional HB was suggested by Steer and Kahn in

1983 in [116], [117], and developed subsequently by other authors such as Haywood

[118], Chang [119], [120], and Närhi [121]. They proposed to evaluate the nonlinear de-

vices directly in the frequency domain. To do so, nonlinearities described by arbitrary

continuous functions are modelled over the anticipated operating range with any kind

of function that can be expressed by means of the four basic arithmetic operations (ad-

dition, substraction, multiplication, and quotient). Among the methods proposed to

approximate the nonlinear devices, we can encounter power series, generalised power

series, rational functions or Chebyshev polynomials. This approximation allows us to

obtain the output spectrum by using only spectral convolutions. This method, some-

times referred to as Frequency Domain Spectral Balance, exhibits as a disadvantage that

it is very difficult to approximate accurately strongly nonlinear functions over a wide

range with the aforementioned basic methods.

Since the 1990s, a major research interest has been focused on techniques to ac-

celerate the computational time of HB methods. Some of the approaches aiming this

objective were based on matrix methods for solving the HB iteration. In [122], Rizzoli

presented a technique based on the exploitation of sparse-matrix techniques by setting

to zero selected elements of the Jacobian matrix. Nevertheless, we could say that the

most successful approaches are those based on Krylov-subspace techniques to itera-

tively solve the large linear systems of equations derived from each HB iteration. A

related issue of this kind of techniques is that of finding the appropriate precondition-

ing matrix required to achieve good convergence speed. Among the works devoted to

this kind of techniques ([123], [124], [125], [126], [127], [128], [129], [130], [131], [132]),

that of Rizzoli [125] deserves a special mention. In that work, the Inexact Newton tech-

nique was introduced. It presents some advantages for solving large-sized nonlin-

ear systems and exhibits the best results when applying a Krylov-subspace iterative

solver, the GMRES.

A completely different approach also based on a Krylov technique, is that pro-

posed by Gad in [133], where a reduction of the nonlinear circuit or the nonlinear set

of equations is sought instead of reducing the cost of factorising the Jacobian matrix.
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In that work, a Krylov-based projection technique is employed to reduce the size of

the original set of equations to be solved in the HB analysis, while the accuracy of the

solution is preserved because the reduced set of nonlinear equations shares with the

original one the first derivatives with respect to the RF excitation level.

Other different approaches to accelerate computational time were proposed. Asai

and Makino presented in [134] and [135] a technique which was taken up again by

Gourary in [129]. It consisted in exploiting the concept of Frequency Domain Latency by

using a multirate sampling for the FFT. Filicori introduced in [136] the Frequency Win-

dowing Harmonic Balance, a technique in which the circuit equations were decoupled

and linearised inside some frequency windows where the admittance of the circuit

was assumed almost constant. This approximation leads to an important reduction of

the computing effort, although it presents a limited validity range.

At the same time, some researchers proposed the use of different and more sophis-

ticated algorithms for the solution of the HB equations [137], [88], while in [138] the

use of the parallel-chords method was proposed as a simple linear-centric modelling

approach to speed up the overall run-time.

The second issue that has been widely developed during the last fifteen years are

the techniques to create an optimum set of unequally spaced samples for the transfor-

mation from the time domain to the frequency domain ([139], [10], [140], [141], [142],

[127], [128], [143], [144], [145], [146]). Although the approaches presented in those

works will be addressed in Section 2.4.6, we will mention here the Wavelet Harmonic

Balance introduced by Soveiko in 2003 in [146], which is a modification of HB where

wavelets instead of Fourier series are used as basis functions to transform the time

samples to the frequency domain, with the subsequent increase in sparsity of the ma-

trix and a reduction in computational cost.

More recently, modern wireless communications systems have undergone a signif-

icant evolution which has aroused an increasing interest in simulation techniques for

systems driven by digitally-modulated carriers. The great number of frequency com-

ponents which must be taken into account is the main cause of the inefficiency that

standard HB methods present with digitally-modulated carriers. Hence, although a

considerable part of the proposed techniques for the analysis of nonlinear microwave

systems with digitally-modulated carriers are based on HB methods ([20], [45], [17],

[130], [18], [147], [19], [148]), they are formulated in terms of the complex envelopes

of the involved signals. Section 2.6 and Chapter 3 will be devoted to this kind of

techniques.
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2.4.2 Harmonic Balance analysis

HB can be seen as an extension of phasor analysis from linear to nonlinear differen-

tial equations. Recall that phasor analysis is a classical method to obtain the steady-

state solution to a system where linear differential equations apply and whose stim-

ulus is a sinusoid of frequency ωc. It is assumed that the solution has the form

x(t) = Re [X ejωct], where X is the complex amplitude or phasor of the solution. When

we substitute this response in the differential equations and evaluate the derivatives,

a system of algebraic equations results, which is solved to obtain the phasor X . When

the differential equation is not linear, an approximate solution can be found by using

HB. We can assume that the solution is periodic and consists of a linear combination of

harmonically related sinusoids. Once this solution is substituted into the differential

equations, the resulting expressions can be factored into a sum of purely sinusoidal

terms. Due to the orthogonality of sinusoids at different harmonics, the resulting al-

gebraic system of equations can be broken up into a collection of simpler equations,

one for each harmonic. The nonlinear equations are solved by finding the coefficients

of the sinusoids that produce the balancing of the algebraic currents equation at each

harmonic.

In general, microwave and RF circuits have a large number of both linear and non-

linear circuit elements. A convenient way of grouping the circuit elements can be as

shown in Figure 2.7(a) to form two subcircuits, one linear and the other nonlinear.

The linear subcircuit can be treated as a multiport and described by its Y parame-

ters (which, in turn, can be obtained from the node admittance matrix, as it will be

shown later). The nonlinear elements, modelled by their I/V or Q/V characteristics,

might be solved directly in the frequency domain, although it would require a com-

plicated Fourier decomposition of each nonlinear function and a convolution of the

spectral tones and harmonics applied to the circuit. Instead, it is more convenient to

analyse the nonlinear elements in the time domain. Thus, the circuit is reduced to

an (N + 2)-port network, with nonlinear elements connected to N ports and voltage

sources connected to the other two ports. The (N + 1)-th and (N + 2)-th ports repre-

sent the input and output ports in a two-port network. Usually, a sinusoidal source

is connected to only one of those ports; however, sources are shown at both ports in

Figure 2.7 for generality. The source and load impedances, Zs(ω) and ZL(ω), are con-

sidered included into the linear subcircuit. Because of the nonlinear elements, the port

voltages and currents have frequency components at harmonics of the excitation. Al-

though in theory an infinite number of harmonics exist at each port, we shall assume

that the dc component and the first H harmonics (i.e., h = 0, . . . , H) describe all the

voltages and currents adequately.
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Figure 2.7: Nonlinear circuit divided into linear and nonlinear subcircuits.
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The idea of HB is to find a set of port voltage frequency components or, alterna-

tively, port voltage waveforms which give the same currents in both the linear subcir-

cuit equations and the nonlinear subcircuit equations. That is, the currents of the N

ports satisfy Kirchhoff’s current law









I1

I2
...

IN









+









Î1

Î2
...

ÎN









= 0 (2.44)

where each element of the currents vector is in turn a vector with the dc component

and the first H harmonics (including their negative counterparts)

In = [In(−H) . . . In(0) . . . In(H)]T , În =
[

În(−H) . . . În(0) . . . În(H)
]T

. (2.45)

Note that the vectors include both negative-frequency and positive-frequency

components. This consideration has been adopted because it is more convenient

for the formulation of the main algorithms used to solve the HB equations (see Sec-

tions 2.4.3.2.2 and 2.4.3.3), although it presents some drawbacks. Real excitations are

being considered, where the negative-frequency components are the complex conju-

gates of the positive-frequency ones and can be found from their counterparts imme-

diately if needed. Eliminating the negative-frequency components from (2.44) could

have reduced its complexity considerably. However, when using the Gauss-Jacobi-

Newton or Newton algorithms in HB, the constrain imposed by using only positive-

frequency components makes the derivative JF(V) unrepresentable in the complex

field. The way to circumvent this problem consists in treating separately real and

imaginary parts, which implies doubling the number of variables involved and com-

plicates notation considerably. This conversion, however, halves the memory and the

number of operations required. It should be kept in mind that the more general in-

ternal representation of complex numbers consists in using pairs of numbers stored

with floating point or double precision format, which means internally doubling the

number of variables involved.

Despite knowing that it is not the most efficient solution, in this Thesis it has been

decided to include both negative and positive frequencies and consider complex vari-

ables for the sake of simplicity in notation. Further details in derivations for HB meth-

ods where the presence of negative frequencies is not required can be found, for ex-

ample, in [38], [10], and [8], although they are out of the scope of this Thesis.
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The linear subcircuit can be analysed by means of its port admittance matrix
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YN+2,1 . . . YN+2,N YN+2,N+1 YN+2,N+2





















V1

...

VN

VN+1

VN+2











, (2.46)

where each element in the voltage vector is in turn a vector of the form

Vn = [Vn(−H) . . . Vn(0) . . . Vn(H)]T , (2.47)

and the elements of the admittance matrix are diagonal submatrices that correspond

to the different harmonics of the fundamental frequency ωc

Ym,n =












Ym,n(−Hωc) . . . 0 . . . 0
...

. . .
...

...
...

0 . . . Ym,n(0) . . . 0
...

...
...

. . .
...

0 . . . 0 . . . Ym,n(Hωc)












. (2.48)

The excitation vectors VN+1 and VN+2 have the form

[

VN+1

VN+2

]

=






























0
...

VS

2

Vb1

VS

2
...

0

0
...

Vb2

...

0






























(2.49)

where Vb1 and Vb2 are the dc voltages at ports N + 1 and N + 2, respectively, and VS is

the excitation voltage at frequency ωc at the (N + 1)-th port. Equation (2.49) implies

that the (N + 1)-th port excitation includes a dc and a fundamental frequency source,

while the (N + 2)-th port includes only dc. This is the usual situation; it corresponds,

for example, to a FET amplifier that has gate and drain bias and gate excitation.
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It is convenient to partition the expression in (2.46) so that it can be written as:
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Y1,N+1 Y1,N+2

...
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YN,N+1 YN,N+2







[

VN+1

VN+2

]

+







Y1,1 . . . Y1,N

...
. . .

...

YN,1 . . . YN,N













V1

...

VN







(2.50)

or

I = Is + YN×NV, (2.51)

where YN×N is the submatrix formed by the first N rows and columns of Y, and Is

represents a set of current sources in parallel with the first N ports. This equation

can be illustrated by means of the equivalent circuit shown in Figure 2.7(b), where the

external excitation sources in the (N+1)-th and (N+2)-th ports need not be considered

further.

As it was explained in Section 2.3.2, the most usual nonlinear elements can be non-

linear capacitances, conductances or controlled sources, all of them voltage-controlled

elements. For all the cases, their analysis is carried out in the time domain by inverse

Fourier transforming the complex phasor voltage at each port

F−1[Vn] → vn(t). (2.52)

For the case of a nonlinear capacitor, the charge waveform can be expressed as a func-

tion of the voltages at all N ports, i.e., qn(t) = fqn
[v1(t), v2(t), . . . , vN(t)]. Applying the

Fourier transform gives the charge vectors for the capacitors at each port

F [qn(t)] → Qn. (2.53)

According to Nyquist’s theorem, a function must be evaluated at least 2H time

samples per period in order to adequately determine the coefficients of the first H

harmonics. However, it is advisable to use more samples than necessary, oversam-

pling the waveforms between 2.5 and 2.6 times the number of harmonics to reduce

the errors caused by aliasing. This way, a vector is constructed with the harmonics of

the charge of the nonlinear capacitor at each port

Q = [Q1 . . . QN ]T , where Qn = [Qn(−H) . . . Qn(0), . . . , Qn(H)]T . (2.54)

The current through the nonlinear capacitor can be expressed by means of the deriva-

tive of the charge

ic,n(t) =
dqn(t)

dt
↔ jhωcQn(h). (2.55)

In a compact form, expression (2.55) can also be written as:

Ic = jΩQ, (2.56)
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where Ω is a diagonal matrix which includes N cycles of (−H, . . . , 0, . . . , H)ωc through

the main diagonal.

Similarly, the instantaneous current in a nonlinear conductance or a controlled cur-

rent source can be expressed as

ig,n(t) = gn[v1(t), v2(t), . . . , vN(t)] ↔ IG,n = F [ig,n(t)]. (2.57)

A vector is also constructed with the harmonics of the nonlinear current at each port

IG = [IG,1 . . . IG,N ]T , where IG,n = [IG,n(−H) . . . IG,n(0) . . . IG,n(H)]T . (2.58)

Substituting (2.56), (2.58) and (2.51) in (2.44) gives the following expression:

F(V) = Is + YN×NV + jΩQ + IG = 0. (2.59)

Note that if the vector V is such that F(V) = 0, then V is the solution of the HB

analysis. F(V), called the current-error vector, represents the difference between the

current calculated from the linear and nonlinear subcircuits, at each port and at each

harmonic, for a trial-solution vector V.

Regarding the linear subcircuit, there are many methods for generating the N -

port admittance matrix of a linear circuit, although the simplest one is to generate

an indefinite (modified) node admittance matrix and convert it into a port matrix.

The process can be implemented readily on a computer. Of course, a matrix must be

produced for each harmonic frequency in the analysis.

To convert the indefinite admittance matrix into a port admittance matrix, we must

create a port impedance matrix and invert it. To obtain the impedance matrix, we first

select the nodes corresponding to port 1, excite them with unity current, and measure

the voltage between the nodes representing each of the ports. This produces the first

column of the impedance matrix. Moving the excitation to port 2 produces the second

column, and proceeding in this manner to the last port produces the entire matrix.

The conventional process for the formulation of HB analysis equations has been

explained, based on the N -port admittance matrix of the linear circuit. Nevertheless,

it is also possible to formulate the HB analysis simply by using the node admittance

matrix. In this case, the principle of HB simply becomes a restatement of Kirchhoff’s

current law in the frequency domain. In a nodal formulation, each node voltage in the

circuit becomes an independent variable. The number of variables in the HB analysis

remains N(2H + 1), but N is now the number of nodes, not the number of control

voltages. In microwave and RF circuits, the number of nodes is likely to be greater

than the number of nonlinear elements, so the nodal formulation increases the size

of the Jacobian. However, this formulation is more robust regarding convergence,

because the Jacobian is rarely ill conditioned.
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2.4.3 Solution algorithms

The remaining part of the problem is to solve (2.59) to obtain V. Each of the 2H + 1

components of V at each of the N ports is an unknown. Thus, there are N(2H + 1)

unknowns to determine. For example, the analysis of a FET amplifier usually includes

nonlinear elements at three ports. Let assume that it has eight significant harmonics

plus dc at each port. Thus, N = 3, H = 8, and there are 51 variables to obtain.

A number of algorithms have been proposed for solving (2.59), the most significant

of which will be described. Today, there is a strong consensus that Newton’s method is

preferred for HB simulation and it is applied, possibly associated to some continuation

method, in virtually all the commercial simulators.

2.4.3.1 Optimization methods

It is possible to apply nonlinear optimization techniques to solve (2.59). In this case,

the magnitude squared of the current-error function ε(V) = FH(V) · F(V) is treated

as the cost function that we want to minimise, being (·)H the Hermitian transpose.

The chosen cost function has two important characteristics. First, each root of F corre-

sponds to a global minimum of ε(V), and at these points, ε(V) = 0. Second, at each V

that is a local minimum of ε(V) but is not a root of F, the Jacobian of F is singular. If a

V̂ is found such that ε(V̂) = 0, then V̂ satisfies (2.59), so we seek for a global minimum

that must satisfy the following condition:

∇ε(V̂) = 0. (2.60)

This problem can be solved by using different techniques, one of which is a Newton’s

method that uses Newton-Raphson to find the roots of (2.60). However, solving (2.60)

with Newton-Raphson is more difficult than solving (2.59), because the equation in-

volves the first derivative of the original function F, so applying Newton-Raphson

requires knowing the second derivatives of F. In fact, the Newton-Raphson iteration

used to solve (2.60) is

∇2ε(V(i))
[
V(i+1) − V(i)

]
= −∇ε(V(i)), (2.61)

where ∇2ε is the Hessian of ε, which can be written as:

∇2ε(V) =
dJF(V)

dV
F(V) + JF

H(V)JF(V), (2.62)

and the gradient takes the form

∇ε(V) = JF
H(F)F(V). (2.63)
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Clearly, the Hessian is denser than the Jacobian and it is therefore considerably

more expensive to factor. Using (2.62) and (2.63), we can rewrite (2.61) as

[
dJF(V(i))

dV
F(V(i)) + JF

H(V(i))JF(V(i))

]

·
[
V(i+1) − V(i)

]
= −JF

H(V(i))F(V(i)). (2.64)

Applying nonlinear optimization techniques to solve the HB equations is expen-

sive because there is a very large number of unknowns to be found and nonlinear

optimization techniques are expensive for large problems. Furthermore, the consid-

ered cost function destroys a lot of information about the individual contribution of

each variable to the error, so optimization routines may have convergence problems.

For these reasons, the approaches presented subsequently are preferred over the opti-

mization methods.

2.4.3.2 Relaxation methods

As the name implies, relaxation methods use simple algorithms that encourage the

voltages to move gradually towards the solution. An advantage of these methods is

that they are simple to implement, often not requiring the generation of I/V deriva-

tives. Relaxation methods have been largely used, although their use has decreased

recently. Their worst problems are unpredictable convergence characteristics and in-

applicability to large systems.

Two different ways of applying relaxation methods are presented, the first uses a

form of nonlinear relaxation called splitting similar to the approach taken by Gwarek,

Kerr or Hicks [102] [103] [149] [150]. The second combines relaxation and Newton-

Raphson [38].

2.4.3.2.1 Splitting

Splitting is a relaxation technique that was originally developed to solve linear systems

of equations and was generalised to handle nonlinear systems [95]. Let consider the

linear system Ax = b and consider the splitting of A into A = B − C, where B

is a nonsingular matrix. Then a fixed-point iteration that can be applied to find its

solution is x(i+1) = B−1(Cx(i) + b), where x(i) denotes the estimation of the unknown

x for the i-th iteration. The iterative algorithm converges if all the eigenvalues of

B−1C are smaller in magnitude than one. In order to apply this result to the HB, let

Î(i) = −
[
jΩQ(V(i)) + IG(V(i))

]
be the vector of the nonlinear current estimated after

the i-th iteration. Taking into account that HB consists in finding V such that I = −Î,
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if we take I(i) = −Î(i), it is possible to propose the following update for the voltage

vector:

V(i+1) = Y−1
N×N

(
I(i) − Is

)
(2.65)

In practice, although the value V(0) is close enough to the solution and the non-

linearities are weak, it is not possible to guarantee the convergence of this method.

Because of that, the following alternative is preferred [149]:

U(i) = Y−1
N×N

(
I(i) − Is

)

V(i+1) = sU(i) + (1 − s)V(i)
(2.66)

where s is a real constant (0 < s < 1) called the splitting coefficient which is determined

heuristically. The values of s near zero help convergence, though slowly. As s tends to

one, the convergence is accelerated, but it can even be lost. A typical value is s = 0.2,

or even smaller if the initial guess is not good enough, the circuit is strongly nonlin-

ear or the magnitude of the excitation is large. Note that, despite the resemblance

in notation between splitting and continuation methods, they exhibit basic differences

since the splitting coefficient is fixed through all the iterations whereas in continuation

methods a sequence of values of the parameter are employed, generating a sequence

of problems to be solved by means of iteration.

2.4.3.2.2 Gauss-Jacobi-Newton Harmonic Relaxation

The second relaxation approach to solve equation (2.59) is to use the block Gauss-

Jacobi method with a one-step Newton inner loop, known as the block Gauss-Jacobi-

Newton method. To apply this method, (2.59) is reformulated into a system of 2H +

1 equations, each of which calculates the vector of node currents at one frequency

given the node voltages at all frequencies. This can be done considering that the node

admittance matrix for the linear portion of the circuit YN×N is block diagonal, since

linear devices are incapable of translating frequencies. Equation (2.59) can be written

as:

YN×NV = −Is − jΩQ − IG , (2.67)

and once the right-hand side of (2.67) has been evaluated, the task of finding V can be

broken into solving 2H +1 decoupled linear N ×N systems of equations, one for each

harmonic:

F(V, h) = Is(h) + YN×N(h, h)V(h) + jhωcQ(V, h) + IG(V, h) = 0 , (2.68)

with h = −H, · · · ,−1, 0, 1, · · · , H . In the block Gauss-Jacobi algorithm, there is an

outer relaxation loop and an inner loop where each equation in (2.68) is solved by us-

ing Newton’s method for V(i+1)(h). Note that in this equation only V(h) is a variable,

and V(l) with l 6= h are constant and can be taken from the previous iteration.
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Applying the Gauss-Jacobi-Newton method to (2.68) results in

∂F(V(i), h)

∂V(h)

[
V(i+1)(h) − V(i)(h)

]
= −F(V(i), h), h = −H, · · · ,−1, 0, 1, · · · , H

(2.69)

or

V(i+1)(h) = V(i)(h) −

(
∂F(V(i), h)

∂V(h)

)−1

F(V(i), h), (2.70)

where
∂F(V, h)

∂V(h)
= YN×N(h, h) + jhωc

∂Q(V, h)

∂V(h)
+

∂IG(V, h)

∂V(h)
. (2.71)

The term
∂F(V, h)

∂V(h)
can be viewed as the node admittance matrix of the circuit at the

h-th harmonic where the circuit has been linearised about the solution.

Only the derivation of
∂IG(V, h)

∂V(h)
will be developed, the derivation of

∂Q(V, h)

∂V(h)
is

identical.

The Fourier series of the current at the n-th port is

ign
(t) =

H∑

h=−H

IGn
(h)ejhωct, (2.72)

where the frequency coefficients are

IGn
(h) =

1

T

∫ T

0

ign
(t)e−jhωctdt, (2.73)

being T = 2π/ωc the fundamental period. We can use the chain rule to differentiate

and use a vector notation involving all the ports in the network

∂IGn
(h)

∂Vm(h)
=

1

T

∫ T

0

∂ign
(t)

∂Vm(h)
e−jhωctdt =

1

T

∫ T

0

∂ign
(t)

∂vm(t)

∂vm(t)

∂Vm(h)
e−jhωctdt. (2.74)

To compute the derivative of v(t) we write it as a Fourier series

vm(t) =
H∑

h=−H

Vm(h)ejhωct (2.75)

∂vm(t)

∂Vm(h)
= ejhωct. (2.76)

Then the derivative of IG(V, h) is formed by the elements

∂IGn
(h)

∂Vm(h)
=

1

T

∫ T

0

∂ign
(t)

∂vm(t)
dt. (2.77)
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Figure 2.8: Circuit interpretation of the splitting method form of relaxation

methods applied to the HB analysis.

Thus, the derivative is simply the average value of the derivative waveform over one

period. Similarly, for the derivative of Q(V, h) we have the elements

∂Qn(h)

∂Vm(h)
=

1

T

∫ T

0

∂qn(t)

∂vm(t)
dt. (2.78)

Block Gauss-Jacobi-Newton algorithm is guaranteed to converge if F(V) is suffi-

ciently linear and if V(0) is sufficiently close to the solution V̂.

To illustrate how the two relaxation methods work, consider the network shown

in Figure 2.8(a). In the splitting method, at each iteration the voltages of the nonlinear

devices are fixed at the values of the previous iteration, which fixes the current passed

by these devices. By means of the substitution theorem, in Figure 2.8(b) the nonlinear

elements are replaced with current sources. This means that the analysed circuit is a

linear subcircuit that never changes. Only the new current source values need to be

calculated for the next iteration, which is done by applying the new node voltages to

the nonlinear devices.

With block Gauss-Jacobi-Newton method, the circuit is linearised by dividing the

nonlinear devices into two parts. One is the best linear approximation to the nonlin-

ear device considering the signal present on the device. The other is the nonlinear

residual that, when combined with the linear part gives the original nonlinear device.

This division is illustrated in Figure 2.9(b). Comparing Figures 2.8 and 2.9 helps us

to understand why Gauss-Jacobi-Newton method has better convergence properties

that the splitting method; it has a better model of the nonlinear device in the linear

subcircuit, and therefore less correction is needed on each iteration.
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Figure 2.9: Circuit interpretation of the block Gauss-Jacobi-Newton method

applied to the HB analysis.

The Gauss-Jacobi-Newton method presents the interesting feature that it uses very

little memory. The circuit is analysed at only one frequency at a time, so space is

needed for only the N × N node admittance matrix and the space is reused for each

frequency. Nevertheless, it has severe convergence problems when circuits behave

strongly nonlinearly. Another drawback of this method is that it is necessary to

reevaluate the partial derivatives that represent the linearised circuit for each itera-

tion, because the linear approximation of the nonlinear devices must be recalculated.

Although the resultant matrix presents good sparsity features, this fact implies an ad-

ditional computational cost compared to the splitting method.

2.4.3.3 Newton’s methods or Harmonic Newton

Newton’s method applied to (2.59) results in the following iteration:

V(i+1) = V(i) − JF
−1(V(i))F(V(i)), (2.79)

where JF(V(i)) is the Jacobian matrix of F(V(i)), whose elements are given by the

following definition:

∂Fn(h)

∂Vm(l)
= Yn,m(h, l) + jhωc

∂Qn(h)

∂Vm(l)
+

∂IGn
(h)

∂Vm(l)
, (2.80)
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and where Ym,n(h, l) equals Ym,n(hωc) if h = l, and zero otherwise. The partial deriva-

tives are defined as follows:

∂IGn
(h)

∂Vm(l)
=

1

T

∫ T

0

∂ign
(t)

∂Vm(l)
e−jhωctdt

∂Qn(h)

∂Vm(l)
=

1

T

∫ T

0

∂qn(t)

∂Vm(l)
e−jhωctdt

(2.81)

being T = 2π/ωc the fundamental period. The main advantage of this method is that

a complete use of the error function derivatives with regard to each port variable is

made. Because of that, it is able to achieve convergence even with a large number of

variables. Its main disadvantage is the computational time that is required to generate

the Jacobian, therefore it is largely advisable to have closed-form expressions for its

elements if we want to avoid the calculation of the derivatives by means of finite

differences [40], [151]. Applying the chain rule to the expressions in (2.81), we have

∂IGn
(h)

∂Vm(l)
=

1

T

∫ T

0

∂ign
(t)

∂vm(t)
·
∂vm(t)

∂Vm(l)
e−jhωctdt

∂Qn(k)

∂Vm(l)
=

1

T

∫ T

0

∂qn(t)

∂vm(t)
·
∂vm(t)

∂Vm(l)
e−jhωctdt

(2.82)

where

vm(t) =
∞∑

h=−∞

Vm(h) ejhωct , (2.83)

and consequently
∂vm(t)

∂Vm(l)
= ejlωct . (2.84)

Let Gn,m(k) and Cn,m(k) be the Fourier coefficients of the first derivatives of the

nonlinear conductance and capacitance, respectively

Gn,m(k) =
1

T

∫ T

0

∂ign
(t)

∂vm(t)
e−jkωctdt

Cn,m(k) =
1

T

∫ T

0

∂qn(t)

∂vm(t)
e−jkωctdt

(2.85)

Substituting (2.84) in (2.82), when we compare to (2.85) results

∂IGn
(h)

∂Vm(l)
= Gn,m(h − l) ,

∂Qn(h)

∂Vm(l)
= Cn,m(h − l) .

(2.86)

It can be written in a compact manner

JF =







J1,1 . . . J1,N

...
. . .

...

JN,1 . . . JN,N







, (2.87)
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where

Jn,m = Yn,m + jωCn,m + Gn,m . (2.88)

Yn,m presents the same form than in (2.48), and ω takes the form

ω =









−Hωc 0 . . . 0

0 (−H + 1)ωc . . . 0
...

...
. . .

...

0 0 . . . Hωc









. (2.89)

Taking into account the definition for the Gn,m(h − l) and Cn,m(h − l) elements

given by (2.86), the resulting Gn,m and Cn,m matrices are Toeplitz matrices with the

Fourier coefficients of the time-varying conductance and capacitance, respectively.

That is to say, they are defined from the column vectors [G(0), . . . , G(2H)]T and

[C(0), . . . , C(2H)]T , respectively.

Gn,m =









Gn,m(0) Gn,m(−1) . . . Gn,m(−2H)

Gn,m(1) Gn,m(0) . . . Gn,m(−2H + 1)
...

...
. . .

...

Gn,m(2H) Gn,m(2H − 1) . . . Gn,m(0)









,

Cn,m =









Cn,m(0) Cn,m(−1) . . . Cn,m(−2H)

Cn,m(1) Cn,m(0) . . . Cn,m(−2H + 1)
...

...
. . .

...

Cn,m(2H) Cn,m(2H − 1) . . . Cn,m(0)









.

(2.90)

As it is shown in Figure 2.10, Newton’s method applied to the HB analyses the

circuit at all frequencies simultaneously, and so it needs more memory that the Gauss-

Jacobi-Newton method. However, its convergence properties are better because the

best model of the nonlinear devices is taken into account. Nevertheless, this advantage

involves a significant additional computational cost to the Newton’s method. This

is because it is necessary to reevaluate the Jacobian of the linear subcircuit for each

iteration and, for this method, the Jacobian matrix is not so sparse as in the case of

Gauss-Jacobi-Newton.

The most computationally expensive part of Newton’s method applied to HB is

the factorization of JF, a (N × (2H + 1)) by (N × (2H + 1)) relatively sparse matrix.

This requires O
(
N × (2H + 1)3) operations. Simplified Newton’s method can be em-

ployed to reduce the computation time required [95].

Newton’s method is only guaranteed to converge if the initial guess is close enough

to the solution. Thus, finding a good initial guess is a key issue in determining the like-
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lihood of convergence. For many circuits, a good initial guess is generated by linearis-

ing the circuit about the dc operating point, applying the stimulus, and performing a

phasor analysis. Alternatively, continuation methods can be associated to Newton’s

method in order to increase its region of convergence if necessary. After that, the Ja-

cobian used for each iteration is the linearization of the circuit about its time-varying

operating point.

A variant of Newton’s method proposed by Curtice [152] employs the following

expression for updating the voltages vector:

V(i+1) = V(i) − βJF
−1(V(i))F(V(i)) . (2.91)

This method is also referred to as a norm-reduction method. The parameter β, which

is 0 < β < 1, reduces uniformly the changes suffered by the elements of V at each

iteration, thus improving the convergence properties. It is especially recommended

for the cases in which the error function F(V) has an inflection point near the zero,

where the Newton’s iterations can become trapped near the zero or even diverge. The

usual process for adjusting β is to begin with a full Newton step, that is β = 1. If

that step reduces the current error, it is retained; if not, β is reduced and the process is

repeated until the error decreases. If we choose a value close to β = 0.5 the number of

iterations needed to converge is minimised.
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Figure 2.10: Circuit interpretation of the Newton’s method applied to the HB

analysis.
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Figure 2.11: Equivalent circuit for the large-signal model of a FET.

2.4.4 Example: Harmonic Balance analysis of a FET amplifier

Through the last decades, several empirical models have been published describing

the large-signal characteristics of MESFET and HEMT transistors, each of them being

the best choice for a certain device and application. Figure 2.11 shows a lumped-

element equivalent circuit of a FET device that can be used in a large-signal analysis.

Two kinds of elements can be differentiated:

1. The elements of the intrinsic circuit (Ids, Cgs, Cgd, Cds, Ri, Dgs and Dgd), which

are bias dependent and represent the elements that are specific to the operation

of the device.

2. The access resistors, inductors and capacitors (Rg, Rs, Rd, Lg, Ls, Ld, Cpg and

Cpd), parasitic elements that can be assumed to be constant and whose inclusion

forms the extrinsic circuit.

The main nonlinear elements included in the large-signal models are:

• The drain-to-source current Ids, which is a function of the voltages Vgs and Vds

and from which the transconductance gm = g10 and output conductance gd = g01

can be obtained.

• The gate-to-source capacitance Cgs.

• The gate-to-drain capacitance Cgd.

• The diodes Dgs and Dgd, which model the gate current under direct polariza-

tion of the gate-to-source union, and the avalanche drain-to-gate current, respec-

tively.
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LINEAR SUBCIRCUIT NONLINEAR

SUBCIRCUIT

Zin( )w
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I Vds( )
1
,V

2

Figure 2.12: Equivalent circuit of a FET amplifier for the large-signal HB anal-

ysis.

It is generally accepted that the dominant source of nonlinearity in MESFET and

HEMT transistors is the drain-to-source current Ids(Vgs, Vds) [9], [21], [28], [73], [74].

In this section, we will consider the example of a FET amplifier based on a sin-

gle transistor, as shown in Figure 2.12(a). The excitation is applied at the gate port.

A simplified model for the FET has been taken into account. In order to apply the

HB analysis, it is convenient to separate the circuit in a linear subcircuit and another

nonlinear subcircuit which includes the nonlinear elements. The circuit shown in Fig-

ure 2.12(b) is structured following the proposed methodology.

By means of nodal analysis, the following expressions can be obtained for the ele-

ments in the admittance matrix of the linear subcircuit, which is a five-port network:

Y11 = R−1
i

Y22 = R−1
i + jΩCds +

[

Zs +
(
Z−1

d + Z−1
g

)−1
]−1

Y33 =
[

Zg +
(
Z−1

d + Z−1
s

)−1
]−1

Y44 =
[

Zd +
(
Z−1

s + Z−1
g

)−1
]−1

Y55 = Y11 + Y33

Y12 = −Y11, Y13 = Y14 = 0, Y15 = Y12

Y23 = −Z−1
s

(
Z−1

d + Z−1
s

)−1
· Y33

Y24 = −Z−1
s

(
Z−1

s + Z−1
g

)−1
· Y44

Y25 = Y11 − Y23

Y34 = −Z−1
g

(
Z−1

s + Z−1
g

)−1
· Y44
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Y35 = −Y33

Y45 = −Y34 (2.92)

where Zg = Zin + Rg, Zd = ZL + Rd and Zs = Rs + jΩLs. The remaining elements

in the admittance matrix are calculated by means of the reciprocity condition of the

linear subcircuit, which implies Yij = Yji.

If the device is biased in the saturation region, it is a common practice to assume

a linear behaviour of the capacitance Cgd. The number of ports in the linear subcir-

cuit is reduced to four. Maintaining the references of the voltages and currents in

Figure 2.12(b), the elements of the new admittance matrix (Y′
ij) can be determined

from (2.92) by applying the following rule:

Y′
ij = Yij − Yi5 (Y55 + jΩCgd)

−1
Y5j. (2.93)

The expression (2.59) can be written now as:

F(V) = Is + Y2×2V + jΩQ + IG = 0, (2.94)

where

Y2×2 =

(

Y′
11 Y′

12

Y′
21 Y′

22

)

,

Is =

[

Is1

Is2

]

=

[

Y′
13V3 + Y′

14V4

Y′
23V3 + Y′

24V4

]

,

Q =

[

Qgs

0

]

,

IG =

[

0

Ids

]

.

(2.95)

As an example, the structure of the complete Jacobian JF for the circuit described

in equations (2.95) will be detailed next:

JF =

(

J1,1 J1,2

J2,1 J2,2

)

=

















∂F1(−H)
∂V1(−H)

. . . ∂F1(−H)
∂V1(H)

∂F1(−H)
∂V2(−H)

. . . ∂F1(−H)
∂V2(H)

...
. . .

...
...

. . .
...

∂F1(H)
∂V1(−H)

. . . ∂F1(H)
∂V1(H)

∂F1(H)
∂V2(−H)

. . . ∂F1(H)
∂V2(H)

∂F2(−H)
∂V1(−H)

. . . ∂F2(−H)
∂V1(H)

∂F2(−H)
∂V2(−H)

. . . ∂F2(−H)
∂V2(H)

...
. . .

...
...

. . .
...

∂F2(H)
∂V1(−H)

. . . ∂F2(H)
∂V1(H)

∂F2(H)
∂V2(−H)

. . . ∂F2(H)
∂V2(H)

















, where
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J1,1 =












Y′
11(−Hωc) − jHωcCgs(0) . . . −jHωcCgs(−H) . . . −jHωcCgs(−2H)

...
. . .

...
. . .

...

0 . . . Y′
11(0) . . . 0

...
. . .

...
. . .

...

jHωcCgs(2H) . . . jHωcCgs(H) . . . Y′
11(Hωc) + jHωcCgs(0)












,

J1,2 =












Y′
12(−Hωc) . . . 0 . . . 0

...
. . .

...
. . .

...

0 . . . Y′
12(0) . . . 0

...
. . .

...
. . .

...

0 . . . 0 . . . Y′
12(Hωc)












,

J2,1 =












Y′
21(−Hωc) + G10(0) . . . G10(−H) . . . G10(−2H)

...
. . .

...
. . .

...

G10(H) . . . Y′
21(0) + G10(0) . . . G10(−H)

...
. . .

...
. . .

...

G10(2H) . . . G10(H) . . . Y′
21(Hωc) + G10(0)












,

J2,2 =












Y′
22(−Hωc) + G01(0) . . . G01(−H) . . . G01(−2H)

...
. . .

...
. . .

...

G01(H) . . . Y′
22(0) + G01(0) . . . G01(−H)

...
. . .

...
. . .

...

G01(2H) . . . G01(H) . . . Y′
22(Hωc) + G01(0)












.

(2.96)

2.4.5 Matrix methods for solving the Harmonic Balance iteration

Working out the HB iteration (2.59) involves managing a set of linear equations. There

are certain methods for solving linear equations that have been found especially useful

for HB analysis. The first of them is LU decomposition. The principle behind LU

decomposition is simple. Let us assume that the following matrix equations must be

solved:

Ax = b. (2.97)
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We can factor the matrix A into a lower triangular matrix L, in which entries above

the diagonal are zero, and an upper triangular matrix U, in which the entries below

the diagonal are zero. Then, we have LUx = b. Let Ux = m, where m is a vector.

Then we can solve, alternatively, in two steps:

Lm = b ,

Ux = m .
(2.98)

The two steps in (2.98) can be solved by back-substitution operations, which are com-

putationally inexpensive. Furthermore, LU factorization can be performed without

using more memory than that required to hold the original matrix, since A is de-

stroyed in the factorization and it is replaced by L and U. However, this method has

the drawback that the time required to factor the matrix varies approximately as the

cube of its dimension. Thus, this characteristic makes it impractical for analysis of

large circuits.

Another option is to use sparse solvers. The Jacobian JF(V) consists of an N × N

matrix of square submatrices, each of which has dimension (2H+1), as shown in equa-

tions (2.87)-(2.90). Each submatrix represents the harmonic components for a partic-

ular nonlinear-element port; that is, if the current or charge at port n depends on the

voltage at port m, the (n,m) submatrix is filled with Fourier terms Gn,m + jωCn,m.

Added to these terms, there is always a diagonal matrix Yn,m at each harmonic,

−Hωc, . . . ,−ωc, 0, ωc, . . . , Hωc. Therefore, some submatrices are filled and some are

diagonal, and it is even possible for some to be empty.

A sparse matrix is one that contains mostly zeros. Since the Jacobian matrix is

rather sparse, it would be logical to use sparse solvers. Conventional sparse solvers

use LU decomposition to factor the matrix but exploit the sparsity of the matrix to

improve efficiency, by avoiding the need to multiply and add large numbers of zero

entries. The zero entries are not stored, so a saving of memory results as well. Never-

theless, the Jacobian in HB problem is usually not sparse enough to benefit more than

modestly from such methods.

Since it is usual that many of the elements of the Jacobian are very small and have

little effect on the Newton update, a proposed technique to increase the sparsity of

the Jacobian consists in eliminating all elements whose magnitudes are below some

threshold or setting to zero selected entries on the basis of some predetermined physi-

cal criterion [122], [153]. These are invariably the farthest elements from the diagonals

of the Jacobian’s blocks.

Krylov-subspace techniques are a class of iterative methods for solving sparse lin-

ear systems of equations. There is now a general consensus that a technique called the
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generalised minimum residual (GMRES) is the preferred one for HB analysis [8]. Iterative

methods minimise the residual, r of (2.97)

r = b − Ax̂, (2.99)

where x̂ is an estimate of the solution. To employ GMRES, it is necessary that x can

be estimated with at least moderate accuracy, so that r is not too large. To obtain such

conditions, the matrix must be preconditioned; that is, multiplied by an estimate of the

inverse called the preconditioner, P = Â−1

PAx = Pb. (2.100)

Generally, the preconditioner is chosen to be a close approximation to A which is also

easy to invert. In HB analysis, a suitable preconditioner is the inverse of the admit-

tance matrix of the linear subcircuit, which is generated in the process of creating the

port Y matrix, and needs to be inverted only once in the solution process. For mildly

nonlinear problems, constructing P = JF
−1

(
V (0)

)
by linearising about the dc operat-

ing point and performing a simple ac analysis at each mixing product is an effective

and efficient choice. This preconditioner is not sufficient for strongly nonlinear prob-

lems, where it is necessary to adaptively prune the full harmonic Jacobian.

An advantage of Krylov techniques is that (2.59) do not have to be fully solved in

each iteration, because the iterative process needs only proceed until

‖F(V) − JF(V)∆V‖ < α‖F(V)‖, (2.101)

where α is selected at the beginning of the i-th iteration to be

α =
‖F(V(i)) − F(V(i−1)) + JF(V(i−1))∆V(i−1)‖

‖F(V(i−1))‖
. (2.102)

This approach to the solution is called Inexact Newton method. Setting α = 0 in (2.102)

corresponds to ordinary, exact Newton iterations.

When using the Krylov-subspace methods, HB requires roughly O(N(2H +1)) op-

erations, where N is the number of circuit equations and (2H + 1) is the number of

frequencies required. This does not include the necessary operations to precondition

the system of equations, which may be far from negligible in strongly nonlinear prob-

lems. Therefore, this procedure can improve significantly the efficiency. However, it

has some disadvantages. The main one is that Krylov solvers are distinctly inferior

to direct solvers such as LU decomposition in handling poorly conditioned Jacobian

matrices [8]. In addition to this, some precautions need to be taken when including

these techniques in simulators. The simulator must be designed around the Krylov

method, because it is not possible to simply replace the matrix solver. Furthermore,

since a factored Jacobian is not created explicitly, methods like Simplified Newton or

Samǎnskii’s are not applicable in this case.
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2.4.6 Multitone inputs in Harmonic Balance analysis

HB was formulated for the case of single-tone excitations, when the voltages and cur-

rents in the network are periodic and thus have a fundamental-frequency component

and a number of harmonics. If several incommensurate excitations are applied, some

modifications need to be made in order to generalise the HB concept. This modified

method has been called generalised Harmonic Balance analysis, Spectral Balance analysis

or multitone Harmonic Balance analysis.

Let us consider the case where the excitation may have two or more incommensu-

rate frequencies, so the currents and voltages at each port have a set of K frequency

components ωk, k = 0, 1, . . . , K − 1. These frequency components are mixing prod-

ucts, not harmonics; each mixing product arises as a linear combination of the excita-

tion frequencies. In the case of a two-tone excitation, ωk = mω1 + nω2, where ω1 and

ω2 are the frequencies of the two excitations, and each (m,n) pair maps to a unique

k. Taking into account the number of possible frequencies involved due to the mixing

products, it becomes apparent that the size of the HB problem grows rapidly with the

number of tones, and can easily become so large as to be impractical. This is a serious

limitation of multitone HB analysis.

The goal of the HB analysis is to find a set of voltage components Vn(k) at the

frequencies ωk that satisfy (2.44). In this case, however, the elements In(k) of the cur-

rent vector and Qn(k) of the charge vector represent the components at port n and

at mixing frequency ωk, where ωk is not necessarily a harmonic of a single excitation

frequency. The HB equations are still valid in the multitone case; it is necessary only

to replace the harmonics kωc with ωk and to include all excitation tones in the exci-

tation voltage vectors. Finally, the voltage, current, charge, and similar components

are components at the frequency ωk, so they can no longer be determined by classical

Fourier transform but must be found by an alternative time-to-frequency transform.

One possible method for creating a multitone Fourier transform is to adapt a dis-

crete Fourier transform (DFT). We wish to express the time waveform x(t), which may

represent either a voltage or a current, as

x(t) =
1

K

K−1∑

k=0

X(k)ejωkt (2.103)

where ωk are the set of mixing frequencies in the multitone problem. If the function

x(t) is sampled at the K time intervals ti = t1, t2, . . . , tK , the samples x(ti) can be
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expressed by a set of linear equations









x(t1)

x(t2)
...

x(tK)









=
1

K
·









1 ejω1t1 . . . ejωK−1t1

1 ejω1t2 . . . ejωK−1t2

...
...

. . .
...

1 ejω1tK . . . ejωK−1tK









·









X(0)

X(1)
...

X(K − 1)









(2.104)

or, in simpler notation

x =
1

K
· Γ−1 X, (2.105)

and, by convention it is defined

X = Γx. (2.106)

Γ describes the transformation from the time domain to the frequency domain. In

multitone analysis, the admittance matrix is evaluated at the mixing frequencies in-

stead of the harmonic frequencies. The derivative matrices must be evaluated at those

frequencies as well. Thanks to the representation of the DFT as a linear transform by

means of Γ, the derivatives contained in the Jacobian can be obtained in the following

simple way:

JF =
∂F

∂V
= YN×N +

∂IG

∂V
+ jΩ

∂Q

∂V
, (2.107)

with
∂IG

∂V
=

1

K
· Γ

∂ig

∂v
Γ−1,

∂Q

∂V
=

1

K
· Γ

∂q

∂v
Γ−1.

(2.108)

In a classical DFT, the time samples involved in (2.104) are selected uniformly and

the ωk are harmonically related. The Fast Fourier Transform (FFT), which is commonly

used in single-tone HB analysis, is just an algorithm that implements a DFT but min-

imises the number of repeated multiplications. The DFT generates little error in trans-

forming between the time and frequency domains, because the rows of Γ−1 are or-

thogonal and the matrix is well conditioned. If the frequencies are not harmonics, the

rows are not orthogonal, and it is possible for some rows to be nearly linearly depen-

dent; then the matrix is ill conditioned and large errors result. Therefore, it is better

to take nonuniformly spaced time samples and select the sample points so that they

make the rows of Γ−1 orthogonal. Some methods for creating an optimum multitone

DFT are the following:

• Almost-periodic Fourier transform (APFT) [109]

• Two-dimensional FFT [111]
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• Quasiorthogonal matrix method and filter-balance DFT [139]

• Time-mapped Harmonic Balance [127]

• APFT and mapping techniques [140] [141]

• Artificial frequency mapping [10] [145]

• Determination of a low sampling frequency that prevents aliasing [143]

• Signal-Space representation of the spectral content of the device current [142]

We will describe here the two-dimensional FFT method, as it is an optimal method

for the case of two-tone excitations. In this case, the x(t) vector can be expressed as

x(t) =
∑

m

∑

n

X(m,n) · ej(mω1+nω2)t (2.109)

where X(m,n) are the complex phasor magnitudes of the components at their respec-

tive frequencies. It is possible to treat the time as two independent time variables, so

we can define ν1 and ν2 as

ν1 = ω1t = (r − 1)
2π

Nm

, (2.110)

ν2 = ω2t = (s − 1)
2π

Nn

,

where Nm and Nn are the number of sample points for the m and n series, respec-

tively. The number of samples must be at least twice the number of harmonics and

these numbers must be powers of two in order to use the FFT algorithm. This re-

sults in a two-dimensional grid of time samples, which can be processed with a

two-dimensional FFT resulting in a two-dimensional set of frequency components,

in which the component at the pair (mω1, nω2) is the frequency component mω1 +nω2.

Some disadvantages of this method are that a large number of samples are used,

and this would be prohibitive without the use of the FFT. The restriction of the sample

set to powers of two requires oversampling of the time waveform but can be otherwise

beneficial, as it reduces aliasing in the transform. This method can be extended to

any number of dimensions, but the time required to fill the multidimensional FFT

matrix and to evaluate the transform increases exponentially with each dimension.

The two-dimensional FFT is an optimal method in the sense that it achieves the same

conditioning as an orthogonal DFT.

In addition to this, a different approach to the problem of transforming from the

time domain to the frequency domain is presented by Soveiko in [146], where he pro-

poses to use a wavelet transform instead of Fourier series. That is to say, to use matri-

ces Γ and Γ−1 associated with the forward and inverse wavelet transform in X = Γx
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and x = 1
K

· Γ−1 X, respectively. The main advantage of the use of bi-orthogonal

wavelet basis functions is that they result in an increase in sparsity of the Jacobian,

whereas Fourier basis functions (sines and cosines) have full support on an interval

and matrices Γ and Γ−1 are essentially dense, producing the appearance of denser

blocks in the Jacobian.

