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Traveling-wave electrophoresis (TWE) is a method for transporting charged colloidal particles used in many
microfluidic techniques for particle manipulation and fractionation. This method exploits the traveling-wave
components of the electric field generated by an array of electrodes subjected to ac voltages with a phase delay
between neighboring electrodes. In this article, we propose an alternative way of generating traveling-wave
electric fields in microchannels. We apply a rotating electric field around a cylindrical insulating micropillar
and the resulting traveling-wave modes induce particle drift around the cylinder. We term this phenomenon
insulating traveling-wave electrophoresis (i-TWE) to distinguish it from standard TWE performed with arrays
of microelectrodes. We characterized the particle drift experimentally and show a quantitative comparison of the
particle velocity with theoretical predictions. Excellent agreement is found when the influence of electro-osmosis
on the channel walls is also considered.
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I. INTRODUCTION

Electrophoresis is widely used to manipulate and separate
charged particles (colloids, molecules) suspended in elec-
trolytes, and capillary electrophoresis [1] is the standard for
high-efficiency separation of molecules. Electrophoresis de-
scribes the motion of a particle due to the action of an electric
field on the electrical double layer (EDL) at the particle-
electrolyte interface [2]. When the EDL is thin with respect
to the particle size, the electrophoretic velocity of the particle
uep is given by the Helmholtz-Smoluchowski formula [3]

uep = εζ

η
E, (1)

where E is the applied electric field, ε and η are the electrolyte
permittivity and viscosity respectively, and ζ is the zeta po-
tential. The latter is usually defined as the electrical potential
at the inner edge of the diffuse ionic layer surrounding the
particle [2].

Recent papers have shown that traveling-wave (TW) elec-
tric fields can be used to achieve electrophoretic motion of
charged particles with a controlled direction and velocity
magnitude, a phenomenon known as traveling-wave elec-
trophoresis (TWE) [4]. TW electric fields are conventionally
generated using arrays of microelectrodes connected to os-
cillating potentials of the same frequency but with a fixed
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phase lag between neighboring electrodes [see Fig. 1(a)]. In
TWE, there are fundamentally two different modes depending
on the relative value of electrophoretic velocity to the phase
velocity of the wave, which is v = ω/k, where ω is the angular
frequency of the ac voltage on the electrodes and k is the
wave number of the TW electric field k = 2π/L, where L is
the spatial periodicity [see Fig. 1(a)]. If v � uep, the particles
“surf” the traveling wave and their motion is synchronous,
i.e., their velocity is that of the wave phase. However, if the
traveling wave is faster (v > uep), the particles cannot follow
and migrate by partially following each successive wave crest,
this is called asynchronous motion. For this reason, the ratio
v/uep has been defined as the responsiveness of the particles
to the wave [4].

In 2007, Wei [5] proposed the use of TWE for mobility-
based particle fractionation inside microfluidic channels.
Edwards et al. [4] showed good agreement between theory and
velocity measurements of TWE experiments in microfluidics.
They also showed that chaotic behavior is theoretically ex-
pected for intermediate values of the particle mobility. Jo et al.
[6] used TWE in a microchannel and demonstrated efficient
separation of fluorescent dyes and proteins with relatively
narrow sample bandwidths.

In this work, we show how TW fields can be created around
insulating objects and how these fields can be used to control
particle migration in a similar manner to “classical” TWE with
microelectrode arrays. We achieve this by applying a rotating
electric field around an insulating micropillar placed in a
microfluidic chamber, as shown in Fig. 1(b). The rotating elec-
tric field is generated by four electrodes placed far from the
chamber. This arrangement is simpler than using an array of
microelectrodes, which requires a complicated wiring scheme
to address each electrode with the appropriate electrical sig-
nal. Creation of the traveling-wave electric fields far from the
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FIG. 1. (a) Diagram showing a classical TWE electrode config-
uration where an array of electrodes is connected to an oscillating
electric potential of the same frequency ω but a different phase. This
produces an approximate harmonic wave in the fluid bulk with a
spatial periodicity L. (b) Diagram showing the electrode array (in
black) and the insulating pillar (in grey) that produces the rotating
traveling wave.

electrodes also avoids other undesired effects such as Faradaic
reactions [7], which usually cause electrode degradation and
modification of liquid conductivity and pH, and the generation
of ac electro-osmotic flows on microelectrode in contact with
the electrolyte [8].

We use the term insulating traveling-wave electrophoresis
(iTWE) to distinguish this approach from the standard TWE
with arrays of microelectrodes. In this work, we experimen-
tally measured the velocity of particles undergoing iTWE
and performed a quantitative comparison with both numerical
simulations and an analytical model that is derived in the limit
of high electric field frequency. Excellent agreement is found
with experimental data provided that electro-osmosis on the
channel walls is included in the model.