Despite the use of any of the aforementioned techniques, such as the two-

dimensional FFT, APFT or aliasing control, the multitone HB becomes inefficient for

input excitations containing a great number of tones. In practice, it is shown that these

techniques stop being useful for more than three tones.

2.5 Volterra series

The functional expansion known as Volterra series is one of the most extended tools

for the analysis of nonlinear circuits, as it is shown by the numerous research articles

found in literature, from the first ones by Wiener [154], and Narayanan [155], to the

most recent ones by Stauth [156], Tannir [157], Yamanouchi [158] or Roblin [159]. The

main advantage of Volterra series representation is that it allows us to obtain closed-

form expressions which provide insight into the operation of the circuit. However,

these closed-form expressions are circuit specific.

Volterra showed that every functional 2 G[x], continuous in the field of continuous

functions can be represented by the expansion

G [x] =
∞∑

n=0

Fn [x] (2.111)

where Fn [x] is a regular homogeneous functional of the form

Fn [x] =

∫ b

a

· · ·

∫ b

a

hn(ξ1, . . . , ξn) x(ξ1) x(ξ2) · · · x(ξn)dξ1 dξ2 · · · dξn . (2.112)

The index n is said to be the degree of the functional.

Volterra series were introduced into nonlinear circuit analysis in 1942 by

Wiener [154]. If the output y(t) of a nonlinear system can be expressed by means

of a functional of its input x(t), then both can be related by means of a functional

series. The method of analysis is primarily a frequency-domain method and uses ap-

propriate nonlinear device models. Volterra series have been described as power series

with memory which express the output of a nonlinear system in powers of the input

x(t). A substantial number of the systems encountered in communication problems

2A functional is an operation on a function for which the result is a number
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can be represented as Volterra series, therefore Volterra series are particularly useful

in calculating distortions in communications systems. Quoting Bedrosian and Rice:

In practice it appears that Volterra series do not enable us to do anything

that cannot be done otherwise. However, [...] the Volterra series approach

has the virtue that many such problems can be treated in an orderly way.

From the late 1950’s there was a continuous effort in the application of Volterra

series expansions to nonlinear system theory. In 1967, Narayanan applied the tech-

nique to the analysis of transistor amplifier distortion using a nonlinear T-model

of the junction transistor [155], [160], [161]. Two significant papers that propelled

the use of Volterra series for the nonlinear circuit analysis were those by Bussgang,

Ehrman and Graham [13] and by Bedrosian and Rice [162]. Volterra representation

has been successfully applied to the analysis of circuits including feedforward or IM-

PATT amplifiers, [163], [164], and GaAs FETs, being remarkable the contributions by

Minasian [165] and Lambrinou [166] to the study of intermodulation in MESFET am-

plifiers. It is widely accepted that the current source Ids is the main responsible for the

nonlinear response in these kind of circuits [9], [21], [28], [73], [74]. Some characteriza-

tion methods have been proposed for this current source, like the one in [97], though

different studies have been made about the impact of other nonlinear elements in the

circuit, such as the capacitances [74], on the overall nonlinear behaviour. In the last

years, thanks to the availability of more powerful computational tools, the interest

has been shifted to the analysis of multitone inputs [167], [28], continuous spectrum

signals, the spectral regrowth phenomenon [8], [168], [43], or the analysis and de-

sign of linearisers [169], [159] and digital predistorters [158], [170]. In addition to

this, Volterra series representation has been recently applied to get a better insight

into the operation of circuits constructed with new transistor technologies, such as

HBTs amplifiers [171], LDMOS high power amplifiers [172] or CMOS short-channel

LNAs [173]. Other recent applications for Volterra series have been the analysis of

new models for GaN HEMT devices taking into account dispersive effects such as

thermal dependence [174] or trapping effects [175], and the optimization of termina-

tion impedances required to minimise the nonlinear distortion [176].

It is widely acknowledged that the main drawback of Volterra series representa-

tion is their considerable complexity for high-order nonlinearities. Because of this, it

is usually applied under the weakly nonlinear assumption. To overcome this limi-

tation of the classical Volterra series, a Volterra-like approach, called modified Volterra

series ([136], [15], [177]) or dynamic Volterra series ([178]) was proposed, in which the in-

put/output relationship for a nonlinear system with memory is described as a mem-

oryless nonlinear term plus a purely dynamic contribution. Furthermore, by con-
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trolling the order of the dynamics, the modified Volterra series can be truncated to

a simpler version. However, this approach presents the disadvantage that the static

part and the different order dynamics have to be extracted separately. This involves

very complicated measurement procedures, especially when higher order dynamics

are included.

Another extension based on Volterra series for strongly nonlinear systems where

the classical Volterra series diverge is called generalised Volterra series technique and

was proposed by Eijnde and Krozer in [179], [180], [181]. The generalised Volterra

series technique consists basically in time-varying Volterra series. The level of the in-

put signal is reduced sufficiently, up to a certain value for which the Volterra series

converges. For this value, the output signal is calculated and a new Volterra series

is obtained about the previously determined output value. Then the input signal is

increased and the same process is repeated until the response to the original input sig-

nal is obtained. For those iterations in which the Volterra series cannot be determined

because convergence is not achieved, the input signal is decreased. This technique can

be seen as an association of the Volterra series to the Newton-Raphson HB techniques

where continuation algorithms are considered.

In addition to this, an increasing interest in the use of Volterra representation as a

base to obtain behavioural models for microwave power amplifiers has been recently

developed [182], [183], [184], [185], [186], [187], [188], [189], [190], [86].

In this section, the fundamentals of Volterra series representation will be presented,

paying special attention to the cases of bandpass nonlinear systems with memory and

multitone inputs. We will follow the approaches of Weiner and Spina [191], Buss-

gang [13] and Maas [8]. Furthermore, the most common methods for determining the

nonlinear transfer functions will be reviewed.

2.5.1 Volterra series representation

Let us consider a nonlinear system with an input x(t) and an output y(t). The input

waveform can be approximated by a succession of elementary rectangular pulses p(t)

of width ∆τ , whose leading edges occur at k∆τ, k = 0, 1, 2, . . . and whose heights

are xk = x(k∆τ), as shown in Figure 2.13

x(t) ≈
∞∑

k=0

x(k∆τ) ∆τ p (t − k∆τ). (2.113)

Let K denote the number of rectangular pulses occurring between 0 and some pos-

itive time t. The expected response will be a function of the K + 1 input variables
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x(t)
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Figure 2.13: Approximation to x(t) by a succession of rectangular pulses.

x0, x1, . . . , xK , so that it can be written as:

y(t) = f(x0, x1, . . . , xK), (2.114)

where f(·) is a nonlinear function of the K + 1 input variables.

Assuming that f(·) can be expanded into a (K + 1)-dimensional Taylor series

expansion, and grouping terms having identical order, the response y(t) can be ex-

pressed as

y(t) ≈
K∑

k1=0

ak1 xk1 +
K∑

k1=0

K∑

k2=0

ak1k2 xk1xk2 +
K∑

k1=0

K∑

k2=0

K∑

k3=0

ak1k2k3 xk1xk2xk3 + · · · (2.115)

Alternatively, the output may be written as:

y(t) =
∞∑

n=1

yn(t) , (2.116)

where the n-th order term is approximated by

yn(t) ≈
K∑

k1=0

K∑

k2=0

· · ·

K∑

kn=0

ak1k2 ··· kn
xk1xk2 · · · xkn

. (2.117)

The term yn(t) is said to be of order n in the sense that, if the input x(t) is multiplied

by a constant A, then yn(t) depends on A as An.

If the system were linear, the Taylor series representation would be reduced to

the first term of the expansion. In this case, superposition would apply and the total

response would be the sum of the responses to each of the individual pulses. In the

limit, as ∆τ → dτ , the pulse p(t) tends to the unit impulse δ(t), so that the response
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to p(t) tends to the impulse response h(t) and the summation becomes an integral. At

time t, the linear response is given by

y1(t) =

∫ t

0

x(τ) h(t − τ)dτ . (2.118)

The impulse response is considered a complete characterization of the linear part of

the circuit.

The general term in the approximation to yn(t), given by ak1k2 ··· kn
xk1xk2 · · · xkn

,

can be interpreted as the n-th order response to n elementary rectangular pulses ap-

plied at k1∆τ, k2∆τ, . . . , kn∆τ . Consequently, in analogy with the development of the

convolution integral for the linear part, it results

yn(t) =

∫ t

0

∫ t

0

· · ·

∫ t

0

hn(t − τ1, t − τ2, . . . , t − τn) x(τ1) x(τ2) · · · x(τn) dτ1 dτ2 · · · dτn .

(2.119)

The limits of integration can be extended from −∞ to +∞ if the input is assumed to be

zero for negative time and the system is causal. An alternate form for yn(t) is obtained

through of the change of variables τj ← t − τj

yn(t) =

∫ ∞

−∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

hn(τ1, τ2, . . . , τn) x(t−τ1) x(t−τ2) · · · x(t−τn) dτ1 dτ2 · · · dτn .

(2.120)

Equations (2.116)-(2.120) allow us to express the response y(t) by means of a func-

tional series, known as Volterra functionals by their correspondence with (2.112), or

simply Volterra series. The kernels of these functionals, hn(τ1, τ2, . . . , τn), can be called

the nonlinear impulse responses of order n. It can be shown that the series (2.116) con-

verges and the magnitude of each successive term is inferior to that of the previous

one. Therefore, this representation is more useful when the response can be approx-

imated by the N first terms in the series, neglecting the higher order terms because

they do not contribute significantly to the output, as in any series expansion

y(t) ≈
N∑

n=1

yn(t) . (2.121)

This model consists in the parallel combination of N blocks with each block having, as

a common input, the circuit excitation x(t). The total response is obtained by adding

the output of the individual blocks, as it is shown in Figure 2.14.

The Fourier transform of the n-th order kernel hn(τ1, . . . , τn) can be called the non-

linear transfer function (NLTF) of order n

Hn(f1, f2, . . . , fn) =

∞∫

· · ·

∫

−∞

hn(τ1, τ2, . . . , τn) e−j2π(f1τ1+f2τ2+ ···+fnτn) · dτ1 · dτ2 · · · dτn.

(2.122)
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Figure 2.14: Model of nonlinear circuit suggested by the Volterra series repre-

sentation.

Note that H1 is the usual transfer function of a linear network. Volterra kernels are in-

dependent of the circuit excitation, which is a highly desirable feature of the approach.

Conversely, the nonlinear impulse response of order n follows from the nonlinear

transfer function of order n by the inverse Fourier transform, i.e.,

hn(τ1, τ2, . . . , τn) =

∞∫

· · ·

∫

−∞

Hn(f1, f2, . . . , fn) ej2π(f1τ1+f2τ2+ ···+fnτn) · df1 · df2 · · · dfn.

(2.123)

Substituting (2.123) into (2.120) and carrying out the multiple integrals that corre-

spond to the Fourier transform of the inputs, we get

yn(t) =

∞∫

· · ·

∫

−∞

Hn(f1, f2, . . . , fn) ·
n∏

i=1

X(fi)e
j2πfitdfi. (2.124)

At this point, it is convenient to generalise (2.120) by introducing an auxiliary mul-

tidimensional time function

yn(t1, . . . , tn) =

∞∫

· · ·

∫

−∞

Hn(f1, f2, . . . , fn) ·
n∏

i=1

X(fi)e
j2πfitidfi, (2.125)
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and its n-fold Fourier transform, or multispectral density,

Yn(f1, . . . , fn) =

∞∫

· · ·

∫

−∞

yn(t1, . . . , tn)e−j2π(f1t1+···+fntn)dt1 · · · dtn, (2.126)

so that

yn(t1, . . . , tn) =

∞∫

· · ·

∫

−∞

Yn(f1, . . . , fn)ej2π(f1t1+···+fntn)df1 · · · dfn. (2.127)

It follows then by comparison of (2.125) and (2.127) that

Yn(f1, . . . , fn) = Hn(f1, . . . , fn)
n∏

i=1

X(fi), (2.128)

and, in fact,

Yn(f) =

∞∫

· · ·

∫

−∞

Yn(f1, . . . , fn)δ(f − f1 − · · · − fn)df1 · · · dfn, (2.129)

which states that Yn(f) is the integral of the multispectral density Yn(f1, . . . , fn), sub-

ject to the constraint f = f1 + · · · + fn.

It will be assumed that the nonlinear transfer functions are symmetric func-

tions of their arguments, i.e., the order of the arguments can be interchanged in

Hn(f1, f2, . . . , fn). This is not true unless the impulse response hn(τ1, τ2, . . . , τn) is it-

self a symmetric function of its arguments. It can be seen from (2.120) that the output

yn(t) would be identical for any permutation of the arguments. All kernels which dif-

fer only by the permutation of arguments are equivalent in representing the system,

therefore we can arbitrarily replace any kernel by 1
n!

-th of the sum of all the n! kernels

resulting from all the permutations of the arguments, forcing the symmetry. Similarly,

the symmetrised nonlinear transfer function is obtained by summing all the functions

that can be generated by permutation of its arguments

Hn(f1, f2, . . . , fn) =
1

n!

n!∑

l=1

Hn[Pl(f)], (2.130)

where Pl(f) denotes one of the vectors generated by the n! permutations of the n com-

ponents in the vector f .

2.5.2 Multitone input analysis using Volterra series

Despite Volterra kernels enable the determination of the circuit response to any input,

it is of particular interest the response of nonlinear circuits to purely sinusoidal inputs.
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Consider an input formed by the linear combination of Q sinusoidal signals

x(t) =

Q
∑

q=1

|Vq| cos(2πfqt + θq) =
1

2

Q
∑

q=−Q

Vq ej2πfqt (2.131)

where Vq = |Vq| e
jθq is the complex amplitude of the q-th sinusoid, and it is assumed

that V−q = V ∗
q , with V0 = 0. Substituting (2.131) into (2.120) results in

yn(t) =
1

2n

∫ ∞

−∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

hn(τ1, τ2, . . . , τn)

Q
∑

q1=−Q

Vq1 ej2πfq1 (t−τ1) ·

·

Q
∑

q2=−Q

Vq2 ej2πfq2 (t−τ2) · · ·

Q
∑

qn=−Q

Vqn
ej2πfqn (t−τn) dτ1 dτ2 · · · dτn .

(2.132)

Interchanging the order of summation and integration and rearranging terms, yn(t)

becomes

yn(t) =
1

2n

Q
∑

q1=−Q

Q
∑

q2=−Q

· · ·

Q
∑

qn=−Q

Vq1Vq2 · · ·Vqn
ej2π(fq1+fq2+ ···+fqn )t ·

·

∫ ∞

−∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

hn(τ1, τ2, . . . , τn) e−j2π(fq1τ1+fq2τ2+ ···+fqnτn) dτ1 dτ2 · · · dτn .

(2.133)

If we identify the n-dimensional Fourier transform of the Volterra kernel

hn(τ1, τ2, . . . , τn) in this expression, we can write

yn(t) =
1

2n

Q
∑

q1=−Q

Q
∑

q2=−Q

· · ·

Q
∑

qn=−Q

Vq1Vq2 · · ·Vqn
Hn(fn) ej2π(fq1+fq2+ ···+fqn)t (2.134)

where fn = [ fq1 , fq2 , . . . , fqn
] and Hn(fn) is the nonlinear transfer function of order n,

relating the output at a frequency (fq1 + fq2 + . . . + fqn
) with n inputs at frequencies

fq1 , fq2 , . . . , fqn

Hn(fn) =

∫ ∞

−∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

hn(τ1, τ2, . . . , τn) e−j2π(fq1τ1+fq2τ2+ ···+fqnτn) dτ1 dτ2 · · · dτn .

(2.135)

This way, y(t) contains frequency components which can be expressed as (fq1 + fq2 +

. . . + fqn
), where the indices q1, q2, . . . , qn may vary from −Q to Q. As f−q = −fq,

there are also negative frequencies and frequency differences in (2.134). Since each

summation includes 2Q non-zero terms, the total number of non-zero terms in (2.134)

is (2Q)n. This quantity increases rapidly as Q and n increase.

An important property of the nonlinear transfer functions, and thus of the non-

linear impulse responses, is their symmetry with respect to their arguments. In the
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particular case of a pure sinusoidal input at a frequency fq, the component yn(t) of

the output contains all the input harmonics up to order n. Since nonlinear transfer

functions are invariant to permutations of their arguments, the general term can be

expressed by taking Q = 1 in (2.134) and grouping the mixes that generate the same

output frequency

yn(t) =

(
Vq

2

)n n∑

µ=0

n!

(n − µ)! µ!
Hn [ (fq)n−µ, (−fq)µ ] e−j2π(n−2µ) fqt . (2.136)

Notation (f)µ refers to a chain of µ arguments f, f, . . . , f
︸ ︷︷ ︸

µ

.

Intermodulation components generated in a nonlinear circuit have a notable in-

terest, as they can be inside the desired bandpass of the system, even when the

original excitations are out of band. Because of this, if the input of a system in-

cludes Q sinusoids, it is advisable to know the total response for a particular fre-

quency mix. A frequency mix is characterised by the number of times the dif-

ferent frequencies appear, being irrelevant the order in which the frequencies ap-

pear. All possible frequency mixes can be represented by the frequency mix vector

m = [m−Q, . . . ,m−1,m1, . . . ,mQ], where mk denote the number of times the frequency

fk appears in the mix. The corresponding intermodulation frequency is

fm =

Q
∑

k=−Q

k 6=0

mkfk = (m1 − m−1)f1 + · · · + (mQ − m−Q)fQ . (2.137)

Each of the mixes involved in yn(t) contains exactly n frequencies. Therefore, the

coefficients mk must obey the constraint

Q
∑

k=−Q

k 6=0

mk = m−Q + · · · + m−1 + m1 + · · · + mQ = n . (2.138)

Considering expression (2.134), the number of terms in yn(t) which contain the

mix given by a particular vector m is equivalent to the number of different ways the n

indices q1, . . . , qn can be partitioned such that f−Q appears m−Q times, . . . , f−1 appears

m−1 times, f1 appears m1 times, . . . , and fQ appears mQ times. This number is given

by the permutations of the n indices grouped in classes of mk elements

(n;m) =
(n!)

(m−Q!) · · · (m−1!)(m1!) · · · (mQ!)
. (2.139)

Each of the (n;m) realizations yields the identical response

1

2n
(V ∗

Q)m−Q · · · (V ∗
1 )m−1(V1)

m1 · · · (VQ)mQHn(fm) ej2πfmt , (2.140)
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where fm = [(f−Q)m−Q
, · · · , (f−1)m−1 , (f1)m1 , · · · , (fQ)mQ

]. Note the difference notation

in fm and fm. The former denotes a frequency vector of length n with the frequencies

involved in the mix m, while the latter denotes the intermodulation frequency corre-

sponding to the mix m (see (2.137)). Denoting the sum of the (n;m) realizations by

yn(t;m), we have

yn(t;m) =
(n;m)

2n
(V ∗

Q)m−Q · · · (V ∗
1 )m−1(V1)

m1 · · · (VQ)mQHn(fm) ej2πfmt . (2.141)

The n-th order portion of y(t) can now be written as:

yn(t) =
∑

m

yn(t;m) , (2.142)

where the summation over m is defined to be

∑

m

=
n∑

m−Q=0

· · ·

n∑

m−1=0

n∑

m1=0

· · ·

n∑

mQ=0

, (2.143)

with

m−Q + · · · + m−1 + m1 + · · · + mQ = n . (2.144)

Note that the output yn(t) of a real system is real for real inputs, whereas yn(t;m) is a

complex signal involving complex frequency terms which appear in conjugate pairs3.

When the excitation consists of Q sinusoidal inputs, it can be shown that the total

number of different mixes contained in yn(t) is given by

M =
(2Q + n − 1)!

n!(2Q − 1)!
(2.145)

In practice, the total response at a particular frequency can be approximated accu-

rately enough when the terms corresponding to higher orders are neglected.

2.5.3 Volterra series representation of bandpass nonlinear systems

with memory

Digital communication systems are usually operated over nonlinear channels with

memory (see Section 4.1.4 for more details about the definition of a system with mem-

ory). In addition, for an efficient use of the frequency spectrum, only a restricted

bandwidth is available around the carrier frequency. Therefore, it is convenient to

introduce a form of Volterra series which is suitable to represent bandpass channels

3Except for fm = 0, which generates by itself a real response.
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with memory. In particular, a form of (2.120) will be derived in which the complex

envelopes of input and output signals appear.

Consider a real narrowband4 bandpass signal x(t). It can be written as:

x(t) =
1

2

[
x̃(t)ej2πfct + x̃∗(t)e−j2πfct

]
. (2.146)

The narrowband nature of the signal implies a low-pass complex envelope x̃(t) mod-

ulating a carrier at the centre frequency fc

x(t) = Re
{
x̃(t)ej2πfct

}
= xI(t) cos(2πfct) − xQ(t) sin(2πfct), (2.147)

where the complex envelope is defined in terms of its in-phase xI(t) and quadrature

xQ(t) components as

x̃(t) = xI(t) + jxQ(t). (2.148)

In the frequency domain, the input signal spectrum is

X(f) =
1

2

[

X̃(f − fc) + X̃∗(f + fc)
]

, (2.149)

where

X̃(f) =

∫ ∞

−∞

x̃(t)e−j2πftdt, (2.150)

x̃(t) =

∫ ∞

−∞

X̃(f)ej2πftdf. (2.151)

Taking into account that the input signal spectrum can be expressed in terms of its

complex envelope as showed in (2.149), the product of n input spectra becomes

n∏

i=1

X(fi) =
1

2n

n∏

i=1

[

X̃(fi − fc) + X̃∗(fi + fc)
]

. (2.152)

Let us change the variable f to ξ and denote X̃1(ξ) = X̃(ξ), X̃−1(ξ) = X̃∗(ξ), ν1 = fc,

and ν−1 = −fc. Then, when multiplied out, we get the sum of 2n different terms for

all possible combinations of k1 = ±1, k2 = ±1, . . . , kn = ±1, so that

n∏

i=1

X(fi) =
1∑

k1=−1

· · ·
1∑

kn=−1

1

2n

n∏

i=1

X̃ki
(ξi − νki

) . (2.153)

Therefore, we can substitute the result (2.153) in (2.124), and the component of

order n of the output signal y(t) can be expressed for a bandpass system as

yn(t) =
1∑

k1=−1

· · ·
1∑

kn=−1

1

2n

∞∫

· · ·

∫

−∞

Hn(ξ1, ξ2, . . . , ξn) ·
n∏

i=1

X̃ki
(ξi − νki

)ej2πξitdξi, (2.154)

4A narrowband signal has a bandwidth that is small compared to the carrier frequency. Virtually

all practical communication signals, even those considered "wideband" in some other sense (e.g. wide-

band CDMA systems) are narrowband in the sense we consider here.
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where hn(τ1, τ2, . . . , τn) and Hn(ξ1, ξ2, . . . , ξn) are assumed to be symmetric. Let mi be

the number of times that each distinct ki = 1 or ki = −1 occurs in the ki set. The

following constraints apply

mi = 0, 1, · · · , n,

m1 + m−1 = n,
(2.155)

so that, if we denote m−1 = m there are
n!

m−1!m1!
=

n!

m!(n − m)!
=

(
n

m

)

identical inte-

grals for each distinct set of ki. Collecting them we get

yn(t) =
∑

k

1

2n

(
n

m

) ∞∫

· · ·

∫

−∞

Hn(ξ1, ξ2, . . . , ξn) ·
n∏

i=1

X̃ki
(ξi − νki

)ej2πξitdξi, (2.156)

where k denotes that the sum applies now only over all the distinct sets of k1, . . . , kn.

Considering the change of variables fi ← ξi − νki
, we can write

yn(t) =
∑

k

1

2n

(
n

m

)

exp

(

j2π
n∑

i=1

νki
t

)

·

∞∫

· · ·

∫

−∞

Hn(νk1 + f1, νk2 + f2, . . . , νkn
+ fn) ·

n∏

i=1

X̃ki
(fi)e

j2πfitdfi,

(2.157)

where the output component of order n is expressed around different frequency zones

determined by the harmonics of the fundamental frequency

ν =
n∑

i=1

νki
= m−1ν−1 + m1ν1 = −mfc + (n − m)fc = (n − 2m)fc = hfc. (2.158)

Let represent the waveform in the h-th harmonic frequency zone as

yn(h, t) = Re

{
ej2πhfct

2n−1

(
n

n−h
2

)

·

∞∫

· · ·

∫

−∞

Hn( fc + f1, . . . , fc + fn+h
2

︸ ︷︷ ︸

m1=(n−m)= n+h
2

frequencies

,−fc + fn+h
2

+1, . . . ,−fc + fn
︸ ︷︷ ︸

m−1=m=n−h
2

frequencies

) ·
n∏

i=1

X̃ki
(fi)e

j2πfitdfi







,

(2.159)

so that

yn(t) =
∑

k

yn(h, t). (2.160)

The output component of order n is composed of narrowband zonal signals cen-

tred at all carrier harmonic frequencies. If we denote the complex envelope of the

waveform at zone hfc by ỹn(h, t) so that

yn(h, t) = Re
{
ỹn(h, t)ej2πhfct

}
, (2.161)
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then

ỹn(h, t) =
1

2n−1

(
n

n−h
2

)

·

∞∫

· · ·

∫

−∞

Hn(fc + f1, . . . , fc + fn+h
2

︸ ︷︷ ︸

m1=n+h
2

frequencies

,−fc + fn+h
2

+1, . . . ,−fc + fn
︸ ︷︷ ︸

m−1=n−h
2

frequencies

) ·
n∏

i=1

X̃ki
(fi)e

j2πfitdfi.

(2.162)

Let y(h, t) denote the component of y(t) in the frequency zone centred at hfc and

ỹ(h, t) denote its complex envelope. Then

y(h, t) = Re
{
ỹ(h, t)ej2πhfct

}
, (2.163)

with

ỹ(h, t) =
∞∑

n=1

ỹn(h, t). (2.164)

Only the first N terms of this sum are usually considered for practical reasons. In

particular, for the fundamental frequency zone where h = 1, the expression for the

output complex envelope of y(t) is given by

ỹ(1, t) =
∞∑

n=1

1

2n−1

(
n

n−1
2

) ∞∫

· · ·

∫

−∞

Hn(fc + f1, . . . , fc + fn+1
2

,−fc + fn+1
2

+1, . . . ,−fc + fn)·

n+1
2∏

r=1

X̃(fr)e
j2πfrtdfr ·

n−1
2∏

s=1

X̃∗(fs)e
−j2πfstdfs.

(2.165)

Note that only odd-order terms contribute to the output for the fundamental fre-

quency zone.

By inverse Fourier transforming, an expression that relates input and output com-

plex envelopes is obtained

ỹ(1, t) =
∞∑

n=1

1

2n−1

(
n

n−1
2

) ∞∫

· · ·

∫

−∞

hn(τ1, . . . , τn)·

n+1
2∏

r=1

x̃(t − τr)e
−jωcτrdτr ·

n−1
2∏

s=1

x̃∗(t − τs)e
jωcτsdτs.

(2.166)

Note that this relation is expressed in terms of the real Volterra kernels hn(τ1, . . . , τn).

In order to fully exploit the complex envelope representations, a further step can

be advanced by defining low-pass equivalent Volterra kernels, as it is demonstrated

66



2.5. VOLTERRA SERIES

in [14]. Thus, an alternate expression relating input and output complex envelopes is

ỹ(1, t) =
∞∑

n=1

1

2n

(
n

n−1
2

) ∞∫

· · ·

∫

−∞

h̃n(τ1, . . . , τn) ·

n+1
2∏

r=1

x̃(t − τr)dτr ·

n−1
2∏

s=1

x̃∗(t − τs)dτs,

(2.167)

where the low-pass equivalent Volterra kernels are defined so that

hn(τ1, . . . , τn) =
1

2
h̃n(τ1, . . . , τn) · exp

[

−jωc(τ1 + τ2 + . . . + τn−1
2

− τn−1
2

+1 − . . . − τn)
]

.

(2.168)

2.5.4 Nonlinear transfer functions determination

Keeping in mind the expressions obtained in the previous general developments, we

can see that the response of a nonlinear system is determined by the NLTFs, in the

sense that knowing Hn(fn) suffices to obtain the response to any input. In this section,

two methods employed to determine the NLTFs will be described. One of the main

disadvantages of the Volterra series approach is that, in general, it is not easy to obtain

an analytical closed-form expression of the nonlinear transfer functions, mainly for

high orders. However, the recursive nature of these methods eases their programming

so that we can calculate efficiently the nonlinear transfer functions with the help of a

computer.

2.5.4.1 Probing or Harmonic Input method

In this section, a brief explanation of the Probing or Harmonic Input method proposed

by Bedrosian in [162] will be presented. The approach followed in this method does

not considerably differ from the process to determine the transfer function H(f) of

a linear system in the frequency domain: the simplest excitation is considered to be

applied to the circuit, then its response is obtained, substituting both excitation and re-

sponse in the input-to-output relation and, finally Hn(fn) is algebraically determined.

This way, the transfer function of a linear circuit can be determined by assuming an

input voltage 1 · ej2πft is applied and rearranging the output so that it is expressed as

H(f) ej2πft. The quotient between the input and the output is H(f).

In the case of a nonlinear circuit, it is necessary to consider that the input to the

system x(t) is a sum of n exponentials

x(t) = ej2πf1t + ej2πf2t + · · · + ej2πfnt, (2.169)

67



2. STEADY-STATE ANALYSIS METHODS FOR NONLINEAR SYSTEMS

where the frequencies fi are incommensurate. The Fourier transform of the in-

put (2.169) is a sum of delta functions

X(f) = δ(f − f1) + δ(f − f2) + · · · + δ(f − fn). (2.170)

Note that the negative frequencies have not been included, since it is not necessary

that excitation x(t) be real because this is an analytical method. The sum of incom-

mensurate exponentials can serve as an analytical probing signal, but not as a basis

for real measurements. With this input, the Volterra expansion of the output becomes

y(t) =
∞∑

n=1

∞∫

· · ·

∫

−∞

Hn(f1, f2, . . . , fn) ·
n∏

i=1

[δ(fi − f1) + · · · + δ(fi − fn)]ej2πfitdfi. (2.171)

The product of the sum of delta functions generates a sum for all the different terms

of the form

δ(f1 − fk1)δ(f2 − fk2) · · · δ(fn − fkn
) (2.172)

with each index ki ranging from 1 to n. If each fki
occurs in a product such as (2.172)

mi times, then there are (n;m) identical terms but for the permutation of the factors.

When integrals in (2.171) are carried out and identical terms have been collected, we

get

y(t) =
∞∑

n=1

∑

m

(n;m)Hn(f1, f2, . . . , fn)ej2π(fk1
+ ···+fkn )t , (2.173)

where m under the sum indicates that it includes all the distinct sets {mi} such that

mi < mi+1 and
n∑

i=1

mi = n. The inequality mi < mi+1 orders the frequencies in {fmi
}

by their indices so as not to repeat the sets of frequencies which differ only by permu-

tation. It can be noticed that there is a term of order n in the expansion of y(t) given

by

n!Hn(f1, f2, . . . , fn)ej2π(f1+ ···+fn)t . (2.174)

Then, the symmetrised nth-order NLTF denoted as Hn(f1, f2, . . . , fn) can be obtained

analytically as the coefficient of n!ej2π(f1+ ···+fn)t in the output of the system when the

input is the sum of n exponentials given by (2.169).

Thus, the Probing Method supplies a recursive method to determine all the NLTFs

from the equation defining the behaviour of the system, when the input is given

by (2.169). The system given by such an equation is first probed by a single exponential

excitation. This permits the determination of H1(f). Then a sum of two exponentials

is applied. This yields H2(f1, f2) in terms of H1(f). This procedure continues with one

additional exponential being added to the input at each step until, at step n, the input

consists of the sum of n exponentials at (f1, . . . , fn). It then follows that the NLTF of

order n is constructed from all the lower order NLTFs.
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Y Y

Figure 2.15: Simplified equivalent circuit of a FET amplifier.

It can be demonstrated that the expressions for the n-th order NLTF imply the

multiplication of lower order NLTFs, or ultimately of the linear transfer function H1(f)

evaluated at different combinations of frequencies. That way, if the linear transfer

function H1(f) is that of a tuned circuit normalised to have a unit gain at a frequency,

then

|Hn(f1, . . . , fn)| <
n∏

i=1

|H1(fi)| (2.175)

so that the absolute values of the Volterra kernels become smaller and smaller with

their order, as one would expect for convergence.

Next, the Harmonic Input method will be applied to the example of the circuit

shown in Figure 2.15, which is the simplified equivalent circuit of a FET amplifier.

In this three-node circuit, just the drain current source and the gate-to-source capaci-

tance will be considered nonlinear. All the voltages and currents in the circuit will be

assumed to be incremental variables and a nodal analysis of the circuit will be made,

as it is explained in Section 2.3. Applying Kirchhoff’s current law at each of the nodes

in the circuit, the following equations are derived:

Ygvg(t) + igs(t) +
d

dt
Cgd [vg(t) − vd(t)] = ig(t)

−igs(t) +
vs(t)

Ri

= 0 (2.176)

−
d

dt
Cgd [vg(t) − vd(t)] + ids(t) +

d

dt
Cgsvd(t) + YLvd(t) = 0

The next step is to expand each of the currents through the nonlinear circuit ele-

ments in a power series, according to (2.40) and (2.41). It gives

igs(t) =
∞∑

k=0

ck[vg(t) − vs(t)]
k d

dt
[vg(t) − vs(t)] ,

ids(t) =
∞∑

k=0

∞∑

l=0
k+l≥1

gkl[vg(t) − vs(t)]
kvl

d(t) .
(2.177)
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Yg YL

c0

Figure 2.16: Alternative representation of the circuit shown in Figure 2.15,

where the nonlinear circuit elements have been replaced by lin-

ear elements in parallel with nonlinear current sources.

Separating each power series in (2.177) into a linear term plus a higher order term

suggests that each nonlinear circuit element may be replaced by a nonlinear voltage-

controlled current source positioned in parallel with a linear circuit element. With

this interpretation, an augmented linear circuit is built where the nonlinear elements

play the role of current sources driving the linear part of the circuit, as it is shown in

Figure 2.16. After substituting the power series expansions into (2.176), the equations

are rearranged such that only terms that depend linearly on the node voltages appear

on the left-hand side.
[

Yg +
d

dt
(Cgd + c0)

]

vg(t) −
d

dt
Cgdvd(t) −

d

dt
c0vs(t) =

= ig(t) −
∞∑

k=1

ck [vg(t) − vs(t)]
k d

dt
[vg(t) − vs(t)]

−
d

dt
c0vg(t) +

[
1

Ri

+
d

dt
c0

]

vs(t) =
∞∑

k=1

ck [vg(t) − vs(t)]
k d

dt
[vg(t) − vs(t)]

[

g10 −
d

dt
Cgd

]

vg(t) +

[

g01 + YL +
d

dt
(Cgd + Cgs)

]

vd(t) − g10vs(t) =

= −

∞∑

k=1

∞∑

l=1

gkl [vg(t) − vs(t)]
k vl

d(t)

(2.178)

Using the gate-to-source voltage vgs as a variable, the last equations result in

[

Yg +
d

dt
Cgd

]

vg(t) −
d

dt
Cgdvd(t) +

d

dt
c0vgs(t) = ig(t) −

∞∑

k=1

ckv
k
gs(t)

d

dt
vgs(t)

1

Ri

vg(t) −

[
1

Ri

+
d

dt
c0

]

vgs(t) =
∞∑

k=1

ckv
k
gs(t)

d

dt
vgs(t) (2.179)

−
d

dt
Cgdvg(t) +

[

g01 + YL +
d

dt
(Cgd + Cgs)

]

vd(t) + g10vgs(t) = −
∞∑

k=1

∞∑

l=1

gklv
k
gs(t)v

l
d(t)
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It can be written in matrix notation

Y(p̂)v(t) = is(t) + iNL(t), (2.180)

where p̂ denotes the differential operator d/dt and

Y(p̂) =








Yg + p̂ Cgd −p̂ Cgd p̂ c0

1

Ri

0 −

(
1

Ri

+ p̂ c0

)

−p̂ Cgd g01 + YL + p̂ (Cds + Cgd) g10








,

v(t) =






vg(t)

vd(t)

vgs(t)




 , is(t) =






is(t)

0

0




 ,

iNL(t) =















−

∞∑

k=1

ckv
k
gs(t)p̂ vgs(t)

+
∞∑

k=1

ckv
k
gs(t)p̂ vgs(t)

−

∞∑

k=0

∞∑

l=0
k+l≥1

gklv
k
gs(t)v

l
d(t)















,

(2.181)

with Y(p̂) being the matrix admittance of the augmented linear circuit; v(t) the vector

with the unknown voltages; is(t) the vector with the independent current sources (ex-

citations); and iNL(t) a vector including all the nonlinearities in the circuit, which will

be called from here on nonlinear currents vector.

Applying the Harmonic Input method, the independent current sources vector

takes the following form to determine the linear (or first-order) transfer functions

is(t) =






ej2πf1t

0

0




 . (2.182)

The circuit voltages can be expressed as a Volterra series and thus they can be written

as:

vg(t) =
∞∑

n=1

vgn(t),

vd(t) =
∞∑

n=1

vdn(t),

vgs(t) =
∞∑

n=1

vgsn(t),

(2.183)
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where the components of order n are given by

vgn(t) = Hgn(f1, . . . , f1)e
jn2πf1t

vdn(t) = Hdn(f1, . . . , f1)e
jn2πf1t

vgsn(t) = Hgsn(f1, . . . , f1
︸ ︷︷ ︸

n

)ejn2πf1t .
(2.184)

In order to get the linear transfer functions for each voltage in the network, expres-

sions (2.182)-(2.184) with n = 1 are substituted in (2.180). We need to take into account

that the differential operator p̂ is substituted by jω in the frequency domain and equate

the coefficients that multiply ej2πf1t. The linear transfer functions satisfy the following

matrix equation:





Hg(f1)

Hd(f1)

Hgs(f1)




 = Y−1(j2πf1)






1

0

0




 . (2.185)

Since only components at frequency f1 can appear in the first-order terms, the nonlin-

ear currents vector iNL(t) does not contribute to the linear response and can thus be

neglected.

In order to determine the second-order nonlinear transfer functions, the following

independent current sources vector is considered:

is(t) =






ej2πf1t + ej2πf2t

0

0




 . (2.186)

Being a two-tone input, the n-th order components of the node voltages take the fol-

lowing expressions:

vgn(t) =
2∑

q1=1

· · ·
2∑

qn=1

Hgn(fq1 , . . . , fqn
)ej2π(fq1+ ···+ fqn )t

vdn(t) =
2∑

q1=1

· · ·

2∑

qn=1

Hdn(fq1 , . . . , fqn
)ej2π(fq1+ ···+ fqn )t

vgsn(t) =
2∑

q1=1

· · ·
2∑

qn=1

Hgsn(fq1 , . . . , fqn
)ej2π(fq1+ ···+ fqn )t .

(2.187)

Expressions (2.183), (2.186) and (2.187) are substituted into (2.180) and all the terms

depending on ej2π(f1+f2)t are identified. Since frequencies f1 and f2 are assumed to be

positive and incommensurate, the terms with frequency dependence f1 + f2 can only

appear in the second-order components. If we develop any of the terms in (2.187) for

n = 2, we get

vk2(t) = Hk2(f1, f1) ej2·2πf1t + 2! Hk2(f1, f2) ej2π(f1+f2)t + Hk2(f2, f2) ej2·2πf2t, (2.188)
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where Hk2 is the second-order nonlinear transfer function for the node k. Note that

there are so many identical terms at the frequency f1 + f2 as possible permutations of

the indices q1, q2 such that f1 and f2 appear only once. Analysing the rest of the terms

in the matrix equation, is(t) does not include terms at frequency f1 + f2, whereas the

vector iNL(t) may contribute to this frequency due to its nonlinear nature. Each of the

elements in this vector can be expanded in a Volterra series, which is written as:

iNLk(t) =
∞∑

n=1

iNLkn(t), (2.189)

where

iNLkn(t) =
2∑

q1=1

· · ·

2∑

qn=1

Fkn(fq1 , . . . , fqn
)ej2π(fq1+ ··· + fqn)t . (2.190)

Analogously to what happens in (2.188), the number of terms in iNLkn(t) depending

on ej2π(f1+f2)t is equivalent to the possible permutations of the indices q1, . . . , qn, such

that f1 and f2 appear only once. That is to say

iNLk(t; f1 + f2) = 2! Fk2(f1, f2)e
j2π(f1+f2)t . (2.191)

When the factors 2! are canceled in both sides of the matrix equation, the second-order

NLTFs can be obtained





Hg(f1, f2)

Hd(f1, f2)

Hgs(f1, f2)




 = Y−1[j2π(f1 + f2)]






Fg2(f1, f2)

Fd2(f1, f2)

Fgs2(f1, f2)




 . (2.192)

The functions Fk2(f1, f2) depend in turn on the NLTFs of lower orders. Regarding

the first element of the vector iNL(t), when (2.183) and (2.184) are substituted into the

expression for iNLg, it results

iNLg(t) = −

∞∑

k=1

ckv
k
gs(t)p̂ vgs(t) = −

∞∑

k=1

ck

{
∞∑

n=1

2∑

q1=1

· · ·

2∑

qn=1

Hgsn(fq1 , . . . , fqn
)×

× ej2π(fq1+ ···+ fqn )t
}k

p̂

{
∞∑

m=1

2∑

r1=1

· · ·
2∑

rm=1

Hgsm(fr1 , . . . , frm
) ej2π(fr1+ ···+ frm )t

}

.

(2.193)

As mentioned before, terms with time dependence of the type ej2π(f1+f2)t can only be

found among the second-order component. This is equivalent to particularise k = 1,

n = 1 and m = 1 in the previous expression

iNLg2(t) = −c1

2∑

q=1

2∑

r=1

Hgs1(fq) Hgs1(fr)j2π(fr + fq) ej2π(fq+fr)t =

−
c1

2

{
j4πf1H

2
gs1(f1)e

j4πf1t + 2! j2π(f1 + f2)Hgs1(f1)Hgs1(f2)e
j2π(f1+f2)t+

j4πf2H
2
gs1(f2)e

j4πf2t
}

.

(2.194)
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And comparing with (2.191) yields

Fg2(f1, f2) = −j2π(f1 + f2)
c1

2
Hgs1(f1)Hgs1(f2) . (2.195)

Observe that Fg2(f1, f2) can be interpreted as the Fourier coefficient of iNLg2, evaluated

at f1 + f2 and multiplied by a factor
1

2!
.

Taking into account the similarity between iNLg and iNLd, we have

Fd2(f1, f2) = j2π(f1 + f2)
c1

2
Hgs1(f1)Hgs1(f2) . (2.196)

Regarding the nonlinearity dependent on iNLgs, the second-order components are in-

cluded in the following expression:

iNLgs2(t) = −g20v
2
gs(t) − g11vgs(t)vd(t) − g02v

2
d(t) . (2.197)

These three addends present a similar structure, so only the second will be studied in

detail

vgs(t)vd(t) =
∞∑

n=1

∞∑

m=1

2∑

q1=1

· · ·

2∑

qn=1

2∑

r1=1

· · ·

2∑

rm=1

Hgsn(fq1 , . . . , fqn
) ·

· Hdm(fr1 , . . . , frm
) ej2π(fq1+ ···+ fqn+fr1+ ···+ frm )t .

(2.198)

Only the terms resulting when n = 1 and m = 1 are assumed to produce components

at frequency ej2π(f1+f2)t, that is to say

vgs1(t)vd1(t) =
2∑

q=1

2∑

r=1

Hgs1(fq)Hd1(fr)e
j2π(f1+f2)t = Hgs1(f1)Hd1(f1)e

j4πf1t+

+ [Hgs1(f1)Hd1(f2) + Hgs1(f2)Hd1(f1)] ej2π(f1+f2)t + Hgs1(f2)Hd1(f2)e
j4πf2t .

(2.199)

Finally,

Fgs2(f1, f2) = −g20Hgs1(f1)Hgs1(f2) − g11Hgs1(f1)Hd1(f2) − g02Hd1(f1)Hd1(f2) , (2.200)

where

Hgs1(f1)Hd1(f2) =
1

2
[Hgs1(f1)Hd1(f2) + Hgs1(f2)Hd1(f1)] . (2.201)

Generalising, the following independent current sources vector will be considered

in order to determine the NLTFs of order n:

is(t) =






ej2πf1t + ej2πf2t + · · · + ej2πfnt

0

0




 , (2.202)

and the process consists in identifying such terms with time dependence ej2π(f1+ ···+fn)t

in the matrix equation (2.180). These terms can only come from components of order
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n and appear n! times, which is the number of permutations in the indices q1, . . . , qn

taken one by one. The NLTFs satisfy the following system of algebraic equations:






Hg(f1, · · · , fn)

Hd(f1, · · · , fn)

Hgs(f1, · · · , fn)




 = Y−1[j2π(f1 + · · · + fn)]






Fgn(f1, · · · , fn)

Fdn(f1, · · · , fn)

Fgsn(f1, · · · , fn)




 , (2.203)

where Fkn(f1, . . . , fn) is the Fourier coefficient of the n-th order component of the

nonlinear current iNLk(t) evaluated in f1 + · · · + fn and multiplied by the factor
1

n!
.

This procedure can be continued indefinitely to find at each step higher and higher

order NLTFs in terms of lower order NLTFs, or ultimately in terms of the linear trans-

fer functions. However, since the n! terms in each row of the nonlinear currents vector

iNL(t) are different, in general, their evaluation may be a very cumbersome process

for orders higher than three.

2.5.4.2 Nonlinear Currents method

In this section, we will present an explanation of the Nonlinear Currents (NC) method

proposed by Bussgang in [13] to determine the response of a nonlinear system with a

power series type of nonlinearity. In order to illustrate this method with a simple nota-

tion but without losing generality, in [13] a single-node nonlinear circuit characterised

by the following nonlinear equation is considered:

i(t) = L′[v(t)] +
∞∑

n=1

Knv
n(t) = L[v(t)] +

∞∑

n=2

Knv
n(t), (2.204)

where L′[·] denotes a general linear integro-differential operator for the linear compo-

nents of the circuit, and the nonlinear component is expressed as a power series of

the node voltage. The linear coefficient K1 of the nonlinear component is included in

the augmented linear circuit, which is represented here by the linear integro-differential

operator L[·].

The input-output relation for this nonlinear system can be represented by the fol-

lowing equation:

x(t) = L[y(t)] +
∞∑

n=2

Kny
n(t) , (2.205)

where an excitation of the form

x(t) = αi(t) (2.206)

will be considered. The dummy variable α is introduced so as to keep track of the

order of different terms, since any term in αn is of order n in i(t).
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Let v(t) be the output of the nonlinear system when the input i(t) is applied to the

circuit. By definition of the Volterra expansion, we can write

vn(t) =

∞∫

· · ·

∫

∞

Hn(f1, . . . , fn)
n∏

i=1

I(fi) · e
j2πfitdfi , (2.207)

so that

y(t) =
∞∑

n=1

yn(t) =
∞∑

n=1

αnvn(t) . (2.208)

Note that the excitation i(t) and the response v(t) are related by either of two dif-

ferent equations: (2.204), or the equation obtained by substituting (2.206) and (2.208)

in (2.205)

α · i(t) =
∞∑

n=1

αnL[vn(t)] +
∞∑

n=2

Kn

[
∞∑

s=1

αsvs(t)

]n

. (2.209)

Thus, if we can solve (2.209) for the individual nonlinear response components of v(t),

denoted by vn(t), then the solution of (2.204) is obtained from the expansion

v(t) =
∞∑

n=1

vn(t) . (2.210)

The introduction of the dummy variable α is a helpful artifice when solving for the

successive vn(t). This can be observed by solving (2.209) for v1(t), v2(t), and v3(t).

To solve for v1(t), both sides of (2.209) will be differentiated with respect to α and

then α = 0 will be substituted in the result. This procedure yields the following dif-

ferential equation for v1(t):

i(t) = L[v1(t)] , (2.211)

which simply entails the linear part of (2.209). Thus, the first-order response compo-

nent v1(t) is solved as if the nonlinear element represented by the power series in vn(t)

were removed from the circuit and only the current source i(t) were applied to the

linear part of the circuit.

To solve for the second-order nonlinear response v2(t), we repeat the process of

differentiating both sides of (2.209) with respect to α, and then setting α = 0. When

this is done, we get the following differential equation satisfied by v2(t):

0 = L[v2(t)] + K2v
2
1(t) . (2.212)

By comparing this equation to (2.211), v2(t) can be considered as the response of the

linear part of the circuit driven by the second-order nonlinear current

i2(t) = −K2v
2
1(t) . (2.213)

76



2.5. VOLTERRA SERIES

If we repeat the process of differentiating with respect to α three times, the follow-

ing differential equation satisfied by v3(t) is obtained:

0 = L[v3(t)] + 2K2v1(t)v2(t) + K3v
3
1(t) . (2.214)

Here again the nonlinear component v3(t) is the response of the linear circuit when

driven by the third-order nonlinear current source

i3(t) = −[2K2v1(t)v2(t) + K3v
3
1(t)] . (2.215)

This process can be continued successively until the desired order of the nonlinear

response is reached. In general, the n-th order current through the nonlinear element

is defined as

in(t) = −

∞∑

m=2

Km

[

d

dαn

[
∞∑

s=1

αsvs(t)

]m]∣
∣
∣
∣
∣
α=0

. (2.216)

Note that in(t) depends only on the already computed n−1 responses v1(t), . . . , vn−1(t).

Specifically, carrying out (2.216)

in(t) = −

n∑

m=2

Km

∑

p

m!

p1! · · · pm!
vp1

1 (t) · · · vpm

m (t), (2.217)

with p under the summation sign indicating that the summation is on all such sets of

p1, . . . , pm that satisfy

p1 + 2p2 + · · · + mpm = n, m = 2, 3, · · · , n − 1, (2.218)

and where the exponent pi can range from 0 to n. Since v1(t) depends on i(t), v2(t)

depends on v1(t), and v3(t) depends on v1(t) and v2(t), etc., all the nonlinear currents

ultimately depend on i(t). Specifically, vpk

k is of the order kpk in i(t), and the total order

of the dependence of in(t) in i(t) is n, as given by (2.218).

The NC method of determining the response of a nonlinear circuit with a power

series type nonlinearity can be summarised as follows:

Step 1: Solve for the first-order response v1(t), which is simply the response of the linear

part of the circuit to the excitation i(t) as if the nonlinearity were removed from

the circuit.

Step 2: When the first-order voltage across the nonlinearity v1(t) is found, compute the

nonlinear current i2(t). Continuing in a recursive way, as each vn−1(t) is found,

the nonlinear current in(t) can be computed.
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Step 3: Solve the linear differential equation

L[vn(t)] = in(t), n = 2, 3, . . . (2.219)

for vn(t), in which L[·] denotes symbolically the augmented linear circuit opera-

tions and in(t) is the nonlinear current source computed at step 2.

This is clearly a recursive method, as it requires the determination of all the lower

order components before the higher order component is found. Finally, the total re-

sponse is the sum of all the components

v(t) =
∞∑

n=1

vn(t), (2.220)

but the sum can frequently be truncated for weakly nonlinear systems.

In short, instead of the nonlinear differential equation for the total response, in

the NC method an augmented linear differential equation is solved repeatedly for the

components of the nonlinear response, using each time an appropriate excitation. That

appropriate excitation for the n-th iteration of the process is a function of the solutions

for the lower order components of the nonlinear response obtained at the previous

iterations. The sum of the components is the series expansion of the total response.

The process for the determination of the nonlinear currents has been presented for

a general power series type of nonlinearity and will be now applied for the typical

nonlinear elements in FET amplifiers.

For the nonlinear conductance, it is demonstrated in [13] that the expression for the

nonlinear current component of order n can be obtained by the following recursion:

in(t) = −
n∑

m=2

gmvn,m , (2.221)

where

vn,m =
n−m+1∑

i=1

vi(t)vn−i,m−1 , (2.222)

and

vn,1 = vn(t). (2.223)

A similar procedure can be followed for the current generated by a dependent non-

linearity, where the first two sums present similar expressions to those of a nonlinear

conductance and their contribution can be obtained by means of (2.221) and (2.222).
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The following recursive expression is obtained for the third of the sums accounting

for the cross-terms gkl:

in(t) = −

n−1∑

r=1

n−r∑

s=1

gsrΦs,r,n , (2.224)

where

Φs,r,n =
n−1∑

j=1

vj,sun−j,r, n ≥ r + s (2.225)

and by analogy with (2.222)

vj,s =

j−s+1
∑

i=1

vi(t)vj−i,s−1, j ≥ s (2.226)

in which

vj,1 = vj(t). (2.227)

The nonlinear current generated by a nonlinear capacitor is of the form

i(t) =
d

dt

∞∑

k=1

qkv
k(t) =

∞∑

k=1

qkkvk−1(t)
dv(t)

dt
=

∞∑

k=0

ckkvk(t)
dv(t)

dt
, (2.228)

which is a special case of the dependent nonlinearity considered in (2.41) with

u =
dv(t)

dt
.

For example, we can follow the systematic procedure suggested for the aforemen-

tioned recursive expressions and obtain the following expressions for the nonlinear

current components for a dependent nonlinearity:

i2(t) = −{g20v1(t) + g11v1(t)u1(t) + g20u1(t)} ,

i3(t) = −{g30v
3
1(t) + g03v

3
1(t) + 2g20v1(t)v2(t) + 2g02u1(t)u2(t)+

g21v
2
1(t)u1(t) + g12v1(t)u

2
1(t) + g11[v1(t)u2(t) + v2(t)u1(t)]} ,

i4(t) = −{g40v
4
1(t) + g04u

4
1(t) + 3g30v

2
1(t)v2(t) + 3g03u

2
1(t)u2(t)+

2g20[v1(t)v3(t) + v2
2(t)] + 2g02[u1(t)u3(t) + u2

2(t)]+

g11[v1(t)u3(t) + v2(t)u2(t) + v3(t)u1(t)] + g21[v
2
1(t)u2(t) + 2v1(t)v2(t)u1(t)]

+g31v
3
1(t)u1(t) + g12[v2(t)u

2
1(t) + 2v1(t)u1(t)u2(t)] + g22v

2
1(t)u

2
1(t) + g13v1(t)u

3
1(t)}

...
(2.229)

The NC method can be combined efficiently with the Harmonic Input method

to help the determination of the nonlinear transfer functions, by replacing the input

i(t) with sums of complex exponentials at incommensurate frequencies, as in (2.169).
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Since we are analysing the frequency domain, the Fourier transform of the nonlinear

currents of order n must be calculated in order to evaluate the NLTF of the same or-

der. Given that Hn(fn) is the factor that multiplies the term n! ej2π(f1+...+fn)t, only the

coefficient Fn[iNLn(t)] whose frequency component is n! δ[f − (f1 + . . . + fn)] must be

known from the total spectrum F [iNLn(t)]. This coefficient can be expressed in terms

of symmetrised products of lower-order nonlinear transfer functions. Therefore, it can

be written as:

Fn[vm1
k1

(t) · · · vms

ks
(t)] = Hk1(f1, . . . , fk1)Hk1(fk1+1, . . . , f2k1) · · ·Hk1(fm1k1−k1+1, . . . , fm1k1)

·Hk2(fm1k1+1, . . . , fm1k1+k2) · · ·Hks
(fn−msks+1, . . . , fn)

(2.230)

where m1k1 +m2k2 + . . .+msks = n and Hki
is the nonlinear transfer function of order

ki of the voltage v(t). Recall that the symmetrization operation implies summing over

all the different terms resulting from permutations of the fi. This produces different

sets of arguments and multiplying by a factor

N0 =
(k1!)

m1(k2!)
m2 · · · (ks!)

msm1! · · ·ms!

n!
. (2.231)

Note that for any constant A

Fn[Av(t)] = AnFn[v(t)], (2.232)

and, that in general,

Fn[u(t) + v(t)] 6= Fn[u(t)] + Fn[v(t)]. (2.233)

In summary, the method to determine the nonlinear current sources of different

orders for an exponentially driven circuit is as follows:

Step 1: Find the current of order n as a function of different order nonlinear voltage

components, using the recursions (2.221)-(2.228).

Step 2: Apply (2.230) to find the coefficient of n!δ(f−f1−· · ·−fn) in F [in(t)], which here

is denoted as Fn[in(t)] for the nth-order when the input is the sum of n exponen-

tials. This coefficient is expressed generally in terms of symmetric products of

lower-order NLTFs.

Resuming the example of the FET amplifier, we will apply the NC method to obtain

the second- and third-order NLTFs. Considering the circuit shown in Figure 2.16, the

nonlinear currents vector takes the form

iNL(t) =






iNLg(t)

iNLd(t)

iNLgs(t)




 , (2.234)
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where

iNLg(t) = −
d

dt

∞∑

k=2

ck−1

k
vk

gs(t) = −

∞∑

k=1

ckv
k
gs(t)

dvgs(t)

dt

iNLd(t) =
d

dt

∞∑

k=2

ck−1

k
vk

gs(t) =
∞∑

k=1

ckv
k
gs(t)

dvgs(t)

dt

iNLgs(t) = −

∞∑

k=2

gk0v
k
gs(t) −

∞∑

l=2

g0lv
l
d(t) −

∞∑

k=1

∞∑

l=1

gklv
k
gs(t)v

l
d(t)

(2.235)

The resulting second- and third-order nonlinear currents take the following ex-

pressions:

• For the second-order:

– For the case of the nonlinear capacitance:

iNLg2(t) = −iNLd2(t) = −
d

dt

[c1

2
v2

gs1(t)
]

(2.236)

– For the case of the dependent nonlinearity:

iNLgs2(t) = −
[
g20v

2
gs1(t) + g02v

2
d1(t) + g11vgs1(t)vd1(t)

]
(2.237)

– The Fourier coefficient F2[iNLk2(t)] of the spectral components at frequency

f1 + f2 are:

F2[iNLg2(t)] = Fg2(f1, f2) = −j2π(f1 + f2)
c1

2
Hgs1(f1)Hgs1(f2)

F2[iNLd2(t)] = Fd2(f1, f2) = −Fg2(f1, f2)

F2[iNLgs2(t)] = Fgs2(f1, f2) = − [g20Hgs1(f1)Hgs1(f2)

+g11Hgs1(f1)Hd1(f2) + g02Hd1(f1)Hd1(f2)
]

(2.238)

• For the third-order:

– For the case of the nonlinear capacitance:

iNLg3(t) = −iNLd3(t) = −
d

dt

[c1

2
vgs1(t)vgs2(t) +

c2

3
v3

gs1(t)
]

(2.239)

– For the case of the dependent nonlinearity:

iNLgs3(t) = −
[
2g20vgs1(t)vgs2(t) + g30v

3
gs1(t) + 2g02vd1(t)vd2(t) + g03v

3
d1(t)+

+g11[vgs1(t)vd2(t) + vgs2(t)vd1(t)] + g21v
2
gs1(t)vd1(t) + g12vgs1(t)v

2
d1(t)

]

(2.240)
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– The Fourier coefficient F3[ iNLk3(t)] of the spectral components at frequency

f1 + f2 + f3 are:

F3[iNLg3(t)] = Fg3(f1, f2, f3) = −j2π(f1 + f2 + f3)×

×
[

c1Hgs1(f1)Hgs2(f2, f3)+
c2

3
Hgs1(f1)Hgs1(f2)Hgs1(f3)

]

F3[iNLd3(t)] = Fd3(f1, f2, f3) = −Fg3(f1, f2, f3)

F3[iNLgs3(t)] = Fgs3(f1, f2, f3) = −
[

2g20Hgs1(f1)Hgs2(f2, f3)+

+g30Hgs1(f1)Hgs1(f2)Hgs1(f3) + 2g02Hd1(f1)Hd2(f2, f3)+

+g03Hd1(f1)Hd1(f2)Hd1(f3) + g11

[

Hgs1(f1)Hd2(f2, f3)+

+Hgs2(f1, f2)Hd1(f3)
]

+ g21Hgs1(f1)Hgs1(f2)Hd1(f3)+

+g12Hgs1(f1)Hd1(f2)Hd1(f3)
]

(2.241)

2.6 Brief overview of envelope-based methods

In this section, a brief overview of the principles governing the envelope-based meth-

ods for the simulation of circuits will be presented so that a comparison of the usual

techniques for nonlinear circuits can be made. A detailed explanation of efficient

methods for the analysis of nonlinear circuits excited with wireless communication

signals will be presented in Chapter 3. The most relevant advantage of envelope-

based methods is their efficiency, which is especially notable when digitally modu-

lated excitations are used [192].

The envelope simulation process consist of the following steps [87]:

1. Representation of the input signal in terms of its complex envelope.

Each modulated signal can be represented as a carrier at frequency fc modulated

by an envelope x̃(t) = A(t)ejφ(t), that is x(t) = Re{x̃(t)ej2πfct}. In the envelope-

based methods, the values of amplitude and phase of the sampled envelope are

normally used as input signals for frequency-domain methods.

2. Transformation into the frequency domain and analysis using a frequency-

domain method.

In most of the cases, HB analysis is performed at each time step. This process

creates a succession of spectra that characterise the response of the circuit at the

different time steps.
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Figure 2.17: Envelope-based simulation process. Picture taken from [87].

3. Time-domain analysis.

The previous step provides a complete non steady-state solution of the circuit

through a Fourier series with time-varying coefficients. We can obtain an enve-

lope response for each harmonic formed with the Fourier coefficients obtained

at each time step.

4. Extraction of data from the time domain.

Selecting the desired harmonic spectral line, normally the fundamental fre-

quency fc , it is possible to carry out transient simulations and predict amplitude

and/or phase versus time.

5. Extraction of data from the frequency domain.

By Fourier transforming the selected time-varying spectral line it is possible to

obtain the output spectrum and predict spectral regrowth, Adjacent Channel

Power Ratio (ACPR), Noise to Power Ratio (NPR), AM/AM and AM/PM dis-

tortion or any kind of distortion in the signal constellation.

2.7 Comparison of analysis techniques

In order to sum up the main advantages and disadvantages of the techniques for

the analysis of nonlinear microwave circuits presented in this chapter, a comparison
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is shown in Table 2.1. Although envelope-based techniques will be thoroughly ex-

plained in Chapter 3, they have also been included for comparison purposes.

As it was stated in Chapter 1, the basic aim of this Thesis is the study and devel-

opment of new analysis techniques for weakly nonlinear systems under narrowband

digitally-modulated communications signals. Therefore, considering the advantages

and disadvantages shown in Table 2.1 we can conclude that the recommended tech-

niques are envelope-based techniques or, in those cases where we seek a better com-

prehension of the implications of design parameters, Volterra series representation.

Time-domain simulation, classical Harmonic Balance and multitone Harmonic Bal-

ance techniques result inefficient when dealing with wireless communications signals.
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Table 2.1: Comparison of techniques for the analysis of nonlinear microwave

circuits.

Advantages Disadvantages
Time-domain simulation

- Allows transient analysis - Long convergence times

- Any kind of nonlinear function - Inefficient for circuits with very

in the time domain can be used different time constants

- Allows the analysis of strongly - Difficult to include distributed

nonlinear systems elements

Classic Harmonic Balance
- Faster convergence than time-domain - Requires periodic solutions

- Easy to include distributed elements - Possible convergence problems

- General purpose method, including

strong nonlinearities

Multitone Harmonic Balance
- Quasiperiodic input signals can be - It can be computationally expensive

considered

- Easy to include distributed elements - Possible convergence problems

- Allows the analysis of strongly

nonlinear systems

Envelope-Based techniques
- Allows envelope transient analysis - Approximated method

- Considerable reduction in - Input modulated signals

computation time have to be narrowband

- Deals naturally with modulated - Distributed elements need

signals consideration

- Possible convergence problems

Volterra series representation
- Provides closed-form expressions, - Only for weakly nonlinear

which gives a better insight behaviour, since high order

for design implications expressions are cumbersome

- Difficult to systematise

- Nonlinear functions have to

be approximated by power series
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CHAPTER 3

ENVELOPE-BASED METHODS FOR THE

ANALYSIS OF NONLINEAR WIRELESS

COMMUNICATIONS SYSTEMS

3.1 Introduction

In this chapter, a number of methods for the analysis of nonlinear distortion produced

in circuits for modern wireless communications is presented. The signals employed

in these circuits show complex digital modulations which force the search for more

specific simulation techniques. On the other hand, it is in the wireless communica-

tions field where efficiency and linearity of active devices have become most signifi-

cant. Considerable optimization efforts when designing such systems are necessary,

for which accurate and efficient simulation techniques are demanded.

Traditionally, power amplifiers or mixers for communications systems are de-

signed to meet specifications like the 1-dB gain-compression output power (P1dB) or

the third-order intercept point (IP3). Such tests can be performed with one or two

sinusoidal input tones. Nowadays, however, these power amplifiers or mixers are

usually required to meet a certain Adjacent Channel Power Ratio specification or sat-

isfy a spectral mask at a particular output power. These results may not be obtained

by using sinusoidal input signals.

A very important issue when transmitting digitally modulated signals is the Ad-

jacent Channel Power (ACP). A transmitter should only emit power within its desig-

nated channel. Any power emitted in adjacent channels can interfere with the proper

operation of nearby receivers that are attempting to receive signals from other trans-

mitters. As such, transmitters have strict adjacent channel interference or ACP re-

quirements that must be satisfied. Moreover, if mixers or power amplifiers are non-

linear, intermodulation distortion can cause the bandwidth to grow. This effect is
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referred to as spectral regrowth. The adjacent channel power is characterised by means

of the figure of merit called Adjacent Channel Power Ratio (ACPR), usually defined

as1

ACPR =
Padj

Pinband

, (3.1)

where Padj is the total power in the adjacent channel and Pinband is the power in the

desired channel. The simulation of this figure of merit is clearly impractical for con-

ventional transient analysis.

The main difficulty when applying circuit simulation techniques to communica-

tion signals is that, due to the random nature of the digital data which modulate the

carriers, it is necessary to consider long symbol sequences in order to reduce the vari-

ations that can be observed from one realization to the other. Therefore, it is neces-

sary to take into account a large number of frequency components in standard HB

techniques and to carry out the circuit equations integration for large time intervals

when using time-domain techniques. Iterative approximation techniques have been

applied to the solution of the Newton-Raphson iteration step by using Krylov sub-

space techniques in HB analysis. It results in a decrease of computational complexity

and reduced memory requirements. However, conventional HB simulation of large

RFICs with digitally-modulated waveforms applied is not practical yet. Instead, the

best choice is using envelope-based methods such as those presented in [20], [17] or

[18], which will be explained in this section. Nevertheless, ACPR simulations are very

expensive even for the known methods, therefore some new and more efficient sim-

ulation techniques will be proposed that allow their use in design and optimization

processes.

All the analysis methods presented in this chapter will be circuit-level approaches,

since they provide more accurate results at the cost of larger simulation times. In con-

trast to circuit-level approaches we can find the system-level ones, also referred to as

behavioural methods, which model the input-output relationship for the desired vari-

ables neglecting all the internal details of the nonlinear circuit structure. System-level

methods are the simplest representation and allow a fast estimation of the nonlinear

effects, but they usually result less accurate. Due to their more rigorous approach and

to the fact that they are suitable to analyse the memory effects produced by the non-

linearities of the different circuit components, in this Thesis the use of a circuit-level

approach has been chosen.

The approaches that will be presented in this chapter aim at the efficient simu-

lation of nonlinear circuits whose excitations are digitally-modulated signals. These

1The alternate definition ACPR = Pinband

Padj
can also be found in the literature, although the selected

one is more commonly implemented in experimental characterization equipment. In addition, this

concept is termed Adjacent Channel Leakage Power Ratio (ACLR) in 3GPP W-CDMA systems.
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specialised approaches are enveloped-based methods, which are approximate tech-

niques. Although it is also possible to use multitone HB in a more exact manner,

it would be considerably less efficient. The main drawback of the envelope-based

techniques is that they cannot be applied to broadband signals where the envelope

frequency is close to the carrier frequency. However, this is not the case for most prac-

tical digitally-modulated signals.

First, several outstanding envelope-based approaches that take into account com-

munications signals will be presented: the Envelop [sic] Transient analysis [17],

where a time-domain integration of the complex envelopes equations is proposed;

a modulation-oriented HB technique [20], which is an approximate form of the piece-

wise HB technique for circuits driven by narrowband modulated signals; and the En-

velope Currents method [18], which is based on an envelope formulation and on the

NC method, and takes advantage of the common weakly nonlinear behaviour in com-

munication signals to speed up simulation. In order to overcome the limitations of the

Envelope Currents method, an extension proposed in [19] will be presented where a

time-varying linear circuit is analysed resulting a more accurate approach at the ex-

pense of a slightly higher computational cost. Finally, three simplified methods will

be presented as a part of the original contribution of this Thesis. The first of them is

a simplified method to evaluate weakly nonlinear circuits where a significant reduc-

tion of the simulation time is achieved while maintaining an appropriate accuracy.

This method will be related to the use of a simplified Newton-Raphson algorithm to

solve the system of equations of the nonlinear circuit. Then, two methods will be pre-

sented for the analysis of a mixer with communications signals, which are extensions

of the Envelope Currents and the Simplified Newton approaches taking into account

the particularities of mixers.

3.1.1 Modulated signals

A narrowband modulated waveform, x(t), can be represented as

x(t) = Re
{
x̃(t)ejωct

}
, (3.2)

where x̃(t) is the complex envelope of the signal, containing information about the

magnitude and phase of the modulated waveform. When such a waveform is dis-

torted by a nonlinear circuit, harmonics of the carrier and mixing products between

the individual frequency components of the spectrum are generated. The bandwidth

of the modulated signal is broadened by odd-order nonlinearities, which generate

frequency components adjacent to the linear spectrum that fall outside the intended

channel causing interference. This phenomenon is referred to as spectral regrowth.
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However, not only adjacent-channel distortion is generated but also co-channel dis-

tortion due to the mixing products that fall inside the intended channel.

Taking into account that each carrier harmonic is surrounded by modulation com-

ponents, the distorted waveform can be represented as

x(t) =
1

2

∞∑

h=−∞

x̃(h, t)ejhωct. (3.3)

x̃(h, t) represents the envelope around the h-th harmonic, whose frequency represen-

tation is

X(ω) =
1

2

∞∑

h=−∞

X̃(h, ω − hωc) =
1

2

∞∑

h=−∞

X̃(h, Ω). (3.4)

That is to say, the spectrum of a signal consists of clusters of frequency components

centred at the different carrier harmonics, as it is shown in Figure 3.1. Nonlinear RF

circuit simulators exploit the “spars” nature of this spectrum in different ways and

with varying degrees of success. If we assume that the modulation signal is quasi-

periodic and deterministic, x̃(h, t) can be expressed by the Fourier series

x̃(h, t) =
∞∑

m=−∞

X̃(h,m)ejmωmt, (3.5)

and (3.3) becomes

x(t) =
1

2

∞∑

h=−∞

∞∑

m=−∞

X̃(h,m)ej(hωc+mωm)t. (3.6)

fc 2fc 3fc0

...

Figure 3.1: Spectrum of a narrowband RF signal centred at a carrier frequency

fc after passing through a nonlinear circuit.

3.2 Envelop Transient method

The Envelop [sic] Transient Method (ET) [17] was first proposed by Ngoya and

Larchevèque in 1996 as an efficient and general purpose technique for the simula-

tion of communications microwave circuits and systems, aimed at the analysis of both

the transient and the steady-state solutions.
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3.2. ENVELOP TRANSIENT METHOD

In the ET method, any signal is considered to be a combination of a low-frequency

dynamic (the envelope or modulation) and a high-frequency dynamic (the carrier),

which are processed separately. The high-frequency dynamic is treated by HB, while

the low-frequency dynamic is solved by time-domain integration.

The considered excitation signal is a modulated carrier with a limited bandwidth,

whose spectrum is centred at a frequency ωc. Then, any circuit signal can be written

as:

x(t) =
1

2

h=H∑

h=−H

x̃(h, t)ejhωct

x̃(h, t) =
1

2π

∫ B
2

−B
2

X̃(h, Ω)ejΩtdΩ, (3.7)

where x̃(h, t) is the time-varying complex envelope (or modulating signal) of the h-th

harmonic of the carrier frequency ωc, and B is the largest bandwidth of the envelopes

in the carrier harmonics. Note that, in this method, the time-varying complex enve-

lope of the signal is not necessarily a periodic signal, since it is treated in the time-

domain.

In order to carry out an ET analysis, two time dimensions t1 and t2 are considered

in the signals expressions

x(t) ⇒ x̄(t1, t2) =
1

2

h=H∑

h=−H

x̃(h; t1)e
jhωct2 . (3.8)

As it is quite common when analysing microwave circuits, it is proposed to con-

sider the circuit divided into two parts, a purely linear subcircuit and another non-

linear subcircuit, and then substitute the nonlinear subcircuit with excitation current

sources with the same value as the electrical variables in this subcircuit ports. This

way, a linear circuit is analysed, excited by both the real sources, s(t), and those ob-

tained from the nonlinear elements, which are defined by the intrinsic characteristic

of the nonlinear subcircuit y(t) = f(x(t)). Therefore, any circuit equation can be ex-

pressed in the frequency domain as

X(ω) = A(ω)Y (ω) + B(ω)S(ω), (3.9)

where X(ω) is the spectrum of the state variables of the circuit x(t), Y (ω) is the spec-

trum of the equivalent sources of the nonlinear subcircuit y(t), S(ω) is the spectrum of

the original driving sources, and A(ω) and B(ω) are the transfer functions that charac-

terise the linear subcircuit.
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Taylor series expansion of the transfer functions inside the bandwidth of the mod-

ulation are considered, as a function of a variable Ω

A(hωc + Ω) = ah,0 +
P∑

p=1

ah,p(Ω)p = αh,0 +
P∑

p=1

αh,p(jΩ)p, (3.10)

B(hωc + Ω) = bh,0 +
P∑

p=1

bh,p(Ω)p = βh,0 +
P∑

p=1

βh,p(jΩ)p. (3.11)

Recalling that the spectrum of a signal consists of clusters of frequency components

centred at the different carrier harmonics, these expansions depend on which har-

monic h is considered.

We can express (3.9) as a function of the complex envelopes spectra and introduce

the series expansions of the transfer functions. If an inverse Fourier transform is ap-

plied, then the following set of differential equations of order P is obtained for the ET,

with an equation for every carrier harmonic:

x̃(h; t1) = αh,0ỹ(h; t1) + βh,0s̃(h; t1) +
P∑

p=1

αh,p
d p ỹ(h; t1)

dtp1
+

P∑

p=1

βh,p
d p s̃(h; t1)

dtp1
,

−H ≤ h ≤ H.

(3.12)

In these equations, the variables of the nonlinear subcircuit and the intrinsic equation

are expressed as a function of two temporal indices ȳ(t1, t2) = f(x̄(t1, t2)), in the same

way than the rest of the signals.

When narrowband signals are considered, first-order Taylor series (P = 1) are

sufficient to achieve a good accuracy, resulting a first-order differential equation for

the ET method

x̃(h; t1) = αh,0ỹ(h; t1) + βh,0s̃(h; t1) + αh,1
dỹ(h; t1)

dt1
+ βh,1

ds̃(h; t1)

dt1
,

−H ≤ h ≤ H.
(3.13)

It can be seen that, for a fixed value of t1, equations (3.12) and (3.13) correspond

to the HB analysis of the circuit, since the complex envelope is constant. This makes

possible to obtain the time-varying complex envelope response, x̃(h, t), by means of

successively solving a steady-state quasi-periodic problem for each time instant t1 of

the envelope. When the envelopes x̃(h; t1) at all H harmonics for all time instants t1 are

known, the real signal x(t) can be calculated. This process is inherently more efficient

than multitone HB analysis, as it replaces a dimension of the multitone problem with

a sequence of analyses. In order to obtain the solution at any instant, the differential

equations in (3.12) or (3.13) are integrated in the time domain from an initial time until

the desired value t1,max or until the transient dies out.
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As it is shown in [17], the ET method implies a considerable reduction in the com-

putation time compared to the time-domain integration methods used in several com-

mercial simulators such as SPICE. Its efficiency is due to the achieved reduction in the

time samples to be employed, since the sampling interval is chosen in accordance with

the variation rate of the envelope. However, it maintains an accuracy similar to that

of the direct time-integration methods. This method is especially indicated for the

realization of transient analysis of microwave circuits. Among its application exam-

ples we can include the transient analysis of oscillators and circuits with modulated

carriers shown by its authors in [17] and [178], developing in the latter a thorough cal-

culation of the phase noise in microwave oscillators. Other more recent works which

apply and extend the ET method are: [193], in which PLL-based systems are anal-

ysed using ET with three time scales; [194], in which the ET method is used to analyse

auto-oscillating mixers, both autonomous and sub-synchronised; and [195], where ET

is applied to analyse phase variation in oscillators arrays produced by control voltage.

Another interesting example of application for ET analysis is determining the turn-on

and turn-off behaviour of Time-Division Multiple Access (TDMA) transmitters [196].

In TDMA, transmitters broadcast during a narrow slice of time, during which they

must power up, stabilise, send the message, and then power down. The transmitter

can neither power up and down too slowly, because it would not work properly, or

too quickly, because the resulting spectrum would be too wide to fit in the allotted

channel. Simulating with traditional transient analysis would be considerably expen-

sive because the reference time lasts on the order of milliseconds (e.g., 0.577 ms for

mobile communications GSM systems and 2 ms for satellite communications Intelsat

or Eutelsat systems) and the carrier frequency is typically over 1 GHz.

Nevertheless, the ET method presents some limitations. First, it is assumed that

the complex envelope is a modulating signal which varies slowly. Furthermore, this

method was created for excitations composed by only one carrier frequency modu-

lated by baseband signals that are expressed in the time domain. Therefore, its useful-

ness is limited to excitation signals which occupy a small percentage of the nonlinear

circuit bandwidth, not being appropriate to deal with multi-carrier excitations.

3.2.1 Multi-rate partial differential equation methods

The separation of signals with two very different time scales which has been made in

the ET method is addressed by other authors by means of the property of latency [134],

[135], [197], [198], [199]. Slowly-varying state-variables in a circuit are said to be latent,

while fastly-varying state-variables are considered active. Latency refers to the fact

that there are long periods over which the value of a given signal remains constant.
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The property of latency can be viewed as a subset of the more general property of

multi-rate behavior, which refers to signal values changing at different rates over the

same interval of time. The possibility of solving the differential equations governing

the behaviour of nonlinear circuits with dual or multiple time steps is termed latency

exploitation. In this sense, multi-rate partial differential equation (MPDE) methods

can be viewed as a generalization of the ET method, where multiple time scales are

considered. These methods are intuitively formulated in the time domain.

MPDE approaches represent a family of methods based on the idea of replacing

the single time variable with a sum of time variables, one for each of the time scales in

the circuit. The underlying ordinary differential equations that describe the circuit are

reformulated as partial differential equations in the different time scales t1, . . . , tn. The

various MPDE methods are formulated by applying particular boundary conditions

and numerical methods to the different time dimensions. For example, ET analysis

is a MPDE method that applies HB analysis (implying a periodic boundary condi-

tion) to the t2 dimension corresponding to the carrier frequency or high-frequency

dynamic signal, and an initial condition and transient analysis to the t1 dimension

corresponding to the envelope signal or low-frequency dynamic. Another example of

MPDE method is [199], a recently proposed time-domain method suitable for highly

heterogeneous nonlinear RF circuits. In this case, the periodicity of the problem for

the t2 dimension is exploited and the periodic boundary value problem that arises

is solved by using a shooting algorithm (a common time-domain technique used for

steady-state circuit simulation) based on multi-rate Runge-Kutta numerical methods.

3.3 Modulation-oriented Harmonic Balance

The theoretical foundations for the Modulation-oriented Harmonic Balance (MHB)

method were first proposed by Rizzoli in 1996 [20]. MHB is aimed at the analysis of

nonlinear microwave circuits driven by narrowband modulated RF signals. In this

method, it is considered that any variable in a nonlinear circuit under a multitone

excitation can be written in the form

x(t) =
∞∑

h=−∞

∞∑

s=−∞

Xh,se
j(Ωh+Ωs)t =

∞∑

h=−∞

Xh(t)e
jΩht, (3.14)

where

Xh(t) =
∞∑

s=−∞

Xh,se
jΩst, (3.15)

Ωs accounts for the low-frequency mixing products, and Ωh accounts for the high-

frequency mixing products. The complex quantity Xh(t) is the modulation law of the
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h-th mixing product of the high-frequency components, and is slowly varying with

time. Xh(t) is also referred to as the time-dependent h-th harmonic of x(t). Therefore,

in the MHB method, the unknowns are the time-dependent harmonics Xh(t) instead

of the regular harmonics.

If we reformulate the aforementioned expressions to consider a modulated excita-

tion instead of a multitone excitation, they can be written as:

x(t) =
1

2

∞∑

h=−∞

∞∑

m=−∞

X̃(h,m)ej(hωc+mωm)t =
1

2

∞∑

h=−∞

x̃(h, t)ejhωct, (3.16)

where

x̃(h, t) =
1

2

∞∑

m=−∞

X̃(h,m)ejmωmt, (3.17)

and ωm accounts for the low-frequency variation of the baseband signal while ωc is

the carrier frequency. Note that it is necessary to assume quasi-periodic complex en-

velopes x̃(h, t) so that their Fourier series can be defined and used in (3.16)-(3.17).

However, the discussion made in the MHB method is also applicable to generic com-

plex envelopes of finite duration, as long as the formulation is made in terms of time-

domain expressions of the complex envelopes and does not include their Fourier co-

efficients. In this case, the unknowns are the complex envelopes x̃(h, t) of all the har-

monics of the carrier frequency. Moreover, the complex envelopes are sampled at a

finite number of uniformly spaced time instants tk, with 1 ≤ k ≤ K, and the complex

quantities x̃(h, tk) are taken as the problem unknowns.

In order to perform an HB analysis, balancing of the linear and nonlinear currents

now leads to the following expression in terms of complex envelopes:

∞∑

h=−∞

[

ĩLIN(h, t) + ĩNL(h, t)
]

ejhωct = 0. (3.18)

The summation (3.18) looks like a Fourier series, but its terms are not orthogonal be-

cause the coefficients in brackets are time dependent. However, the slow dependence

on time of the complex envelopes can be used in order to obtain orthogonal terms.

Considering this property, it is assumed that x̃(h, t) remains virtually unchanged in

the time interval required to sweep the high-frequency components given for the car-

rier harmonics, since the complex envelope is a slowly varying signal. On this basis,

the terms ĩLIN(h, tk) and ĩNL(h, tk) are kept fixed over the time dimension correspond-

ing to the high-frequency. Therefore, (3.18) can be rewritten as:

ĩLIN(h, tk) + ĩNL(h, tk) = f̃(h, tk) ≈ 0, (3.19)

for all values of h and k. Note that the complex envelopes are only approximately bal-

anced. This approximation becomes worse as the complex envelopes become faster.
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Regarding the expressions for the currents of the linear subcircuit, if we consider

that the mωm components are small, the admittance matrix of the circuit Y(ω) can

be approximated by a low-order Taylor series expansion about each harmonic of the

carrier

Y(ω) = Y(hωc + mωm) = Y(hωc) +
N∑

n=1

1

n!
Ωn dnY(ω)

dωn

∣
∣
∣
∣
∣
ω=hωc

+ O(Ωn),

Ω = diag (ω − hωc) = diag (mωm),

(3.20)

with N sufficiently small. Taking into account (3.20), the frequency-domain equation

for the linear subcircuit can be written as:

Ĩ(h,mωm) = Ĩs(h,mωm) +

[

Y(hωc) +
N∑

n=1

1

n!
Ωn dnY(ω)

dωn

∣
∣
∣
∣
∣
ω=hωc

]

Ṽ(h,mωm) , (3.21)

and the following time-domain equation is obtained by inverse Fourier transform:

ĩ(h, t) = ĩs(h, t) + Y(hωc)ṽ(h, t) +
N∑

n=1

(−j)n

n!

dnY(ω)

dωn

∣
∣
∣
∣
∣
ω=hωc

dnṽ(h, t)

dtn
. (3.22)

On the other hand, the time derivatives contained in the implicit time-domain

equations which define the nonlinear elements of the circuit must also be expressed in

terms of the complex envelopes. For example,

dx(t)

dt
=

∞∑

h=−∞

[

jhωcx̃(h, t) +
dx̃(h, t)

dt

]

ejhωct. (3.23)

The derivatives of the complex envelopes included in (3.22) and (3.23) are usually

evaluated numerically by using a discretization rule, as the ones presented in Sec-

tion 2.2.5.

Rizzoli remarks in [20] that the entire procedure breaks down if the bandwidth

of the modulation law is not small enough with respect to the high-frequency funda-

mentals. More relevantly, the Jacobian matrix obtained when solving by a Newton

iteration is actually a band matrix where only a number of submatrices given by the

kind of discretization rule employed are nonzero, instead of the full matrix required

by a conventional multitone HB. Furthermore, the diagonal submatrices in the Jaco-

bian are often dominant with respect to the off-diagonal ones, allowing us to reduce it

to a block-diagonal form with a strong increase in numerical efficiency. Therefore, the

MHB is much faster than the conventional multitone HB.
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3.4 Envelope Currents method

The Envelope Currents (EC) method [18] was first presented by Borich in 1999 as an

efficient tool for the simulation of weakly nonlinear communications circuits. This

method is oriented to the analysis of the spectral regrowth suffered by nonlinear cir-

cuits when they are excited by digitally-modulated narrowband signals. It can be

considered as an efficient extension of the Nonlinear Currents (NC) method for digi-

tal communications signals.

In order to achieve a considerable reduction of the simulation time, in this method

a weakly nonlinear behaviour of the circuits is assumed. Despite the microwave am-

plifiers are employed closer and closer to saturation to obtain higher output power

levels and efficiency, a high linearity is still necessary to get a better performance of

the system. Because of this the wireless communications circuits are often operated

in a weakly nonlinear regime. The HB techniques usually converge faster for weakly

nonlinear circuits than for strongly nonlinear circuits, due to the smaller number of

iterations needed. However, these methods do not directly exploit the quasi-linear

characteristic. In the EC method, a significant improvement of the simulation time is

achieved by assuming a narrowband excitation and a weak nonlinearity.

In order to apply this method, the problem is formulated in terms of the modified

nodal analysis equations of the equivalent circuit for the device to be analysed, as it

was explained in Section 2.3.1. The nodal voltages of the circuit are considered to be

given by a sum of incremental voltages

v(t) = V0 + v1(t) + . . . + vn(t), (3.24)

where the voltage V0 represents the dc component. The nonlinear elements are repre-

sented by means of power series about the bias point, as it has been detailed in Section

2.3.2, with a finite number of terms. According to the weakly nonlinear approxima-

tion, it is assumed that the incremental currents and voltages are small enough, that

is, that the nonlinearities of the elements are mild enough for the currents of the con-

ductances, capacitances and dependent sources to be approximated by the first terms

of their power series expansions. In the EC method, all the summations are extended

up to N = 3

ig(t) =
3∑

k=1

gkv
k(t),

ic(t) =
3∑

k=0

ckv
k(t)

dvc(t)

dt
,

i(t) =
3∑

k=1

gk0v
k(t) +

3∑

l=1

g0lu
l(t) +

3∑

k=1

3∑

l=1

gklv
k(t)ul(t).

(3.25)
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The EC method is based on the application of the NC method described in Sec-

tion 2.5.4.2 to a circuit whose excitation currents are narrowband modulated signals

expressed as

is(t) = Re
{
ĩs(t)e

jωct
}

. (3.26)

In this case, any circuit variable takes the following form for the n-th iteration:

xn(t) =
1

2

n∑

h=−n

x̃n(h, t)ejhωct, (3.27)

where x̃n(h, t) is the complex envelope of the signal about the h-th harmonic of ωc.

Note that all the summations are limited to |h| < n, since the NC method is applied

and the nonlinear currents used do not exceed order n, agreeing with the number of

the iteration. Taking into account that the components of xn(h, t) which are centred at

−ωc, . . . ,−nωc are the complex conjugates of those centred at ωc, . . . , nωc, it is usual to

consider only positive frequencies

x̂n(t) =
n∑

h=0

x̃n(h, t)ejhωct . (3.28)

Two basic assumptions are made in the EC method: the first one is based on a

quasi-periodic treatment of the complex envelopes about each harmonic of ωc, i.e.,

to treat them as periodic signals, representing each complex envelope x̃n(h, t) by a

discrete number of sinusoids and introducing a Fourier series representation.

Under this assumption, the system of frequency-domain equations corresponding

to that solved in the NC method can be expressed as

Y(ω)Ṽn,h(ω − hωc) = Ĩn,h(ω − hωc) (3.29)

n = 1, . . . , N, h = 0, . . . , H,

where Y(ω) is the node admittance matrix of the augmented linear subcircuit.

Ṽn,h(ω − hωc) and Ĩn,h(ω − hωc) are the vectors containing the complex envelopes of

the node voltages and the excitation currents for the n-th iteration, evaluated around

the h-th harmonic.

In principle, it is possible to directly solve the system of equations (3.29) in order

to find Ṽn,h(ω − hωc), although this approach is not efficient. The envelopes need to

be sampled during long time intervals, what usually generates several thousands of

frequency components and would imply to evaluate and factorise Y(ω) for several

thousands of frequency points.

Because of this, the second assumption made is based on the fact that, if the excita-

tion is narrowband, the spectrum corresponding to the waveforms in the circuit will
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be concentrated in narrow frequency bands around hωc. Therefore, it is possible to

use a low-order Taylor series expansion for the frequency representation of the admit-

tance matrix about each harmonic ωc without a significant error. In the EC method, a

first-order expansion is considered enough for the general case, that is,

Y(ω) ≃ Y(hωc) + ΩY′(hωc), h = 0, . . . , n (3.30)

with

Ω = diag (ω − hωc), and Y′(hωc) =
dY(ω)

dω

∣
∣
∣
∣
ω=hωc

, (3.31)

although higher-order series expansions can be taken into account if a better accuracy

is desired when predicting the changes with modulation frequency experienced by

distortion components, i.e., to deal with the memory effects more rigorously.

If (3.30) is substituted into (3.29) and an inverse Fourier transform is applied to

recover the node voltage waveforms, the following expression is obtained:

[

Y(hωc) − jY′(hωc)
d

dt

]

ṽn(h, t) = ĩn(h, t), (3.32)

n = 1, . . . , N, h = 0, . . . , n

where ṽn(h, t) is the solution vector with the complex envelopes of the voltage wave-

forms around hωc for the n-th order nonlinear current. Equation (3.32) summarises

the EC method. For each n and each h, (3.32) is a system of linear differential equa-

tions expressed in terms of the complex envelopes of the node voltages. When this

algorithm is applied up to N = H = 3, twelve systems of equations will appear on the

whole, although some of them present trivial solutions and others are of no interest.

Finally, it is only necessary to solve four systems of equations.

The current envelopes appearing at the right-hand side of (3.32) are obtained by sub-

stituting the adopted representation in terms of the complex envelopes of the node

voltages, (3.27), in the nonlinear current expressions obtained in 2.5.4.2, and then col-

lecting all the terms centred at the frequency hωc. The results of this procedure are as

follows:

• For the first-order solution (n = 1), the current envelope is the envelope of the

original current source of the circuit.

• For the second order (n = 2), there are two current envelopes corresponding to

the baseband component and the second-harmonic zone, 2ωc. The expressions

taken by the second-order current envelopes for the different types of nonlinear

elements are the following:
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– For a nonlinear conductance:

ĩ2(0, t) = −
g2

2
|ṽ1(1, t)|

2

ĩ2(2, t) = −
g2

2
ṽ2

1(1, t) (3.33)

– For a nonlinear current source controlled by two voltages:

ĩ2(0, t) = −
[g20

2
|ṽ1(1, t)|

2 +
g02

2
|ũ1(1, t)|

2 +
g11

2
ℜ{ṽ1(1, t)ũ

∗
1(1, t)}

]

ĩ2(2, t) = −
[g20

2
ṽ2

1(1, t) +
g02

2
ũ2

1(1, t) +
g11

2
ṽ1(1, t)ũ1(1, t)

]

(3.34)

– In the case of a nonlinear capacitance, it has been considered that the deriva-

tives appearing in its power series expansion can be approximated by the

derivatives acting on the carrier signals only (neglecting the envelopes vari-

ation compared to that of the carrier), so their action is multiplication by

jhωc. Therefore, the expressions obtained when nonsignificant terms are

neglected are:

ĩ2(0, t) = −
c1

4

d

dt
(|ṽ1(1, t)|

2) ≈ 0

ĩ2(2, t) ≈ −jωc
c1

2
ṽ2

1(1, t) (3.35)

• For the third order (n = 3), there are also two current envelopes corresponding to

the fundamental and third-harmonic zone, 3ωc. However, it is the fundamental

frequency on which the main practical interest is focused. The expressions of the

current envelopes for the third order are the following:

– For a nonlinear conductance:

ĩ3(1, t) = −

[
3g3

4
ṽ2

1(1, t)ṽ
∗
1(1, t) + 2g2ṽ1(1, t)ṽ2(0, t) + g2ṽ

∗
1(1, t)ṽ2(2, t)

]

ĩ3(3, t) = −
[g3

4
ṽ3

1(1, t) + g2ṽ1(1, t)ṽ2(2, t)
]

(3.36)

– For a nonlinear current source controlled by two voltages:

ĩ3(1, t) = −

{
3g30

4
ṽ2

1(1, t)ṽ
∗
1(1, t) +

3g03

4
ũ2

1(1, t)ũ
∗
1(1, t)+

2g20

[
1

2
ṽ∗

1(1, t)ṽ2(2, t) + ṽ1(1, t)ṽ2(0, t)

]

+

2g02

[
1

2
ũ∗

1(1, t)ũ2(2, t) + ũ1(1, t)ũ2(0, t)

]

+

g11

[
1

2
ṽ∗

1(1, t)ũ2(2, t) + ṽ1(1, t)ũ2(0, t) +
1

2
ũ∗

1(1, t)ṽ2(2, t) + ũ1(1, t)ṽ2(0, t)

]

+
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g21

4

[
ṽ2

1(1, t)ũ
∗
1(1, t) + 2|ṽ1(1, t)|

2ũ1(1, t)
]
+ (3.37)

g12

4

[
ũ2

1(1, t)ṽ
∗
1(1, t) + 2|ũ1(1, t)|

2ṽ1(1, t)
]}

ĩ3(3, t) = −
{g30

4
ṽ3

1(1, t) +
g03

4
ũ3

1(1, t) +
g21

4
ṽ2

1(1, t)ũ1(1, t)+

g12

4
ũ2

1(1, t)ṽ1(1, t) + g20ṽ1(1, t)ṽ2(2, t) + g02ũ1(1, t)ũ2(2, t)+ (3.38)

g11

2
[ṽ1(1, t)ũ2(2, t) + ũ1(1, t)ṽ2(2, t)]

}

– For a nonlinear capacitance:

ĩ3(1, t) ≈ −jωc

[c2

4
ṽ2

1(1, t)ṽ
∗
1(1, t) + c1ṽ1(1, t)ṽ2(0, t) +

c1

2
ṽ∗

1(1, t)ṽ2(2, t)
]

ĩ3(3, t) ≈ −j3ωc

[ c2

12
ṽ3

1(1, t) +
c1

2
ṽ1(1, t)ṽ2(2, t)

]

(3.39)

In order to solve the system of linear differential equations of the complex en-

velopes in (3.32), the waveforms of the complex envelopes are sampled at M points

through the time interval (M − 1)∆t, where the time step ∆t is chosen appropriately.

When, for example, the Backward-Euler discretization method is applied, the follow-

ing iterative process results:

[jY′(hωc) − ∆t · Y(hωc)] ṽn(h, tk+1) = (3.40)

jY′(hωc)ṽn(h, tk) − ∆t · ĩn(h, tk+1) ,

ṽn(h, t0) = 0,

n = 1, . . . , N, h = 0, . . . , n .

Other higher-order integration formula can can be employed with similar results,

as long as the time step ∆t is maintained constant. The coefficient matrices [jY′(hωc)−

∆t · Y(hωc)] are sparse and it is necessary to factorise them only once for the initial

iteration. It can be observed that only four of these matrices need to be stored and

factorised. Therefore, once the coefficient matrices are factorised, almost the complete

simulation time is devoted to solve triangular sparse linear systems of equations. This

produces a considerable reduction of the simulation time.