II. THEORY

Consider the application of a harmonic electrical potential
with angular frequency ω in an electrolyte liquid given by the
following expression in polar coordinates (r, θ ):

φ̄(r̄, θ, t̄ ) = Re[−E0r̄ei(θ−ωt̄ )], (2)

where E0 is a constant, Re[· · · ] means the real part of the
expression between brackets, and the bar indicates a dimen-
sional variable. As shown in the experimental section, an
approximation to this electric potential can be achieved using
a quadrupolar array of electrodes driven by ac voltages with

a relative phase lag of 90◦. The electric field associated with
Eq. (2) corresponds to a counterclockwise rotating field within
the XY plane and with magnitude E0.

If an insulating obstacle is placed within the electrolyte,
the electrical current cannot penetrate it and therefore the field
lines are distorted around the surface. The zero current condi-
tion at the surface S transforms into the following boundary
condition for the potential: n · ∇φ|S = 0, where n is a unit
vector normal to S. In the case of a cylindrical object of
radius R, with the axis perpendicular to the rotation plane
and containing the point r = 0, the electrical potential in the
liquid is

φ̄(r̄, θ, t̄ ) = −E0

(
r̄ + R2

r̄

)
Re[ei(θ−ωt̄ )]. (3)

For convenience, the potential is scaled by E0R. The length
scale is chosen to be the radius of the post R, and the time
scale the inverse of the electric field angular frequency 1/ω.
Using these scaling parameters, the expression Eq. (3) can be
rewritten in a nondimensional form as

φ(r, θ, t ) = −
(

r + 1

r

)
Re[ei(θ−t )] (4)

and therefore the electric field is

E =
(

1 − 1

r2

)
cos(θ − t )r̂ −

(
1 + 1

r2

)
sin(θ − t )θ̂ . (5)

The components of the electric field at a given distance r = r0

from the center of the pillar can be seen as waves traveling
in the angular direction with wavenumber k = 1/r0. Thus,
the phase velocity of these waves corresponds to v = ωr0.
Following on from the description of TWE in the introduction,
we expect a synchronous drift for particles with uep � ωr0.
In our experiments we used colloidal particles suspended
in electrolytes, with ζ ≈ −60 mV and a field magnitude of
E0 = 104 V/m. Notice that we are in the linear regime of
electrophoresis. Nonlinear effects are reported in experiments
with more intense fields and larger particles, as reviewed by A.
Khair [9]. The asynchronous regime occurs if r > 1.01R for
the lowest frequency applied ( f = 13 Hz). This means that,
in practice, the asynchronous regime is to be expected for all
experimental conditions. Figure 2(a) shows the asynchronous
trajectory of a particle undergoing electrophoretic motion due
to this electric field. In this regime, the particle drifts in the
angular direction while it oscillates in the radial direction.

In order to develop an analytical expression for the drift
velocity, we follow the high-frequency asynchronous (HFA)
approximation employed by J.R. Melcher et al. [10], where
the spatial variables were decomposed into one oscillating
component and a time-averaged drift velocity. In our case,

r = r0 + r′, θ = ωpt + θ ′, (6)

where the primed variables denote purely oscillating terms
and are assumed to be r′, θ ′ � 1. That is, the radial com-
ponent is expected to have small oscillations around a fixed
position r0, and the angular component is expected to grow
linearly over time with a time-averaged angular drift ωp plus
small oscillations around this linear growth.
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FIG. 2. Analysis of the Rotating TWE system. (a) Sketch of

the system showing the trajectory of a single particle (ũ = 0.418,
r0 = 2) obtained by direct numerical integration of the equations.
The particle describes loops with an overall drift angular velocity
ωp. (b) Radial and angular coordinates representing the same case
as (a) described by simulation of trajectories (blue) and by the high-
frequency asynchronous approximation (HFA, dashed black).

The electrophoretic response of the particles given by
Eq. (1) leads to the following nondimensional equations of
motion:

dr′

dt
= ũ

(
1 − 1

(r0 + r′)2

)
cos[θ ′ − (1 − ωp)t], (7)

ωp + dθ ′

dt
= −ũ

(
1

r0 + r′ + 1

(r0 + r′)3

)
sin[θ ′ − (1 − ωp)t],

(8)

where ũ = μE0/ωR is the scaled velocity, and μ = εζ/η

the electrophoretic mobility. Since the oscillating components
are much smaller than 1 the equations for r′ and θ ′ can be

written as

dr′

dt
= ũ

(
1 − 1

r2
0

)
cos[(1 − ωp)t], (9)

dθ ′

dt
= ũ

(
1

r0
+ 1

r3
0

)
sin[(1 − ωp)t]. (10)