As it can be observed in (3.40), a constraint has been imposed that the envelope

waveform starts with a zero value, without implying any loss of accuracy or general-

ity in the distortion analysis. Since the envelope waveform presents a smooth slope

and the original data sequence is usually long enough, the transient is not likely to

introduce non-negligible errors in the spectral regrowth calculation.
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The main limitation of this method arises from the weakly nonlinear approxima-

tion that has been made, the dynamic range of application for the EC method being

affected. If we considered an amplifier circuit driven by a sinusoidal signal, it can be

analysed using HB in a direct way and a very accurate prediction of the real solution

will be obtained. When comparing the results with the EC method to those obtained

with HB, it is observed that they show a good agreement for low input power levels,

but the EC method starts to depart from the solution as the amplifier goes into the

saturation region and its gain starts to compress. This happens because in the satu-

ration region the low-order power series expansions used do not describe adequately

the device behaviour. In order to overcome this limitation, Borich proposed to extend

the power series expansions up to N = 5 in the EC method described, to increase the

dynamic range and achieve a better agreement with the HB simulations at the cost of

nearly doubling the computation time and storage space.

3.5 Envelope currents method with extended dynamic

range

The aforementioned limitations of the EC method regarding its dynamic range may

prevent the use of this efficient technique to wireless communications circuits oper-

ated with signal levels near the 1 dB compression point, for which the analysis of non-

linear distortion is really significant. In addition to this, the previous method presents

a second disadvantage: due to the fact that it is based on the NC method, it presents

poor convergence properties in the same manner than the latter and becomes an im-

practical technique when the order n increases.

In order to overcome these disadvantages and to improve the accuracy of the EC

method in [18], a new current envelopes method with extended dynamic range was

proposed in [19]. In the same way that in EC and NC methods, this approach is based

on writing the output of the circuit as a sum of incremental voltages, but now each

of these voltages is the solution of a time-varying linear circuit excited by a nonlinear

current. At each step of the iterative process it is necessary to update the values of

the elements of the circuit (whose topology remains unchanged), together with the

nonlinear current sources. The main advantages of this technique are the good con-

vergence properties and better accuracy than [18] that it presents. The theoretical base

of this technique will be reviewed next.

For the sake of clarity, in [19] a simple circuit with a single node is considered, as

it is shown in Figure 3.2. This circuit consists of a nonlinear conductance, a nonlinear

capacitance, and a current source Is + is(t). The corresponding integro-differential
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Figure 3.2: Single-node nonlinear circuit.

equation can be expressed in a symbolic way as

L[V (t)] + I[V (t)] + c[V (t)]
dv(t)

dt
= Is + is(t), (3.41)

where v(t) is the node voltage, I(V ) and IC(V ) = c(V )
dv

dt
are the currents flowing

through the nonlinear conductance and capacitance, respectively, and L[·] represents

an integro-differential operator accounting for the linear elements of the circuit. As

in the previous section, V (t) is a summation of incremental voltages plus the corre-

sponding residual voltage

V = V0 + v1 + · · · + vn + δvn = v̄n + δvn, (3.42)

where explicit temporal dependence has been neglected to simplify notation. First,

the dc voltage V0 is calculated taking into account only the current Is in (3.41). By

expanding I(V ) and c(V ) in Taylor series about V0 and substituting them in (3.41), the

following linear equation is obtained for the first incremental voltage v1:

L[v1] +

[

g(V0) + c(V0)
d

dt

]

v1 = is. (3.43)

Note that the NC method leads to the same equation for the linear term v1. Therefore,

the first residual voltage δv1 satisfies the following equation:

L[δv1] + I(v) + c(v)
dv

dt
= I(V0) + g(V0)v1 + c(V0)

dv1

dt
. (3.44)

Taking into account that δv1 = v2 + δv2, the previous process is repeated, express-

ing the Taylor series expansions of I(v) and c(v) about v̄1 = V0 + v1. Similarly, the

second incremental voltage v2 can be evaluated by solving the following linear equa-

tion, which is now a time-varying equation:

L[v2] +

[

g(v̄1) + c(v̄1)
d

dt

]

v2 = i2, (3.45)

with

i2 = −

[

I(v̄1) + c(v̄1)
dv̄1

dt
− I(V0)

]

+

[

g(V0) + c(V0)
d

dt

]

v1. (3.46)
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Figure 3.3: Different approaches for the simulation of microwave nonlinear

circuits. (a) NC method. (b) NEC method.

It is not difficult to generalise these results, proving that each incremental voltage

vn can be calculated by solving the corresponding time-varying linear equation

L[vn] +

[

g(v̄n−1) + c(v̄n−1)
d

dt

]

vn = in, (3.47)

with

in = −

[

I(v̄n−1) + c(v̄n−1)
dv̄n−1

dt
− I(v̄n−2) − c(v̄n−2)

dv̄n−2

dt

]

+

[

g(v̄n−2) + c(v̄n−2)
d

dt

]

vn−1.

(3.48)

Assuming that this iterative process converges, the residual voltage δvn becomes neg-

ligible for a sufficiently high order n.

Note that this approach shares several aspects with the NC method presented

in 2.5.4.2. As it is shown in Figure 3.3(a), in the NC method the components of or-

der n are determined by solving a linear circuit with constant coefficients, extended

with the linear terms of the nonlinear elements and excited by the appropriate non-

linear currents which depend on the voltages of orders lower than n. The approach

followed in the NEC method is illustrated in Figure 3.3(b). With the NEC method, the

same linear circuit is solved, but it is now extended with time-varying conductances

and capacitances. These time-varying elements come from the linear terms of the Tay-

lor series expansions of the nonlinearities, which are evaluated about the waveforms

of the voltages computed in the previous iteration. The resulting time-varying linear

circuit is excited by nonlinear currents which take into account the residuals coming

from the overall current balance in the nonlinear circuit.

When the input signal is a continuous wave (CW), for each iteration, all the signals

in the time-varying circuit are periodic signals. Therefore, they can be expressed as a
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Fourier series and (3.47) can be rewritten in matrix notation

[Yg + G + jΩC]vn = in, (3.49)

where vn and in are vectors containing the Fourier coefficients of vn(t) and in(t), usu-

ally truncated for a small number of harmonics. G and C are Toeplitz matrices with

the Fourier coefficients of the time-varying conductance and capacitance, respectively.

These matrices, accounting for the relationship between the frequency-domain cur-

rents and voltages in a time-varying circuit element, are also referred to as a conversion

matrices [8]. Yg is the admittance matrix of the linear circuit and Ω is a diagonal matrix

whose elements are [−Hωc, . . . , 0, . . . , Hωc] when H harmonics plus the dc component

are considered. It can be observed that (3.49) is equivalent to make an iteration of HB

using the Newton-Raphson algorithm, therefore it presents quadratic convergence as

the latter.

For the case of digital communications signals, the signals in the circuit are quasi-

periodic and can be expressed as a function of their time-varying complex envelopes.

Thus, following a similar development to that presented in 3.4, the n-th incremental

voltage can be expressed as

vn(t) =
1

2

∞∑

h=−∞

ṽn(h, t)ejhωct, (3.50)

where both positive and negative frequencies have been considered. The rest of the

variables in the circuit present similar expressions, and the admittance matrix of the

circuit can be approximated by the following term:
[

Yg(hωc) − jY ′
g(hωc)

d

dt

]

. (3.51)

With this, (3.47) can be rewritten as:

∞∑

l=−∞

ejlωct

∞∑

h=−∞

{Yg(hωc)δhl + g̃(l − h, t) + jhωcc̃(l − h, t)+

+
[
c̃(l − h, t) − jY ′

g(hωc)δhl

] d

dt

}

ṽn(h, t) =
∞∑

l=−∞

ejlωctĩn(l, t), (3.52)

where δhl is the Kronecker delta function.

Being H the number of significant harmonics, we can define the vectors vn(t) =

[ṽn(−H, t), . . . , ṽn(H, t)]T and in(t) = [̃in(−H, t), . . . , ĩn(H, t)]T . Then, taking into ac-

count the linear independence of the exponential functions ejlωct, it is possible to

rewrite (3.52) in matrix notation as
{

Yg + G(t) + jΩC(t) +
[
C(t) − jY′

g

] d

dt

}

vn(t) = in(t) , (3.53)
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where the Toeplitz matrix G(t) is now time-varying and is defined from the column

vector [g̃(0, t), . . . , g̃(2H, t)]T . Matrix C(t) is analogously defined. These results can

be derived alternatively by using two temporal dimensions t1 and t2, following the

reasoning presented in [17].

Finally, the envelope waveforms can be sampled with a time step ∆t and the dif-

ferential operator in (3.53) can be discretised using the Backward-Euler rule, resulting

the update procedure of this method

{
[Yg + G(k) + jΩC(k)] ∆t +

[
C(k) − jY′

g

]}
vn(k) =

= in(k)∆t +
[
C(k) − jY′

g

]
vn(k − 1) , (3.54)

where C(k), G(k) and the term in the right-hand side of the equation in(k) depend on

the node voltages of the previous iterations, and all the harmonics in vn(k − 1) have

been evaluated for k − 1.

From equation (3.54) it can be seen that the NEC method gives slightly more com-

plex expressions than the EC method for the incremental voltages involved in an ac-

curate prediction of the spectral regrowth experienced by communications signals.

Therefore, this method implies a trade-off between the accuracy of simulations and

the computational cost. However, the complexity of solving time-varying systems is

partially compensated with the reduction in the number of equations involved.

3.6 Simplified Newton method for weakly nonlinear

communications circuits

One of the original contributions presented in this Thesis is the Simplified Newton

method (SN) proposed in [32] for the efficient analysis of weakly nonlinear circuits

driven by communications signals, which is based on the EC method. The main ad-

vantage of the proposed method is that it implies a reduction of the computation time

while a good adjustment with experimental measurements is achieved. This neces-

sity of speeding up the simulations of nonlinear communications circuits stems from

the requirement of ACPR predictions, which are of great interest in design and op-

timization processes, but also results a very time consuming task because they are

swept-power simulations. To predict ACPR, an accurate prediction of the spectral

regrowth for the modulated input signal is required at each input power level. There-

fore, the proposed efficient method is appropriate for the simulation of ACPR and

output power of an amplifier versus input power (with a digitally-modulated input

signal.)
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As it has been explained in previous sections, during the last decades several tech-

niques for the evaluation of nonlinearities in microwave circuits have been developed

which can also be used for the prediction of ACPR. HB techniques using the Newton-

Raphson algorithm (HB-N) or the relaxation methods (HB-R) presented in Section

2.4 are examples of very efficient simulation methods when periodic or quasi-periodic

signals and general nonlinear circuits are considered [37], [38], [39]. However, in wire-

less communications systems the circuits are usually driven in a weakly nonlinear

mode and this fact can be exploited to perform fast simulations even considering the

high number of spectral lines contained in digitally modulated signals. The methods

explained in Sections 3.4 and 3.5 present different approaches based on the complex

envelopes of the variables of the circuit and make the approximation of a weakly non-

linear behaviour to use first-order Taylor series expansions, each of them in a different

way. Both methods are more efficient for communications signals than conventional

multitone HB techniques, since the use of large multidimensional frequency-domain

matrices is replaced by a limited number of time-domain integrations of the complex

envelopes. The EC method stands out because of its simplicity and presents better

simulation times, but with a lower accuracy and more limited dynamic range.

In this section, a new approach for distortion analysis of weakly nonlinear circuits

excited with RF narrowband signals will be presented, maintaining the simplicity of

the reduced number of linear systems of equations employed in the EC method and

achieving a further reduction in computation time. In addition to this, the proposed

method can be easily extended to include fifth-order terms in order to improve the

accuracy of predictions.

Following an analogous explanation to that presented in Section 3.5, let us consider

the same simple nonlinear circuit with a single node used there, which contains a

nonlinear conductance and a nonlinear capacitance with currents expressed in terms

of the node voltage, and is driven by a single current source. The aforementioned

circuit is shown again if Figure 3.4 for convenience. The voltage V (t) at the node of

the circuit is an incremental voltage

V (t) = V0 + v1(t) + . . . + vn(t) + δvn(t), (3.55)

where voltage V0 corresponds to the dc term. The power series expansions of the non-

linear current, I(V ), and the nonlinear charge, q(V ), are expressed about the dc bias

point, in this case. These series expansions will be maintained for all the successive

iterations. As a result, it is possible to distinguish two terms in each of the nonlinear

elements: a first term which is linear to the node voltages and a second term with a

nonlinear dependence on such voltages:
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Figure 3.4: Single-node nonlinear circuit.

• For a nonlinear conductance:

i[v(t)] =
∞∑

k=1

gkv
k(t) = g1v(t) + iNL[v(t)] (3.56)

• For a nonlinear current source controlled by two voltages:

i[v(t), u(t)] =
∞∑

k, l
k+l≥1

gklv
k(t)ul(t) = g10v(t) + g01u(t) + iNL[v(t), u(t)] (3.57)

• For a nonlinear capacitance:

ic[v(t)] =
d

dt

∞∑

k=1

qkv
k(t) = c0

dv(t)

dt
+

dqNL[v(t)]

dt
(3.58)

The node voltage in the example circuit satisfies the equation

L[V (t)] + I[V (t)] +
dq[V (t)]

dt
= Is + is(t), (3.59)

with L[·] an integro-differential operator which accounts for the linear elements of the

circuit. For the dc voltage (3.59) can be solved as

L[V0] + I[V0] = Is, (3.60)

while the following equation applies on the rest of the incremental voltage:

L[v1(t) + δv1(t)] + I[v1(t) + δv1(t)] +
dq[v1(t) + δv1(t)]

dt
= is(t). (3.61)

If explicit time dependence is omitted to simplify notation, the following linear

equation is obtained for the first incremental voltage v1:

L[v1] + g1v1 + c0
dv1

dt
= is. (3.62)

Again, v1 is calculated in the same way than the linear term of the NC method and the

NEC method. The first residual voltage δv1 satisfies the equation

L[δv1] + g1δv1 + iNL(v) + c0
dδv1

dt
+

dqNL(v)

dt
= 0. (3.63)
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Taking into account that δv1 = v2 + δv2, the second incremental voltage v2 can be

evaluated by solving the linear equation

L[v2] + g1v2 + c0
dv2

dt
= i2(v̄1) (3.64)

with

i2(v̄1) = −iNL(v̄1) −
dqNL(v̄1)

dt
(3.65)

When these results are generalised, the following equation is obtained to calculate

the n-th incremental voltage:

L[vn] + g1vn + c0
dvn

dt
= in(v̄n−1) (3.66)

with

in(v̄n−1) = − [iNL(v̄n−1) − iNL(v̄n−2)] −

[
dqNL(v̄n−1)

dt
−

dqNL(v̄n−2)

dt

]

(3.67)

Note that, for each iteration, the Taylor series expansions are calculated about the bias

point. Therefore, for all of them the same time-invariant linear circuit is being solved,

consisting of the linear elements together with the linear part of the nonlinear ele-

ments, as in the EC method. In contrast to this, the applied nonlinear currents differ

from that of the NC method, because in that case the nonlinear currents expressions

are obtained by neglecting all the terms with a order higher than the present itera-

tion. The reason for this is that the NC method was proposed for the obtention of the

NLTFs involved in Volterra series representations. Thus, the nonlinear currents used

in the proposed approach are a better approximation to the real nonlinear currents

than those of the NC method, since they consider higher order terms.

In order to obtain the incremental voltages for a general circuit with more than one

node it is necessary to solve the following system of equations:

L̄[vn] = in, n = 1, 2, . . . , N. (3.68)

where L̄[·] represents a general linear operator in matrix notation. This system of

integro-differential equations is obtained by means of a nodal analysis of the aug-

mented linear subcircuit. The current sources in applied to the time-invariant linear

circuit in (3.68) are as follows:

1. For the first iteration (n = 1), the excitation current is the original current source.

2. The nonlinear current source for the second iteration (n = 2) in the example of

the single-node circuit of Figure 3.4 is

i2 = −iNL(v1) −
dqNL(v1)

dt
= −

∞∑

k=2

gkv
k
1 −

d

dt

∞∑

k=2

ck−1

k
vk

1 . (3.69)
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In a more realistic case, such as the equivalent circuit model for a FET amplifier

shown in Figure 2.11 of Section 2.4.4, it is necessary to consider the nonlinear

currents associated to all of the nodes, each of them involving different contri-

butions. The term corresponding to the drain-to-source nonlinear current (Ids)

depends on the gate-to-source (v) and drain-to-source (u) voltages and is given

by the expression

i2 = −iNL(v1, u1) = −
∞∑

k=2

gk0v
k
1 −

∞∑

l=2

g0lu
l
1 −

∞∑

k,l=1

gklv
k
1u

l
1, (3.70)

and those corresponding to the nonlinear capacitances Cgs and Cgd, which de-

pend on a single voltage, are given by

i2 = −
dqNL(v1)

dt
= −

d

dt

∞∑

k=2

ck−1

k
vk

1 = −
∞∑

k=1

ckv
k
1

dv1

dt
. (3.71)

These power series expansions can be extended up to the desired K-th power in

order to achieve the appropriate accuracy in results.

3. In order to obtain the nonlinear current sources for the third iteration in the cir-

cuit with a single node, we recall that

i3 = −[iNL(v2 + v1) − iNL(v1)] −

[
dqNL(v2 + v1)

dt
−

dqNL(v1)

dt

]

. (3.72)

Considering that the incremental voltage v2(t) is small compared to the linear

term v1(t), the exciting current can be approximated by its first-order Taylor ex-

pansion

iNL(v1 + v2) ≈ iNL(v1) +
diNL(v)

dv

∣
∣
∣
∣
v=v1

· v2,

dqNL(v1 + v2)

dt
≈

dqNL(v1)

dt
+

d

dt

[

dqNL(v)

dv

∣
∣
∣
∣
v=v1

· v2

]

.

(3.73)

Therefore,

i3 = −
diNL(v)

dv

∣
∣
∣
∣
v=v1

· v2 −
d

dv

dqNL(v)

dt

∣
∣
∣
∣
v=v1

· v2 −
dqNL(v)

dv

∣
∣
∣
∣
v=v1

·
dv2

dt
. (3.74)

4. We could generalise this procedure to obtain the nonlinear current sources for

the n-th iteration

in = −
diNL(v)

dv

∣
∣
∣
∣
v=vn−2

· vn−1 −
d

dv

dqNL(v)

dt

∣
∣
∣
∣
v=vn−2

· vn−1 −
dqNL(v)

dv

∣
∣
∣
∣
v=vn−2

·
dvn−1

dt
.

(3.75)
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In the proposed SN method, the number of iterations for the algorithm in (3.68) are

restricted to N = 3, relying on a weakly nonlinear behaviour.

In case a narrowband RF modulated excitation signal is applied, a procedure sim-

ilar to that of [18] can be put into practice to obtain, for the n-th iteration and the h-th

harmonic, the following system of linear equations for the complex envelopes of the

incremental node voltages

[

Y(hωc) − jY′(hωc)
d

dt

]

ṽn(h, t) = ĩn(h, t). (3.76)

The expressions for ĩn(h, t) in (3.76) include contributions of each nonlinear ele-

ment of the circuit. As it was previously stated, for the equivalent circuit of a FET

amplifier the nonlinear envelope currents include the contributions of the nonlinear

current Ids and the nonlinear capacitances Cgs and Cgd, being the first one the main

source of nonlinear distortion [9], [21], [28], [73], [74]. Close-form expressions for

the second and n-th order nonlinear envelope currents are obtained in detail in Ap-

pendix B. Since narrowband signals are being considered, we are interested in the

expressions for the currents around the most significant harmonics of the carrier. For

example, when the power series expansions are truncated with K = 3, the second-

order nonlinear envelope current due to Ids can be expressed around the harmonics

as

ĩ2(0, t) = −
[g20

2
|ṽ1(t)|

2 +
g02

2
|ũ1(t)|

2 +
g11

2
Re{ṽ1(t)ũ

∗
1(t)}

]

(3.77)

ĩ2(1, t) = −

[
3g30

4
|ṽ1(t)|

2ṽ1(t) +
3g03

4
|ũ1(t)|

2ũ1(t) +
g21

4
ṽ2

1(t)ũ
∗
1(t)+

g21

2
|ṽ1(t)|

2ũ1(t) +
g12

4
ũ2

1(t)ṽ
∗
1(t) +

g12

2
|ũ1(t)|

2ṽ1(t)
]

(3.78)

ĩ2(2, t) = −
[g20

2
ṽ2

1(t) +
g02

2
ũ2

1(t) +
g11

2
ṽ1(t)ũ1(t)

]

(3.79)

ĩ2(3, t) = −
[g30

4
ṽ3

1(t) +
g03

4
ũ3

1(t) +
g21

4
ṽ2

1(t)ũ1(t) +
g12

4
ũ2

1(t)ṽ1(t)
]

(3.80)

And the analogous expressions due to the nonlinear capacitances Cgs and Cgd trun-

cated with K = 2 (corresponding to third order) are

ĩ2(0, t) ≈ 0 (3.81)

ĩ2(1, t) ≈−jω
c2

4
|ṽ1(t)|

2ṽ1(t) (3.82)

ĩ2(2, t) ≈−jω
c1

2
ṽ2

1(t) (3.83)

ĩ2(3, t) ≈−jω
c2

4
ṽ3

1(t) (3.84)
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where the non-significant terms have been neglected.

Once the complex envelopes of the nonlinear currents have been determined, all

the waveforms can be sampled with a time step ∆t and the Backward-Euler discretiza-

tion method can be used to solve the system of equations (3.76) for each iteration and

each harmonic

[jY′(hωc) − ∆t · Y(hωc)] ṽn(h, tk+1) = jY′(hωc)ṽn(h, tk) − ∆t · ĩn(h, tk+1) . (3.85)

Furthermore, this procedure can be extended to include more harmonics and

higher-order terms in the power series expansions of the nonlinear currents by apply-

ing (3.85) for n = 1, . . . , N −1 and h = 0, . . . , H , whereas in the last iteration (n = N ), it

is necessary to apply (3.85) only for h = 1, since just the fundamental frequency needs

to be considered for in-band responses.

In order to illustrate the efficiency of the proposed approach, a comparison with

the EC method can be made in a theoretical way. In terms of the algebraic set of equa-

tions to solve, the EC method can be considered a suboptimal method, since those

terms with an order higher than n are being neglected in the right-hand side of the

equation. However, the proposed method implements an iterative process based on a

Simplified Newton algorithm, where the Jacobian is determined for the initial dc iter-

ation and then reused for the rest of iterations. The reutilization of the Jacobian relies

on the fact that, if the circuit is behaving near-linearly as it has been assumed, the Jaco-

bian does not vary much from iteration to iteration. Therefore, the convergence of the

proposed method results slightly slower than in the Newton-Raphson algorithm, but

the computational cost of each iteration is much smaller, so on the whole a reduction

in the computation time is accomplished.

On the other hand, the Simplified Newton approach presents as its main drawback

a reduced convergence region causing that, if the initial solution of the iterative pro-

cess is not close enough to the actual solution, there is a possibility that the method

will not converge. That is, if the nonlinear circuit being studied presents a strongly

nonlinear behaviour, the convergence of this method is not guaranteed. Nevertheless,

some results will be shown in Chapter 4 in which a satisfactory prediction of the non-

linear behaviour of an amplifier has been achieved with a power level near the 1 dB

compression point, where it exhibits a mildly nonlinear behaviour, demonstrating that

this restriction is not excessively strict.

Comparing also in terms of the circuit to be analysed, the idea of reusing the Ja-

cobian results in the fact that both approaches solve the same time-invariant linear

subcircuit with different exciting current sources for each iteration. For the first itera-

tion, both approaches use the original sources, therefore the voltages obtained in the
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first iteration are the same for the proposed method and the EC method. The main

difference between both approaches are the expressions for the second-iteration non-

linear sources. In the EC method the second-iteration nonlinear current sources are

given by the power series expansions in (3.70) with K = 2, whereas the proposed

method extends these power series expansions for several orders. In other words, the

nonlinear current sources used in the proposed method are a better approximation for

the real nonlinearity, which leads to a solution for the second iteration closer to the fi-

nal solution than the one produced by the EC method. In addition to this, subsequent

iterations for both approaches will produce a further reduction of the error, so that the

advantage of the proposed method, obtained in the solution of the second iteration, is

expected to be increased for the remainder iterations.

For example, a comparison of the expressions proposed for the second-order non-

linear currents in the EC and SN methods are presented in Table 3.1 for the case of the

nonlinear contribution of the Ids current of a FET amplifier. It can be observed that the

SN method includes higher-order terms, which gives a better approximation of the

real nonlinearity for the envelope currents.

Finally, it is worth noticing that, in this method, an incremental node voltage for

the complex envelope in the fundamental frequency zone can be obtained from the

second iteration. Consequently, it is necessary to solve only two linear systems of

equations to get a first correction to the linear prediction for the in-band complex en-

velope response. Furthermore, the good agreement between calculated and measured

spectral regrowth allows a reliable prediction of ACPR, even with only two iterations.
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Table 3.1: Comparison between the second-order nonlinear currents for the EC method and SN approach

Frequency zone EC method SN approach
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|ṽgs1(t)|

2 +
g02

2
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3.7 Envelope Currents methods for communications sig-

nals in mixers

3.7.1 Introduction

In this section, we will present two new methods proposed in [46] and [33] to evaluate

nonlinear distortion in mixers to which communication signals are applied as excita-

tions. Similarly to other methods previously treated in this chapter, these approaches

are based on complex envelope representation. The main difference is that they are

particularised for mixers, which are strongly nonlinear devices.

The nonlinear analysis of mixers is one of the most demanding tasks in microwave

circuits simulations. These difficulties are attributed to two common characteristics

of mixers. First, mixers are strongly nonlinear devices regarding the local oscillator

source; the mixing process itself involves a strongly nonlinear behaviour. Secondly,

the spectra of the signals appearing in mixers are complicated. Therefore, the algo-

rithms used to solve the nonlinear equations of these circuits usually converge slowly,

each iteration implies a high computational cost and storage necessities are signifi-

cant. In addition to this, the need for computational resources increases for the case of

mixers excited by modulated RF signals, making standard HB techniques inefficient.

For microwave mixers, the local oscillator (LO) power is usually much higher than

the input signal power. This situation leads to the idea that the input excitation can

be considered as a perturbation about the response to the LO; therefore, each of the

nonlinear elements of the circuit can be described by means of a low-order power

series expansion about the LO solution. This is similar to say that the incremental

I/V or Q/V characteristics of the nonlinear elements are weakly nonlinear. Note that

it does not imply assuming that the nonlinear device is weakly nonlinear; instead, it

means that the element is weakly nonlinear for small deviations from its instantaneous

large-signal voltage. Virtually all nonlinear solid-state devices meet this condition, as

long as they are not driven into saturation by the small-signal excitation.

An example of these procedures applied to the analysis of mixers is that proposed

in the landmark paper [40], where Egami employed a first-order expansion to study

the response of a mixer to a single tone signal. Later, Maas [41] extended Egami’s

method for two-tone intermodulation analysis. In [41], HB is used for the analy-

sis of the LO and time-varying Volterra series (TV-VS) for the small-signal analysis.

This procedure was also used in [200] to calculate two-tone intermodulation in a FET

mixer. A generalization of the TV-VS for the analysis of systems with two input ports

was presented in [42], and an extension to the TV-VS was presented in [43] for the
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analysis of narrowband modulated signals in mixers considering a discretised input

with 61 components. However, the random nature of the digital data recommends

simulating long symbol sequences and, consequently, about hundreds of thousands

frequency components are involved. In [44], Borich proposed a method to efficiently

analyse mixers with narrowband modulated signals following the principles of his

EC method. In [45], Thodesen proposed a method referred to as Parametric Harmonic

Balance that presents important savings in time and memory with respect to HB using

a Newton algorithm, yet showing a strong convergence.

The technique based on seeking only the small-signal output in problems where

the input excitation can be considered as a perturbation about the response to a large

sinusoidal signal is referred to as large-signal/small-signal analysis or conversion matrix

analysis [8]. The large-signal/small-signal analysis involves first analysing the non-

linear device under large-signal excitation only, usually by the HB method. The non-

linear elements in the equivalent circuit of the device are then linearised to create

small-signal, time-varying elements, and finally a small-signal analysis is performed.

3.7.1.1 Parametric Harmonic Balance

Parametric Harmonic Balance (PHB) is a variant of standard HB proposed by Thode-

sen in [45], which retains the advantages of standard HB but also exploits the weakly

nonlinear behaviour usually presented by the mixer with respect to one of its input

signals. PHB employs the technique of large-signal/small-signal analysis and splits

HB into two stages: one to compute the response to the large periodic signal of the

LO alone, and a second stage to compute the response to the input viewed as a per-

turbation from the solution previously computed in the first stage. Different HB algo-

rithms are employed for each stage, exploiting the strongly nonlinear nature for the

large signal and the weakly nonlinear nature for the small signal. The advantage of

this method is that equations are solved for significantly fewer frequencies in the first

stage when the convergence is more difficult. In addition, the information generated

in the first stage can be used to accelerate the second one.

The PHB method is used to solve the usual system of equations that stems from a

HB analysis

F(V) = I + YV + jΩQ + IG = 0. (3.86)

where two inputs are considered

I = I0 + Is, (3.87)

I0 representing the LO signal to which the circuit responds in a strongly nonlinear

way, and Is representing the input signal to which the circuit responds in a weakly
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nonlinear fashion. The circuit is considered to produce the output voltage V = V0 +

Vs, and each of these two contributions is calculated in a different stage.

For the first stage, the input signal is neglected and the circuit responds with V0

when only I0 is applied. It is assumed that I0, and therefore V0, are periodic. The

problem at this stage is solved by using an HB-N method, where the Jacobian matrix

JF(V) is updated for each iteration, being its elements

∂Fn(h)

∂Vm(l)
= Yn,m(h, l) + jhωc

∂Qn(h)

∂Vm(l)
+

∂IGn
(h)

∂Vm(l)
, (3.88)

with h and l indices for the harmonics. In the first stage of PHB, the double of the

usual number of harmonics, 2H , is considered in order to achieve less aliasing error

in the DFT and a better convergence for subsequent steps in the analysis.

For the second stage, a two-tone signal is considered with a total of M harmonics.

The response to the LO voltage V0 is assumed to be known, therefore the expressions

for the nonlinear elements in the circuit are linearised about this known voltage

Q̄(Vs,m) = Q̄
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(3.89)

and the same applies to ĪG(Vs,m). This change causes the circuit to become a para-

metric circuit. The HB error function in the second stage can be written as:

F(Vs,m) = I(m) + Y(m,m)V + jmωmQ̄(Vs,m) + ĪG(Vs,m) = 0,

m = 1, . . . ,M,
(3.90)

where a block Gauss-Seidel relaxation method is applied, which implies that each

harmonic is analysed separately. In addition to this, the Jacobian matrix is reused

for the second stage by using a Simplified Newton algorithm. The motivation for

doing these simplifications is the assumption that the circuit is weakly nonlinear for

the small signal. Finally, the algorithm that describes the second stage is given by

V
(i+1)
m = V

(i)
m − JF

−1
(

Vs
(0),m,m

)

· F

([

V
(i+1)
1 . . . V

(i+1)
m−1 V

(i)
m . . . V

(i)
M

]T

,m

)

,

m = 1, . . . ,M,
(3.91)

where

JF

(

Vs
(0),m,m

)

= Y(m,m) + jmωm

∂Q̄
(

Vs
(0),m

)

∂V(m)
+

∂ĪG

(

Vs
(0),m

)

∂V(m)
. (3.92)

117



3. ENVELOPE-BASED METHODS FOR NONLINEAR WIRELESS SYSTEMS

 

 

io(t)+is(t) dq(v)/dt i(v) Yg 

Figure 3.5: Single-node nonlinear circuit driven as a mixer.

The required memory to store the Jacobian matrix of a circuit with N nodes when

using the HB-N algorithm is O(N × ((2H + 1)(2M + 1))2) , whilst that of PHB is

O(N×(2H+1)2(2M+1)). Furthermore, the number of operations needed for factoring

the Jacobian matrix in HB-N is O(KN × ((2H + 1)(2M + 1))3), being K the number of

times the Jacobian has to be loaded and factorised, whereas that of the PHB is O(N ×

(2H + 1)3(2M + 1)). Therefore, a significant reduction of the computational cost can

be achieved compared to that of the standard two-tone HB, particularly if we consider

the operations needed for factoring the Jacobian and the need to recalculate it for each

iteration. This is the reason why one of the proposed approaches is based on the PHB

method.

3.7.2 Description of the procedure

In order to explain the theoretical foundations of the proposed method, the simple

single-node nonlinear circuit shown in Figure 3.5 will be considered. This circuit

represents an hypothetical mixer and is analogous to the example employed in Sec-

tion 3.5, consisting of a nonlinear conductance and a nonlinear capacitance. In contrast

to the aforementioned example, the mixer circuit is driven by two independent cur-

rent sources: the LO signal io(t) including dc bias, which is assumed to be sinusoidal,

and the RF signal is(t). In that case, the node voltage v(t) must satisfy the following

equation

L[v(t)] + i[v(t)] +
dq[v(t)]

dt
= io(t) + is(t), (3.93)

where the operator L[·] stands for the integro-differential equation representing the

linear subcircuit, denoted in the frequency domain by admittance Yg in Figure 3.5.

First, as it was considered in Sections 3.5 and 3.6, the node voltage v(t) will be

expressed as a sum of incremental voltages

v(t) = v0(t) + v1(t) + · · · + vn(t) + δvn(t) = v̄n(t) + δvn(t), (3.94)
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where v̄n(t), vn(t) and δvn(t), for n ≥ 1, are the approximate node voltage, the incre-

mental voltage and the residual voltage in the n-th iteration, respectively. Voltage v0(t)

is the solution of (3.93) when only the LO source io(t) is present, i.e.

L[v0] + i(v0) +
dq(v0)

dt
= io. (3.95)

The explicit temporal dependence has been omitted for simplicity. This way, the num-

ber of frequencies to be considered is drastically reduced and the convergence using

HB-N does not require an special effort. Let us suppose that v0 is known. If we sub-

stitute v = v0 + v1 + δv1 in (3.93) and expand i(v) and q(v) in Taylor series about v0

retaining only the linear terms, g(v0) = di/dv|v=v0 and c(v0) = dq/dv|v=v0 respectively,

the following equation for the first incremental voltage is obtained:

L[v1] + g(v0)v1 +
d

dt
[c(v0)v1] = is. (3.96)

It is worth noticing that the assumption of a very large LO with respect to the RF input

is not necessary. Equation (3.96) represents a quasi-periodically time-varying linear

system, for which the solution can be obtained by using the concept of conversion

matrix [8]. Since this is a well-known method, v1 and v̄1 = v0 + v1 are assumed to be

known.

In the following sections, two different approaches will be presented in order to

carry out the subsequent iterations for n ≥ 2, originating two different methods to

evaluate nonlinear distortion in mixers to which communication signals are applied

as excitations.

3.7.2.1 NEC method for communications signals in mixers

The new method explained in this section was proposed in [46] and comes from an

analogous development to that of Borich in [44] in order to extend the NEC method

presented in 3.5 to the analysis of digitally-modulated signals in mixers, exploiting

its good convergence properties. In the following explanation, this method will be

referred to as NEC-M. The main advantage of this method versus multitone HB or the

method proposed by Borich is a reduction in simulation time and a more efficient use

of the computational resources.

For iterations from the second incremental voltage on, the NEC-M method differs

from previously used methods for the analysis of time-varying circuits [41], [200], [43].

As mentioned in Section 3.5, the NEC method consists in updating the node voltage,

v̄1 = v0 + v1, and expanding I(v) and c(v) in Taylor series about this voltage. Then, the

second incremental voltage satisfies the equation

L[v2] + g(v̄1)v2 +
d

dt
[c(v̄1)v2] = i2(v̄1), (3.97)

119



3. ENVELOPE-BASED METHODS FOR NONLINEAR WIRELESS SYSTEMS

where

i2(v̄1) = i0 + is − L[v̄1] − i(v̄1) −
dq(v̄1)

dt
=

=

{

g(v0)v1 +
d

dt
[c(v0)v1]

}

−

[

i(v̄1) − i(v0) +
dq(v̄1)

dt
−

dq(v0)

dt

]

. (3.98)

Repeating this steps for each subsequent iteration, the following equation can be

deduced for the n-th incremental voltage:

L[vn] + g(v̄n−1)vn +
d

dt
[c(v̄n−1)vn] = in(v̄n−1), (3.99)

where

in(v̄n−1) = i0 + is − L[v̄n−1] − i(v̄n−1) −
dq(v̄n−1)

dt
= (3.100)

=

{

g(v̄n−2)vn−1 +
d

dt
[c(v̄n−2)vn−1]

}

−

[

i(v̄n−1) − i(v̄n−2) +
dq(v̄n−1)

dt
−

dq(v̄n−2)

dt

]

.

Equivalently, node voltage v̄n can be calculated by solving

L[v̄n] + g(v̄n−1)v̄n +
d

dt
[c(v̄n−1)v̄n] = īn(v̄n−1), (3.101)

if the circuit is excited with the current

īn(v̄n−1) = i0 + is +

{

g(v̄n−2)v̄n−1 +
d

dt
[c(v̄n−2)v̄n−1]

}

−

[

i(v̄n−1) +
dq(v̄n−1)

dt

]

. (3.102)

The problem of computing v2 consist in solving the same time-varying linear equa-

tion of the iteration given by (3.96), linearised about the new node voltage waveform

v̄1. However, this problem cannot be solved by directly using conversion matrices

because now the updated voltage is not periodic in contrast to v0.

In the case of a RF modulated input, the exciting current has the form

is(t) = Re{̃is(t)e
j(ωc+ωo)t} (3.103)

where ωc and ωo, which are assumed to be incommensurate frequencies, are the LO

and intermediate (IF) frequencies, respectively. It is considered that the bandwidth

of is(t) is small compared to its carrier frequency. The circuit variables are quasi-

periodic waveforms, being a multivariate representation of all the waveforms. In this

case, the samples of the waveforms and their Fourier coefficients are related by a two-

dimensional DFT. Moreover, the Fourier coefficients are time-varying, representing

complex modulation of the frequency components. Therefore, the n-th incremental

voltage vn can be written as:

vn(t) =
1

2

∑

h,m

ṽn(h,m, t)ej(hωc+mωo)t, (3.104)
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and similar expressions are valid for v̄n−1, I(v̄n−1), g(v̄n−1) and c(v̄n−1). Substituting in

(3.99) and following a similar procedure to that of the single-input case, the solution

can be obtained by solving the following matrix equation:
{

Yg + G(t) + jΩC(t) +
[
C(t) − jY′

g

] d

dt

}

vn(t) = in(t). (3.105)

For the proposed method, the weakly nonlinear approximation will be assumed.

In this case, sufficient convergence will be achieved with a few iterations. For instance,

in [33] good results have been obtained with only n = 2. Although equation (3.105)

is similar to the one obtained for a single input, the differences are important. Here

vn(t) is defined as

vn = [ṽn(−H,−M, t) , · · · , ṽn(−H,M, t)

ṽn(−H + 1,−M, t), · · · , ṽn(−H + 1,M, t) (3.106)
...

ṽn(H,−M, t), · · · , ṽn(H,M, t)]T ,

and a similar definition is made for i2(t), thus they are column vectors with (2H +1)×

(2M+1) rows, where H and M refer to the relevant LO and IF harmonics, respectively.

Another difference is that G(t) is a time-varying matrix which is constructed as a

Toeplitz-likewise matrix

G(t) =









G(0, t) G(−1, t) · · · G(−2M, t)

G(1, t) G(0, t) · · · G(−M + 1, t)
...

...
. . .

...

G(2M, t) G(2M − 1, t) · · · G(0, t)









(3.107)

whose elements G(m, t) are original Toeplitz matrices defined from the column vec-

tors [g̃(0,m, t), . . . , g̃(2H,m, t)]T , for m = 0, . . . , 2M . Matrix C(t) is constructed in a

similar way. Besides, Yg and Ω are block diagonal matrices defined as

Yg = diag{Yg(−M), · · · ,Yg(M)}, (3.108)

Ω = diag{Ω(−M), · · · ,Ω(M)}. (3.109)

Evaluation of in(t) in (3.105) requires a two-dimensional inverse discrete transfor-

mation, IDFT, in order to obtain samples of v̄n−1 in a bi-dimensional grid (t1, t2), at

each instant t. Evaluating i(v̄n−1) and q(v̄n−1) at these points and recalling that these

functions can also be expressed by means of similar expressions to (3.104), the cor-

responding coefficients ĩ(h,m, t) and q̃n(h,m, t) are derived with a two-dimensional

discrete Fourier transform. That is to say, for each instant t,

i(v̄n) = FD{i(F
−1
D {v̄n})},

q(v̄n) = FD{q(F
−1
D {v̄n})}.

(3.110)
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The increase in complexity with respect to the single input case is evident. Never-

theless, we should clarify that the weakly nonlinear approximation allows to consider

only a few IF harmonics and, in consequence, M is not high. Finally, equation (3.105)

need to be solved discretising the differential operator with the Backward-Euler rule

in order to obtain the update procedure of the proposed method.

3.7.2.2 Extended PHB approach for communication signals in mixers

In this section, an extension of the Parametric Harmonic Balance (E-PHB) proposed in

[33] to efficiently analyse mixers excited by communications signals will be explained.

The aim of this new approach is to achieve a further reduction of the computational

cost with respect to the method presented in the previous section.

The E-PHB approach is based on the consideration that, from the second incre-

mental voltage on, iterations can be carried out by maintaining the expansion of i(v)

and q(v) about v0. This implies that the same time-varying linear equation (3.96), with

an appropriate excitation current, is solved to obtain the corresponding incremental

voltage. This procedure is equivalent to a Simplified Newton algorithm in which the

Jacobian matrix of the first iteration is reused in the following steps, so that it can be

conceived as an extension of PHB [45] for the case of signals with time-varying Fourier

coefficients in a quasiperiodic manner.

Substraction of (3.95) and (3.96) from (3.93) yields the equation of the residual volt-

age δv1

L[δv1] + g(v0)δv1 + iNL(v) +
d

dt
[c(v0)δv1] +

dqNL(v)

dt
= 0, (3.111)

where iNL(v) and
dqNL(v)

dt
are the residual nonlinear terms in the expansion of i(v)

and
dq(v)

dt
about v0. Recalling that δv1 = v2 +δv2, after substitution in (3.111) and some

rearrangement of terms dependent on v̄1, the following equation for the incremental

voltage v2 is derived:

L[v2] + g(v0)v2 + iNL(v̄1) +
d

dt
[c(v0)v2] +

dqNL(v̄1)

dt
= 0. (3.112)

Expansion of i(v̄1) and dq(v̄1)
dt

about v0 allows to write

L[v2] + g(v0)v2 +
d

dt
[c(v0)v2] = i2(v̄1), (3.113)

with

i2(v̄1) = i0 + is − L[v̄1] − i(v̄1) −
dq(v̄1)

dt
= (3.114)
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=

{

g(v0)v1 +
d

dt
[c(v0)v1]

}

−

[

i(v̄1) − i(v0) +
dq(v̄1)

dt
−

dq(v0)

dt

]

.

Adding the contributions of equations (3.95) and (3.96), an alternative procedure to

the previous expressions can be found which solves directly the node voltage v̄2 by

using the following equations:

L[v̄2] + g(v0)v̄2 +
d

dt
[c(v0)v̄2] = ī2(v̄1), (3.115)

ī2(v̄1) = i0 + is +

{

g(v0)v̄1 +
d

dt
[c(v0)v̄1]

}

−

[

i(v̄1) +
dq(v̄1)

dt

]

. (3.116)

These results can be generalised concluding that, for each iteration, the incremental

voltage vn (with n > 1) is obtained by exciting the time-varying linear circuit described

by (3.96) and (3.113) with the current

in(v̄n−1) = i0 + is − L[v̄n−1] − i(v̄n−1) −
dq(v̄n−1)

dt
= (3.117)

=

{

g(v0)vn−1 +
d

dt
[c(v0)vn−1]

}

−

[

i(v̄n−1) − i(v̄n−2) +
dq(v̄n−1)

dt
−

dq(v̄n−2)

dt

]

.

Equivalently, node voltage v̄n can be calculated if the same circuit is excited with the

current

īn(v̄n−1) = i0 + is +

{

g(v0)v̄n−1 +
d

dt
[c(v0)v̄n−1]

}

−

[

i(v̄n−1) +
dq(v̄n−1)

dt

]

. (3.118)

The excitation (3.118) of the augmented time-varying linear circuit is calculated with

the difference between the current sources and the currents through the remaining

nonlinearities evaluated at the previous node voltage. Alternatively, the incremental

voltage can be computed instead if the excitation current is calculated with (3.117),

i.e. the difference between the current sources and the current through the original

nonlinear circuit, evaluated at the same previous node voltage. In both cases i(v) and

q(v) should be updated.

In the case of an RF modulated input, the exciting current has the form of (3.103).

Using a two-dimensional DFT like in the previous section, all variables can be writ-

ten in terms of time-varying Fourier coefficients. Some simplifications can be made

with respect to the procedure proposed in the NEC-M method. Variables g(v0) and

c(v0) have constant coefficients with nonzero values only for m = 0, which represents

the LO fundamental and harmonic frequencies. Recalling (3.96), the spectrum of the

incremental voltage v1 is proportional to the spectrum of is(t) shifted by the LO har-

monics and the coefficients are nonzero only for frequencies hωc±ωo. Actually, it is just

necessary to consider a subset of the coefficients involved in (3.104), i.e. those terms

with |h| ≤ H and 0 ≤ m ≤ M , since the rest of the terms can be obtained by complex
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conjugation. This alternative represents taking the upper-sideband terms regarding

the IF. Accordingly, the coefficients of vn are obtained by solving the matrix equation

{

Yg(m) + G + jΩ(m)C +
[
C − jY′

g(m)
] d

dt

}

vn(m, t) = in(m, t), (3.119)

for m = 0, . . . ,M . Note that a relaxation algorithm has been employed producing a

similar approach to the block Gauss-Jacobi-Newton method, where each harmonic m

of the IF is analysed independently. The following definitions have been used:

vn(m, t) = [ṽn(−H,m, t), ṽn(−H + 1,m, t), · · · , ṽn(H,m, t)]T , (3.120)

similarly for in(m, t),

Yg(m) = diag{Yg(−H,m, t), · · · , Yg(H,m, t)}, (3.121)

and

Ω(m) = diag{−Hωc + mωo, · · · , Hωc + mωo}. (3.122)

G is a Toeplitz matrix defined from the vector of the Fourier coefficients of g(v0), with

a similar definition for C. Recall that evaluation of i(v̄n) requires two-dimensional

inverse and direct DFTs as follows:

i(v̄n) = FD{i(F
−1
D {v̄n})} (3.123)

and for q(v̄n) likewise. Finally, equation (3.119) is solved discretising the differential

operator with the Backward-Euler rule in order to obtain the update procedure of the

present method. Again the weakly nonlinear condition allows to consider only a few

IF harmonics and, in consequence, M is not high.

3.7.3 Comparison of NEC-M and E-PHB with other methods

It is possible to establish the differences of the two proposed approaches with other

widely used modulation-oriented HB methods in terms of memory requirements,

computational load and convergence. Starting with the EC method proposed in [44],

it is an extension of transient envelopes to the case of mixers. Consequently the al-

gorithm is reduced to the analysis of a periodically time-varying linear circuit excited

by appropriate nonlinear currents. The Jacobian matrix in this method is the nodal-

admittance conversion matrix, and remains the same for all the iterations. The NEC-M

method presented in Section 3.7.2.1 is an implementation of HB-N with transient en-

velopes. As in [44], it can be reduced to the analysis of a time-varying circuit with non-

linear currents. The difference is that the waveforms of the time-varying elements are

not periodical and do not remain constant for all the iterations; instead, the Jacobian
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matrix is updated in each iteration. Finally, E-PHB of Section 3.7.2.2 is a particularly

efficient implementation that reuses the first Jacobian. Like in the other approaches,

the LO steady-state is taken as the starting solution.

In terms of memory requirements, this property is dominated by the cost of storing

the Jacobian matrix. It is the same in [44] and E-PHB, since it represents a periodically

time-varying linear circuit, using (2H + 1)2 elements per circuit node. With regard to

the NEC-M method, with the exception of the first Jacobian matrix, which is the same

as that of E-PHB and [44], for the next iterations the analysis of a non-periodically

time-varying circuit is needed. Hence, the size of the matrix requires (2H + 1)2 ×

(2M + 1)2 elements per circuit node.

Concerning the computational cost, the number of operations required by [44] and

E-PHB is nearly the same, while for the NEC-M method it is higher, as it can be ob-

served when comparing the set of (M +1) independent equations in (3.119) to the cou-

pled system of equations (3.105), where the structure of Toeplitz-wise matrices G(t)

and C(t) is considerably more complex than that of the authentic Toeplitz matrices G

and C.

In terms of convergence, both the rate and range are better in E-PHB than in [44],

if we consider that the former is a Simplified Newton approach, and the latter a sub-

optimal method. Compared with NEC-M, E-PHB yields the correct solution but its

range of convergence is not as large as in NEC-M. However, it can be considered wide

enough to analyse weakly and moderately nonlinear circuits with input levels over

10 dB above the 1-dB compression point. The NEC-M method requires less iterations

than E-PHB to reach the correct solution for a fixed tolerance, but this is compensated

with a higher number of operations per iteration, what results in an overall reduction

of CPU time in favor of E-PHB.

The two proposed methods, NEC-M and E-PHB, represent an alternative solution

with respect to TV-VS [41] and do not require a significant increase of computational

cost.
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CHAPTER 4

COMPARISON WITH EXPERIMENTAL

MEASUREMENTS

In order to demonstrate some of the methods described in Chapter 3, they have been

applied to the analysis of simple amplifier and mixer circuits implemented with a sin-

gle MESFET or HEMT device. This way, the performance of each of the methods has

been proved and simulations have been satisfactorily compared with experimental

measurements.

This chapter will start with a description of the basic characterization techniques

commonly used for nonlinear devices. After that, we will describe the experimen-

tal setup employed in this Thesis for the automated or semi-automated characteri-

zation of the constructed nonlinear circuits. Some measurement results obtained by

means of this setup will be shown as examples. Next, diverse nonlinear models for

the employed solid-state devices will be presented, including large-signal models and

parameter extraction techniques applicable for MESFET and HEMT devices. Making

use of these nonlinear circuit models, comparisons between the measurements carried

out and simulations following the previously described analysis methods will be pre-

sented. The most relevant aspects for each of the methods will be remarked. Finally,

a new experimental method to characterise the phase of the third-order (IM3) and

fifth-order (IM5) intermodulation products with non-sophisticated communications

equipment will be presented together with some results obtained with it.

4.1 Basic nonlinear characterization techniques

Electronic devices are specified by some figures of merit representing the observable

properties of the device, which are determined by characterization procedures. For a

power amplifier, for instance, widely used figures of merit are its gain, power-added
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efficiency, and some quantitative measurements of the nonlinear distortion such as the

1-dB compression point and third-order intercept point.

While figures of merit for linear behaviour are already well-established, their non-

linear counterparts still continue to be developed and debated [26]. The main prop-

erty of nonlinear devices is that they do not comply with the superposition principle;

therefore, the system’s response to a certain input may vary depending on the kind of

input tested. Considering this, it seems advisable to use input signals which are sim-

ilar to the excitation expected in real operation. The most useful probing signals for

nonlinear devices employed in communication circuits are those with a band-limited

power spectral density (PSD) containing a large number of spectral lines.

In this way, single-tone tests with sinusoidal inputs can be viewed as the simplest

approximation for the recommended probing signals, in which all the power is con-

centrated in a single spectral line. However, the one-tone test results a very poor

characterization tool for nonlinear systems, since it can only produce output spec-

tral components that are harmonically related to the input frequency. To overcome

this difficulty, the two-tone test is used, where the input signal is composed by two

tones of equal amplitude and located inside the bandwidth of the channel of interest.

The advantage of two-tone tests is that there are a large number of odd-order mixing

products that produce in-band distortion. Their main drawback is the difficulty in

evaluating distortion in the fundamental frequencies. Considering that some of the

odd-order mixing terms fall exactly at the same frequencies as the fundamentals but

with a much weaker amplitude than the linear output components, there is no possi-

bility of independently measuring distortion in the fundamental frequencies. Because

of this, multitone or band-limited modulated signals are adopted when attempting to

measure co-channel distortion.

4.1.1 One-tone characterization tests

A linear device is identified by its frequency-domain transfer function H(f). To mea-

sure it, a sinusoid x(t) = Ai cos(2πft) is applied as excitation signal to the device under

test (DUT), and the output is measured at the same input frequency f , referred to as

the fundamental frequency. Due to the linearity of the device, a frequency sweep of

the sinusoidal stimulus can only produce output changes in amplitude and phase, i.e.

yLIN(t) = Ao(f) cos[2πft + φo(f)]. When this sinusoidal test is extended to a nonlin-

ear DUT, the output amplitude Ao and phase φo will also vary nonlinearly with the

stimulus level. Furthermore, the DUT will also generate new frequency components
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located at the harmonics of the input

yNL(t) =
∞∑

h=0

Aoh(f,Ai) cos[2πhft + φoh(f,Ai)]. (4.1)

The main figures of merit associated to one-tone tests are the following:

• AM-AM conversion:

The output amplitude variations versus input drive present in nonlinear devices

manifest themselves as if the device could transform input amplitude variations

into output amplitude variations or, in other words, as if it could transform a

possible amplitude modulation (AM) associated to its input into an output am-

plitude modulation. This property is referred to as AM-AM conversion and de-

scribes the relation between the output amplitude of the fundamental frequency

with the input amplitude at a fixed input frequency (the same frequency as in

the output for power amplifiers, but a different one for mixers). Thus, it charac-

terises gain compression of a nonlinear device versus the input level.

• 1-dB compression point:

The 1-dB compression point, P1dB, is defined as the power level at which the signal

output is 1 dB below the output that would be obtained extrapolating the linear

small-signal characteristic of the system. The 1-dB compression point may be re-

ferred to the input or the output power level. A gain plot provides an immediate

way for evaluating the 1-dB compression point, since it is simply the power at

which the gain has already tailed off 1 dB from its small-signal value.

• AM-PM conversion:

Analogously to AM-AM conversion, the capability of the nonlinear DUT to

transform a possible input amplitude modulation for a constant frequency into

an output phase modulation (PM) of the fundamental is referred to as AM-PM

conversion. In nonlinear systems, vector addition of the output fundamental with

distortion components also determines a phase variation of the resultant out-

put, when the input level varies. It is important to note that AM-AM behaviour

would be visible whether or not the nonlinear system presented memory ef-

fects. However, AM-PM conversion is exclusive of dynamic nonlinear systems

or nonlinearities with memory, included those usually called quasi-memoryless

systems [47] (See Section 4.1.4 for details).

• Total Harmonic Distortion:

The DUT’s capability for generating new harmonic components is characterized

by the ratio between the square root of the total harmonic output power and the
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square root of the output power at the fundamental frequency, a figure of merit

called total harmonic distortion (THD) [26], [201]:

THD =

√
√
√
√ 1

T

∫ T

0

[
∞∑

h=2

Aoh(f,Ai) cos [2πhft + φoh(f,Ai)]

]2

dt

√

1

T

∫ T

0

[Ao1(f,Ai) cos [2πft + φo1(f,Ai)]]
2 dt

. (4.2)

An usual amplitude controlled sinusoidal or CW generator connected to a Vec-

tor Network Analyser (VNA) are sufficient to accomplished one-tone tests. The VNA

simultaneously measures the DUT’s gain and phase, therefore it is possible to charac-

terise both AM-AM and AM-PM conversion with a single power sweep [48], [49]. Al-

ternatively and less expensive, if only AM-AM conversion is needed, we can make use

of a Scalar Network Analyser (SNA) or a Spectrum Analyser (SA) [50], [51]. The setup

based on a SA shows the advantage that a THD characterization can be performed

with it an not with a VNA, as the measured output includes frequency components

that are different from the input excitation. Because of that, a setup based on a SA is

employed for the automated characterization tool used in this Thesis.

There are simpler characterizations that use, for example, a power meter for mea-

suring the DUT’s input and output powers for AM-AM conversion, or a calibrated

phase shifter and a SA for AM-PM conversion. In the latter, a shifted sample of the in-

put is added to the output of the DUT trying to cancel the output fundamental signal.

Nevertheless, these setups require special care not to measure other quantities differ-

ent from the desired ones. For example, AM-PM measurements may be corrupted if

the employed phase shifter generated distortion components which were mixed with

the DUT’s ones [26].

Other one-tone characterization setups relying on dedicated or special laboratory

equipment are possible. Among them, Microwave Transition Analysers (MTAs) de-

serve to be mentioned since they combine the VNA operation with a spectrum anal-

yser. They include a two-port high-speed sampling oscilloscope with built-in Fourier

transform software, which provides them with phase measurement capabilities [202].

In addition to it, Nonlinear Network Vector Analysers (NVNAs) are powerful but ex-

pensive equipment for nonlinear component characterization. These instruments are

able to measure and display both the amplitude and phase of the full output spec-

tra — fundamental, harmonics and cross-frequency products — in time, frequency,

power or user-defined custom domains. They extend the concept of linear scattering

parameters to the nonlinear field by means of new nonlinear scattering parameters

called X-parameters [203]. The NVNA also provides a nonlinear pulse-envelope do-

main measurement. However, they are not yet available in most laboratories.
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4.1.2 Two-tone characterization tests

The use of two-tone stimulus not only allows the characterization of generated har-

monics, but also enables the identification of new mixing components close to the

fundamentals which constitute distortion components. If a two-tone excitation x(t) =

Ai1 cos(2πf1t) + Ai2 cos(2πf2t) were applied to our nonlinear model, the output would

be given by a very large number of mixing terms involving all possible combinations

of ±f1 and ±f2:

yNL(t) =
∞∑

r=1

Aor cos(2πfrt + φor), where fr = mf1 + nf2 and m,n ∈ Z. (4.3)

Referring to a usual narrowband RF subsystem, two types of information can be

extracted from a two-tone test:

• In-band distortion:

In-band distortion products are the mixing components falling in the output fun-

damental frequencies zone. According to (4.3), the in-band distortion frequen-

cies are those satisfying m + n = 1. For example, for a general nonlinear system

represented by a power series, in-band measurements would include the funda-

mental frequencies, f1 and f2, third-order components (|m| + |n| = 3) at 2f1 − f2

and 2f2 − f1, fifth-order components (|m| + |n| = 5) at 3f1 − 2f2 and 3f2 − 2f1,

seventh-order components (|m|+ |n| = 7) at 4f1 −3f2 and 4f2 −3f1, and so forth.

These distortion products are referred to as n-th order intermodulation products

(IMn) and constitute the intermodulation distortion (IMD). They form a group

of lower and upper sidebands, separated from the signals and from each other

by the tones’ frequency difference, ∆f = f2 − f1.

The signal-to-intermodulation distortion ratio, or simply the intermodulation ratio

(IMR), is defined as the ratio between the fundamental and IM3 output power,

IMR =
Pf1,2

PIM3

. There are some cases in which lower and upper IMR are differ-

ent. Those situations, often called IMD asymmetries, require the specification of

lower or upper IMR.

The third-order intercept point, IP3, is a fictitious point obtained when the extrap-

olated 1-dB/dB slope line of the output fundamental power intersects the ex-

trapolated 3-dB/dB slope line of the IM3 power. Since IP3 is determined by the

system’s third-order distortion behaviour, it must be guaranteed that no large-

signal effects are involved when measuring it. The intercept point can be referred

to the input or the output of the DUT. Despite rarely being seen, some other in-

tercept figures of merit could be defined for the fifth-order (IP5) or seventh-order

131



4. COMPARISON WITH EXPERIMENTAL MEASUREMENTS

(IP7) distortion. As it will be detailed in Section 4.1.4, it must be noted that the

existence of memory effects can cause an imbalance of the IMn levels from the

lower to the upper sideband frequencies. Most specifications of IMD level will

measure the worst case of the two.

Restricted to the small-signal region, there is a relationship between the IP3 and

IMR values which allows the obtention of one of them from the other:

IP3o(dB) = Po(f1,2)(dB) +
IMR(dB)

2
, or

IMR(dB) = 2 [Po(f1,2)(dB) − IP3o(dB)] ,

(4.4)

where Po(f1,2) is the fundamental output power per tone at which IMR was

measured.

Because IMD generally increases with increasing signal levels, IP3 may be used

to establish the dynamic range of a system. The signal level at which the IMD level

meets the noise floor is employed to define the spurious free dynamic range (SFDR),

which is the ratio of the output power level for the fundamental frequency to the

noise or IMD power level.

• Out-of-band distortion:

Out-of-band components are the mixing products of (4.3) obeying m + n 6= 1.

These include harmonics of each of the tones, but also new mixing products at

mf1 + nf2 that fall, either near dc (n + m = 0), or close to the various harmonics

(m+n = 2, 3, 4, . . .). As their name indicates, out-of-band distortion components

appear at zones of the output spectrum quite far from the fundamental signals;

therefore, they are simple to be filtered in narrowband systems. The mixing

product located at dc describes the bias point shift from the quiescent point,

when input driving level increases.

Additionally, a two-tone signal can be viewed as a carrier at fc = f1+f2

2
with a

double-sideband suppressed-carrier (DSB-SC) amplitude modulation where the en-

velope or modulation frequency varies with the frequency separation between the

two tones, fm = ∆f
2

, as it can be observed from the following equations:

x̃(t) = 2A cos(2πfmt + φm)

x(t) = Re{x̃(t)ej2πfct} = 2A cos(2πfmt + φm) cos(2πfct) = (4.5)

= A cos[2π(fc − fm)t − φm] + A cos[2π(fc + fm)t + φm] =

= A cos(2πf1t + φ0,1) + A cos(2πf2t + φ0,2).

Note that the inclusion of an arbitrary phase φm in the modulation signal accounts for

the situation encountered when using non-coherent signal generators. The existing
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relationship between the two-tones separation and the envelope or baseband frequen-

cies makes two-tone IMD measurements appropriate for nonlinear characterization

taking into account memory effects, as it will be detailed in Section 4.1.4.

The usual equipment to accomplish two-tone tests is a SA, since mixing products

involving a combination of both f1 and f2 have frequencies different from either of the

inputs. The most commonly used arrangement for such a setup employs two signal

generators, each one providing an input tone which is applied to the DUT by means

of a power combiner or a directional coupler. Phases of the two tones generated in

this way are uncorrelated [26].

The combination of the two input signals should be made in such a way that it

guarantees port matching and adjacent port isolation, preventing each signal to mix

with the other in the nonlinear output stages of the generators. Moreover, harmonics

of the generated signals can also mix with the other fundamental to produce resid-

ual distortion in the DUT, the signal generators’output stages, or both. Therefore, a

good signal spectral purity of the generated outputs should be assured. A final rec-

ommendation is to take advantage, as much as possible, of the available Spectrum

Analyser’s dynamic range so as not to mask the measurements with noise when the

Spectrum Analyser’s attenuation or resolution bandwidth is high, or to add undesired

distortion mixing components because of the Spectrum Analyser’s nonlinearity [51].

4.1.3 Band-limited continuous spectra characterization tests

Although one-tone and two-tone techniques still represent the industry standards in

nonlinear distortion characterization, nowadays, engineers seek for alternative test

procedures closer to the final operation regime of the system, which involve com-

munication signals composed of one or more digitally-modulated carriers with band-

limited continuous spectra, or even signals that mimic them such as multitones (with

discrete spectrum) and band-limited noise.

As it was stated in Section 3.1.1, the spectrum of a nonlinearly distorted signal con-

sists of clusters of frequency components centred at the different carrier harmonics. If

we focus on the in-band distortion, we can clearly observe that the output contains

many more frequency components which generate spectral regrowth. In addition to

this, the output spectrum of a nonlinear DUT also includes co-channel distortion com-

ponents whose frequencies fall inside the signal channel.
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• Multitone Intermodulation Ratio:

If a multitone signal is used as the stimulus, the output of a nonlinear system

is given by a large number of line-clusters placed near dc, located next to the

output fundamentals and close to them, and near the harmonics:

yNL(t) =
R∑

r=1

Ar cos(2πfrt + φr), (4.6)

where, fr = m0f0 + . . . + mqfq + . . . + mQ−1fQ−1 is the given mixing product of

the Q input frequencies f0, . . . , fq, . . . , fQ−1 and N is the maximum order of the

mixing product under consideration, being |m0|+ . . . + |mq|+ . . . + |mQ−1| ≤ N .

In general, multitone signals showing random phase present a lower peak to

average power ratio than phase-aligned multitone signals, which may be con-

sidered a worst case condition [204]. Furthermore, as the number of tones in-

creases, and if their phases are uncorrelated, the Central Limit Theorem predicts

that the distribution of the peak to average power ratio approaches that of white

Gaussian random noise. This is the reason why multitone signals are employed

to mimic communications modulated signals in the same way as noise signals.

The multitone intermodulation ratio (MIMR) is a generalization of the IMR concept

introduced with two-tone tests for the case in which multitone signals are being

employed as a first approximation of a band-limited continuous spectrum sig-

nal. It is defined as the ratio of the common fundamental power per tone, Po/tone,

to the power of the fr distortion component present in the lower or upper adja-

cent bands, Pl/u(fr):

MIMR(r) =
Po/tone

Pl/u(fr)
. (4.7)

• Adjacent Channel Power and Adjacent Channel Power Ratio:

Among the mixing products which compose the spectral regrowth components,

those located adjacent to the signal channel are referred to as adjacent-channel

distortion and constitute an interference to a possible adjacent-channel. Because

of the youth of this subject, various proposed figures of merit are still accepted

and investigated to characterise this form of distortion.

One of them is the total adjacent-channel power ratio (ACPRT ), defined as the ratio

of the total power integrated in the lower, Padj,L, and upper, Padj,U , adjacent-

channel bands, to the total output power measured in the fundamental zone,

Po, as shown in Figure 4.1. Thus, if Yo(f) is taken as the power spectral density
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Figure 4.1: Spectral regrowth observed in a nonlinear system excited by a nar-

rowband modulated stimulus.

function of the system’s output, total ACPR is expressed as

ACPRT =
Padj,L + Padj,U

Po

=

∫ fL2

fL1

Yo(f) df +

∫ fU2

fU1

Yo(f) df

∫ fU1

fL2

Yo(f) df

. (4.8)

If the excitation were a multitone signal, the output spectrum would be discrete,

and the integrals of (4.8) would become summations of spectral regrowth line

powers.

If only the lower or upper adjacent-channels are of concern, then we can use the

adjacent-channel power ratio (lower or upper), defined as the ratio between the lower

or upper adjacent-channel power, Padj,L/U , to the total output power measured

in the fundamental zone, Po:

ACPRL =
Padj,L

Po

=

∫ fL2

fL1

Yo(f) df

∫ fU1

fL2

Yo(f) df

, (4.9)

ACPRU =
Padj,U

Po

=

∫ fU2

fU1

Yo(f) df

∫ fU1

fL2

Yo(f) df

. (4.10)

An alternative definition, particularly used in the wireless equipment industry,

is herein called spot adjacent-channel power, (ACPSP ), to distinguish it from the
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previously referred ACPR. According to Figure 4.1, ACPSP is given by the ratio

of the power integrated in a band of predefined bandwidth and distance from

the centre frequency of operation PSPL/U , to the total output power measured in

the fundamental zone, Po:

ACPSP,L =
PSP,L

Po

=

∫ fNBL2

fNBL1

Yo(f) df

∫ fU1

fL2

Yo(f) df

, (4.11)

ACPSP,U =
PSP,U

Po

=

∫ fNBU2

fNBU1

Yo(f) df

∫ fU1

fL2

Yo(f) df

. (4.12)

Finally, simply the power integrated in those bands corresponding to the first,

second, and so on, lower and upper adjacent-channels can be measured and

denoted by ACPnl/u, where n represents the distance of the adjacent-channel to

the one of interest.

• Noise Power Ratio:

Noise power ratio (NPR) was proposed as an indirect means of characterising co-

channel distortion. A noise power ratio test eliminates the fundamental compo-

nents from the zone where the test is made. Because of that, the DUT is excited

by a noise spectrum in which a slice has been previously deleted, usually by

passing the excitation through a very narrow notch filter before being applied to

the DUT. If the notch bandwidth is sufficiently narrow, it is believed that no sig-

nificant perturbation has been caused in the test conditions, then any frequency

component observed at the output within the notch position constitutes the co-

channel distortion.

A sample output for a typical noise power ratio test is shown in Figure 4.2. Noise

power ratio is defined as the ratio of the output power spectral density function

measured in the vicinity of the test window position, fT , Yo(fT ), to the power

spectral density observed within that window, Ywd(fT ):

NPR(fT ) =
Yo(fT )

Ywd(fT )
. (4.13)

• Error Vector Magnitude:

Digitally modulated signals employed in wireless communications are often ex-

pressed as a constellation plot, with the in-phase component envelope plotted
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Figure 4.2: Illustration of the output power spectral density of a noise power

ratio test.

against the quadrature component. The observed effect that nonlinear systems

cause in the constellation of digitally modulated signals is that the envelope is

clipped and/or phase rotated. As previously mentioned, it has been stated that

the level of the in-band distortion is difficult to measure directly because it is

superimposed on the channel spectrum. However, when the signal is demod-

ulated, the effects of in-band distortion cause errors in the sample points of the

output constellation that result in a false decision, and hence bit errors. The error

vector magnitude (EVM) is a figure of merit that provides an indication of sig-

nal distortion for digitally-modulated signals. EVM is defined as the root mean

squared sum of vector error divided by the number of samples:

EV M =
1

M

√
√
√
√

M∑

m=0

[
| xI(tm) − sIm|

2 + |xQ(tm) − sQm|
2], (4.14)

where the envelope sample points at the m-th sample windows are given by

xI(tm) and xQ(tm), and the m-th symbol location point in-phase and quadrature

components are given by sIm and sQm, respectively.

Depending on the objective of the characterization, the excitation source employed

may be a multitone generator, a noise-like continuous spectrum source, or even a spe-

cific real telecommunications signal. Test signals for digitally-modulated signals are

usually synthesized according to system standards using an arbitrary waveform gen-

erator, for which the envelope waveforms may be created using commonly available

communications engineering software and then fed to the RF modulator [205].
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Except for special cases of very small number of tones, where they can be created

independently and then added with a power combiner, RF multitone excitations are

generally built up by upconverting a baseband multitone signal to the desired spec-

tral location. This baseband multitone signal needs to be complex when it is desired

that the modulated signal presents different power levels for each tone and a certain

phase distribution. Furthermore, a sufficient mixer rejection must be guaranteed or

the leaking carrier may perturb observation of very weak distortion components [26].

Adjacent-channel distortion tests can use a setup basically composed by an appro-

priate excitation source and a SA [52]. An NPR test may be performed with a digitally

produced multitone or a noise signal. In the first situation, a multitone signal is made

from an arbitrary waveform generator, at the desired RF centre frequency. The notch

is made by selective elimination of one of these tones. Alternatively, if the NPR test

is to be performed with band-limited noise, then a narrowband limited notch filter

must be provided between the RF noise generator and the input of the DUT. The main

difficulty stems from finding an appropriate notch filter due to the high Q values re-

quired [206].

Measurement of EVM is usually done with a Vector Signal Analyser (VSA). This in-

strument is essentially a receiver that is flexible enough to handle a variety of frequen-

cies and modulation formats [53]. Specialised software is often included to directly

measure EVM for well-known standards used in wireless communications.

A final remark on continuous spectra distortion tests should be how to address

the problem of measuring power with a SA. Measuring total power within a user-

defined bandwidth requires the integration of the power spectral density function,

which, in turn, can be obtained by dividing the SA power spot readings by the utilized

resolution bandwidth, RBW. Alternatively, total power can be simply measured by

dividing the sought bandwidth in the corresponding number of bandwidth segments

of RBW width, and then adding the SA power readings one by one. This calculation

is usually automatically performed by SAs by means of special firmware functions

implemented on them. Beyond that, special attention must be paid to the correct

definition of fundamental and distortion band-limits.

4.1.4 Memory effects

In the context of nonlinear systems, the term memory was proposed by Chua [54], to

describe the influence on the output of a system at a time t of the input signal not

only at time t, but also spanning a finite history of the input signal, to some time

in the past, t − τ . The largest time delay, τ , determines the length of the memory of
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the system. This is known as a fading memory, as the influence of the input signals

deep in the past fades to zero. In general, a nonlinear memoryless system may only

cause an amplitude, never a phase, distortion. If a phase distortion is present, the

system must posses a certain amount of memory. Essentially, by memory effects we

are describing the dynamical behaviour of the system. Thus, amplifiers with reactive

components introducing phase shifts have memory, with characteristic times that are

generally either of the same timescale as the signal frequency — short-term memory

— or at much slower rates — long-term memory. Because of that, nonlinear systems

that only exhibit short-term memory effects are considered by many authors as quasi-

memoryless systems [24], for which the amount of amplitude and phase distortions are

modelled by static AM-AM and AM-PM conversions or, equivalently, complex-valued

but constant NLTFs. By contrast, nonlinear systems exhibiting long-term memory

effects are usually considered to present dynamic AM-AM and AM-PM characteristics

which are modelled by frequency-dependent NLTFs.

Memory effects can be detected as shifts in the amplitude and phase of IMD com-

ponents caused by changes in the modulation frequency [24], or also by hysteresis

in the AM-AM and AM-PM plots [55]. In the literature, these phenomena are also

referred to as bandwidth-dependent IMD behaviour [25], dynamic system effects [56], rate-

dependent effects [57] or non-quasi-static (NQS) effects [9], [58]. A difference between the

upper and lower IM products for a two-tone input or between the upper and lower

adjacent channels for a modulated input is referred to as an asymmetry, and it is an-

other indication of memory effects. When we talk of memory effects in RF power

amplifiers, the major sources of these effects are [27], [58]:

• Short-term memory effects:

The high-frequency dynamics of the amplifiers are determined by the reactances

associated with the transistor. In the usual description of a transistor model,

these reactances comprise the capacitances and inductances associated with the

parasitic elements of the extrinsic model, and also the nonlinear charge storage

within the transistor’s active region, in the intrinsic model.

For small-signal characterization, the short-term memory effects are simply the

frequency response of the transistor, which is bias-dependent and requires that

the capacitances describing the linearized charge storage behaviour in the tran-

sistor are also bias-dependent. Under large-signal conditions, the voltage- or

current-dependence of the charge storage functions becomes important. The

changing dynamical behaviour with signal drive manifests when measuring

AM-AM and AM-PM characteristics of the system. The AM-PM effects are es-

sentially the nonlinear behaviour that is often referred to as short-term memory

effects.
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The matching networks are also a source of short-term memory effects, since

they are built from reactive components or transmission lines whose frequency

dependence contribute to the short-term dynamics.

• Long-term memory effects:

The three main causes of long-term memory effects are:

– Thermal effects:

The transistor channel can heat up nonuniformly when driven by modu-

lated signals. Because of this local change of temperature, some of the tran-

sistor’s parameters will be slightly different, for example a reduction of the

gain from the equilibrium-temperature value is common. The time con-

stants associated with thermal transients are generally of the order of mil-

liseconds, which is close to the timescale of low modulation frequencies,

in the range of 100 KHz and below. These long-term memory effects can

be seen in the AM-AM characteristics of RF power amplifiers as a spread

around the mean gain compression curve.

– Charge trapping:

Imperfections and defects in the semiconductor occur in several locations

at the internal structure of the transistors. These imperfections often man-

ifest themselves as available states that can capture and release electrons

and holes, a mechanism governed by local potentials and temperature. The

action of trapping or releasing an electron is effectively changing the charge

density in the channel of the transistor, and its rate is on a timescale of kilo-

hertz through megahertz, depending on the nature of the trapping centre.

Therefore, charge trapping is a mechanism causing long-term memory ef-

fects. GaAs and GaN FETs display several trap-related phenomena, while

other transistors like LDMOS do not suffer from them.

– Dc bias networks:

The dc bias network provides a low impedance path for the dc bias con-

nections that is simultaneously a high impedance for the RF signal. This

path has inductance and capacitance that control the frequency response

from the dc to a few tens of MHz. Therefore, any signal components in this

frequency range will experience memory effects. The signal components

appearing in this baseband frequency range will mix with the RF compo-

nents as a result of the even-order nonlinearities in the active device. This

is the most usual cause of asymmetries in IMD responses.

The aforementioned measurement consisting in two-tone tests, where a sweep of

the tone spacing is performed, reveals the presence of long-term memory effects if the
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IM products vary with the tone spacing. However, the identification of the origins of

the long-term memory is more difficult. Thermal effects can be observed by making

pulsed dc measurements and varying the pulse width and duty cycle.

Traditionally, technical datasheets of commercial RF and microwave circuits show

the behaviour of the different forms of nonlinear performance (like spectral regrowth,

two-tone IMD, ACP) using an arbitrary modulation bandwidth. However, IMD lev-

els can experience significant variations when excitations with different bandwidths

are tested. This phenomenon is the result of complex interactions among the active

devices and the rest of the circuit, which make distortion strongly dependent on the

characteristics of the modulation signal. These effects represent a challenge to the

success of linearization methods, specially for those trying to accomplish IMD reduc-

tion by applying the excitation signal corrupted by a similar distortion with opposite

phase, as it is the case for a simplified view of digital predistortion.

A one-tone power sweep measurement is very helpful during the design of power

amplifiers, but it does not provide enough information about the system’s mem-

ory. On the contrary, a two-tone intermodulation characterization with a varying

frequency separation between the tones is a widespread measurement in nonlinear

characterization which provides memory information and the comprehension of its

peculiarities has centred the interest of researchers. Examples of this concern are the

classification of amplifiers regarding its memory effects [24], the study of asymme-

tries in third-order IM products revealing that terminating impedances at baseband

or difference frequencies are the main cause for distortion sideband asymmetries [28],

[21], and the relation between two-tone IMD measurement and the spectrum of a W-

CDMA signal [31].

However, the characterization of memory effects is not a widespread practice out-

side the research field nowadays. Because of that, only a reduced number of figures

of merit for the quantification of memory effects have been proposed and they are not

well-established yet:

• Figures of merit based on behavioural modelling:

In [207] and [208], two different figures of merit are proposed for the quantifi-

cation of the contribution of memory effects in the context of the extraction of

behavioural models for power amplifiers. Therefore, their definitions require

the use of a certain model for the DUT’s output signal.

In [207], the proposed model is based on certain frequency-dependent coeffi-

cients a2k−1(ωm) of order 2k − 1 that vary with the modulation frequency ωm.

The constant coefficient a2k−1,1 corresponds to the memoryless case. To quantify
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the frequency dependence of each coefficient, â2k−1 is defined as

â2k−1 =

√

1

∆ω

∫ ω2

ω1

∣
∣
∣
∣

a2k−1(ωm) − a2k−1,1

a2k−1,1

∣
∣
∣
∣

2

dωm , (4.15)

where ∆ω = ω2 − ω1 is the difference between the upper and lower frequencies.

The coefficients â2k−1 quantify the contribution of the memory effect terms rel-

ative to the memoryless terms in the frequency zones affected by IMD of order

2k − 1.

In addition to this, the memory effect ratio (MER) is defined in [208] as the ratio of

the root-mean-square error that cannot be predicted with a memoryless model

to the root-mean-square value of the output signal:

MER =

√
√
√
√

K∑

k=0

|yo(k) − yo, modelled(k)|2

√
√
√
√

K∑

k=0

|yo(k)|2

. (4.16)

Large values of the MER or the coefficients â2k−1 indicate that the device has sig-

nificant memory effects. Although such figures of merit may be used to quantify

the relative strength of memory effects between different amplifiers, these met-

rics are difficult to apply in the industrial environment because they are condi-

tioned by a previous model extraction.

• Power amplifier linearizability under static conditions:

This figure of merit was proposed in [209] considering a two-tone excitation.

In this case, for the IMD at the DUT’s output, YIM3(f
′), a one-dimensional

frequency-dependence on the tone spacing f ′ = ∆f is assumed. Firstly, the

best memoryless lineariser is defined in this case as the static auxiliary device

that produces a constant two-tone IMD response C that minimises the distortion

power in the considered operation bandwidth W , i.e.

C :

[∫ +W

−W

|C − YIM3(f
′)|2df ′

]

is minimum. (4.17)

That way, the optimum memoryless lineriser of a certain power amplifier is the

system whose constant response is the vectorial mean of the response of that

power amplifier to a two-tone test where the tone spacing is swept within the

bandwidth of interest.

C =
1

2W

∫ +W

−W

YIM3(f
′)df ′ =

∫ ∞

0

yIM3(τ)
sin(Wτ)

Wτ
dτ . (4.18)
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Taking this into account, the power amplifier linearizability under static conditions

is defined as the ratio between the unlinearised IMD integrated power in the

desired bandwidth and the total IMD integrated power after memoryless lin-

earization in the same bandwidth:

LM =

∫ +W

−W

|YIM3(f
′)|2df ′

∫ +W

−W

|YIM3(f
′) − C|2df ′

. (4.19)

When seen in the time domain for the whole power amplifier IMD bandwidth

characteristics (W → ∞), this memory figure of merit is a metric of the power

contained only in the power amplifier dynamic IMD, normalized to the total

IMD power.

• Memory Effect Intensity:

In [210], a very intuitive memory figure of merit is defined for power amplifiers

driven by modulated signals. In this case, it is considered that memory effects

prevent conventional memoryless linearisers from effectively suppress the out-

of-band emission in the output spectrum after linearisation, Yo,ml(f). Since the

residual spectral regrowth is primarily caused by memory effects, the proposed

quantification of the memory effects’ intensity is defined as the ratio of the in-

tegrated power in the out-of-band spectrum to that of the in-band spectrum.

Expressed in dBc, memory effect intensity (MEI) is:

MEI = 10 log








∫ fc−B/2

fc−5B/2

Yo,ml(f)df +

∫ fc+5B/2

fc+B/2

Yo,ml(f)df

∫ fc+B/2

fc−B/2

Yo,ml(f)df








, (4.20)

where B is the bandwidth of the modulated signal. In that work, only the third-

and fifth-order IM products are included to represent the out-of-band spectrum

regrowth since they are the most significant.

4.2 Measurement setup description

The automatic setup for the characterization of nonlinear circuits employed in this

Thesis is shown in Figure 4.3. With this equipment, different standard nonlinear fig-

ures of merit have been evaluated for one-tone and two-tone tests, such as the P1 dB or

the level of IM3. In addition to this, band-limited continuous spectra communication
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Figure 4.3: Photograph of the equipment setup for the characterization of non-

linear circuits.

signals corresponding to the digital standard 3GPP UMTS W-CDMA have been gen-

erated and ACPR has been quantified and output power spectrum traces have been

captured where spectral regrowth can be observed. A diagram of the implemented

automated characterization setup is shown in Figure 4.4. The most notable elements

in the setup are the following:

• Spectrum analyser ESA E4407B of Agilent, with a modulation analysis option.

• Signal generator SMIQ02B of Rhode & Schwarz, with built-in arbitrary wave-

form facility.

• Signal generator SMR20 of Rhode & Schwarz.

• Two dc power supplies: a 6622A of Agilent and a TPS-4000D of Topward Electric

Instruments.

The instruments are controlled by a commercial software installed in a PC, via a

GPIB (General Purpose Interface Bus) interface. A test-fixture is also included in the

setup to place the different microwave circuits to be characterised. For each particular

measurement other elements may be necessarily included, such as commercial bias

networks, filters, attenuators, power splitters or combiners, directional couplers, etc.

It is also possible to add more signal generators for multitone signals by means of

directional couplers or power combiners.

The main advantages of the employed setup are the speed achieved due to mea-

surement automation and the simplicity attained with the user-friendly graphic in-

terface of the designed software, which makes the sometimes complex and repetitive
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Figure 4.4: Diagram of the equipment setup for the characterization of nonlin-

ear circuits.

configurations of parameters transparent to users. Another positive issue is the possi-

bility of having all the measurement results immediately available in the PC, both in

graphical and numeric format, so that it is easier to integrate experimental data into

modelling and simulation techniques. The design of this software tool has been car-

ried out by following a modular philosophy in order to simplify its future extensions

with new measurement procedures and functionalities. A library of custom-designed

functions is the base of the software. These functions are used to establish the mea-

surement conditions in the instruments, create the desired arbitrary waveforms, ex-

port them to the signal generator SMIQ02B, store them in its internal memory, and

recover in the PC the measurement data, which can be automatically processed.

Figure 4.5 shows a screenshot of the software’s main window, where it can be noted

that the possible control and configuration actions for each instrument are determined

by the type of measurement to be done, so that the user needs to specify the smallest

number of parameters. Moreover, in order to protect the devices against inappropri-

ate dc supplies, i.e., with wrong polarity or values over the maximum recommended

ones, the tool includes an extendable database with the acceptable voltage and current

ranges for the commonly used devices and an undetermined device for which it is the

user who establishes the desired range.

4.2.1 Illustrative examples of nonlinear distortion characterization

With the described setup, the commercial amplifier MAX2430, manufactured by

MAXIM Integrated Products, has been automatically characterised. According to the

manufacturer’s datasheet, this is a silicon medium power amplifier, with 16-pin QSOP
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Figure 4.5: Main window of the implemented software controlling the auto-

mated measurement setup.

package, operating in the frequency range between 800 and 1000 MHz, delivering

100 mW of output power at 915 MHz and exhibiting a gain over 30 dB with 3 V dc

voltage and 60 mA current supply. For 0.6 V dc voltage the circuit operates as a class

C amplifier. Above 2 V, the output stage is biased in class AB. The selected operation

regime is a dc voltage of 3.6 V and a fundamental frequency of 915 MHz. It must be

noted that, for this device, the operation point varies with the amplitude of the exci-

tation signal, as it is shown in Figure 4.6 where the current consumption is depicted

versus the input power level for a CW signal.

Among the measurements carried out, firstly a one-tone test was performed, in

which the output power levels for the fundamental frequency and the first harmonics

have been registered. This measurement allows us to represent the power gain versus

the input level and determine the 1 dB compression point. Figure 4.7 illustrates the

typical output amplitude characteristic of a nonlinear DUT versus the input power or

AM-AM characterization for the fundamental and first harmonics for an input level of

Pin = −10 dBm, above the 1-dB compression point. Corresponding to it, in Figure 4.8

the gain of the studied power amplifier is depicted, together with its estimated 1-dB

compression point of about −12 dBm at the input and 22.1 dBm at the output.
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Figure 4.6: Current consumption for a MAXIM 2430 power amplifier versus

input power level.

Next, a two-tone test was performed with fundamental frequencies f1 = 914 MHz

and f2 = 916 MHz, for which Figure 4.9 presents a plot of the DUT’s output power at

the fundamental signals and IM3 versus input power. At sufficiently small-signal lev-

els, the fundamental output power increases 1 dB for each decibel rise of input power,

while a 3 dB per decibel rate is observable for the IM3 power. However, at very large-

signal levels where the contribution of the higher order terms is no longer negligible,

both curves tend to compress towards constant fundamental and IM3 output power

values. A direct reading of this plot immediately provides IMR as a function of input

drive level. Note that, in this case, a notable asymmetry can be observed between the

upper and lower IM3 products, making difficult the obtention of the IP3.

In addition to this, the in-band power and ACP in the first, second and third ad-

jacent channels (both upper and lower) were measured for the MAX2430 power am-

plifier excited with a 3GPP UMTS W-CDMA signal varying the input power level.

The measurement results are shown in Figure 4.10. The averaged output PSD of the

power amplifier for two different input power levels is depicted in Figure 4.11, where

spectral regrowth can be observed due to the nonlinear distortion for the highest in-

put power level Pin = −10 dBm. This spectral regrowth is the cause for the observed

increase of the ACP in the previous figure.
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Figure 4.7: Output power for the fundamental frequency and first harmonics

for a MAXIM 2430 power amplifier illustrating AM-AM character-

ization.
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Figure 4.8: Conversion gain measurement for a MAXIM 2430 power amplifier.
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Figure 4.9: Output power at fundamentals and IM3 components versus input

level for a MAXIM 2430 power amplifier for a two-tone excitation

with ∆f = 2 MHz.
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amplifier with a 3GPP UMTS W-CDMA signal.
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Figure 4.11: Output PSD traces for a MAXIM 2430 power amplifier with a

QPSK 3GPP UMTS W-CDMA signal employing a root raised co-

sine filter and two power input levels.

4.3 Results for envelope-based analysis methods

In order to verify performance of the analysis methods described in Chapter 3, some

simple amplifiers and mixers have been constructed based on two active devices:

MESFET CFB0301 of Celeritek and a HEMT EPB018A5-70 of Excellics. Before the

results of predictions provided by these methods are compared with measurements,

a detailed explanation of the followed modelling procedure will be presented.

4.3.1 Employed large-signal models for MESFET and HEMT devices

In order to model the active MESFET and HEMT devices employed, the compact

equivalent three-node circuit shown in Figure 4.12 will be used. It can be noticed

that it is a simplification of that shown in Figure 2.11, where the diodes and extrinsic

capacitances have been neglected. In the last decades, several large-signal models for

MESFET and HEMT devices have been proposed. Well-known examples of compact

models are the Curtice [211] and Statz or Raytheon [212] models for GaAs IC FETs, the

Curtice-cubic [71] model for FETs used in power amplifiers, the Angelov [72] model suit-

able for both MESFET and HEMT devices, and more general-purpose models such as

the Materka [213] model. Many of these compact models are extensions of the small-
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Figure 4.12: Equivalent three-node circuit employed to analyse the MESFET

CFB0301 of Celeritek and the HEMT EPB018A5-70 of Excellics.

signal equivalent circuit model, based on the intuitive association of the circuit el-

ements with the physical structure of the transistor, and describing the large-signal

behaviour by curve fitting the dc Id − Vds characteristics and the capacitance-voltage

relationships of the transistor.

Among the elements of the equivalent circuit, Rg, Rs, Rd, Lg, Ls, and Ld form the

extrinsic circuit. Regarding the intrinsic circuit, Ri is the intrinsic resistance or the re-

sistance of the semiconductor region under the gate, between the source and channel.

Cds is the drain-to-source capacitance, which is dominated by metallization capaci-

tance, and is therefore often treated as a constant. Cgs and Cgd are the gate-to-channel

capacitances. Note that the branches containing Ri-Cgs and Rds-Crf introduce a filter-

like frequency dependence, since they account for NQS or memory effects. Ids is the

nonlinear channel-current source.

Solid-state device models are used in circuit simulators based on Harmonic Bal-

ance or transient analysis, where the dominant implementations employ Newton it-

eration in their solution. Because of that, convergence of both methods requires con-

tinuous first and second derivatives of the I − V and Q − V expressions proposed by

models. Furthermore, for accurate n-th order IM simulations, the modelling functions

must reproduce not only the I − V characteristic, but also its first n derivatives.

Since it is generally accepted that the dominant source of nonlinearity in MESFET

and HEMT transistors is the drain-to-source current Ids(Vgs, Vds) [9], [21], [28], [73],

[74], we will pay special attention to modelling the drain current characteristics and

the models employed in this work will be reviewed. Furthermore, some remarks will

be presented about modelling the gate capacitances, being the second source of non-

linearity.
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• Models for the drain current characteristics:

– Quadratic Curtice model:

The description for the nonlinear drain current proposed in [211] takes the

analytic form:

Ids(Vgs, Vds) = β(Vgs − VT )2 · (1 + λVds) tanh(αVds). (4.21)

This model involves four parameters to be fitted with measurements: α, β,

λ, and the threshold voltage VT . Each of the terms whose multiplication

gives rise to (4.21) emphasises a different feature of the I − V characteris-

tic. For example, the term β(Vgs −VT )2 models the approximately quadratic

dependence of the drain current on voltage Vds. The β parameter is related

to the maximum drain current. The following term, (1 + λVds), is employed

to describe the finite output conductance, whose slope depends on the λ

parameter. Finally, both saturation and knee regions in the I − V character-

istic are modelled by means of a tanh function. The α parameter controls the

sharpness of the knee region; the higher α is, the faster the saturation effects

will be noticed. Note, that (4.21) describe the drain current as a separable

function on the variables Vgs and Vds, that is, Ids = IdA(Vgs) · IdA(Vds).

In order to get the transconductance and output conductance, equation

(4.21) is differentiated with respect to Vgs and Vds, respectively. Note that

this model predicts that all the transconductance derivatives are zero for

orders higher than 3, that is, gk0 = 0 for k ≥ 3, being this one of the main

drawbacks for the use of this model in strongly nonlinear circuits.

In order to include the transit-time effects, it is suggested that the current

dependence on Vgs be on the form Ids[Vgs(t − τ), Vds]
1.

– Curtice-Ettenberg or Curtice-cubic model:

Curtice and Ettenberg [71] modified the original Curtice model by using a

cubic approximation in order to get a better adjustment in the drain current

as a function of the gate-to-source voltage, which provides an additional

degree of freedom to fit the characteristics of the device:

Ids = (A0 + A1V1 + A2V
2
1 + A3V

3
1 ) · tanh(γVds), (4.22)

1In more recent works, such as [58], it has been stated that the τ parameter usually found in small-

signal nonlinear models is not originated by transit-time effects or channel delay. Its physical meaning

is related with the fact that the real drain-to-source conductance in the device depends on both Vgs and

Vds, which generates a transcapacitance term in the small-signal equivalent circuit. This term is usually

added to the transconductance gm and their sum is approximated by the voltage-controlled current

source gm exp[−jωτ ]vgs.

152



4.3. RESULTS FOR ENVELOPE-BASED ANALYSIS METHODS

where V1 is the input voltage. Ai coefficients are extracted from measure-

ments in the saturation region by means of an adjustment in the least-square

error sense. In order to include the increment experimented on the pinch-

off voltage with an increasing voltage Vds, it is considered that

V1 = Vgs(t − τ) · [1 + β(V 0
ds − Vds(t))], (4.23)

where β is the parameter controlling the change rate of the pinch-off volt-

age and V 0
ds is the drain-to-source voltage (in saturation) for which the Ai

coefficients have been extracted. Because of that, the drain current is no

longer described as a separable function on the variables Vgs and Vds.

– Angelov model:

Models previously presented were designed to describe the large-signal be-

haviour of MESFET devices and, despite they can also fit the I − V charac-

teristic for HEMT devices, there are certain features of HEMTs which are

not sufficiently stressed with them. The transconductance is one of the

most critical aspects for large-signal predictions. The transconductance

of a HEMT device exhibits a peak value that is not present in MESFET

devices. The Angelov or Chalmers University model [72] takes into account

this phenomenon by means of a separable expression for the drain current

Ids(Vgs, Vds) = IdA(Vgs) · IdB(Vds). The term IdB(Vds) is the same as the one

used in the Curtice model. However, a gate control function IdA(Vgs) is

proposed wherein the first derivative has the same generic shape as the

transconductance curve:

Ids = Ipk(1 + tanh ψ) · (1 + λVds) tanh(αVds),

ψ = P1(Vgs − Vpk) + P2(Vgs − Vpk)
2 + P3(Vgs − Vpk)

3 + . . .
(4.24)

where Ipk and Vpk are the drain current and gate voltage corresponding to

the peak transconductance, respectively. In these expressions, the various

Pi coefficients are empirical polynomial fitting parameters describing the

dependence on an effective gate potencial, ψ. The model is sufficiently ac-

curate even if φ is approximated by a linear function. Note that this drain

current function has well defined derivatives with respect to the gate volt-

age, which enables the identification of the higher-order derivative terms

with the order of the distortion components.

• Models for the gate capacitances:

Whereas many of the remaining components in the large-signal equivalent cir-

cuit exhibit little or no voltage dependence, the input capacitantes Cgs and Cdg
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can vary significantly with bias in a nonlinear fashion. Early large-signal MES-

FET models, such as the Curtice model, incorporate a voltage dependence for

the model capacitors based on that of the ideal metal-semiconductor junction:

Cgs(Vgs) =
Cgs0

√

1 −
Vgs

Vbi

, (4.25)

where Cgs0 is the zero-bias capacitance, and Vbi is the built-in voltage of the Schot-

tky barrier. The gate-to-drain capacitance can be described by means of the same

analytic expression, although its value is significantly smaller under usual bias

condition.

In the Materka model, the same expression is applied for the gate-to-source ca-

pacitance, as long as Vgs < 0.8Vbi. Nevertheless, for higher voltage values,

the capacitance is approximated by a linear function with a slope calculated as
dCgs

dVgs

∣
∣
∣
∣
Vgs=0.8Vbi

.

However, since a close inspection of the measured capacitance-voltage depen-

dence for the capacitors Cgs and Cgd indicates that the form of the relationship in

several cases is different from that predicted by the aforementioned expressions,

newly proposed models are functions of both Vgs and Vds as well as they are fully

charge-conservative [58].

For instance, in the Angelov model the same tanh functions employed in the

drain current expression are used to model gate-to-source and gate-to-drain ca-

pacitances, and a certain cross-coupling of both Vgs and Vds is taken into account

in Cgs:

Cgs = Cgs0 [1 + tanh(ψ1)] · [1 + tanh(ψ2)] , (4.26)

Cgd = Cgd0 [1 + tanh(ψ3)] · [1 − tanh(ψ4)] , (4.27)

where

ψ1 = P0gsg + P1gsgVgs + P2gsgV
2
gs + P3gsgV

3
gs + . . .