Note that this approximation is valid as long as ũ � 1. With
the expressions for r′ and θ ′, the time average of Eq. (8) at
the lowest order in the expansion gives an expression for the
average of the angular drift velocity

ωp = ũ

(
1

r2
0

+ 3

r4
0

)
〈r′ sin[(1 − ωp)t]〉

− ũ

(
1

r0
+ 1

r3
0

)
〈θ ′ cos[(1 − ωp)t]〉, (11)

where 〈...〉 stands for time average. After some algebra, in
the limit of ωp � 1, we obtain the following expression for
the time-averaged drift velocity of the particles around the
cylinder:

ωp = 1

2
−

√
1

4
− 2ũ2

r6
0

≈ 2ũ2

r6
0

. (12)

Figure 2 shows a calculation for the case of ũ = 0.418 and
r0 = 2. Figures 2(b) and 3 show a comparison between the
HFA approximation and numerical simulations using the full
electrophoretic velocity corresponding to the field in Eq. (5).
In this case, the drift velocity ωp obtained from the HFA
approximation differs from the average displacement given by
the numerical trajectories by 8%.

Figure 3 shows ωp as a function of the initial radial distance
to the center of the post r0 in Fig. 3(a) and also as a function of
the reduced velocity ũ in Fig. 3(b). The range of ũ corresponds
to typical experimental conditions (ζ of the order of tens of
mV, E0 ≈ 10 kV/m, and ω ranging from 10 to 100 rad/s).
A good agreement is found for low drift velocity conditions,
i.e., positions far from the pillar and/or high electric field
frequency, in which ũ � 1. However, deviations from the an-
alytical solution are found if, for example, ũ � 0.5 for r0 = 2.

III. EXPERIMENTS

In order to experimentally validate the description given
above for a TWE rotating around an insulating cylinder a sim-
ple 4-electrode device was constructed. A quadrupolar array
of planar platinum microelectrodes was integrated within a
microfluidic channel, as shown in Fig. 4(a). A 20 μm diameter
post was placed in the central position between the electrodes
[see Fig. 4(b)]. These channels were fabricated from PDMS
using standard soft lithography. The channels are 37 μm high
and the width of each arm is 200 μm.

Experiments were performed with a KCl electrolyte at
three different conductivities: σ = 1.5 mS/m, 3 mS/m, and
6 mS/m seeded with 500 nm polystyrene fluorescent particles
to act as fluid tracers. The PDMS channels were bonded to
the glass substrate (with electrodes) using O2 plasma bonding.
Prior to experiments, devices were primed with a surfactant
solution [0.1% (w/v) Pluronic F-127] for at least 30 minutes
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FIG. 3. Dependence of the drift angular velocity ωp on (a) the
initial radius r0 and (b) the reduced velocity ũ given by direct numeri-
cal integration (solid curves) and HFA approximation (dashed lines).
The reduced velocity ũ = 0.418 shown in (a) represents the condi-
tions for the particle trajectory plotted in Fig. 2(a) at r0 = 2. Typical
experimental parameters are ζ = −63 mV and E0 = 10 kV/m.

in order to avoid particle clogging and adhesion to channel
walls.

The fluid is introduced in the channel through two reser-
voirs located at both ends of the channel, as seen in Fig. 4(a).
Both reservoir inlets were connected to a pressure controller
to control the fluid flow and eventually stop it to perform
the rotation TWE experiments. Each of the four electrodes is
connected to a signal generator which provides a sinusoidal
signal of 10 Volts peak-to-peak, with frequencies ranging
from 10 Hz to 100 Hz and a 90o phase delay between con-
tiguous electrodes to produce the rotating field.

To analyze the flow, videos containing approximately 1000
frames were recorded and processed using particle image ve-
locimetry (PIV) software [11]. Frames are taken at a constant
rate of 16 fps, which is lower or of the order of the electric
field frequency and, therefore, of the electrophoretic rotation.
For that reason, tracer particles describe a full loop in each

FIG. 4. Experimental setup for observing Rotating TWE (a) Top
view of the microfluidic channel and the electrodes with the pillar
in the center. (b) Detail of the channel showing the pillar. (c) Frame
from one of the recordings showing the flow around the pillar (σ =
1.5 mS/m, E0 = 10 kV/m, f = 17 Hz).

frame for most cases, as shown in Fig. 4(c). Far from the
pillar, loops are approximately circular allowing an estimate
of the experimental mobility based on a linear regression from
amplitude A measurements at different frequencies; where
A = 2|μ|E0/ω. For the case of the lowest conductivity of
1.5 mS/m, the mobility |μ| = 4.35 × 10−8 m2/(Vs); zeta-
potential measurements of the tracer particles gives a similar
value with |μ| = ε|ζ |/η = 4.46 × 10−8 m2/(Vs). From the
PIV measurements, the center of the loops was traced, giving
an estimate of the drift angular velocity ωp.