ψ2 = P0gsd + P1gsdVds + P2gsdV
2
ds + P3gsdV

3
ds + . . .

ψ3 = P0gdg + P1gdgVgs + P2gdgV
2
gs + P3gdgV

3
gs + . . . (4.28)

ψ4 = P0gdd + (P1gdd + P1ccVgs
)Vds + P2gddV

2
ds + P3gddV

3
ds + . . .

4.3.1.1 Illustrative examples of large-signal modelling

As it was explained in Chapter 3, the common features of both the EC and the SN

methods are that they analyse the same augmented linear circuit for all the iterations.
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Therefore, they can be summarised in the following iterative process:

[jY′(hωc) − ∆t · Y(hωc)] ṽn(h, tk+1) = (4.29)

jY′(hωc)ṽn(h, tk) − ∆t · ĩn(h, tk+1) ,

where a number N of nonlinear iterations will be considered for each case. In the

example of Figure 4.12, the admittance matrix and its first derivative with respect to ω

take the following expressions:

Y(hωc) =






Y11(hωc) Y12(hωc) Y13(hωc)

Y21(hωc) Y22(hωc) Y23(hωc)

Y31(hωc) Y32(hωc) Y33(hωc)




 , (4.30)

with

Y11(hωc) =
1 + jhωcRiCgs

Zs + Rg + jhωcLg

+
jhωcCgd (1 + jhωcRiCgs)

1 + jhωcRgdCgd

+ jhωcCgs,

Y12(hωc) = −
jhωcCgd

1 + jhωcRgdCgd

,

Y13(hωc) =
1

Zs + Rg + jhωcLg

,

Y21(hωc) = g10 −
jhωcCgd (1 + jhωcRiCgs)

1 + jhωcRgdCgd

, (4.31)

Y22(hωc) = g01 +
1

ZL + Rd + jhωcLd

+
jhωcCgd

1 + jhωcRgdCgd

+ jhωcCds +
jhωcCrf

1 + jhωcRdsCrf

,

Y23(hωc) =
1

ZL + Rd + jhωcLd

,

Y31(hωc) = −g10 − jhωcCgs,

Y32(hωc) = −g01 − jhωcCds −
jhωcCrf

1 + jhωcRdsCrf

,

Y33(hωc) =
1

Rs + jhωcLs

,

and

Y′(hωc) =






Y ′
11(hωc) Y ′

12(hωc) Y ′
13(hωc)

Y ′
21(hωc) Y ′

22(hωc) Y ′
23(hωc)

Y ′
31(hωc) Y ′

32(hωc) Y ′
33(hωc)




 , (4.32)

with

Y ′
11(hωc) =

jRiCgs

Zs + Rg + jhωcLg

−
jLg (1 + jhωcRiCgs)

(Zs + Rg + jhωcLg)
2 +

+
jCgd (1 + jhωcRiCgs)

(1 + jhωcRgdCgd)
2 −

hωcRiCgsCgd

1 + jhωcRgdCgd

+ jCgs,

Y ′
12(hωc) = −

jCgd

(1 + jhωcRgdCgd)
2 ,
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Y ′
13(hωc) = −

jLg

(Zs + Rg + jhωcLg)
2 ,

Y ′
21(hωc) = −

jCgd (1 + jhωcRiCgs)

(1 + jhωcRgdCgd)
2 +

hωcRiCgsCgd

1 + jhωcRgdCgd

, (4.33)

Y ′
22(hωc) = −

jLd

(ZL + Rd + jhωcLd)
2 +

jCgd

(1 + jhωcRgdCgd)
2 + jCds +

jCrf

(1 + jhωcRdsCrf )
2 ,

Y ′
23(hωc) = −

jLd

(ZL + Rd + jhωcLd)
2 ,

Y ′
31(hωc) = −jCgs,

Y ′
32(hωc) = −jCds −

jCrf

(1 + jhωcRdsCrf )
2 ,

Y ′
33(hωc) = −

jLs

(Rs + jhωcLs)
2 .

The problem unknowns are the complex envelopes of the voltages as expressed in

the following vector:

ṽn(h, t) =






ṽgs,n(h, t)

ṽds,n(h, t)

ṽs,n(h, t)




 , (4.34)

and the output voltage is:

ṽout,n(h, t) =
ZL [ṽds,n(h, t) + ṽs,n(h, t)]

ZL + Rd + jhωcLd

. (4.35)

Note that constant generator (Zs) and load (ZL) impedances have been taken into ac-

count, since bias-Tees with ideally flat frequency response have been considered.

The only elements that still need to be modelled are the nonlinear ones, for which

two different approaches have been followed for each active device:

• Modelling of a MESFET device CFB0301 of Celeritek:

In order to verify performance of the analysis methods described in Chapter 3, a

simple amplifier has been constructed at 2 GHz based on a MESFET CFB0301 of

Celeritek. Special care has been devoted to the following procedure in order to

get an accurate model representing the nonlinearities of the device.

The active device has been biased under VDS = 2 V and ID = 25 mA, and the

elements of the small-signal circuit have been obtained from S-parameter mea-

surements with a VNA. Fukui method has been employed for the extraction of

access resistors and Dambrine-Cappy method for determining the elements of

the intrinsic circuit, following an overall optimization with Agilent’s Advanced

Design System (ADS) software.

156



4.3. RESULTS FOR ENVELOPE-BASED ANALYSIS METHODS

AC SOURCE

AC SOURCE

SPEC. ANALYZER

DC POWER SUP.

BIAS-T
BIAS-T150 MHz

151 MHz

CFB0301
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Figure 4.13: Measurement setup for large-signal characterization of a MESFET

amplifier.

Regarding the large-signal model, only the nonlinear drain current source has

been taken into consideration, since Cgd and Cgs have been considered linear ca-

pacitances. The drain current parameters have been fitted to an Angelov [72]

model with only six coefficients (P2 = 0) using the measurement setup shown in

Figure 4.13. Two signals at incommensurate VHF frequencies (150 and 151 MHz)

were injected into the source and drain ports and the different IM products were

measured with a spectrum analyser. Extraction of the large-signal parameters

was accomplished through a double Volterra-series approach [42] by compar-

ing measurements of each product with the predicted IM in terms of nonlinear

transfer functions of order n + m. The accuracy of the achieved adjustment is

depicted in Figure 4.14, showing a good agreement.

• Modelling of a HEMT device EPB018A5 of Excellics:

Another single-FET amplifier has been constructed and modelled, apart from

the previously presented MESFET amplifier. The active device in this case is

the HEMT EPB018A5 of Excelics Semiconductor Inc., encapsulated in a 70-mil

package and mounted on a 2×2 cm PTFE substrate for in-fixture measurements.

The dc bias has been applied to the gate and drain ports by using two ZFBT-

6G bias-Tees of Minicircuits Inc. The active device has been biased at VGS =

−0.245 V and VDS = 2 V, in order to have a drain current of 15 mA.

The manufacturer of the active device provides both small-signal and package

equivalent circuits, together with the typical parameters of a Curtice-cubic large-

signal model [71]. The large-signal model includes a Curtice-cubic model for the

nonlinear gate-to-source capacitance, considering to be linear the gate-to-drain

capacitance. However, in order to accomplish the simulations, the nonlinear pa-
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Figure 4.14: IM products level measured at the input of the spectrum analyser:

dots, measurements; solid line, predictions employing Angelov’s

model.

rameters provided by the manufacturer resulted in non-negligible inaccuracies

that made necessary a careful re-modelling of the main nonlinearity Ids. This

re-modelling procedure consisted in adjusting new parameters optimised for an

Angelov model using six coefficients (with λ = 1).

Furthermore, a mixer has been constructed using the aforementioned HEMT de-

vice EPB018A5-70 of Excellics, which has been biased as a gate mixer. The same

equivalent circuit as in the case of an amplifier has been employed, in which a

different bias has been taken and two excitation signals have been injected. The

optimum bias point has been obtained experimentally resulting in a gate voltage

VGS = −0.45 V for the recommended drain voltage VDS = 2 V. These voltages

have been applied through two bias-Tees used to decouple the dc from LO and

RF signals in the input and from the IF signal in the output. The RF signal at

fRF = 2 GHz and the LO signal at fLO = 1.86 GHz have been applied by us-

ing a directional coupler and the LO level has been also experimentally fixed at

PLO = −4.5 dBm, in order to obtain the maximum gain.
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4.3.2 Envelope Currents method

In order to verify the performance of the EC method described in Section 3.4 the sim-

ple amplifier constructed with the MESFET CFB0301 of Celeritek has been employed.

The performance of the amplifier has been widely characterised at 2 GHz and mea-

surements have been compared with the predictions of the EC method. The following

nonlinear envelope currents have been taken into consideration, since we were inter-

ested in predicting the output for the fundamental frequency zone and the second and

third harmonics after three iterations:

• For the linear case, n = 1, only the fundamental frequency zone with h = 1 was

taken into account:

ĩ1(1, t) =








ṽg(t)

Zs + Rg + jωcLg

0

0








. (4.36)

• For the second iteration, n = 2, two envelope current components for h = 0 and

h = 2 need to be considered:

ĩ2(0, t) =






0

−ĩd,2(0, t)

ĩd,2(0, t)




 , (4.37)

ĩ2(2, t) =






0

−ĩd,2(2, t)

ĩd,2(2, t)




 , (4.38)

with

ĩd,2(0, t) =
g20

2
|ṽgs,1(1, t)|

2 +
g02

2
|ṽds,1(1, t)|

2 +
g11

2
Re{ṽgs,1(1, t)ṽ

∗
ds,1(1, t)}, (4.39)

ĩd,2(2, t) =
g20

2
ṽ2

gs,1(1, t) +
g02

2
ṽ2

ds,1(1, t) +
g11

2
ṽgs,1(1, t)ṽds,1(1, t). (4.40)

• For the third iteration, n = 3, again two envelope current components for h = 1

and h = 3 are considered, although the latter is just necessary because a predic-

tion of the third harmonic is sought:

ĩ3(1, t) =






0

−ĩd,3(1, t)

ĩd,3(1, t)




 , (4.41)

ĩ3(3, t) =






0

−ĩd,3(3, t)

ĩd,3(3, t)




 , (4.42)
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with

ĩd,3(1, t) =
3g30

4
ṽ2

gs,1(1, t)ṽ
∗
gs,1(1, t) +

3g03

4
ṽ2

ds,1(1, t)ṽ
∗
ds,1(1, t)+

2g20

[
1

2
ṽ∗

gs,1(1, t)ṽgs,2(2, t) + ṽgs,1(1, t)ṽgs,2(0, t)

]

+

2g02

[
1

2
ṽ∗

ds,1(1, t)ṽds,2(2, t) + ṽds,1(1, t)ṽds,2(0, t)

]

+

g11

[
1

2
ṽ∗

gs,1(1, t)ṽds,2(2, t) + ṽgs,1(1, t)ṽds,2(0, t)+ (4.43)

+
1

2
ṽ∗

ds,1(1, t)ṽgs,2(2, t) + ṽds,1(1, t)ṽgs,2(0, t)

]

+

g21

4

[
ṽ2

gs,1(1, t)ṽ
∗
ds,1(1, t) + 2|ṽgs,1(1, t)|

2ṽds,1(1, t)
]
+

g12

4

[
ṽ2

ds,1(1, t)ṽ
∗
gs,1(1, t) + 2|ṽds,1(1, t)|

2ṽgs,1(1, t)
]
,

ĩd,3(3, t) =
g30

4
ṽ3

gs,1(1, t) +
g03

4
ṽ3

ds,1(1, t) +
g21

4
ṽ2

gs,1(1, t)ṽds,1(1, t)+ (4.44)

g12

4
ṽ2

ds,1(1, t)ṽgs,1(1, t) + g20ṽgs,1(1, t)ṽgs,2(2, t) + g02ṽds,1(1, t)ṽds,2(2, t)+

g11

2
[ṽgs,1(1, t)ṽds,2(2, t) + ṽds,1(1, t)ṽgs,2(2, t)]
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Figure 4.15: Output power for a MESFET amplifier at the fundamental fre-

quency, second and third harmonics. Dots, measurements; solid

line, simulations using the EC method.
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Figure 4.16: Power gain of a MESFET amplifier at 2 GHz. Dots, measurements;

solid line, simulations using the EC method.

Simulations have been accomplished by using the adjusted Angelov model to ob-

tain the coefficients gkl used in the nonlinear current source expressions as defined

in (2.43). Figure 4.15 shows the first, second and third harmonics at the output in

a wide range of input power levels. The amplifier gain is depicted in Figure 4.16,

demonstrating a good correspondence.

The amplifier has also been tested with a 2 GHz 3GPP QPSK W-CDMA signal at a

rate of 3.84 Mcps using raised-cosine (RC) and root-raised-cosine (RRC) pulse-shaping

filters. For the simulations, 256 symbols of a QPSK sequence were generated, taking

eight samples per symbol and using pulse-shaping filters with a length equivalent to

24 symbols and a 0.22 roll-off factor. Figure 4.17 compares the measured spectrum

at the output port with the simulated PSD following the EC method for a RC filter.

Two different input levels are used, the first one low enough for the nonlinearities of

the amplifier not to be appreciable and the second one closer to the 1 dB compression

point, where a notable spectral regrowth causing adjacent-channel interference can be

observed. For the sake of comparison, Figure 4.18 depicts the same information using

a RRC filter, with predictions obtained with the EC method. A greater spectral re-

growth in the second case is clearly noticeable due to the pulse-shaping filter applied.

In both cases, the simulations agree with measurements satisfactorily. Considering

the small computation times necessary to achieve this appropriate agreement, it can
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Figure 4.17: Constellation and output PSD of a MESFET amplifier for two in-

put power levels with a raised-cosine pulse shaping filter. Dots,

measurements; solid line, predictions with the EC method.

162



4.3. RESULTS FOR ENVELOPE-BASED ANALYSIS METHODS

1.99 1.995 2 2.005 2.01
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frecuency (GHz)

O
ut

pu
t p

ow
er

 s
pe

ct
ra

l d
en

si
ty

 (
dB

) P  = – 5 dBm   
in P  = – 20 dBm   in 

 

RRC 

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

In−phase component

Q
ua

dr
at

ur
e 

co
m

po
ne

nt

P
in

 = – 5 dBm ⋅ Input
Output

×

Figure 4.18: Constellation and output PSD of a MESFET amplifier for two in-

put power levels with a root-raised-cosine pulse shaping filter.

Dots, measurements; solid line, predictions with the EC method.
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be concluded that envelope-based approaches such as the EC method are appropri-

ate to predict spectral regrowth and ACPR for nonlinear devices. Nevertheless, in

the next section it will be shown that a greater reduction in computation times while

maintaining a satisfactory agreement with measurements can be achieved by using a

SN approach.

4.3.3 Simplified Newton approach for weakly nonlinear communi-

cation circuits

In order to demonstrate the SN approach proposed in Section 3.6, the amplifier con-

structed with the HEMT EPB018A5 of Excelics has been used. The following nonlinear

envelope currents have been taken into consideration for predicting the output for the

fundamental frequency zone, and the second and third harmonics. For the simula-

tions with the SN method, coefficients of both the nonlinear drain current source and

the nonlinear gate-to-source capacitance up to the second order are taken into account:

• For the linear case, n = 1, only the fundamental frequency zone with h = 1 was

taken into account:

ĩ1(1, t) =








ṽg(t)

Zs + Rg + jωcLg

0

0








. (4.45)

• For the second iteration, n = 2, four envelope current components for h = 0, 1, 2,

and 3 need to be considered:

ĩ2(h, t) =






−ĩc,2(h, t)

−ĩd,2(h, t)

ĩd,2(h, t) + ĩc,2(h, t)




 , (4.46)

with

ĩd,2(0, t) =
g20

2
|ṽgs,1(t)|

2 +
g02

2
|ṽds,1(t)|

2 +
g11

2
Re{ṽgs,1(t)ṽ

∗
ds,1(t)} (4.47)

ĩd,2(1, t) =
3g30

4
|ṽgs,1(t)|

2ṽgs,1(t) +
3g03

4
|ṽds,1(t)|

2ṽds,1(t) +
g21

4
ṽ2

gs,1(t)ṽ
∗
ds,1(t)+

+
g21

2
|ṽgs,1(t)|

2ṽds,1(t) +
g12

4
ṽ2

ds,1(t)ṽ
∗
gs,1(t) +

g12

2
|ṽds,1(t)|

2ṽgs,1(t) (4.48)

ĩd,2(2, t) =
g20

2
ṽ2

gs,1(t) +
g02

2
ṽ2

ds,1(t) +
g11

2
ṽgs,1(t)ṽds,1(t) (4.49)

ĩd,2(3, t) =
g30

4
ṽ3

gs,1(t) +
g03

4
ṽ3

ds,1(t)+ (4.50)
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+
g21

4
ṽ2

gs,1(t)ṽds,1(t) +
g12

4
ṽ2

ds,1(t)ṽgs,1(t)

ĩc,2(0, t) = 0 (4.51)

ĩc,2(1, t) =jω
c2

4
|ṽgs,1(t)|

2ṽgs,1(t) (4.52)

ĩc,2(2, t) =jω
c1

2
ṽ2

gs,1(t) (4.53)

ĩc,2(3, t) =jω
c2

4
ṽ3

gs,1(t) (4.54)

The amplifier has been widely characterised at 2 GHz, including one- and two-

tone tests and measurements of ACPR under a 3GPP UMTS W-CDMA input signal.

Figure 4.19 shows the gain compression as a function of the input level for a two-tone

excitation with a separation of 1 MHz between the tones. It can be observed that the

SN approach shows a good dynamic range, even when only the first and second iter-

ation (solid line) are computed and it is necessary to solve only two systems of equa-

tions. These conclusions are also evident in Figure 4.20, where both the output upper

tone and IM3 levels are depicted. Simulation time for these data was below 2 seconds

in a Pentium IV PC. Performance is enhanced by using a communications signal, as

shown in Figs. 4.21 and 4.22, where spectral regrowth is successfully compared with

measurements for a 3GPP UMTS W-CDMA signal with 3.84 Mchip/s. To simulate

this signal, 4096 samples of a QPSK complex envelope with root-raised-cosine pulse-

shaping filter were generated. The correspondence between the EC method, the SN

approach and the measured spectrum is very good, and a close agreement with mea-

surements is accomplished even when only two systems of equations are solved, i.e.,

computing only up to the second iteration for the SN approach (see Figure 4.21). With

regard to simulation times, the computation of three iterations took approximately

the same time with the EC method than with the SN approach, while in Figure 4.21

a reduction over 50 % of the time was achieved. Despite the theoretical restriction of

weakly nonlinear behaviour, in practice the SN approach is able to predict spectral re-

growth fairly accurately even with an input power level close to the 1-dB compression

point, as it is shown in Figure 4.23.

The aforementioned accuracy in the prediction of spectral regrowth for a wide

dynamic range and the reduced simulation times allows us to perform ACPR simula-

tions as the one shown in Figure 4.24, where the EC method is compared with the SN

approach up to the second and third iteration.

As it was explained in Section 3.6, although nonlinearities above third order have

been neglected for these examples, the SN approach can be easily extended to higher

orders and, simply from the second iteration, nonlinear effects can be predicted in a

cost-efficient simulation time.
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Figure 4.19: Power gain of a HEMT amplifier for an input of two-tones. Mea-

surements (triangles) are compared to the prediction using the SN

approach up to the second iteration (solid line).
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level. Obtained values for the SN approach (solid line), and

considering only up to the second iteration (dashed-dotted line).

Measurements at 2 GHz (triangles).
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Figure 4.21: Spectral regrowth prediction for a HEMT amplifier with a 3GPP

UMTS W-CDMA signal. Measurements (dots) are compared to

the SN approach up to the second iteration (solid line) and to the

EC method up to the third iteration (dotted line).
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Figure 4.22: Spectral regrowth prediction for a HEMT amplifier with a 3GPP

UMTS W-CDMA signal. Measurements (dots) are compared to

the SN approach (solid line) and to the EC method (dotted line),

in both cases up to the third iteration.
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Figure 4.23: Spectral regrowth prediction for a HEMT amplifier with a 3GPP

W-CDMA signal and an input level near the 1-dB compression

point. Measurements (dots) are compared to the SN approach up

to the third (solid line) and second (dotted line) iteration.
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Figure 4.24: In-band power and ACP prediction in the first and second ad-

jacent channels for a HEMT amplifier with a 3GPP UMTS W-

CDMA signal versus the input level. Measurements (dots) are

compared with the SN approach up to the third (solid line) and

second (dashed line) iteration and to the EC method (dotted line).
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4.3.4 Two alternate Envelope Currents approaches for communica-

tion signals in mixers

To demonstrate and compare the performance of the NEC and E-PHB approaches de-

scribed in Sections 3.7.2.1 and 3.7.2.2, respectively, the simple mixer constructed with

the HEMT EPB018A5-70 of Excellics has been employed. A set of measurements were

performed to empirically characterise the mixer, and in all cases the corresponding

simulations were implemented according to the experimental conditions.

First, a one-tone test was performed and the resulting conversion gain was com-

pared satisfactorily with the calculated results. The mixer was also tested with two RF

tones at 2 and 2.001 GHz, varying the power level. Figure 4.25 shows the measured

conversion gain (marks) and it is possible to observe that the characteristics calculated

with the E-PHB, depicted in the same figure with a solid line, and the NEC method,

depicted with a dashed line, are very close to the experimental results, even for levels

well beyond the 1-dB compression point. Besides this, the output power level of the

two intermediate frequencies and of the IMD are shown in Figure 4.26. Good agree-

ment of the calculated IMD in approximately the same level range is evident.

Finally, a 2 GHz 3GPP UMTS W-CDMA RF signal was generated at a rate of 3.84

Mchips/s and the IF output was measured for different levels of input power. In all

cases the spectra were recorded and the corresponding spectral regrowth could be

observed. Under this condition Figure 4.27 depicts the IF output spectrum showing

the spectral regrowth that appears when a RRC pulse-shaping filter is used and even

in this case the coincidence between computed and measured data with the E-PHB

approach is remarkable. Notice that low level measurements were limited by the noise

floor of the analyser, about -80 dBm in this case. Furthermore, it should be noticed

that the calculated output spectra with both NEC and E-PHB approaches presented

close-fitting characteristics in a high dynamic range. In fact, only for a high signal

level above 1-dB compression point, unrealistic in wireless communication systems,

the discrepancy was distinct, as Figure 4.28 reveals.

In addition to this, measurements of the output power level within the channel

of interest and the ACP in two lower- and upper-adjacent channels were made for

a wide range of input power levels using the same 2 GHz 3GPP UMTS W-CDMA

signal. Figure 4.29 shows a comparison of measured and computed in-band power as

well as ACP. Agreement is very good in all measured range validating the approach

presented in this communication. Moreover, E-PHB employed about five minutes per

power point in this simulation when each harmonic of the IF was computed separately

to reduce the CPU time.
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Figure 4.25: Conversion gain of the HEMT gate mixer for two-tone input.

Measurements (marks) and results computed with the proposed

methods (E-PHB: solid line; NEC: dashed line)
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surements at fRF = 2 GHz (marks) and results computed with the

proposed methods (E-PHB: solid line; NEC: dashed line).
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Figure 4.27: Spectral regrowth prediction for a 3GPP UMTS W-CDMA signal

(solid line) and measurements at fRF = 2 GHz (dots). Resolution

bandwidth: 100 kHz.
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Figure 4.28: Spectral regrowth prediction of a 3GPP UMTS W-CDMA strong

signal applied to a HEMT gate mixer. Computed with E-PHB

(dots) and with NEC (solid line). Resolution bandwidth: 300 kHz.
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Figure 4.29: In-band power and adjacent channel power prediction for a 3GPP

UMTS W-CDMA signal (E-PHB: solid line and NEC: dashed line)

and measurements at fRF = 2 GHz (marks). Calculation band-

width: 3.84 MHz.

4.4 Phase characterization of intermodulation products

IM3 and IM5

A complete two-tone IMD characterization requires not only the measurement of mag-

nitude using a SA but also phase, varying the frequency separation ∆f between the

two tones, as several specialist have recommended.

Different methods for measurement of IMD phase using synchronised generators

and several VNAs have been proposed [27]-[59], [60], or a Vector Signal Generator

(VSG) and a NVNA [61]. Their main disadvantage is that they require sophisticated

and highly-developed setups. The setup proposed in [27] is shown in Figure 4.30. It

is based on the idea that an IM distortion signal is applied together with a two-tone

signal to the input. By adjusting the amplitude and phase of the test signal, the output

IM3 can be canceled and memory effects can be measured by sweeping the tone sep-

aration over a range of modulation frequencies. Nevertheless, this setup presents the

drawback that a complicated calibration process must be carried out. A similar setup

is proposed in [59] and shown in Figure 4.31. It is based on a modified VNA used in

receiver mode and calibrated, which is used to measure ratios in amplitude and phase

between input and output of the DUT at frequencies of the IM products with the help
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Figure 4.30: Proposed setup in [27] for measuring amplitude and phase re-
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Figure 4.33: Equipment setup for two-tone IMD characterization

of a constant reference signal. The use of a NVNA, as shown in Figure 4.32, allows

the accurate measurement of the magnitude and phase of all distortion products at

the input and output of a device with a calibrated instrument. In [61] a technique was

used to overcome the bandwidth limitation of NVNAs.

In addition to this, other methods for phase characterization of IM products have

been recently proposed. Employing standard uncorrelated two-tone and multitone

excitations, [62] is based on statistical averages of signal windows captured by a MTA,

and [63] applies a spectral filtering approach, with a topology similar to that of a su-

perheterodyne receiver which relies on the use of a nonlinear reference device for

phase measurements calibration. On the contrary, [64], also based on spectral filter-

ing, is devoted to correlated signals and avoids the need for a nonlinear reference.

Other widely accepted methods are based on the used of signal generators with arbi-

trary modulation facility which allow time-domain operation, either by means of the

acquisition of samples with a Digital Oscilloscope [65], a VSA [66] or a SA [69], for

two-tone or digitally modulated signals [214]. In other cases, the input and output

of the amplifier under test are connected to a VSA with two channels [67] or with a

single switched channel [68].

Following this trend of broadband sampling, a simplified method to measure the

phase of IM products relative to the tones using non-sophisticated communications

equipment was presented in [70], with the collaboration of the author of this Thesis in

the experimental setup. Figure 4.33 presents a simplified schematic of the employed

setup, shown in Figure 4.4. The two tones are formed by using a DSB-SC signal modu-

lated by a sinusoidal baseband waveform with frequency fm, producing two coherent

tones with the same level and an exactly constant separation ∆f = 2fm. The advan-

tage of this method is not simply the use of only one signal generator to produce the

two tones, but also that the relative phase between tones can be controlled by software

definition of the modulating signal. A restriction of the method is the existence of re-

sponses generated by the digital processing of the signal. However, these responses

are more than 65 dB below the tones and allow margin enough to measure IM in prac-

tical situations without appreciable error.
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Figure 4.34: Schematic diagram of the post-process carried out with the ac-

quired baseband samples.

In the case of magnitude, standard spectrum analyser level measurement facilities

were used, but in the case of the phase the built-in modulation analysis option of the

spectrum analyser was employed to acquire the baseband signal of the amplifier’s

output using a sampling rate of 10 samples per symbol. These samples contain all

the information, i.e. magnitude and phase, of the original modulating signal and also

of the generated IM products. Therefore, after a Fourier transform to the frequency

domain, the relative phases corresponding to each IM product with respect to the

tones could be evaluated. The maximum separation possible between tones is about

10 MHz according to the spectrum analyser specifications. However, taking into ac-

count that the IM3 and IM5 products have wider separations, 3∆f and 5∆f in each

case, the maximum frequency separation between the tones should be circumscribed

to 3.3 MHz and 2 MHz, respectively. As long as the narrowband condition is satisfied,

any frequency dependence introduced by the spectrum analyser to the relative phase

measurement can be neglected.

In order to obtain the relative phases corresponding to each IM product, it is nec-

essary to process the acquired samples in the following way (see Figure 4.34):

1. Form the complex envelope with the acquired in-phase x̂i and quadrature x̂q

baseband samples, i.e. ˜̂x = x̂i + j·x̂q, and Fourier transform it
˜̂
X = F{

˜̂
X}.

2. Find the indices of the frequency-domain vector corresponding to each of the

two tones, r1 y r2, and use them to find the IM products, m · r1 ± n · r2.

3. Determine magnitude and phase of the tones and IM products directly in the

frequency domain.

4. Correct the recovered phase in order to take into account that the acquired signal

experiments a certain delay while propagating from the device under test to the

spectrum analyser.
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4.4.1 Phase correction considering delay

The signal at the output of the nonlinear device under test presents a certain delay

when it reaches the spectrum analyser. This phenomenon produces a different shift

in phase for each of the frequency components in the output signal, i.e. the two tones

and the IM products, which is added to the phase that we want to measure. If the sig-

nal’s delay is denoted by τ and we considered the acquired two tones and third order

products, the phases obtained directly from the frequency-domain representation are

Upper tone: ψu + 2πku = 2πfuτ + φu

Lower tone: ψl + 2πkl = 2πflτ + φl (4.55)

Upper IM3: ψ3u + 2πk3u = 2π(2fu − fl)τ + φ3u

Lower IM3: ψ3l + 2πk3l = 2π(2fl − fu)τ + φ3l

where the terms 2πku, 2πkl, 2πk3u and 2πk3l account for the number of completed

cycles during the delayed time for each sinusoid, since the phase obtained from the

frequency-domain representation of the recovered signal is between −180o and 180o.

It is necessary to estimate the delay in order to correct theses phases. A procedure

will be applied based on finding the instant corresponding to the initial zero phase

of the tones, which is defined by software. With the time elapsed from the initial

condition until the tones are separated a certain absolute phase, the relative phases of

the IM products with respect to the tone phases can be evaluated.

Furthermore, this procedure was based on the assumption that the tone phases,

φl and φu, are equal since their frequency separation is small enough and the devices

under test is weakly nonlinear. It has been checked that this assumption does not

imply a considerable loss in accuracy for the studied devices. Taking into account

this assumption and recalling that fu = fc + fm, fl = fc − fm and ∆f = 2fm, the

experimented delay from the initial condition can be worked out as follows:

ψu = 2π(fc + fm)τ + φu − 2πku,

ψl = 2π(fc − fm)τ + φl − 2πkl,

∆ψ = ψu − ψl = 2 · 2πfmτ + φu − φl − 2πku + 2πkl = (4.56)

= 2π∆fτ − 2πk − (φu − φl) ≃ 2π∆fτ − 2πk,

τ =
1

∆f

(
∆ψ

2π
+ k

)

, where k, ku, kl ∈ Z .

In order to know the delay following (4.56), it is necessary to determine the number

of complete cycles k that the phase ψu overtakes the phase ψl. An iterative method is

implemented to find k, starting from k = 0. First, τ is calculated and it is checked if
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the assumed condition |ψu − ψl| < ǫ is fulfilled. Otherwise, k is incremented until the

condition is fulfilled.

Once the delay τ is known, it is possible to determine the numbers of complete

cycles ku and kl, and the corrected phases for the two tones are

Upper tone: φu = ψu − 2πfuτ + 2πku (4.57)

Lower tone: φl = ψl − 2πflτ + 2πkl

In order to correct the phases of the IM3, the following reasoning is made:

Upper IM3: ψ3u = 2π(2fu − fl)τ + φ3u = 2π(fu + ∆f)τ + φ3u =

= 2πfuτ + 2π∆fτ + φ3u = (ψu − φu) + 2π∆f + φ3u (4.58)

φ3u = 2π − 2π∆fτ + φu − ψu + ψ3u

Lower IM3: ψ3l = 2π(2fl − fu)τ + φ3l = 2π(fl − ∆f)τ + φ3l =

= 2πflτ − 2π∆fτ + φ3l = (ψl − φl) − 2π∆f + φ3l (4.59)

φ3l = 2π∆fτ + φl − ψl + ψ3l

On the other hand, the described procedure can be easily extended in order to ac-

count for the case in which the upper and lower tone differ in a known quantity. This

extension requires only an additional measurement with a Vector Network Analyser

of the phase difference at the output of the device between the limits of the desired fre-

quency range. For the general case in which ψu 6= ψl, the aforementioned expressions

change in the following way:

∆ψ = ψu − ψl = 2 · 2πfmτ + φu − φl − 2πku + 2πkl =

= 2π∆fτ − 2πk − (φu − φl) = 2π∆fτ − 2πk − ∆φ

τ =
1

∆f
(
(∆ψ − ∆φ)

2π
+ k) (4.60)

φu = ψu − 2πfuτ + 2πku −
∆φ
2

φl = ψl − 2πflτ + 2πkl + ∆φ
2

To confirm the reliability of the described method, the phase was checked with

an alternate procedure. For a test amplifier constructed with the HEMT EPB018A5-

70 of Excelics and biased with an arbitrary network, the relative phase of the IM3

products was measured. Once this result was known, the IM3 products were referred

to the amplifier’s input and a new signal “predistorted” with two products of the

same magnitude but with opposite phase, was loaded in the internal memory of the

generator. The new signal is defined as

xI(t) = 2A cos ωmt − 2AI cos φr cos(3ωmt +
∆φ

2
), (4.61)
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Figure 4.35: IM characteristic of a HEMT amplifier without (dotted line) and

with predistortion using the measured phase (solid line).

for the in-phase component and

xQ(t) = −2AI sin φr cos(3ωmt +
∆φ

2
), (4.62)

for the quadrature component. The phase φr is the average relative phase of the IM

products with respect to the two-tones and ∆φ is the phase difference between the

upper and lower IM products. Applying this new signal to the amplifier’s input, a

perfect cancelation of the IM products was achieved, as can be observed in Figure

4.35, a result that demonstrated the convenience of the proposed method.

The main advantages of this simplified method are the following:

• Phase synchronization of the two tones is ensured.

• Negligible non-systematic errors.

• Measurements of IM3 phase can be accomplished automatically in seconds.

• Measurements of IM5 phase have been possible.

On the other hand, it also presents some drawbacks:

• Accuracy limited by quantization noise of the synthesised signal (65 dB dynamic

margin).
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• Bandwidth limited by the available equipment (10 MHz).

• Limited tone spacing: 3.3 MHz in IM3 and 2 MHz in IM5.

• Measurement of phase with respect to the tones phase, not absolute values.

4.4.2 Measurement results

The described method was used to measure the magnitude and phase of the third-

and fifth-order IM products for the HEMT EPB018A5-70 amplifier biased with a com-

mercial bias-Tee (ZFBT-6GW of Minicircuits) at different VGS voltages and with sev-

eral excitation levels of the input signal. The results of magnitude measurements are

presented in Figure 4.36 for VGS = −0.24 V and VGS = −0.4 V for an input level

Pin = −7 dBm. The magnitude is similar for lower and upper products, presenting

no asymmetries and dependence with frequency is evident only for very low values.

The corresponding phase measurements are plotted in Figure 4.37, where it is possible

to clearly observe memory effects and difference between upper and lower products

for small frequency separations. In other cases, the IM3 is approximately opposite in

phase with respect to the fundamental tones, for both biasing conditions. However,

the IM5 is in phase with the fundamental tones for VGS = −0.24 V and suffers a 180◦

shift at VGS = −0.4 V. This can also be observed in Figure 4.39 by means of the phase

inversion that is produced at VGS = −0.4 V with respect to higher voltages. Figure 4.38

shows the magnitude of the IM3 products for the same VGS sweep.

A new amplifier was constructed using a bias network designed with a resonance

near 130 kHz in order to observe some dependence on frequency of both IM3 and IM5

relative phase and phase difference. An approximate model of the new bias network

was deduced from its measured S-parameters and used to calculate the phases to be

compared with experimental data. Its schematic is depicted in Figure 4.40.

Magnitude and phase of the IM3 products for the HEMT amplifier biased at

VGS = −0.4 V and and input level Pin = −7 dBm, together with magnitude and phase

differences between the upper and lower IM products are shown in Figs. 4.41 and 4.42.

These measurements are a clear example of asymmetries in the IM products, a clear

evidence that memory effects are present in this amplifier as it will be theoretically

demonstrated in the next chapter.

Finally, Figure 4.43 shows magnitude and phase of IM3 versus the power input

at VGS = −0.4 V. In this case, the measurement of magnitude display several input

levels for which the asymmetry is greater pointing out some non-desirable operation

conditions for which memory effects will be more notable and thus predistortion may

be inefficient.
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Figure 4.38: Measured magnitude of third-order IM products versus the gate-

to-source voltage applied to the FET. Commercial bias-Tee.
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Figure 4.39: Measured phase of third-order IM products versus the gate-to-

source voltage applied to the FET. Commercial bias-Tee.
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Figure 4.40: Circuit model for the constructed resonant bias network.
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Figure 4.41: Measured magnitude of third-order IM products (red and blue)

and magnitude difference between tones (green). Resonant bias

network.
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Figure 4.42: Measured phase of third-order IM products (red and blue) and

phase difference between tones (green). Resonant bias network.
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CHAPTER 5

MODELLING OF INTERMODULATION

DISTORTION

5.1 Introduction

Traditional modelling methods do not have the capability to estimate the dependence

of IMD on bandwidth. As it has been explained in Section 4.1.4, this phenomenon

arises as a consequence of memory effects and causes a strong dependence of non-

linear distortion on the characteristics of the modulation signal. Wireless engineers

have to account for these effects when designing high efficiency amplifiers in order

to satisfy the strict requirements demanded over increasingly growing bandwidths.

The need for models that allow the prediction of memory effects is thus fully justi-

fied. Among the current trends, behavioural modelling techniques are placed at an

outstanding position [23], [29], [184], [86], [215], [216]. The aim of behavioural mod-

elling is to obtain a prediction of the circuit’s output with no knowledge about the

internal structure of the nonlinear device, by using a reduced-order expression gen-

erally formulated in the time domain. However, the prevalent method for theoretical

analysis of weakly nonlinear behaviour is Volterra series representation, both conven-

tional [28], [21], [75], [76], or dynamic [59]. The main reason for this is that, although

numerical methods such as HB are clearly oriented towards computational simula-

tion, their results cannot be written in closed-form expressions that contribute to the

comprehension of the IMD phenomenon. As it is shown in [28], using a two-tone test

it can be concluded that the baseband termination impedances are the main causes

for the asymmetries between the sidebands in distortion. Furthermore, in [21] a theo-

retical study of a unilateral FET amplifier was made following an approach based on

Volterra series. This study demonstrated the IMD dependence on the load impedance,

using closed-form expressions to appropriately predict asymmetries in the magnitude

of the IM products.
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Following this trend, in Section 5.2 the SN approach will be applied to the analysis

of two-tone IMD in HEMT amplifiers under a narrowband assumption and including

fifth-order terms. Closed-form expressions will be presented for IM3 and IM5. Based

on the obtained expressions, Section 5.2.1 will contain a discussion about the theoreti-

cal results. The concepts of memory effects and asymmetries will be reviewed, as well

as the circumstances that need to be met so that an asymmetry in magnitude and/or

phase can be observed between the IM products. Predicted simulation results will be

compared to the measured data shown in Section 4.4.2, with a special interest in those

conditions where the asymmetry is more significant. Results for different excitation

levels, bias points or load impedances will be shown in Section 5.3. After that, in

order to improve the adjustment for low-frequency modulated measurements where

thermal memory effects prevail, a simplified model will be presented in Section 5.4.

It will be based on finding an equivalent hypothetical load impedance that can ex-

plain discrepancies between measurements and circuit-level predictions. To conclude

this section, the results obtained in this analysis will be related to large-signal FET

models where dispersive phenomena are taken into account. Finally, the impedance-

based approach will be generalised in Section 5.5, where it will be applied to model

asymmetries in magnitude and phase of IM3 for commercial amplifiers, without prior

knowledge of the internal structure of the circuit.

5.2 Simplified Newton approach applied to the analysis

of two-tone IM products under the narrowband as-

sumption

Closed-form expressions obtained in [28], [21] and [70] for the analysis of IMD in FET

devices are limited to third-order terms. In all cases, a Volterra series representation

was used. When the Volterra series are combined with the NC method, the augmented

linear subcircuit is excited with different nonlinear currents for the successive itera-

tions, throughout which the NLTFs and the terms involved in the final IMD expres-

sion are obtained. A significant drawback of the method based on Volterra series is

the unavoidable complexity associated to the derivation of higher-order terms, hence

it is very attractive to explore another strategy. In Section 3.6, some interesting charac-

teristics of the SN method were examined. For example, the region of convergence of

the SN method is often smaller than with standard Newton and it requires a greater

number of iterations, however it can be faster because each iteration is less expensive

[32]. When the dc bias point of the circuit is selected as the initial approximation of

the SN method, the Jacobian matrix calculated for the first iteration is the admittance
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Figure 5.1: Simplified two-node equivalent model used in the two-tone inter-

modulation analysis of a HEMT amplifier, where only the most sig-

nificant nonlinearity has been considered.

matrix of the augmented linear circuit, and this same admittance is used to deduce the

incremental voltages in the following iterations. In that form, the problem is reduced

to the reiterated solution of exactly the same circuit analysed in the NC approach. The

only difference consists in the selection of the circuit driving currents for each itera-

tion: while in the NC method higher-order terms are truncated for the computation

of the n-th order NLTF, in this SN procedure the exciting currents are derived con-

sidering all the terms of the nonlinearity describing function. Therefore, in each n-th

iteration this approach deals with contributions from terms with orders higher than n.

It is possible to conclude that under the same assumption of convergence considered

in the Volterra series approach and in a weakly nonlinear context, closed-form expres-

sions for the IMD accounting for higher-order terms can be obtained in an orderly

way by applying this SN method.

Let us consider the simplified two-node equivalent circuit of an elementary ampli-

fier based on a HEMT in common-source configuration, as it is shown in Figure 5.1. In

the present analysis, the nonlinear terms of capacitances Cgs and Cgd will be neglected

and only the drain current source Ids will be considered, since it is widely accepted

that good results can be obtained considering the drain current source as the only

nonlinear element in the circuit ([9], [21], [28], [73], [74]). Note that Zs(f) and ZL(f),

which are the source and load impedances, include the elements for both the bias and

matching networks. The SN approach presented in 3.6 will be applied to the analysis

of two-tone intermodulation products for this circuit.

Recall that the drain current source can be written as a double Taylor-series expan-

sion around the dc voltages

ids(t) = g10vg(t) + g01vd(t) + iNL[vg(t), vd(t)] (5.1)

where g10 and g01 are the linear conductances of the current source included in the
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augmented linear circuit, and the term

iNL[vg(t), vd(t)] =
∞∑

k=2

gk0v
k
g (t) +

∞∑

l=2

g0lv
l
d(t) +

∞∑

k,l=1

gklv
k
g (t)vl

d(t), (5.2)

is the nonlinear contribution of the current source. Considering previous experimen-

tal results and simulations, in the present analysis the summations will be truncated

assuming that gk0 = 0 , g0l = 0 for k, l > 5 and gkl = 0 for k + l > 3. Recall that the

coefficients gkl, defined in (2.43), are constants that vary with bias.

For the two-node circuit under analysis, equations can be formulated in terms of

the unknown frequency-domain voltages Vg(f) and Vd(f). A nodal analysis of the

augmented linear circuit results in

Y(f)V(f) = I(f), (5.3)

where

Y(f) =






Ys(f) + j2πf(Cgs + Cgd) −j2πfCgd

−j2πfCgd + g10 YL(f) + j2πf(Cds + Cgd) + g01




,

V(f) =

[

Vg(f)

Vd(f)

]

,

I(f) =

[

Ys(f)Vs(f)

−F{ids(t)}

]

.

(5.4)

The following definitions have been made to simplify notation:

ȲL(f) = YL(f) + j2πf(Cds + Cgd) + g01, (5.5)

Ymd(f) = −j2πfCgd + g10, (5.6)

and

Ȳs(f) = Ys(f) + j2πf(Cgs + Cgd). (5.7)

Therefore, the admittance matrix will be written as:

Y(f) =

[

Ȳs(f) −j2πfCgd

Ymd(f) ȲL(f)

]

. (5.8)

Let us assume that a two-tone RF small-signal vs(t) is applied and express it by

means of its complex envelope

vs(t) =
1

2
ṽs(t) ej2πfct +

1

2
ṽ∗

s(t) e−j2πfct , (5.9)

where

ṽs(t) = Aej2πfmt + Ae−j2πfmt = 2A cos(2πfmt) , (5.10)
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with A real and ∆f = 2fm the frequency spacing between the tones. We will also

assume the weakly nonlinear approximation and a narrowband RF modulated signal,

that is, with mfm ≪ fc for m ≤ 5.

With (5.9) as the driving source, at any step of the SN algorithm the circuit vari-

ables, such as the gate and drain voltages, take the general form

vgn(t) =
1

2

∞∑

h=−∞

ṽgn(h, t)ej2πhfct =
1

2

∞∑

h,m=−∞

ṽgn(h,m)ej2π(hfc+mfm)t , (5.11)

vdn(t) =
1

2

∞∑

h=−∞

ṽdn(h, t)ej2πhfct =
1

2

∞∑

h,m=−∞

ṽdn(h,m)ej2π(hfc+mfm)t , (5.12)

for the n-th iteration, with n ≥ 1.

For computational purposes, it is convenient to approximate (5.11) and (5.12) by

quasi-periodic signals, i.e., to represent each complex envelope by a finite number of

discrete sinusoids. For the case of two-tone signals, a finite number of harmonics, H ,

will be considered.

In quasi-periodic steady-state, the SN method has a frequency-domain equivalent

Y(hfc + f) Ṽn(h, f) = Ĩn(h, f) (5.13)

for each iteration n and harmonic h, being Y(f) the admittance matrix of the aug-

mented linear circuit.

A detailed explanation for the obtention of the incremental envelope voltages aris-

ing from the application of the SN approach to the case of a two-tone excitation is

presented in Appendix C. Nevertheless, a summary will be included here.

Once the quiescent point of the circuit has been calculated and all the expansion

coefficients in (5.1) and (5.2) have been determined, all dc voltage sources are short-

circuited, all dc current sources are open-circuited and the augmented linear circuit

characterised by the admittance matrix of (5.8) is solved in the first-order iteration.

The linear iteration (n = 1) produces output terms only at frequencies for h = 1

and m = ±1

ṽg1(1,±1) = Hg1A

ṽd1(1,±1) = H1A.
(5.14)

where Hg1 and H1 are the linear transfer functions relating input voltages with gate

and drain voltages, respectively, both evaluated at the carrier frequency fc.
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From the second iteration, the external signal source is short circuited and the exci-

tation NCs are applied instead. In the second iteration, the employed nonlinear driv-

ing source is i2(t) = −iNL[vg1(t), vd1(t)]. From this expression, the nonlinear envelope

current components ĩ2(h,m) are obtained. It must be noticed that, while in the NC

method the second-order exciting current is −
[
g20v

2
g1(t) + g02v

2
d1(t) + g11vg1(t)vd1(t)

]

and generates components exclusively at dc, f2 ± f1, 2f1 and 2f2, in the SN approach

i2(t) produces terms at all harmonics and IM products of all orders considered. The

most relevant components of i2(t) are those corresponding to the dc zone

ĩ2(0,±2) = −
[
γ20A

2 + 3γ40A
4
]
, (5.15)

ĩ2(0,±4) = −
3

4
γ40A

4 ,

and to the fundamental frequency zone

ĩ2(1,±1) = −

[
9

4
γ31A

3 +
25

4
γ51A

5

]

,

ĩ2(1,±3) = −

[
3

4
γ31A

3 +
25

8
γ51A

5

]

, (5.16)

ĩ2(1,±5) = −
5

8
γ51A

5 .

The recursive expressions used to calculate ĩ2(h,m) and the definitions of the coeffi-

cients γ are shown in Appendix C. The corresponding incremental voltage compo-

nents at hfc + mfm can be expressed as

ṽg2(h,m) = Zg(hfc + mfm)̃i2(h,m) ≈ Zghĩ2(h,m) ,

ṽd2(h,m) = Z(hfc + mfm)̃i2(h,m) ≈ Zhĩ2(h,m) ,
(5.17)

where Zg(f) and Z(f) are impedances relating components of the nonlinear currents

with the components of vg(t) and vd(t), respectively. In particular, Zg(f) accounts for

the feedback across Cgd and can be neglected for components in the dc zone. Further-

more, in this special zone the narrowband assumption does not apply. However, we

can consider Z(mfm) = Z̄L(mfm), which represents the load impedance seen by the

drain source at baseband frequencies. Then, the following relations are satisfied:

ṽg2(0,m) = 0 ,

ṽd2(0,m) = Z̄L(mfm)̃i2(0,m) , (5.18)

for m even. Without loss of generality, it is assumed that Z̄L(0) = 0, since a bias-Tee is

contained in the load impedance block. At other frequency zones, the approximations

Zg(hfc + mfm) ≈ Zg(hfc) = Zgh and Z(hfc + mfm) ≈ Z(hfc) = Zh have been made.

Note that we are assuming that the drain-node impedance is flat for the funda-

mental and harmonic frequencies and can be represented by a constant value at the
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central frequency of the band hfc
1, while it presents some variations for baseband

frequencies taken into account by means of different values of Z̄L(mfm) for each m.

This assumption is based on the typical characteristics of the load, bias networks and

matching networks for RF circuits, which rule the frequency behaviour of the load

impedance. Near dc, the impedance is a very small resistance corresponding to the

resistance of the inductor or RF choke in the dc current path. At high frequencies, the

impedance is the load impedance transformed by the matching network. In between

those two extremes, there is a region where the impedance and transfer characteris-

tics are changing. At these frequencies, the impedance and transfer characteristics are

complex. Although a constant bias network impedance in the range of envelope fre-

quencies can not be guaranteed, it is a common practice for comercial bias networks

to place the corner frequency of the bias-Tee low enough so that the drain impedance

presents no changes for the fundamental and higher-harmonic frequencies [25]. This

is the reason why impedances are considered varying with frequency for the baseband

but constant for the fundamental and higher-harmonic frequencies.

As a result, the following second incremental voltage contributions to the funda-

mental frequency zone have been obtained:

ṽd2(1,±1) = −

[
9

4
γ31Z1A

3 +
25

4
γ51Z1A

5

]

,

ṽd2(1,±3) = −

[
3

4
γ31Z1A

3 +
25

8
γ51Z1A

5

]

, (5.19)

ṽd2(1,±5) = −
5

8
γ51Z1A

5 .

Similar expressions are obtained for the remaining products, as shown in Appendix C.

For the third iteration, it is necessary to evaluate the excitation nonlinear current

i3(t) = −
[

iNL [vg1(t) + vg2(t), vd1(t) + vd2(t)]− iNL [vg1(t), vd1(t)]
]

. Considering that the

incremental voltages vg2(t) and vd2(t) are small compared to the linear terms vg1(t) and

vd1(t), the exciting current can be approximated by its first-order Taylor expansion and

keeping only the most significant terms, linear in vg2 and vd2, this results in

i3(t) = −
{

2g20vg1(t)vg2(t) + g11 [vd1(t)vg2(t) + vg1(t)vd2(t)] + 2g02vd1(t)vd2(t)
}

. (5.20)

Proceeding in an analogous way to that of the second iteration, the incremental

drain voltage contributions in the fundamental frequency zone can be derived: first,

obtaining the components of ĩ3(1,m), and then recalling that ṽd3(1,m) = Z1ĩ3(1,m) .

1In case even-order harmonic impedances change over the possible bandwidths of the signals, it

can be shown that additional frequency-dependent terms need to be included in order to predict the

IMD variation with tone spacing. However, this scenario of rapidly changing even-order harmonic

impedances is not usually observed, unless harmonic trap networks are employed [217].
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Table 5.1: Incremental drain voltage terms for the fundamental frequency

zone (h = 1)

m = ±1

n = 1 H1A

n = 2 −9
4
γ31Z1A

3 − 25
4
γ51Z1A

5

n = 3 3
2
γ′

22Z1A
3 + γ′

20Z̄L(±∆f)A3+

+
[
5γ′

42Z1 + 3γ′
40Z̄L(±∆f)

]
A5

m = ±3

n = 1 0

n = 2 −3
4
γ31Z1A

3 − 25
8
γ51Z1A

5

n = 3 1
2
γ′

22Z1A
3 + γ′

20Z̄L(±∆f)A3+

+
[

5
2
γ′

42Z1 + 3γ′
40Z̄L(±∆f) + 3

4
γ′

40Z̄L(±2∆f)
]
A5

m = ±5

n = 1 0

n = 2 −5
8
γ51Z1A

5

n = 3
[

1
2
γ′

42Z1 + 3
4
γ′

40Z̄L(±2∆f)
]
A5
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Incremental distortion in drain voltage at fundamental tones (f = fc ± fm), and incre-

mental voltages for third- and fifth-order IM products (f = fc±3fm, and f = fc±5fm,

respectively) can be expressed as

ṽd3(1,±1) =
3

2
γ′

22Z1A
3 + γ′

20Z̄L(±∆f)A3 +
[
5γ′

42Z1 + 3γ′
40Z̄L(±∆f)

]
A5 , (5.21)

ṽd3(1,±3) =
1

2
γ′

22Z1A
3 + γ′

20Z̄L(±∆f)A3 +

[
5

2
γ′

42Z1 + 3γ′
40Z̄L(±∆f) +

3

4
γ′

40Z̄L(±2∆f)

]

A5 ,

ṽd3(1,±5) =

[
1

2
γ′

42Z1 +
3

4
γ′

40Z̄L(±2∆f)

]

A5 .

In summary, the incremental drain voltage products in the fundamental frequency

zone are presented in Table 5.1. Summing up the incremental voltages obtained for all

the iterations considered, the drain voltage components at tone frequencies f = fc±fm

can be expressed as

Vdu,l
= H1A +

[
9

4
γ3 + γ′

20Z̄L(±∆f)

]

A3 +

[
25

4
γ5 + 3γ′

40Z̄L(±∆f)

]

A5 , (5.22)

where the notation Vdl
/Vdu

has been used to denote the lower/upper tone frequency,

respectively; and the used γ’s are defined in Appendix C. Note that these coefficients γ

change with bias and with gate and drain impedances at the fundamental and second

harmonic, but are independent of the baseband frequency.

Similarly, third-order IM products at frequencies f = fc ± 3fm are calculated as

Vd3u,3l
=

[
3

4
γ3 + γ′

20Z̄L(±∆f)

]

A3 +

[
25

8
γ5 + 3γ′

40Z̄L(±∆f) +
3

4
γ′

40Z̄L(±2∆f)

]

A5 ,

(5.23)

and fifth-order IM products at frequencies f = fc ± 5fm are calculated as

Vd5u,5l
=

[
5

8
γ5 +

3

4
γ′

40Z̄L(±2∆f)

]

A5 . (5.24)

Since we have made the assumption that node impedances Zg and Z can be considered

constant with ∆f for the fundamental and second-harmonic frequency zones, then

the output IM3 and IM5 variations only depend on the baseband load impedance

variations with ∆f and, thus, this term will be the exclusive source for the device

memory effects.

It can be observed in (5.22)- (5.24) that output voltages for the tones and IM prod-

ucts present a different expression for the upper and lower frequencies, mainly due

to the fact that the load impedance Z̄L can take a different value for baseband posi-

tive and negative frequencies ∆f and 2∆f . Therefore, considering that Z̄L(−k∆f) =
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5. MODELLING OF INTERMODULATION DISTORTION

Z̄∗
L(k∆f), the following expressions for IM3 and IM5 asymmetries can be obtained:

A3 =

1 +
4γ′

20

3γ3

Z̄L(∆f) +

[
25

6

γ5

γ3

+ 4
γ′

40

γ3

Z̄L(∆f) +
γ′

40

γ3

Z̄L(2∆f)

]

A2

1 +
4γ′

20

3γ3

Z̄∗
L(∆f) +

[
25

6

γ5

γ3

+ 4
γ′

40

γ3

Z̄∗
L(∆f) +

γ′
40

γ3

Z̄∗
L(2∆f)

]

A2

, (5.25)

A5 =

1 +
6γ′

40

5γ5

Z̄L(2∆f)

1 +
6γ′

40

5γ5

Z̄∗
L(2∆f)

. (5.26)

Note that, in spite of their resemblance, γ2 and γ5 are not the original NLTFs of a

Volterra series analysis and only when fifth-order terms are neglected, (5.23) reduces

to a conventional Volterra series approximation [21]. In addition to this, (5.23) takes

into account that optimization is signal-level dependent, showing that the optimum

bias point for low-level signals, for which the second term can be neglected, is not

necessarily the same as that for high level signals. In order to emphasise these ob-

servations coincident with [21], the herein proposed results include fifth-order effects,

leading to a more detailed description of IM3, which incorporate input level depen-

dence to IM3 asymmetry, and allowing the prediction of IM5 in a similar way.

5.2.1 Discussion about theoretical results

Asymmetries observed in real microwave devices subjected to two-tone or multitone

tests have been the object of several research works ([21], [24], [28], [75], [217], [218],

[219]). However, these asymmetries are often sought only in the amplitudes of IM

products, while no attention is paid to asymmetries in their phase. Moreover, the

concepts of memory effects and asymmetries are misleadingly exchanged sometimes,

thus a clarification on their relation is not out of place here. If asymmetries are not

considered in predistortion linearisers, there is a severe limit to sideband reduction.

Indeed, asymmetries in phase present the same significance as in magnitude regard-

ing linearisation and predistortion techniques [217].

As a general comment on the obtained expressions, it can be said that, in addi-

tion to static AM-AM and AM-PM conversion, equations (5.22)-(5.24) demonstrate

the dependence on envelope frequency introduced by the baseband load impedance

Z̄L(±∆f), a characteristic of dynamic AM-AM and AM-PM functions that are a sign of

memory effects, as it was stated in Section 4.1.4. Recall that, in the context of two-tone

and multitone tests, memory effects can be detected as changes in the amplitude and

phase of IMD components with frequency spacing, whereas a difference between the

upper and lower IM products is referred to as an asymmetry. Therefore, any system
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that presents a frequency-dependent baseband load impedance is a nonlinear system

with memory. Despite asymmetry is another indication of memory effects, not all the

nonlinear systems with memory exhibit spectral asymmetries. The theoretical analysis

performed in this section leads to an intuitive understanding of the circumstances that

need to be met in order to observe asymmetries in magnitude and/or phase between

the upper and lower IM products in two-tone tests. Let us analyse the following ex-

pression, which retains the main dependence on baseband load impedance Z̄L shown

in the closed-form expressions (5.25) and (5.26), for a fixed value of the tone spacing:

Fasym =
1 + γZ̄L

1 + γZ̄∗
L

. (5.27)

The necessary condition for the IM products to present an asymmetry in magnitude is

|Fasym| =
|1 + γZ̄L|

|1 + γZ̄∗
L|

6= 1 , (5.28)

and it is necessary that

φasym = ∠(1 + γZ̄L) − ∠(1 + γZ̄∗
L) 6= 0 (5.29)

so that an asymmetry in phase can be observed. Different scenarios for the values of γ

and Z̄L are graphically illustrated in Table 5.2, where the nonlinear contributions are

represented with vectors to highlight their interactions. It can be concluded that, if

the baseband load impedance Z̄L is real, both the upper and lower IM products will

have the same magnitude and phase for all the possible values of γ. Therefore, unless

the baseband load impedance presents a non-negligible complex part, no asymmetry

will be observed. By contrast, if Z̄L is complex, the device will always exhibit an

asymmetry in phase. Nevertheless, only when γ is also complex, an asymmetry in

magnitude will appear. This situation can easily be encountered when the gate and

drain impedances at the fundamental and second harmonic frequencies are complex.

The shown vector diagrams also point to the fact that, if the coefficient γ is negligi-

ble, the constant term will dominate the final resultant vectors, being both the upper

and lower IM products almost equal in magnitude and phase. In this case, we can be

mislead by the fact that the variation of IMD with ∆f may not be evident, although

the power amplifier still presents memory effects. The opposite situation explains

why it is common to observe large IMD changes with tone spacing and asymmetries

in low intermodulation amplifiers, since power amplifier designs for minimum IMD

typically bias the transistors to the point where the third-order terms in the nonlinear-

ity are negligible. However, for this bias point the even-order effects which produce

the Z̄L(±∆f) dependence will achieve more significance.

The aforementioned comments and other similar conclusions found in literature

have helped RF designers to gain an insight into the mechanisms which can minimise
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Table 5.2: Different asymmetry situations with respect to γ and Z̄L.

γ ∈ R

Z̄L ∈ R Z̄L is purely imaginary Z̄L ∈ C, Z̄L = |Z|ejψ

Z̄∗
L = Z̄L Z̄∗

L = −Z̄L Z̄∗
L = |Z|e−jψ

|Fasym| = 1, φasym = 0 |Fasym| = 1, φasym 6= 0 |Fasym| = 1, φasym 6= 0

g gZ = ZL L

*

IM =u IM l

gZL

gZL

*

IM u

IM l

gZL

gZL

*

IM u

IM l

y
y

Symmetry Symmetry in magnitude Symmetry in magnitude

Asymmetry in phase Asymmetry in phase

γ ∈ C, γ = |γ|ejϕ

Z̄L ∈ R Z̄L is purely imaginary Z̄L ∈ C, Z̄L = |Z|ejψ

γZ̄∗
L = γZ̄L γZ̄∗

L = −γZ̄L γZ̄L = |γZ|ej(ϕ+ψ)

γZ̄∗
L = |γZ|ej(ϕ−ψ)

|Fasym| = 1, φasym = 0 |Fasym| 6= 1, φasym 6= 0 |Fasym| 6= 1, φasym 6= 0

g gZ = ZL L

*
IM =u IM l

gZL

gZL

*

IM u

IM l

j gZL

gZL

*

IM u

IM l

y
y

j

Symmetry Asymmetry in magnitude Asymmetry in magnitude

and phase and phase
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the IMD asymmetry and power levels, leading to more linear and efficient power am-

plifiers. Two recent examples of this can be found in [220], where conditions related to

the second-harmonic load selection are applied, and [221], where a circuit technique is

proposed to decrease the baseband termination by including a short-circuit condition

over a wide frequency range.

Regarding the subject of the relation between memory and asymmetries, notice

that if the characteristic observed in a SA has (magnitude) asymmetry, then it is possi-

ble to say that the amplifier has memory, since the condition of a complex Z̄L can only

be met for those bias and matching networks in which the baseband load impedance

is also frequency-dependent, Z̄L(∆f). But the converse is not true, as it is depicted in

Figure 5.2. Even in the case of a spectrum with symmetric magnitude, it is possible to

observe memory in an amplifier if its memory were related with phase asymmetry, or

if its memory effects were concealed by dominant third-order nonlinearities.

Memory
effects

Magnitude
Asymmetries

Figure 5.2: Asymmetries imply memory effects, but the converse is not true.

5.3 Correspondence of the predicted IM asymmetries

with experimental results

In Section 4.4.2, measurements of relative phase of the IM products in an amplifier

constructed with the HEMT EPB018A5-70 of Excelics have been presented. In this

section, these measurements will be compared to the theoretical predictions obtained

with the SN approach given in (5.22)-(5.26).

As it has been mentioned before, the manufacturer of the active device provides the

typical parameters of a Curtice-cubic large-signal model. As this model is truncated

to three terms, the coefficients gkl are zero for k + l > 3 and it is unable to predict the

appearance of IM5 products. This is the reason why a five-terms Curtice model (see

Section 4.3.1 for more details) will be used in this chapter

Ids = (A0 + A1V1 + A2V
2
1 + A3V

3
1 + A4V

4
1 + A5V

5
1 ) · tanh(γVds),

V1 = Vgs(t − τ) · [1 + β(V 0
ds − Vds)],

(5.30)

where V 0
ds is the drain-to-source voltage for which A0, A1, A2, A3, A4 and A5 are evalu-

ated. The parameters were obtained by merely fitting the new dc Ids −Vgs characteris-
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Figure 5.3: Measured and calculated phase of lower IM3 and phase difference

at two bias points using a commercial bias-Tee.

tic curve to the original three-terms function given by the manufacturer, considering a

drain voltage of 2 V. Considering that the large-signal model has been obtained from

dc measurements, we could advance that the predicted behaviour will not be able to

account for thermal or charge trapping memory effects.

In Figure 5.3 the results for the measured lower IM3 phase and phase difference

of the amplifier biased with a commercial bias-Tee (ZFBT-6GW of Minicircuits) for

VGS = −0.24 V (triangles) and for VGS = −0.4 V (squares), are shown. In both cases,

the relative phase of the lower IM3 product φ3 is near 180◦ with respect to the tones

and almost no dependence with frequency spacing is observed except for very low

frequencies, below approximately 30 kHz. In the same figure, theoretical results ob-

tained by calculating the phase with expressions (5.22), (5.23) and (5.24) are also plot-

ted in solid line for VGS = −0.24 V and in dashed line for VGS = −0.4 V. The results

obtained with a Volterra series approach similar to that in [21] are also represented

in a thinner dotted line. The model of the commercial bias-Tee used in the compu-

tations was extracted from S11 measurements in a VNA. A good fit to experimental

data can be observed, although in the low frequency range the deviation is evident,

indicating that, in this region, the frequency dependence could be caused by thermal

or charge trapping memory effects. The measured phase difference between the up-
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per IM3 and lower IM3, or phase asymmetry, ∆φ3, is also depicted in Figure 5.3 for

the same bias points indicating that no asymmetry is present for frequency spacings

over 30 kHz. Again, the coincidence of calculated results with measurements is good

except where the possible thermal or charge trapping memory effects, not included in

the HEMT model, are important. A model to improve the adjustment in this zone will

be presented in Section 5.4.

A new amplifier, using the resonant bias network whose model was shown in Fig-

ure 4.40, was measured in order to observe some dependence on frequency of both

IM3 and IM5 relative phase and phase difference. In Figures 5.4 and 5.5, the rela-

tive phase and phase difference of IM3 products are shown, respectively, for a weakly

nonlinear condition where the amplifier is biased in saturation with VGS = −0.24 V.

It is clearly observed the frequency dependence which motivates a change in the rel-

ative phase around the resonant frequency of about 130 kHz. At the same frequency,

there is a nonzero phase difference indicating a phase asymmetry between tones. In

both cases, the measured out-of-resonance values are predicted by the closed-form ex-

pressions presented in Section 5.2 and the general behaviour around resonance is also

anticipated revealing a clear jump in phase when ∆f varies, as it is shown in Figure

5.5. The calculated characteristic exhibits another jump in phase at ∆f
2

that indicates

the contribution of fifth-order terms to IM3 products, a second resonance also sug-

gested by the measurements. This fact is more distinctly observed in Figure 5.6 where

the excitation has been increased 5 dB giving rise to a more accentuated asymmetry,

specially that caused by the fifth-order terms at ∆f
2

. While the proposed procedure

(dashed line) can describe in an approximate form this effect, it is evident that the VS

approach applied in [21] (dotted line), which does not include such terms, cannot ex-

plain this behaviour. Despite the good coincidence between theory and measurements

in the flat segment of the curves, and the coarse agreement in the resonance zone,

the discrepancy in this part does not permit an exact explanation of the frequency-

dependent effect. The difference can be attributed to the nonlinear HEMT model and

to the approximated equivalent circuit of the bias network. The estimations were re-

peated using a more detailed equivalent circuit of the bias network, including the Q

factor of its elements, with a modest improvement in the shape. However, it was

not sufficient to accomplish a satisfactory description of the quantitative phase be-

haviour, indicating the need of a more precise HEMT nonlinear model. To illustrate

this deduction, the γ coefficients of equation (5.23) were varied using a least-squares

optimization algorithm, in order to adjust the theoretical data to the measurements.

The results, shown with solid line in the same Figure 5.6, demonstrate a very satisfac-

tory agreement with the measured phase asymmetry, reinforcing the validation of the

present procedure and the need of a more elaborated nonlinear model for the HEMT.
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A phase inversion is clearly observed.
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Measurements of the phase of IM3 were also performed as a function of the dc gate

voltage VGS for an input level Pin = −12.4 dBm and a clear jump of 180◦ could be ob-

served in the phase asymmetry as it is shown in Figure 5.7. The asymmetry predicted

by the proposed method using the previously optimised coefficients for the bias point

recommended by manufacturer, VGS = −0.24 V, is represented with a solid line in the

same figure and presents a quite good coincidence with the measured asymmetry. On

the other hand, for VGS = −0.4 V, the asymmetry is more pronounced and the polarity

is inverted with respect to the case of normal operation. Taking into account that the

γ’s are bias dependent, a new optimised set was found for VGS = −0.4 V. The theoreti-

cal data were computed using these new coefficients and the results were also plotted

with solid line in the same figure, demonstrating again a notable correspondence.

Magnitude and phase of IM5 were also measured with the present method for the

amplifier biased at different VGS voltages via the commercial bias-Tee and with several

excitation levels. The results of IM3 (triangles) and IM5 (squares) magnitude and

phase measurements for VGS = −0.24 V and Pin = −7 dBm are depicted in Figures 5.8

and 5.9, where thermal or charge trapping memory effects are suggested in the phase

and phase difference between upper and lower products for small frequency spacings.

The deduced closed-form expressions (5.22)-(5.24) allowed to calculate voltages for

IM3 and IM5 products and to represent the corresponding magnitudes and phases in

the same figures with solid and dashed lines, respectively. The phase difference of IM3

and IM5 and the relative phase of IM3 were estimated with accuracy in all the cases.

However, the estimated IM5 phase exhibits a deviation of about 25o with respect to the

experimental values. Considering the simplifications that have been introduced in

order to obtain closed-form expressions, the agreement between measurements and

simulations is good. The differences suggest once more the need of a better drain

source modelling for a further precision in IM5 phase characterization.

5.4 Impedance-based IM3 model for FET amplifiers in-

cluding electrothermal memory effects

As it can be observed from the results of the previous section, the derived theoretical

expressions presented some discrepancies with the measured IM3 for small tone sep-

arations. Traditional modelling methods do not have the capability to fully estimate

the dependence of IMD on bandwidth unless they include some models for the ther-

mal, impact ionization or charge trapping memory effects. These long-term memory

effects have to be taken into account when designing high efficiency amplifiers so that

they can comply with the strict requirements demanded for modern wireless commu-
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nications bandwidths. In order to obtain an appropriate prediction for the variation

of IM products with tone spacing, a simplified model based on finding an equivalent

hypothetical load impedance that can explain discrepancies between measurements

and circuit-level simulations was proposed by the author of this Thesis in [77].

The majority of recent works on nonlinear modelling techniques including mem-

ory have been focused on purely electrical memory effects. Among the approaches

that account for thermal memory effects, we can mention the inclusion of thermal ele-

ments in transistor models to be able to correctly reproduce thermal effects, either by

means of simple RC stages which describe self-heating [78], different RC stages for die

and package temperature responses [79], distributed RC models [80], [81], or even RC

stages with diodes in order to independently control charge and discharge time con-

stants. Unlike these approaches, in [222] a Wiener behavioural thermal model is cou-

pled to a temperature-dependent electrical device model, leading to a full-dynamic

electrothermal model. Other long-term memory effects whose study have been re-

cently undertook are those caused by charge trapping mechanisms. These charge

trapping effects are usually modelled by means of transfer functions showing a de-

pendence on both the modulation frequency ∆f and the bias voltages [82], [83].

Similar to Volterra-based IM analyses, the method proposed in Section 5.2 lends

a leading role in generating memory effects to the load impedance. Consequently,

the extraction of an appropriate hypothetical load impedance should provide a good

adjustment with two-tone IM measurements, regardless the asymmetry is caused by

electrical, thermal, impact ionization or charge trapping memory effects. In this sec-

tion, we will explain the obtention of this hypothetical load impedance expressed in

terms of electrical parameters, and test several circuit models for it in order to predict

electrical and thermal memory effects by means of a circuit-level simulation method.

These models have been derived from comparison between the experimental mea-

surements of IM products presented in Section 5.3 and the theoretical expressions ob-

tained in Section 5.2.

Figure 5.10(a) shows the equivalent two-node circuit model of the elemental HEMT

amplifier used in the analysis presented in Section 5.2. Recall that, if the Taylor-series

expansion for the nonlinear drain current is truncated up to third-order terms (gkl = 0

for k + l > 3), the following closed-form expressions can be obtained for the drain

voltage components at the fundamental tone frequencies and third-order IM product:

Vdu,l
= H1A +

[
9

4
γ3 + γ′

20Z̄L(±∆f)

]

A3 ,

Vd3u,3l
=

[
3

4
γ3 + γ′

20Z̄L(±∆f)

]

A3 ,
(5.31)

with Z̄L(±∆f) the load impedance seen by the drain source at baseband frequencies,
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Figure 5.10: Equivalent circuit of a HEMT amplifier used in the analysis (a).

Proposed model for the equivalent load impedance Z̄L (b) and

the hypothetical impedance Zth (c).

and the coefficients γ expressed in terms of the gate and drain linear transfer func-

tions, and the gate and drain impedances at the fundamental and second-harmonic

frequency zones. Therefore, for a given carrier frequency, the values γ′
20 and γ3 are

bias-dependent constants.

As it was remarked in Section 5.2, none of the terms in (5.31) depends on fre-

quency except for Z̄L(±∆f), thus the load impedance plays a predominant role in

the generation of memory effects. Furthermore, the only difference between the ex-

pression for the lower IM3 (IM3l), expressed by the component Vd3l
, and the upper IM3

(IM3u), expressed by the component Vd3u
, is the presence of Z̄L(∆f) in the latter and

Z̄L(−∆f) = Z̄∗
L(∆f) in the former.

Since the experimental setup used for IM3 characterization in this work provides

phase measurements relative to the tones, the expressions for the voltages of IM3l and

IM3u relative to the lower and upper tones, respectively, will be considered

F3u =

[
3

4
γ3 + γ′

20Z̄L(∆f)

]

A2

H1 +

[
9

4
γ3 + γ′

20Z̄L(∆f)

]

A2

(5.32)
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F3l =

[
3

4
γ3 + γ′

20Z̄
∗
L(∆f)

]

A2

H1 +

[
9

4
γ3 + γ′

20Z̄
∗
L(∆f)

]

A2

. (5.33)

Following (5.32) and (5.33), a prediction of the IM3 variation with tone spacing

can be determined by using Z̄L(∆f), which must include all the intrinsic and extrin-

sic elements in the circuit connected to the drain node. However, if the amplifier

shows low-frequency dispersive effects (including dispersion due to self-heating, im-

pact ionization, or trapping effects), circuit-level simulations accomplished by using

the SN approach will not fit measurements for the lower tone separations. Therefore,

the basic idea under the proposed approach is that the extraction of an appropriate hy-

pothetical load impedance, using measurements of both magnitude and phase, must

be able to provide a good agrement with two-tone IM measurements, regardless the

nature of the memory effects that cause the asymmetry. Furthermore, a part of the

load impedance seen by the drain node will be known, that is, the elements of the

intrinsic model of the HEMT connected to the drain node, the impedance of the bias

network, and the impedance placed at the output of the amplifier. Once the values for

the equivalent load impedance that fit measurements have been obtained, all known

elements can be de-embedded and the remaining term will be a hypothetical electri-

cal impedance Zth, which accounts for electrothermal effects and is not included in the

device model. In Section 5.4.1, a circuit model for the impedance Zth will be obtained

and discussed for a certain group of measurements.

5.4.1 HEMT amplifier experimental results

A simple amplifier constructed with the HEMT EPB018A5-70 of Excelics was used

to demonstrate the good correspondence with measurements obtained by the pro-

posed impedance-based model. Two different biasing voltages, VGS = −0.24 V and

VGS = −0.4 V, being VDS = 2 V, and different input power levels were applied using

a commercial bias-Tee ZFBT-6GW of Minicircuits. Results for some of these measure-

ments were shown in Figures 5.3, 5.8 and 5.9 of Section 5.3, where we can observe that

circuit-level simulations accomplished under the SN approach only fit measurements

for tone separations over 30 or 100 kHz, while the observed variations for lower tone

spacings cannot be explained by purely electrical memory effects taking into account

the load impedance given by the employed commercial Bias-Tee.

The methodology previously described was applied to the measurements of IM3l

in order to extract the values of the equivalent load impedance Z̄L, whose inclusion

in simulation leads to a perfect agreement with measurements even for small tone
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separations, between 10 and 30 kHz. Then, part of the intrinsic model of the HEMT,

the bias network, and the termination impedance were de-embedded and the best re-

sults were obtained when the hypothetical impedance Zth was modelled as a series

impedance placed between the intrinsic model of the amplifier and the bias network,

as it is shown in Figure 5.10(b). Finally, several simple circuit topologies for Zth were

tested and the best agreement was obtained for a parallel RC circuit. The model shown

in Figure 5.10(c) was employed to achieve a more precise fit. For all the studied condi-

tions with this HEMT amplifier, the same configuration of Z̄L and the same topology

of Zth produced the best adjustment. The optimised parameters for the elements of

Zth in some of the cases were the following:

• R1 = 444.9 Ω, C1 = 0.25 µF, R2 = 541.8 Ω, and C2 = 0.22 nF, for VGS = −0.24 V

and Pin = −7 dBm.

• R1 = 267 Ω, C1 = 0.26 µF, R2 = 318.3 Ω, and C2 = 0.31 nF, for VGS = −0.24 V and

Pin = −5 dBm.

• R1 = 966KΩ, C1 = 0.23 µF, R2 = 976.2 KΩ, and C2 = 0.023 pF, for VGS = −0.4 V

and Pin = −5 dBm.
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Figure 5.11: Smith Chart with the extracted values of Zth at baseband frequen-

cies (marks) for a HEMT amplifier at input levels of −7 dBm (a)

and −5 dBm (b) for a bias voltage VGS = −0.24 V. Solid lines rep-

resent the impedance of a parallel resonant RC circuit that best

approximates the extracted values in least-squares sense and the

equivalent load impedance including this RC circuit (Z̄L).
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5. MODELLING OF INTERMODULATION DISTORTION

The models for the equivalent load impedance Z̄L and the hypothetical impedance

Zth for a biasing voltage of VGS = −0.24 V and input power levels of −7 dBm and

−5 dBm are shown in the Smith Charts of Figure 5.11. The only moderate adjustment

of circuit models with the equivalent load impedance could be explained by the sim-

plicity of their topology. However, acceptable results are obtained including them in

magnitude and phase simulations of the IM products.

A good correspondence with measurements can be observed for the magnitude

of IM3u in the simulations at all frequency spacings. This agreement is shown in Fig-

ure 5.12 for a bias voltage of VGS = −0.24 V, where results including the equivalent

load impedance Z̄L are depicted in dotted line while solid line is employed for the

results using the adjusted model of Zth. We can observe that, increasing the input

power level from −7 dBm to −5 dBm, the measured IM3 does not follow the typical

3 dB/dB slope for the linear behaviour because the input level is very close to the 1-

dB compression point. However, the use of the equivalent load impedance gives an

appropriate agreement even for a mild nonlinear behaviour.
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Figure 5.12: Measured magnitude of upper IM3 products for a HEMT ampli-

fier at input levels of −7 dBm (circles) and −5 dBm (squares) and a

bias voltage VGS = −0.24 V. Predictions without Zth (dashed line),

with the extracted values of Zth (dotted line) and with the chosen

circuit model (solid line).
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Figure 5.13: Measured phase (triangles) of upper and lower IM3 products and

phase difference (squares) for a HEMT amplifier with Pin = −7

dBm and VGS = −0.24 V (a) and Pin = −5 dBm and VGS = −0.4 V

(b). Predictions without Zth (dashed line), with the extracted val-

ues of Zth (dotted line) and with the chosen circuit model (solid

line).
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Figure 5.13 shows the phases of IM3u and IM3l and their phase difference for: (a)

a bias point of VGS = −0.24 V and an input level of −7 dBm, and (b) a bias point of

VGS = −0.4 V and an input level of −5 dBm. It should be noticed that changes with

frequency produced by memory effects can be observed more clearly in phase than in

magnitude. Furthermore, it is more relevant for the bias voltage VGS = −0.4 V, which

is nearer the pinch-off voltage and produces a stronger nonlinearity in the amplifier.

Again, a good agreement with measurements is achieved with a simple circuit model

for Zth, even when a different bias condition and a higher input level are applied,

increasing the importance of memory effects.

The close correspondence between the measured and modelled data demonstrates

the ability of this approach to capture memory effects using a simple impedance-based

model, even when the amplifier is driven near saturation. This corresponds to a com-

mon situation in the real practice, for which the impact of memory effects is critical

and requires a careful modelling. We can remark that, in the case of the employed

HEMT device, the modelled circuit is a low-pass filter placed between the drain and

source nodes. Therefore, the proposed Zth, although electrical, plays an analogous role

to that of a thermal impedance [78]. As it is stated in [27], the thermal impedance of

the active device is not purely resistive, but forms a distributed low-pass filter, which

means that the temperature changes caused by the dissipated power are frequency-

dependent and cause thermal memory effects.

5.4.2 Memory effects in FET amplifiers including dispersive phe-

nomena

Large-signal model coefficients of GaAs MESFET/HEMT devices such as drain con-

ductance or transconductance can be found from dc measurements, RF measurements

with a VNA or pulsed measurements. Research has shown that there are significant

differences between static (dc) and dynamic (RF or pulsed) I/V characteristics [175],

[57], [223], [224], [225], [226]. These differences have been a cause of considerable

difficulty in large-signal modelling, which must accurately predict both static and dy-

namic performance. This phenomenon is usually referred to as dispersion of FET char-

acteristics, and it is attributed mainly to self-heating, impact ionization, and trapping

effects. At frequencies where the transconductance or drain conductance is chang-

ing, the parameter has an imaginary component [25]. At high frequencies, it settles

to a constant value. Evidence of dispersion can be observed both in the time and fre-

quency domains. When it is observed in the frequency domain, for example over a

frequency sweep, dispersion typically occurs between 100 Hz and 10 MHz. Therefore

conventional VNAs are not suitable for these measurements in most cases, because
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Figure 5.14: Equivalent circuit of a model including dispersive phenomena.

they cannot measure at the low frequencies required. Pulsed I − V measurements

are recommended, since the physical mechanisms causing dispersion have low-pass

characteristics, i.e., they involve large time constants. Dispersive phenomena have

been proved to cause bandwidth-dependent distortion, therefore they are an impor-

tant source of memory effects. In this section, it will be briefly shown that they can be

included in the SN analysis of IMD in a quite straightforward way.

In general, dispersive effects have been included in electrical models by adding

either extra current sources to the gate and drain of the FET in parallel with the dc

nonlinear elements [227], extrinsic series voltage sources which are linearly controlled

by the voltages at the device ports [228], or a RC branch with a time-constant con-

sistent with the measured characteristics [223], [229], [230], [231]. Note that the RC

networks employed in the last approaches are selected in such a way that they do not

influence the small- or large-signal parameters in the GHz range, as they have high

impedance at these frequencies. In order to improve these methods, other alternatives

that have been proposed are the employment of equivalent circuits with four termi-

nals [232], the inclusion of a feedback voltage from drain to gate terminals [233], and

the addition of more complex multi-pole RC filter networks at the gate and drain to

model the multi-time constant transition from dc to RF and separate the static and

dynamic components of the intrinsic voltages [234].

Following the trend presented in [223], [229], [231], and [234], a two-node linear

augmented circuit as shown in Figure 5.14 will be considered, similar to the one anal-

ysed in Section 5.2. Recall that it was a simplified FET model in common-source con-

figuration where nonlinear terms of the capacitances Cgs and Cgd were neglected, and

only the nonlinearity in the drain current source was considered. The source and load

impedances, Zs(f) and ZL(f), include the elements for both the bias and matching

networks. The difference is the inclusion of a frequency-dependent network whose

equivalent impedance Zdisper(f) models the dispersive phenomena. Note that, for a

general formulation, this impedance does not need to be an actual circuit, even theo-

retically. With this formulation of the problem, closed-form expressions (5.22)-(5.26),
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obtained in Section 5.2, are still aplicable provided that the following new baseband

equivalent load impedance is considered:

Z̄L(∆f) =
1

Z−1
L (∆f) + g01 + Z−1

disper(∆f)
. (5.34)

As it can be observed, it includes the effects of the dispersive network Zdisper(∆f),

as well as those originated by the bias network impedance ZL(∆f) at baseband fre-

quencies. The effect of the intrinsic model capacitors connected to the drain node are

neglected at baseband frequencies.

In this way, observed changes in IM3 products with the lower frequency spacings

can be conveniently treated by the inclusion of the proper dispersive networks within

large-signal circuit models in order to accomplish accurate predictions for measure-

ments showing low-frequency dispersion. Therefore, closed-form expressions (5.22)-

(5.26) could additionally be employed for the parameter extraction of the dispersive

networks in [223], [229], [231], and [234], by means of the comparison between IMD

predictions and measurements for the lower values of modulation frequency, where

dispersion typically occurs.

5.5 Extension of the impedance-based model for com-

mercial amplifiers

The theoretical results obtained for a HEMT device in Section 5.4 can be generalised

to more complex circuits provided that they exhibit a moderate gain, and high reverse

isolation at low frequencies. These assumptions are common in amplifiers, for which

we propose the following extension [84]:

V3u,3l =
∑

n=3
n−odd

[an + bnZeq(±∆f)] An . (5.35)

Parameters an and bn depend on carrier frequency, while Zeq retains the dependence of

IMD with modulation frequencies. In order to extract the model parameters and the

frequency response of the impedance, the measurement setup presented in Chapter 4

can be used for the characterization of IM3, in magnitude and phase, varying both

the input level and the tones separation. Measurements can be fitted to the proposed

model through a nonlinear least-squares optimization procedure provided that the

set of measurements is wide enough. The main difference with the case of the HEMT

amplifier is the extraction of model parameters, which was done assuming a prior

knowledge of the internal circuit structure, i.e. the coefficients γ in (5.32) and (5.33)
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Figure 5.15: Zoom in the Smith Chart with the extracted values of Zeq(∆f)

(marks) for a commercial amplifier. The solid line represents the

impedance of a parallel resonant RLC circuit that best approxi-

mates the extracted values in least-squares sense.

were derived from the large-signal model of a HEMT transistor by using closed-form

expressions. However, for a more complex commercial amplifier, there is no such

knowledge about an and bn.

5.5.1 Commercial amplifier results

In order to demonstrate the suitability of the impedance-based model approach not

only for a HEMT circuit, the commercial amplifier MAX2430 of MAXIM has been

modelled. This device is the same employed to illustrate the nonlinear distortion

characterization capabilities of the proposed setup in Section 4.2.1. Although the de-

vice under test is a wideband amplifier at 915 MHz, the experimental characterization

showed an asymmetry in the IM products, a clear indication of the existence of non-

linear memory effects.

Four values of the input power per tone ranging from −25 to −10 dBm, were ap-

plied using a bias voltage of 3.6 V, and a sweep of 15 tone spacings per level, around

915 MHz was performed to provide a grid of 60 complex values. First, measurements

were fitted to a model with 4 coefficients plus the unknown impedance.

Figure 5.15 shows the extracted impedance values Zeq(∆f) that minimise the

square error. Considering the resemblance of this curve in the Smith Chart with that
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of a parallel resonant circuit, the hypothetical impedance was approximated by the

impedance of an equivalent RLC circuit, depicted in solid line in the same figure.

The parameter values of the parallel resonator were R = 14.5 Ω, L = 5.4 µH, and

C = 5.4 µF. The model with the resonant circuit and calculated coefficients {an, bn}

was then tested to simulate IM3 products and asymmetries. Figures 5.16 and 5.17 rep-

resent the predicted values of magnitude and phase at the highest measured power

level (above the 1-dB compression point), as a function of tone spacing, showing a

very good correspondence despite the simplicity of the model.

Although it showed a satisfactory agreement for the highest measured power level,

the concordance was not as good for low power levels, due to the high dynamic range

of the IMD values used for the adjustment. Using 6 coefficients, the dynamic range

of the model was increased accordingly, as Figure 5.18 shows, which compares pre-

dicted and measured IM3 phase asymmetry in the full range of input levels and tone

spacings. Magnitude levels of IM3u for this model are also depicted in Figure 5.19.

Simulated IM3l exhibits a similar correspondence with measurement data. Despite it

has been observed that the applied optimization procedure is affected by the dynamic

range of the measurements, the measured to model agreement is very good when the

amplifier is driven near saturation, which corresponds to a common situation in the

real practice, for which the impact of memory effects is critical and requires a careful

modelling.

Further work is needed to extend the model to other modulation formats, although

the impedance impulse response seems a promising approach to develop an equiva-

lent signal-independent behavioural model in the time domain. This approach can

make possible some contributions to the large-signal modelling of devices, including

thermal or charge trapping memory effects that affect low modulation frequencies.
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Figure 5.16: Measured magnitude (triangles) and magnitude difference

(squares) of IM3 at an input level of −10 dBm. Predictions with

the proposed model using the equivalent resonant RLC circuit

load (solid line).
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Figure 5.17: Measured phase (triangles) and phase difference (squares) of IM3

at an input level of −10 dBm. Predictions with the proposed

model using the equivalent resonant RLC circuit load (solid line).
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

6.1 Conclusions

This Thesis was begun by exposing the current interest in the study of the nonlinear

characterization in wireless communications systems and, particularly, in the mod-

elling of memory effects in power amplifiers. After the research carried out in this

Thesis, three fundamental ideas can be derived:

1. A new Simplified Newton method can be applied to analyse the distortion phe-

nomena in weakly nonlinear circuits excited by wireless communications sig-

nals. The proposed method allows time competitive ACPR simulations for a

wide range of input power levels. An specific application of this method can

be made for mixers, where the more complex output spectra advise some addi-

tional simplifications to reduce the computational cost and storage necessities.

2. This Simplified Newton approach can also be used to obtain closed-form ex-

pressions for the intermodulation distortion in power amplifiers. These theoret-

ical expressions can be employed to gain an insight into the behaviour of input

level dependence and the impact of the baseband termination impedance on the

memory effects and asymmetries observed. This analysis leads to some useful

hints to optimise the intermodulation behaviour.

3. More work needs to be done in large-signal circuit modelling in order to account

for low-frequency dispersion effects in the theoretical expressions for the inter-

modulation distortion. The extraction of an impedance-based model for both

FET and commercial amplifiers is a potential approach that should be examined.
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The use of an equivalent impedance provides the model with a structural signif-

icance, since it identifies a circuit element playing a major role in the generation

of memory effects, regardless their nature.

In order to provide an overview of the important results, we would like to extend

some of the aforementioned conclusions. The Simplified Newton approach could be

seen as the common thread of all the proposed techniques. Classical techniques such

as standard Harmonic Balance turn to be inefficient for circuits excited with digital

modulations. This is the reason why the more efficient envelope-based methods have

been studied. The usefulness of the Simplified Newton approach for the analysis of

nonlinear distortion is remarked by the fact that it can be applied to both amplifiers

and mixers, two of the key elements of any circuit used in wireless communications.

Similarly to other envelope-based methods, such as the Envelope Currents method,

this iterative approach is based on solving an augmented linear subcircuit driven by

different nonlinear current sources for each iteration. As it has been mentioned, its

main advantage relies on the fact that the nonlinear currents derived from the Simpli-

fied Newton method are a better approximation for the real nonlinearity, since they

include higher-order terms. Despite the reduced convergence region of the Simplified

Newton algorithm, satisfactory predictions of a mildly nonlinear amplifier character-

istics have been achieved. On the whole, a reduction of the computational time may

be achieved, allowing efficient ACPR simulations for a wide range of input power

levels.

In the analogous Simplified Newton approach devoted to the study of communi-

cations signals in mixers, the input excitation is considered as a perturbation about the

response to the LO large sinusoidal signal, which leads to the solution of a periodically

time-varying augmented linear subcircuit by means of its nodal-admittance conver-

sion matrix. The computational and storage cost of the Simplified Newton technique

are significantly more demanding for mixers than for amplifiers, due to the higher

number of frequency lines needed. For this reason, some additional simplifications

have been proposed to include in the recursive procedure only a subset of the Fourier

coefficients involved in the solution, and obtain the rest by complex conjugation. The

performance of the Simplified Newton approach has been compared to that of a stan-

dard Newton-Raphson method, in which a non-periodically time-varying circuit that

must be updated for each iteration is needed. The latter presents better convergence

properties at the cost of a higher computational cost.

The same Simplified Newton approach has allowed the obtention of closed-form

expressions that can be employed to gain an insight into the impact of the baseband

termination impedance on the memory effects and asymmetries observed in the inter-

modulation products of power amplifiers. This new theoretical approximation is an

218



6.1. CONCLUSIONS

alternative to the conventional Volterra series method and has the attribute of being a

faster convergent algorithm without losing the possibility of generating closed-form

expressions. This quality grants not only inclusion of higher order terms in the expres-

sion of IM3 which incorporates input level dependence to IM3 asymmetry, but even

the possibility of IM5 magnitude and phase evaluation.

Some important observations can be gathered from the deduced closed-form ex-

pressions for IM3 and IM5, that can be summarised as:

• If the baseband load impedance Z̄L of the power amplifier is real, no memory

effects or asymmetries are possible between the upper and lower IM products,

either in magnitude or phase.

• If the baseband load impedance Z̄L presents a non-negligible complex part, the

device will always exhibit an asymmetry in phase.

• Only when the coefficients γ and the baseband load impedance Z̄L are complex,

an asymmetry in both magnitude and phase will appear. This situation can eas-

ily be encountered when the gate and drain impedances at the fundamental and

second harmonic frequencies are complex.

• If the coefficients γ are negligible, the constant term will dominate the final re-

sultant vectors and no asymmetries will be observed. In this case, we can be

mislead by the fact that the variation of IMD with ∆f may not be evident, al-

though the power amplifier still presents memory effects.

• If the characteristic observed in a spectrum analyser has (magnitude) asymme-

try, then it is possible to say that the amplifier has memory, but the converse is

not true.

An automated setup for the characterization of nonlinear devices has been pro-

posed using standard communications laboratory equipment, with capabilities for

relative magnitude and phase measurements in two-tone tests. The experimental

method is based on the generation of two tones by means of a double-sideband

suppressed-carrier modulated signal, the acquisition of baseband samples of the out-

put signal in order to recover its spectrum, which contains all the magnitude and

phase information, and finally, a post-processing for phase correction so as to elimi-

nate the transit delay. Experimental measurements for IM3 and IM5 of an elemental

HEMT amplifier have been compared to the theoretical predictions obtained with the

proposed Simplified Newton approach. Phase measurements proved to be more ap-

propriate in several cases for the detection of frequency-dependent effects or asym-

metries, emphasising the importance of phase characterization of IMD.
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Regarding the modelling of thermal and charge trapping effects, the extracted

equivalent hypothetical impedance provides the model with an structural signifi-

cance, since it identifies a circuit element playing a major role in the generation of

memory effects, regardless their nature. It is worth noticing that the modelled hypo-

thetical impedance circuit takes an analogous form to some of the dispersive networks

found in literature, which are included within large-signal circuit models in order to

account for low-frequency dispersion phenomena. Therefore, the obtained closed-

form expressions could help to extract the parameters of the dispersive networks.

As far as the proposed extension of the impedance-based model for comercial am-

plifiers is concerned, the reduced-order model is obtained by comparing the device’s

input and output waveforms, no knowledge of the internal circuit structure being re-

quired. Although the optimization procedure is affected by the dynamic range of the

measurements, the good measured to model agreement demonstrates the proposed

model suitability for capturing memory effects.

6.2 Suggestions for future work

Some of the results presented in this Thesis are subjected to future extensions, while

new research lines are opened:

• The strategies for achieving a higher efficiency of the analysis approaches pre-

sented in this Thesis are focused on single-carrier modulated signals. The pro-

liferation of modern wireless communication standards based on multi-carrier

signals, such as WiMAX or the IEEE 802.11 family, recommends their study in

order to extend or adapt the proposed Simplified Newton approach for their

specific characteristics. On the other hand, in this Thesis mainly single-transistor

amplifiers have been employed as illustrative examples, in order to demonstrate

the good performance of the analysis techniques in a simple way. The use of

the proposed techniques to reduce the computational time when analysing very

large circuits or complete communications systems suggests another promising

extension of the Simplified Newton approach.

• The automated setup proposed in Chapter 4 for the experimental characteri-

zation of nonlinear distortion and memory effects presents some limitations re-

garding its maximum sampling rate and dynamic range. Some signal processing

techniques have recently been proposed in order to extend the bandwidth of RF

power amplifier test beds [85]. It should be advisable to investigate in the ap-

plication of these or some alternative techniques to improve the quality of the

measurements accomplished with the designed characterization tool.
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• It might be interesting to evaluate how the obtained results would change if

the narrowband assumption were not considered. This analysis could result of

the utmost importance for systems in which the bandwidth of the modulated

signal is comparable to the the centre frequency as occurs, for instance, in ultra-

wideband technology.

• The assumption made in this work, for which the node impedances in the FET

amplifier are considered flat over the narrow bandwidths of communications

signals around the fundamental and second-harmonic frequencies, has been suc-

cessfully applied in [86] for the Volterra-based deduction of a reduced-order be-

havioural model for wideband RF amplifiers. This assumption has led to a sig-

nificant reduction in the number of the coefficients involved in the behavioural

model. This simplification has been achieved by considering the physical char-

acteristics of the nonlinear system, its equivalent circuit model and the kind of

signals with which it is excited; and produces a specific out-of-diagonal struc-

ture for the coefficients matrix. This fact has opened a new research line aimed

at the study of the implications that the different behavioural models’ structures

present regarding their accuracy, their effectiveness in handling memory effects,

or the suitability of their associated kernels identification procedures. In ad-

dition to this, some research is being currently done for the application of the

proposed behavioural model to digital predistortion.

• There are various avenues to be explored in relation to the incorporation of mem-

ory effects modelling capabilities in large-signal circuit models. More detailed

equivalent circuit models could be considered with the help of CAD software

and establish a comparison between intermodulation distortion predictions for

the given dispersive models (accounting for thermal effects, impact ionization

and charge trapping, among other dispersive phenomena) and measurements,

in order to asses the suitability of the models. It would also be useful to take

advantage of the deduced knowledge about the dispersive networks so as to

devise efficient linearisers.

• Another interesting research field could consist in the study of the nonlinear

distortion in power amplifiers based on different types of active devices, with

the subsequent search for appropriate device models. Some recent technologies,

such as LDMOS transistors, and materials, like GaN, could be highlighted due

to their widespread application in base stations for mobile communications.
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APPENDIX B

EXPRESSIONS FOR THE NONLINEAR

ENVELOPE CURRENTS IN THE

SIMPLIFIED NEWTON METHOD

The Simplified Newton method applied to RF modulated excitation signals was pre-

sented in Section 3.6. The procedure to obtain the complex envelopes of the incremen-

tal node voltages for a general circuit consists in solving the following system of linear

equations:
[

Y(hωc) − jY′(hωc)
d

dt

]

ṽn(h, t) = ĩn(h, t), (B.1)

for the n-th iteration and the h-th harmonic, where Y(ω) is the node admittance

matrix of the extended linear subcircuit. This system of equations must be solved

for n = 1, . . . , N and h = 0, . . . , H . The current sources ĩn(h, t) applied to the time-

invariant linear circuit in (B.1) for the example of the equivalent circuit model for a

FET amplifier shown in Figure 2.11 of Section 2.4.4 can be obtained as follows:

1. For the first iteration (n = 1), the excitation envelope current is the original en-

velope current source.

2. The obtention of the nonlinear current source for the second iteration (n = 2)

requires considering contributions originated by the drain-to-source nonlinear

current (Ids) and the nonlinear capacitances Cgs and Cgd, being the first one the

main source of nonlinear distortion [74], [73]. If we take into account (3.70), the

contribution of the drain-to-source nonlinear current is given by

ĩ2(h, t) = ĩ2I(h, t) + ĩ2II(h, t) + ĩ2III(h, t), (B.2)

where

ĩ2I(h, t) = −

∞∑

r=⌈h
2
+1⌉

1

22r−h−1
g2r−h,0

(
2r − h

r

)

|ṽ1(t)|
2(r−h)ṽh

1 (t), (B.3)
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ĩ2II(h, t) = −
∞∑

r=⌈h
2
+1⌉

1

22r−h−1
g0,2r−h

(
2r − h

r

)

|ũ1(t)|
2(r−h)ũh

1(t), (B.4)

and

ĩ2III(h, t) = −

∞∑

k,l=1

1

2k+l−1
gk,l ·

·

[
k∑

r=0

(
k

r

)(
l

l+h+k
2

− r

)

|ṽ1(t)|
2(k−r) ṽ2r−k

1 (t) |ũ1(t)|
l−h−k+2r ũh+k−2r

1 (t)

]

.

(B.5)

For equation (B.5), the even harmonics are obtained when k + l is even and the

odd harmonics are obtained when k + l is an odd number.

On the other hand, the contribution of the nonlinear capacitances is given by the

following expression:

ĩ2(h, t) = −jhω
∞∑

r=⌈h
2
+1⌉

1

22r−h−1

1

2r − h
c2r−h−1

(
2r − h

r

)

|ṽ1(t)|
2(r−h)ṽh

1 (t). (B.6)

It should be clarified that the case h = 0 is a special one, since the given expres-

sions account for 2̃i2(0, t) as long as definition (3.3) for the signals in terms of

their complex envelopes is considered. If we use equations (B.2) -(B.6), closed-

form expressions for the second-order nonlinear envelope currents can be ob-

tained.

3. For the n-th iteration in the equivalent circuit model for a FET amplifier,

the contribution of the drain-to-source nonlinear current is given by in(t) =

−
[

iNL [vn−2(t) + vn−1(t), un−2(t) + un−1(t)] − iNL [vn−2(t), un−2(t)]
]

. Considering

that the incremental voltages vn−1(t) and un−1(t) are small compared to the lin-

ear terms vn−2(t) and un−2(t), the exciting current can be approximated by its

first-order Taylor expansion

iNL[vn−2(t) + vn−1(t), un−2(t) + un−1(t)] ≈ iNL[vn−2(t), un−2(t)]+ (B.7)

∂iNL[v(t), u(t)]

∂v(t)

∣
∣
∣
∣
vn−2(t),un−2(t)

vn−1(t) +
∂iNL[v(t), u(t)]

∂u(t)

∣
∣
∣
∣
vn−2(t),un−2(t)

un−1(t).

From (2.41) the derivatives can be obtained

∂iNL[v(t), u(t)]

∂v(t)

∣
∣
∣
∣
vn−2(t),un−2(t)

vn−1(t) =

∞∑

k=1

[

(k + 1)gk+1,0v
k
n−2(t) +

∞∑

l=1

kgklv
k−1
n−2(t)u

l
n−2(t)

]

vn−1(t),

(B.8)
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∂iNL[v(t), u(t)]

∂u(t)

∣
∣
∣
∣
vn−2(t),un−2(t)

un−1(t) =

∞∑

l=1

[

(l + 1)g0,l+1u
l
n−2(t) +

∞∑

k=1

lgklv
k
n−2(t)u

l−1
n−2(t)

]

un−1(t).

(B.9)

Therefore, the exciting nonlinear current can be expressed as

in(t) = −
[ ∞∑

k=1

(k + 1)gk+1,0v
k
n−2(t)vn−1(t) +

∞∑

l=1

(l + 1)g0,l+1u
l
n−2(t)un−1(t)+

∞∑

k=1

∞∑

l=1

gkl

[
kvk−1

n−2(t)vn−1(t)u
l
n−2(t) + lvk

n−2(t)u
l−1
n−2(t)un−1(t)

]]

, (B.10)

where we will treat each term separately in order to find the envelope currents

more conveniently

inI
(t) = −

∞∑

k=1

(k + 1)gk+1,0v
k
n−2(t)vn−1(t),

inII
(t) = −

∞∑

l=1

(l + 1)g0,l+1u
l
n−2(t)un−1(t),

inIII
(t) = −

∞∑

k=1

∞∑

l=1

gkl

[
kvk−1

n−2(t)vn−1(t)u
l
n−2(t) + lvk

n−2(t)u
l−1
n−2(t)un−1(t)

]
.

(B.11)

The contribution of the drain-to-source nonlinear current in terms of the current

envelopes is given by

ĩn(h, t) = ĩnI(h, t) + ĩnII(h, t) + ĩnIII(h, t), (B.12)

where

ĩnI(h, t) = −
∞∑

r=⌈h
2
⌉

2r − h + 2

22r−h−1
g2r−h+2,0|ṽn−2(t)|

2(r−h)ṽ
2(h−1)
n−2 (t)·

[(
2r − h + 1

r

)

|ṽn−2(t)|
2ṽn−1(t) +

(
2r − h + 1

r + 1

)

ṽ4
n−2(t)ṽ

∗
n−1(t)

]

,

(B.13)

ĩnII(h, t) = −
∞∑

r=⌈h
2
⌉

2r − h + 2

22r−h−1
g0,2r−h+2|ũn−2(t)|

2(r−h)ũ
2(h−1)
n−2 (t)·

[(
2r − h + 1

r

)

|ũn−2(t)|
2ũn−1(t) +

(
2r − h + 1

r + 1

)

ũ4
n−2(t)ũ

∗
n−1(t)

]

,

(B.14)
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ĩnIII(h, t) = −
∞∑

k,l=1

1

2k+l
gk,l ·

{
k∑

r=0

2(k − r)

(
k

r

)

|ṽn−2|
2(k−r)ṽ2r−k

n−2 |ũn−2|
l+h+k−2r−1·

· ũh+k−2r−1
n−2

[(
l

l+h+k−1
2

− r

)

ṽn−1 +

(
l

l+h+k−1
2

− r + 1

)

ṽ∗
n−1|ũn−2(t)|

2 ũ2
n−2(t)

]

+

+
l∑

r=0

2(l − r)

(
l

r

)

|ṽn−2|
l+h+k−2r−1ṽh+k−2r−1

n−2 |ũn−2|
2(k−r)ũ2r−k

n−2 ·

·

[(
k

l+h+k−1
2

− r

)

ũn−1 +

(
k

l+h+k−1
2

− r + 1

)

ũ∗
n−1|ṽn−2(t)|

2 ṽ2
n−2(t)

]}

. (B.15)

And finally, the contribution of the nonlinear capacitances to the envelope cur-

rents is

ĩn(h, t) = −jω
∞∑

r=⌈h−1
2

⌉

2r − h + 3

22r−h+3
c2r−h+3

(
2r − h + 2

r + 1

)

|ṽn−2(t)|
2(r−h+1)ṽh−1

n−2(t)·

·

[
h − 1

r − h + 2
|ṽn−2(t)|

2ṽn−1(t) +
h + 1

r + 2
ṽ2

n−2(t)ṽ
∗
n−1(t)

]

+

+ ω2

∞∑

r=⌈h
2
⌉

1

22r−h+3
c2r−h+2|ṽn−2(t)|

2(r−h+1)ṽh−1
n−2(t)·

·

{

|ṽn−2(t)|
2ṽn−1(t)

(
2r − h + 1

r − 1

)[

1 −
(r − h + 2)(r − h + 1)

(r + 1)(r)

]

−ṽ∗
n−1(t)

(
2r − h + 1

r

)[

1 −
(r − h + 1)(r − h)

(r + 2)(r + 1)

]}

. (B.16)
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APPENDIX C

INCREMENTAL ENVELOPE VOLTAGES IN

THE SIMPLIFIED NEWTON ANALYSIS OF

TWO-TONE INTERMODULATION

PRODUCTS

The Simplified Newton method applied to the analysis of two-tone intermodulation

products was presented in Section 5.2. It was stated that, in quasi-periodic steady-

state, the SN method has a frequency-domain equivalent

Y(hfc + mfm) Ṽn(h,m) = Ĩn(h,m) (C.1)

for each iteration n and harmonic h, being the admittance matrix of the augmented

linear circuit written as

Y(f) =

[

Ȳs(f) −j2πfCgd

Ymd(f) ȲL(f)

]

, (C.2)

and

Ṽn(h,m) =

[

ṽg(h,m)

ṽd(h,m)

]

,

Ĩn(h,m) =

[

Ys(hfc + mfm)ṽs(h,m)

−F{ids(t)}(h,m)

]

.

(C.3)

The first step consists in calculating the quiescent point of the circuit and deter-

mining all the Taylor-series expansion coefficients gk0 and g0l for k, l ≤ 5 and gkl for

k + l ≤ 3. Then, all dc voltage sources are short-circuited and all dc current sources

are open-circuited and the augmented linear circuit characterised by the admittance

matrix of (C.2) is solved.

229
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C.1 First-order iteration: linear iteration

For n = 1 there are terms only at frequencies for h = 1 and m = ±1. In that case,

[

ṽg1(1,±1)

ṽd1(1,±1)

]

= Y−1(fc ± fm)

[

Ys(fc ± fm)A

0

]

. (C.4)

Recall that, with the narrow-band assumption, the linear transfer functions or

equivalently the NLTFs of order n = 1 are

Hg1(fc ± fm) ≈ Hg1(fc) = Y−1
11 (fc)Ys(fc) =

ȲL(fc)Ys(fc)

ȲL(fc)Ȳs(fc) + j2πfcCgdYmd(fc)
,

H1(fc ± fm) ≈ H1(fc) = Y−1
21 (fc)Ys(fc) =

−Ymd(fc)Ys(fc)

ȲL(fc)Ȳs(fc) + j2πfcCgdYmd(fc)
.

(C.5)

Let define Hg1 = Hg1(fc) and H1 = H1(fc). Then

ṽg1(1,±1) = Hg1A ,

ṽd1(1,±1) = H1A .
(C.6)

C.2 Second-order iteration

From the second iteration on, the original driving sources are not considered and the

nonlinear currents sources are applied instead. In the second iteration, the incremental

voltage is obtained evaluating the nonlinear current (5.2) and then using the driving

source i2(t) = −iNL[vg1(t), vd1(t)] expressed as

i2(t) =
1

2

∞∑

h,m=−∞

ĩ2(h,m)ej2π(hfc+mfm)t. (C.7)

Separating (5.2) in the same three terms than those considered in (B.2)

iNLI
[vg1(t)] =

∞∑

k=2

gk0v
k
g1(t),

iNLII
[vd1(t)] =

∞∑

l=2

g0lv
l
d1(t), (C.8)

iNLIII
[vg1(t), vd1(t)] =

∞∑

k,l=1

gklv
k
g1(t)v

l
d1(t).
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and recalling that the sums will be truncated for gk0 = 0 , g0l = 0 for k, l > 5 and

gkl = 0 for k+ l > 3, the following expressions for the nonlinear envelope currents can

be obtained

ĩ2I
(h,m) = −

∞∑

r=⌈h
2
+1⌉

1

22r−h−1

(
2r − h

r

)(
2r − h

r + m−h
2

)

g2r−h,0|Hg1|
2(r−h)Hh

g1A
2r−h (C.9)

ĩ2II
(h,m) = −

∞∑

r=⌈h
2
+1⌉

1

22r−h−1

(
2r − h

r

)(
2r − h

r + m−h
2

)

g0,2r−h|H1|
2(r−h)Hh

1 A2r−h (C.10)

and a similar expression for ĩ2III
(h,m).

Using these results it is possible to obtain the components of i2(t) for the different

harmonics:

• For dc zone:

ĩ2(0, 0) = −

[

2γ20A
2 +

9

2
γ40A

4

]

,

ĩ2(0,±2) = −
[
γ20A

2 + 3γ40A
4
]
, (C.10)

ĩ2(0,±4) = −
3

4
γ40A

4 ,

where the following definitions have been used

γ20 = g20|Hg1|
2 + g02|H1|

2 +
1

2
g11(Hg1H

∗
1 + H∗

g1H1) , (C.11)

γ40 = g40|Hg1|
4 + g04|H1|

4 . (C.12)

• For the fundamental frequency zone, h = 1:

ĩ2(1,±1) = −

[
9

4
γ31A

3 +
25

4
γ51A

5

]

,

ĩ2(1,±3) = −

[
3

4
γ31A

3 +
25

8
γ51A

5

]

, (C.12)

ĩ2(1,±5) = −
5

8
γ51A

5 ,

where the following definitions have been used

γ31 = g30|Hg1|
2Hg1 + g03|H1|

2H1 +
2

3

[
g21(2|Hg1|

2H1 + H2
g1H

∗
1 )+

g12(2|H1|
2Hg1 + H2

1H
∗
g1)

]
,

γ51 = g50|Hg1|
4Hg1 + g05|H1|

4H1 .

(C.13)
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C. INCREMENTAL ENVELOPE VOLTAGES IN THE SN ANALYSIS OF

TWO-TONE IM PRODUCTS

• For the second harmonic frequency zone, h = 2:

ĩ2(2, 0) = −
[
γ22A

2 + 3γ42A
4
]
,

ĩ2(2,±2) = −

[
1

2
γ22A

2 + 2γ42A
4

]

, (C.14)

ĩ2(2,±4) = −
1

2
γ42A

4 ,

where the following definitions have been used

γ22 = g20H
2
g1 + g02H

2
1 + g11Hg1H1 , (C.15)

γ42 = g40|Hg1|
2H2

g1 + g04|H1|
2H2

1 . (C.16)

• For the third harmonic frequency zone, h = 3:

ĩ2(3,±1) = −

[
3

4
γ33A

3 +
25

8
γ53A

5

]

,

ĩ2(3,±3) = −

[
1

4
γ33A

3 +
25

16
γ53A

5

]

, (C.16)

ĩ2(3,±5) = −
5

16
γ53A

5 ,

where the following definitions have been used

γ33 = g30H
3
g1 + g03H

3
1 + 2(g21H

2
g1H1 + g12H

2
1Hg1) , (C.17)

γ53 = g50|Hg1|
2H3

g1 + g05|H1|
2H3

1 . (C.18)

For the second-order iteration (5.13) gives
[

ṽg2(h,m)

ṽd2(h,m)

]

= Y−1(hfc + mfm)

[

0

−ĩ2(h,m)

]

≈ Y−1(hfc)

[

0

ĩ2(h,m)

]

. (C.18)

For h > 0, we can write the second-order voltage contributions in the following

form:

ṽg2(h,m) = Zghĩ2(h,m) ,

ṽd2(h,m) = Zhĩ2(h,m) ,
(C.19)

where

Zg(hfc + mfm) ≈ Zg(hfc) = Y−1
12 (hfc) =

j2πhfcCgd

ȲL(hfc)Ȳs(hfc) + j2πhfcCgdYmd(hfc)
= Zgh

Z(hfc + mfm) ≈ Z(hfc) = Y−1
22 (hfc) =

Ȳs(hfc)

ȲL(hfc)Ȳs(hfc) + j2πhfcCgdYmd(hfc)
= Zh .

(C.20)
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However, for dc zone the narrowband assumption does not apply since, for h =

0, mfm > hfc = 0. However, we can consider Zg(mfm) = 0 and Z(mfm) = Z̄L(mfm),

which can be justified by the following reasoning. At baseband frequencies, the ca-

pacitances in the equivalent circuit model can be considered to be open circuits and

the terms involved in (5.8) take the next form:

ȲL(f) = YL(f) + g01, (C.21)

Ymd(f) = g10, (C.22)

Ȳs(f) = Ys(f), (C.23)

resulting in the following inverse for the admittance matrix:

Y−1(f) =
1

Ȳs(f)ȲL(f)

[

ȲL(f) 0

−Ymd(f) Ȳs(f)

]

=





Z̄s(f) 0

−
Ymd(f)

Ȳs(f)ȲL(f)
Z̄L(f)



 . (C.22)

Recalling the definitions Zg(hfc + mfm) = Y−1
12 (hfc + mfm) and Z(hfc + mfm) =

Y−1
22 (hfc+mfm) , and considering h = 0, the aforementioned expressions Zg(mfm) = 0

and Z(mfm) = Z̄L(mfm) can be obtained. Then, the following values for the second-

order incremental envelope voltages are obtained for the different harmonics:

• For the dc zone with h = 0:

ṽg2(0,m) = 0 ,

ṽd2(0,m) = Z̄L(mfm)̃i2(0,m) , (C.23)

with m even. If it is assumed that Z̄L(0) = 0,

ṽd2(0, 0) = 0 ,

ṽd2(0,±2) = −
[
γ20Z̄L(±∆f)A2 + 3γ40Z̄L(±∆f)A4

]
, (C.24)

ṽd2(0,±4) = −
3

4
γ40Z̄L(±2∆f)A4 .

• For the fundamental frequency zone, h = 1:

ṽg2(1,±1) = −

[
9

4
γ31Zg1A

3 +
25

4
γ51Zg1A

5

]

,

ṽg2(1,±3) = −

[
3

4
γ31Zg1A

3 +
25

8
γ51Zg1A

5

]

, (C.25)

ṽg2(1,±5) = −
5

8
γ51Zg1A

5 ,
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and

ṽd2(1,±1) = −

[
9

4
γ31Z1A

3 +
25

4
γ51Z1A

5

]

,

ṽd2(1,±3) = −

[
3

4
γ31Z1A

3 +
25

8
γ51Z1A

5

]

, (C.26)

ṽd2(1,±5) = −
5

8
γ51Z1A

5 .

• For the second harmonic frequency zone, h = 2:

ṽg2(2, 0) = −
[
γ22Zg2A

2 + 3γ42Zg2A
4
]
,

ṽg2(2,±2) = −

[
1

2
γ22Zg2A

2 + 2γ42Zg2A
4

]

, (C.27)

ṽg2(2,±4) = −
1

2
γ42Zg2A

4 ,

and

ṽd2(2, 0) = −
[
γ22Z2A

2 + 3γ42Z2A
4
]
,

ṽd2(2,±2) = −

[
1

2
γ22Z2A

2 + 2γ42Z2A
4

]

, (C.28)

ṽd2(2,±4) = −
1

2
γ42Z2A

4 .

• For the third harmonic frequency zone, h = 3:

ṽg2(3,±1) = −

[
3

4
γ33Zg3A

3 +
25

8
γ53Zg3A

5

]

,

ṽg2(3,±3) = −

[
1

4
γ33Zg3A

3 +
25

16
γ53Zg3A

5

]

, (C.29)

ṽg2(3,±5) = −
5

16
γ53Zg3A

5 ,

and

ṽd2(3,±1) = −

[
3

4
γ33Z3A

3 +
25

8
γ53Z3A

5

]

,

ṽd2(3,±3) = −

[
1

4
γ33Z3A

3 +
25

16
γ53Z3A

5

]

, (C.30)

ṽd2(3,±5) = −
5

16
γ53Z3A

5 .
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C.3 Third-order iteration

For the third iteration it is necessary to evaluate the excitation nonlinear current

i3(t) = −
[

iNL [vg1(t) + vg2(t), vd1(t) + vd2(t)]− iNL [vg1(t), vd1(t)]
]

. Considering that the

incremental voltages vg2(t) and vd2(t) are small compared to the linear terms vg1(t) and

vd1(t), the exciting current can be approximated by its first-order Taylor expansion

iNL[vg1(t) + vg2(t), vd1(t) + vd2(t)] ≈ iNL[vg1(t), vd1(t)]+
∂iNL[vg(t), vd(t)]

∂vg(t)

∣
∣
∣
∣
vg1(t),vd1(t)

vg2(t) +
∂iNL[vg(t), vd(t)]

∂vd(t)

∣
∣
∣
∣
vg1(t),vd1(t)

vd2(t).
(C.31)

From (5.2) we can obtained the derivatives

∂iNL[vg(t), vd(t)]

∂vg(t)

∣
∣
∣
∣
vg1(t),vd1(t)

vg2(t) =
∞∑

k=1

[

(k + 1)gk+1,0v
k
g1(t) +

∞∑

l=1

kgklv
k−1
g1 (t)vl

d1(t)

]

vg2(t),

(C.32)

∂iNL[vg(t), vd(t)]

∂vd(t)

∣
∣
∣
∣
vg1(t),vd1(t)

vd2(t) =
∞∑

l=1

[

(l + 1)g0,l+1v
l
d1(t) +

∞∑

k=1

lgklv
k
g1(t)v

l−1
d1 (t)

]

vd2(t).

(C.33)

Considering only the most significant terms, linear in vg2 and vd2, respectively

∂iNL[vg(t), vd(t)]

∂vg(t)

∣
∣
∣
∣
vg1(t),vd1(t)

vg2(t) ≈ 2g20vg1(t)vg2(t) + g11vd1(t)vg2(t), (C.34)

∂iNL[vg(t), vd(t)]

∂vd(t)

∣
∣
∣
∣
vg1(t),vd1(t)

vd2(t) ≈ 2g02vd1(t)vd2(t) + g11vg1(t)vd2(t), (C.35)

the exciting current can be expressed as

i3(t) = −
[

2g20vg1(t)vg2(t) + g11 [vd1(t)vg2(t) + vg1(t)vd2(t)] + 2g02vd1(t)vd2(t)
]

, (C.36)

where we will treat each term separately in order to find the components for the IM

product frequencies in an easier way

i3I
(t) = −2g20vg1vg2,

i3II
(t) = −g11(vd1vg2 + vg1vd2),

i3III
(t) = −2g02vd1vd2.

(C.37)
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• For the first term i3I
(t), let us consider the product vg1(t)vg2(t) and use (5.11) to

obtain

vg1(t)vg2(t) =
1

4

∞∑

h=−∞

ṽg2(h, t)ṽg1(1, t)e
j2π(h+1)fct +

1

4

∞∑

h=−∞

ṽg2(h, t)ṽg1(−1, t)ej2π(h−1)fct =

1

4

∞∑

h,m=−∞

ṽg2(h,m)ṽg1(1,±1)ej2π[(h+1)fc+(m±1)fm]t+

1

4

∞∑

h,m=−∞

ṽg2(h,m)ṽg1(−1,±1)ej2π[(h−1)fc+(m±1)fm]t .

(C.38)

The interesting terms are those in the fundamental frequency zone, with h = 0

and h = 2 for the first and second sum, respectively. Then i3I
(t) can be written

as:

i3I(t) =
1

2

∞∑

h,m=−∞

ĩ3I(h,m)ej2π(hfc+mfm)t = −2g20vg1(t)vg2(t) , (C.39)

and

1

2

∞∑

m=−∞

ĩ3I(1,m)ej2πmfmt = −
1

2
g20 [ṽg2(0, t)ṽg1(1, t) + ṽg2(2, t)ṽg1(−1, t)] =

−
1

2
g20

[
ṽg2(0,m)ṽg1(1,±1)ej2π(m±1)fmt + ṽg2(2,m)ṽg1(−1,±1)ej2π(m±1)fmt

]
,

(C.40)

ĩ3I(1,m) = − g20 [ṽg2(0,m + 1)ṽg1(1,−1) + ṽg2(0,m − 1)ṽg1(1, 1)+

ṽg2(2,m + 1)ṽg1(−1,−1) + ṽg2(2,m − 1)ṽg1(−1, 1)] .
(C.41)

Recall that ṽg2(0,m) = 0 for any value of m and ṽg1(−1,±1) = H∗
g1A, then (C.41)

can be reduced to

ĩ3I(1,m) = −g20H
∗
g1A [ṽg2(2,m + 1) + ṽg2(2,m − 1)] . (C.42)

– Distortion at fundamental tones, m = ±1, can be obtained by substituting

ṽg2(2, 2), ṽg2(2, 0) for m = 1 and ṽg2(2, 0), ṽg2(2,−2) for m = −1 from (C.27)

in (C.42)

ĩ3I(1,±1) =
3

2
γ22g20H

∗
g1Zg2A

3 + 5γ42g20H
∗
g1Zg2A

5 . (C.43)

– Third-order IM terms, m = ±3, can be obtained by substituting

ṽg2(2, 4), ṽg2(2, 2) for m = 3 and ṽg2(2,−2), ṽg2(2,−4) for m = −3

from (C.27) in (C.42)

ĩ3I(1,±3) =
1

2
γ22g20H

∗
g1Zg2A

3 +
5

2
γ42g20H

∗
g1Zg2A

5 . (C.44)
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– Fifth-order IM terms, m = ±5, can be obtained by substituting ṽg2(2, 4) for

m = 5 and ṽg2(2,−4) for m = −5 from (C.27) in (C.42)

ĩ3I(1,±5) =
1

2
γ42g20H

∗
g1Zg2A

5 . (C.45)

• For the second term i3II
(t), let consider the products vd1(t)vg2(t) and vg1(t)vd2(t)

and use (5.11) and (5.12)to obtain

vd1(t)vg2(t) =
1

4

∞∑

h=−∞

ṽg2(h, t)ṽd1(1, t)e
j2π(h+1)fct +

1

4

∞∑

h=−∞

ṽg2(h, t)ṽd1(−1, t)ej2π(h−1)fct =

1

4

∞∑

h,m=−∞

ṽg2(h,m)ṽd1(1,±1)ej2π[(h+1)fc+(m±1)fm]t+

1

4

∞∑

h,m=−∞

ṽg2(h,m)ṽd1(−1,±1)ej2π[(h−1)fc+(m±1)fm]t ,

(C.46)

vg1(t)vd2(t) =
1

4

∞∑

h=−∞

ṽd2(h, t)ṽg1(1, t)e
j2π(h+1)fct +

1

4

∞∑

h=−∞

ṽd2(h, t)ṽg1(−1, t)ej2π(h−1)fct =

1

4

∞∑

h,m=−∞

ṽd2(h,m)ṽg1(1,±1)ej2π[(h+1)fc+(m±1)fm]t+

1

4

∞∑

h,m=−∞

ṽd2(h,m)ṽg1(−1,±1)ej2π[(h−1)fc+(m±1)fm]t .

(C.47)

The interesting terms are those in the fundamental frequency zone, with h = 0

and h = 2 for the first and second sum, respectively. Then the second term

of (C.36) can be written as:

i3II(t) =
1

2

∞∑

h,m=−∞

i3II(h,m)ej2π(hfc+mfm)t = −g11[vd1(t)vg2(t) + vg1(t)vd2(t)] ,

(C.48)

and

1

2

∞∑

m=−∞

i3II(1,m)ej2πmfmt = −
1

4
g11 [ṽg2(0, t)ṽd1(1, t) + ṽg2(2, t)ṽd1(−1, t)+

ṽd2(0, t)ṽg1(1, t) + ṽd2(2, t)ṽg1(−1, t)] =

−
1

4
g11

[
ṽg2(0,m)ṽd1(1,±1)ej2π(m±1)fmt + ṽg2(2,m)ṽd1(−1,±1)ej2π(m±1)fmt+

ṽd2(0,m)ṽg1(1,±1)ej2π(m±1)fmt + ṽd2(2,m)ṽg1(−1,±1)ej2π(m±1)fmt
]

,

(C.49)
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ĩ3II(1,m) = −
1

2
g11 [ṽg2(0,m + 1)ṽd1(1,−1) + ṽg2(0,m − 1)ṽd1(1, 1)+

ṽg2(2,m + 1)ṽd1(−1,−1) + ṽg2(2,m − 1)ṽd1(−1, 1)+

ṽd2(0,m + 1)ṽg1(1,−1) + ṽd2(0,m − 1)ṽg1(1, 1)+

ṽd2(2,m + 1)ṽg1(−1,−1) + ṽd2(2,m − 1)ṽg1(−1, 1)] .

(C.50)

Recall that vg1(1,±1) = Hg1A, vg1(−1,±1) = H∗
g1A, vd1(1,±1) =

H1A, and vd1(−1,±1) = H∗
1A , then (C.50) can be reduced to

ĩ3II(1,m) = −
1

2
g11A

{

H1[ṽg2(0,m + 1) + ṽg2(0,m − 1)] +

H∗
1 [ṽg2(2,m + 1) + ṽg2(2,m − 1)] + Hg1[ṽd2(0,m + 1) + ṽd2(0,m − 1)]

H∗
g1[ṽd2(2,m + 1) + ṽd2(2,m − 1)]

}

. (C.51)

– Distortion at fundamental tones, m = ±1, can be obtained by substitut-

ing ṽd2(0, 2), ṽd2(0, 0) = 0, ṽd2(2, 2), and ṽd2(2, 0) for m = 1, and ṽd2(0, 0) =

0, ṽd2(0,−2), ṽd2(2, 0), and ṽd2(2,−2) for m = −1 from (C.24), (C.28), (C.23)

and (C.27) in (C.51)

ĩ3II(1,±1) =
3

4
γ22g11(H

∗
1Zg2 + H∗

g1Z2)A
3 +

1

2
γ20g11Hg1Z̄L(±∆f)A3+

[
5

2
γ42g11(H

∗
1Zg2 + H∗

g1Z2) +
3

2
γ40g11Hg1Z̄L(±∆f)

]

A5 .
(C.52)

– Third-order IM terms, m = ±3, can be obtained by substi-

tuting ṽd2(0, 4), ṽd2(0, 2), ṽd2(2, 4), and ṽd2(2, 2) for m = 3, and

ṽd2(0,−2), ṽd2(0,−4), ṽd2(2,−2), and ṽd2(2,−4) for m = −3 from (C.24),

(C.28), (C.23) and (C.27) in (C.51)

ĩ3II(1,±3) =
1

4
γ22g11(H

∗
1Zg2 + H∗

g1Z2)A
3 +

1

2
γ20g11Hg1Z̄L(±∆f)A3+

[
5

4
γ42g11(H

∗
1Zg2 + H∗

g1Z2) +
3

2
γ40g11Hg1Z̄L(±∆f) +

3

8
γ40g11Hg1Z̄L(±2∆f)

]

A5.

(C.53)

– Fifth-order IM terms, m = ±5, can be obtained by substituting

ṽd2(0, 4), and ṽd2(2, 4) for m = 5, and ṽd2(0,−4), and ṽd2(2,−4) for m = −5

from (C.24), (C.28), (C.23) and (C.27) in (C.51)

ĩ3II(1,±5) =
1

4
γ42g11(H

∗
1Zg2 + H∗

g1Z2)A
5 +

3

8
γ40g02Hg1Z̄L(±2∆f)A5 . (C.54)
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• For the third term i3III
(t), let us consider the product vd1(t)vd2(t) and use (5.12)

to obtain

vd1(t)vd2(t) =
1

4

∞∑

h=−∞

ṽd2(h, t)ṽd1(1, t)e
j2π(h+1)fct +

1

4

∞∑

h=−∞

ṽd2(h, t)ṽd1(−1, t)ej2π(h−1)fct =

1

4

∞∑

h,m=−∞

ṽd2(h,m)ṽd1(1,±1)ej2π[(h+1)fc+(m±1)fm]t+

1

4

∞∑

h,m=−∞

ṽd2(h,m)ṽd1(−1,±1)ej2π[(h−1)fc+(m±1)fm]t .

(C.55)

The interesting terms are those in the fundamental frequency zone, with h = 0

and h = 2 for the first and second sum, respectively. Then the third term of (C.36)

can be written as:

i3III(t) =
1

2

∞∑

h,m=−∞

i3III(h,m)ej2π(hfc+mfm)t = −2g02vd1(t)vd2(t) , (C.56)

and

1

2

∞∑

m=−∞

i3III(1,m)ej2πmfmt = −
1

2
g02 [ṽd2(0, t)ṽd1(1, t) + ṽd2(2, t)ṽd1(−1, t)] =

−
1

2
g02

[
ṽd2(0,m)ṽd1(1,±1)ej2π(m±1)fmt + ṽd2(2,m)ṽd1(−1,±1)ej2π(m±1)fmt

]
,

(C.57)

ĩ3III(1,m) = − g02 [ṽd2(0,m + 1)ṽd1(1,−1) + ṽd2(0,m − 1)ṽd1(1, 1)+

ṽd2(2,m + 1)ṽd1(−1,−1) + ṽd2(2,m − 1)ṽd1(−1, 1)] .
(C.58)

Recall that vd1(1,±1) = H1A, and vd1(−1,±1) = H∗
1A, then (C.58) can be

reduced to

ĩ3III(1,m) = − g20A [H1(ṽd2(0,m + 1) + ṽd2(0,m − 1))+

H∗
1 (ṽd2(2,m + 1) + ṽd2(2,m − 1))] .

(C.59)

– Distortion at fundamental tones, m = ±1, can be obtained by substitut-

ing ṽd2(0, 2), ṽd2(0, 0) = 0, ṽd2(2, 2), ṽd2(2, 0) for m = 1 and ṽd2(0, 0) =

0, ṽd2(0,−2), ṽd2(2, 0), ṽd2(2,−2) for m = −1 from (C.24) and (C.28) in

(C.59)

ĩ3III(1,±1) =
3

2
γ22g02H

∗
1Z2A

3 + γ20g02H1Z̄L(±∆f)A3+
[
5γ42g02H

∗
1Z2 + 3γ40g02H1Z̄L(±∆f)

]
A5 .

(C.60)
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– Third-order IM terms, m = ±3, can be obtained by sub-

stituting ṽd2(0, 4), ṽd2(0, 2), ṽd2(2, 4), ṽd2(2, 2) for m = 3 and

ṽd2(0,−2), ṽd2(0,−4), ṽd2(2,−2), ṽd2(2,−4) for m = −3 from (C.24)

and (C.28) in (C.59)

ĩ3III(1,±3) =
1

2
γ22g02H

∗
1Z2A

3 + γ20g02H1Z̄L(±∆f)A3+
[
5

2
γ42g02H

∗
1Z2+ 3γ40g02H1Z̄L(±∆f) +

3

4
γ40g02H1Z̄L(±2∆f)

]

A5 .
(C.61)

– Fifth-order IM terms, m = ±5, can be obtained by substituting

ṽd2(0, 4), ṽd2(2, 4) for m = 5 and ṽd2(0,−4), ṽd2(2,−4) for m = −5

from (C.24) and (C.28) in (C.59)

ĩ3III(1,±5) =
1

2
γ42g02H

∗
1Z2A

5 +
3

4
γ40g02H1Z̄L(±2∆f)A5 . (C.62)

Once the components of ĩ3(1,m) have been obtained for the main IM products

frequencies, third-order incremental voltages ṽg3(t) and ṽd3(t) can be found, recalling

the following expressions:

ṽg3(1,m) = Zg1ĩ3(1,m) ,

ṽd3(1,m) = Z1ĩ3(1,m) .
(C.63)

Third-order iteration is the last iteration in the proposed approach. Since we are

interested in getting some closed-expressions for the output voltage, only expressions

for ṽd3(t) in the fundamental frequency will be given. The reason why both drain and

gate voltages at the main harmonic frequencies were obtained in the second-order

iteration was that they were necessary to get the expressions for third-order nonlinear

current.

Incremental distortion in drain voltage at fundamental tones, f = fc ± fm can be

expressed as

ṽd3(1,±1) =
3

2
γ′

22Z1A
3 + γ′

20Z̄L(±∆f)A3 +
[
5γ′

42Z1 + 3γ′
40Z̄L(±∆f)

]
A5 . (C.64)

Incremental distortion in drain voltage at the frequencies for third-order IM prod-

ucts, f = fc ± 3fm can be expressed as

ṽd3(1,±3) =
1

2
γ′

22Z1A
3+γ′

20Z̄L(±∆f)A3+

[
5

2
γ′

42Z1 + 3γ′
40Z̄L(±∆f) +

3

4
γ′

40Z̄L(±2∆f)

]

A5 .

(C.65)
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And last, incremental distortion in drain voltage at the frequencies for fifth-order IM

products, f = fc ± 5fm can be expressed as

ṽd3(1,±5) =

[
1

2
γ′

42Z1 +
3

4
γ′

40Z̄L(±2∆f)

]

A5 . (C.66)

In the previous expressions we have used the following definitions:

γ′
22 = γ22

[

g20H
∗
g1Zg2 +

1

2
g11(H

∗
1Zg2 + H∗

g1Z2) + g02H
∗
1Z2

]

,

γ′
42 = γ42

[

g20H
∗
g1Zg2 +

1

2
g11(H

∗
1Zg2 + H∗

g1Z2) + g02H
∗
1Z2

]

,

γ′
20 = γ20Z1

(
1

2
g11Hg1 + g02H1

)

,

γ′
40 = γ40Z1

(
1

2
g11Hg1 + g02H1

)

.

(C.67)

And simplifying,

γ′
40 =

γ′
20

γ20

γ40 , (C.68)

γ′
42 =

γ′
22

γ22

γ42 . (C.69)

Finally, the additional coefficients that follow are defined in order to simplify no-

tation in drain voltage expressions:

γ3 = −

(

γ31 −
2

3
γ′

22

)

Z1 , (3.69)

γ5 = −

(

γ51 −
4

5
γ′

42

)

Z1 . (3.70)
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LIST OF ABBREVIATIONS AND SYMBOLS

3GPP 3rd Generation Partnership Project

∠ Phase of a complex quantity

ℜ[·] Real part

∆f Frequency spacing between tones

α Dummy variable, large-signal current model parameter

β, λ Large-signal current model parameters

δ(·) Dirac’s delta function

ε(V ) Error function

γ Coefficients for the IMD modelling following a SN approach

ν, ξ Frequency variables

φ, ϕ, ψ Phases

Γ Transformation matrix from time domain to frequency domain

τ Time delay or Bound variable

ω Angular frequency in radians

Ω Vector of angular frequencies in radians

ac Alternating Current

ACLR Adjacent Channel Leakage Power Ratio

ACP Adjacent Channel Power

ACPnl/u Lower or Upper n-th Adjacent Channel Power

ACPR Adjacent Channel Power Ratio

ACPRT Total Adjacent Channel Power Ratio

ACPRL Adjacent Channel Power Ratio Lower

ACPRU Adjacent Channel Power Ratio Upper

ACPSP Spot Adjacent Channel Power

ADS Advanced Design System (Agilent’s software)

AM Amplitude Modulation
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AM-AM Amplitude Modulation to Amplitude Modulation Conversion

AM-PM Amplitude Modulation to Phase Modulation Conversion

APFT Almost-Periodic Fourier Transform

B Bandwidth

Cds Drain-to-source capacitance

Cgd Gate-to-drain capacitance

Cgs Gate-to-source capacitance

Cpg Gate parasitic capacitance

Cpd Drain parasitic capacitance

CAD Computer Aided Design

CDMA Code Division Multiple Access

CPU Central Processing Unit

CW Continuous Wave

D Drain node in a FET

dc Direct Current

Dgd Gate-to-drain diode

Dgs Gate-to-source diode

DFT Discrete Fourier Transform

DSB-SC Double-sideband Suppressed-Carrier

DSP Digital Signal Processor

DUT Device Under Test

EC Envelope Currents

E-PHB Extended Parametric Harmonic Balance

ET Envelop [sic] Transients

EVM Error Vector Magnitude

f Frequency

fc Carrier frequency

fm, fo Modulation frequency

fm Result frequency from the frequency mix m

fm Frequency vector for the frequency mix m

fn Frequency vector with length n

(f)µ Chain with µ arguments f, f, . . . , f
︸ ︷︷ ︸

µ

fT Test window frequency position

f(x) Generic Function of x

F [·] Fourier transform

FD[·] Discrete Fourier transform

F(V) Current-Error Vector in Harmonic Balance

FET Field Effect Transistor



FFT Fast Fourier Transform

G Gate node in a FET

gds, g01 Output conductance

gk Coefficients of the power series expansion of an element

depending on one voltage

gkl Coefficients of the power series expansion of an element

depending on two voltages

Gkl Conversion matrix associated to gkl

gm, g10 Transconductance

GaAs Gallium Arsenide

GaN Gallium Nitride

GPIB General Purpose Interface Bus

GSM Global System for Mobile Communications

h Harmonic under consideration

H Total number of harmonics

H(f) Linear transfer function

Hn(fn) Nonlinear transfer function of order n

Hn(fn) Symmetrised nonlinear transfer function of order n

HB Harmonic Balance

HB-N Harmonic Balance using Newton Raphson algorithm

or Harmonic Newton

HB-R Harmonic Balance using relaxation methods

or Harmonic Relaxation

HEMT High Electron Mobility Transistor

HFET Heterostructure FET (Field Effect Transistor)

Id, id Drain current

IDFT Inverse Discrete Fourier Transform

Ids, ids Drain-to-source current

Idss Maximum drain-to-source current

IF Intermediate Frequency

iL(t) Linear subcircuit current in the time domain

IL(f) Linear subcircuit current in the frequency domain

IM Intermodulation

IM3 Third-order Intermodulation Product

IM3l Third-order Lower Intermodulation Product

IM3u Third-order Upper Intermodulation Product

IM5 Fifth-order Intermodulation Product

IMn n-th order Intermodulation Product

IMl Lower Intermodulation Product



IMD Intermodulation Distortion

In(h) h-th harmonic component of the linear current

for the n-th iteration

În(h) h-th harmonic component of the nonlinear current

for the n-th iteration

IMR Intermodulation Ratio or Signal-to-Intermodulation

Distortion Ratio

IMu Upper Intermodulation Product

iNL(t) Nonlinear subcircuit current in the time domain

iNL, Î Nonlinear currents vector in the time domain

INL(f) Nonlinear subcircuit current in the frequency domain

INL Nonlinear currents vector in the frequency domain

iNLn(t) n-th order nonlinear current in the time domain

INLn(f) n-th order nonlinear current in the frequency domain

IP3 Third-order Intercept Point

IP2 Second-order Intercept Point

IP5 Fifth-order Intercept Point

IP5 Seventh-order Intercept Point

Is, is Source current

J(V), J Jacobian matrix

k Derivative order and bound variable

l Derivative order and bound variable

LDMOS Laterally-diffused MOS (Metal-Oxide-Semiconductor)

Ld Drain inductance

Lg Gate inductance

Ls Source inductance

LM Power Amplifier Linearizability under static conditions

LNA Low Noise Amplifier

LO Local Oscillator

m Intermodulation product index and sequence index

m Frequency mix vector

M Total number of terms in Fourier series

MEI Memory Effect Intensity

MER Memory Effect Ratio

MESFET Metal Epitaxial Semiconductor Field Effect Transistor

MHB Modulation-oriented Harmonic Balance

MIMR Multitone Intermodulation Ratio

MPDE Multi-rate Partial Differential Equation

MTA Microwave Transition Analyser



n Order, number of iteration, sequence index

NC Nonlinear Currents

NEC New Envelope Currents

NEC-M New Envelope Currents for mixers

NLTF Nonlinear Transfer Function

NPR Noise to Power Ratio

NQS Non-Quasi-Static

NVNA Nonlinear Vector Network Analyser

p̂ Differential operator

P1dB 1-dB Gain-Compression Power

Padj,L/U Lower or Adjacent Channel Power

Pin Input Power

Pl/u Lower or Upper Intermodulation Product Power

Po, Pout Output Power

PSP,L/U Lower or Upper Spot Power

PC Personal Computer

PHB Parametric Harmonic Balance

PLL Phase Locked Loop

PM Phase Modulation

PSD Power Spectral Density

q Charge

QPSK Quadrature Phase Shift Keying

Rd Drain resistance

Rds Drain-to-source resistance

Rg Gate resistance

Rgs Gate-to-source resistance

Ri, Rin Intrinsic resistance

Rs Source resistance

RBW Resolution Bandwidth

RC Raised-cosine filter

RC Resistor Capacitor

RLC Resistor Inductor Capacitor

RRC Root-raised-cosine filter

RF Radio Frequency

RFIC Radio Frequency Integrated Circuit

S Source node in a FET

SA Spectrum Analyser

SNA Scalar Network Analyser

SFDR Spurious Free Dynamic Range



SN Simplified Newton

SNA Scalar Network Analyser

t Time varaible

T Time period

TDMA Time Division Multiple Access

THD Total Harmonic Distortion

TV-VS Time-Varying Volterra series

UMTS Universal Mobile Telecommunications System

V (t), v(t) Voltage in the time domain

V (f) Voltage in the frequency domain

Vd, vd Drain voltage

VDC , V0 Bias or dc voltage

VDS , Vds, vds Drain-to-source voltage

Vg, vg Gate voltage

VGS , Vgs, vgs Gate-to-source voltage

Vs, vs Source voltage

Vt Threshold voltage

VS Volterra series

VNA Vector Network Analyser

VSA Vector Signal Analyser

VSG Vector Signal Generator

x(t), y(t) Input and output variables in the time domain

x̃(t), ỹ(t) Input and output complex envelopes in the time domain

x̃(h, t), ỹ(h, t) Input and output complex envelopes for the h-th harmonic

in the time domain

X(f), Y (f) Input and output variables in the frequency domain

Xn(f), Yn(f) n-th order nonlinear input and output variables

in the frequency domain

xn(t), yn(t) n-th order nonlinear input and output variables

in the time domain

x̃n(t), ỹn(t) n-th order nonlinear input and output complex envelopes

in the time domain

x̃n(h, t), ỹn(h, t) n-th order nonlinear input and output complex envelopes

for the h-th harmonic in the time domain

X̃n(h,m), Ỹn(h,m) n-th order nonlinear input and output envelope

components for the frequency hfc + mfm

Y Admittance matrix

YIM3(f) Output Intermodulation Distortion Power Spectral

Density Function



Yo(f) Output Power Spectral Density Function

Yo,ml(f) Output Power Spectral Density Function after

memoryless linearization

Ywd(f) Window Power Spectral Density Function

W Operation bandwidth

W-CDMA Wideband CDMA (Code Division Multiple Access)

Z0 Characteristic impedance

Zeq, Zeq(∆f) (Baseband) equivalent impedance

Zg,h Gate impedance for the h-th harmonic

Zh Drain impedance for the h-th harmonic

ZL, ZL(f) Load impedance

Z̄L, Z̄L(∆f) Baseband load impedance

Zs, Zs(f) Source impedance

Zth Hypothetical thermal impedance