Figure 5(a) shows PIV analysis of the experimental videos
for an applied voltage with a frequency of 17 Hz (ũ = 0.418),
as a function of the distance to the post. Figure 5(b) shows data
for a frequency sweep and an initial separation of r0 = 2R
from the surface of the post. The reduced mobilities in this
case range from ũ = 0.154 to 0.546. It was not possible to
obtain reliable measurements for distances to the surface of
the post for less than 5 μm because it was not possible to trace
the loops with the PIV software.

IV. COMPARISON BETWEEN THEORY
AND EXPERIMENTS

Figure 5 shows experimental data for f = 17 Hz together
with the predictions of the theoretical model for ũ = 0.418,
which corresponds to the expected reduced velocity for that
frequency. There is a clear mismatch between theory and ex-
periment, not only in the magnitude of ωp, but also in the trend
with distance to the cylinder. This indicates there are contri-
butions to the motion of the particles that are omitted. For this
reason, we will now analyze the influence of the following on
the particle trajectories: (i) The difference between the electric
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FIG. 5. PIV measurements determined from the experimental
results. (a) Drift velocity ωp as a function of the radial distance to
the center of the post for an electric field frequency of f = 17 Hz,
i.e., ũ = 0.418 (b) Drift for a fixed distance to the post of r0 = 2R
as a function of the frequency, with reduced mobilities ranging from
ũ = 0.154 ( f = 46 Hz) to ũ = 0.546 ( f = 13 Hz). Solid lines repre-
sent predictions from the HFA approximation given by Eq. (12).

field described so far and the electric field generated by the
four electrodes and (ii) the contribution to particle rotation
from the electro-osmosis generated on the channel walls.

A. Electric field in the device

In order to accurately determine the electric field in the
experimental device, the electric potential was calculated nu-
merically in the 2D domain of Fig. 4(b) with the commercial
software COMSOL Multiphysics. The electric potential is
written as φ(r, t ) = φ0(r, θ ) cos(ωt ), where φ0(r, θ ) is the
solution of the Laplace equation (∇2φ0 = 0) with the follow-
ing boundary conditions: Zero current on the surface of the
post and the channel walls (n · ∇φ0|S = 0), φ0 = 0 on the
upper and lower electrodes, φ0 = 1 on the left electrode and
φ0 = −1 on the right electrode.

Figure 6 shows the value of φ0 along a circumference of
radius r0 = √

2 × 2002/(2R) with its center on the post axis;
this is the largest circumference concentric with the pillar
allowed by the geometry. For comparison, we also show the
electric potential calculated with Eq. (4) at t = 0. The differ-
ence between the maxima of the two curves is around 30%,
which suggests that a more realistic simulation of the particle
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FIG. 6. Electric potential for the ideal rotating field (dashed
green) and the numerical simulation (solid red) for the largest con-
centric circumference allowed by our geometry.

trajectories might require the exact numerical solution of the
electric field in order to calculate the electrophoretic velocity.
Simulations were also performed with COMSOL confirming
that the trajectories of the particles are different for both situ-
ations. For example, Fig. 7 shows the trajectories of particles
at several initial distances from the post for the ideal electric
field [Eq. (5), red circles] and for the numerically calculated
electric field (green circles). The arrows in that figure show
the direction of the net particle motion (i.e., particle drift).
Remarkably, the latter case shows that particles beyond a crit-
ical distance reverse their net motion; this never occurs with
the ideal electric field. This finding motivated us to perform
an analysis of the contributions to the particle motion of the
angular modes of the electric field in the experimental device
(see Appendix A).

Although reversal of particle motion was observed in ex-
periments, the results of the simulations using the numerically
calculated field do not agree with the measured dependence
on radial distance. In particular, the simulations predict the
crossover for the particle direction at a different radial po-
sition, i.e., the radius from the post at which the particle
trajectory changes direction. This implies that there is some
other mechanism missing in the analysis of particle velocity.

B. Electro-osmosis in the channel

Recent publications have shown that the use of Pluronic
drastically reduces the electro-osmotic mobility of the walls
[12,13]. However, the residual electro-osmotic flow induced
on the channel walls might still contribute to the particle
motion. In this section we describe simulations of particle
trajectories including the drag on the particles due to the
electro-osmotic flow in the device.

Prior to the simulation of the trajectories, a numerical
solution to the velocity field in the device is required. For
this purpose, the Stokes equations (∇p = η∇2u and ∇ · u =
0) for the fluid velocity was included in the COMSOL
model. Boundary conditions of electro-osmotic slip velocity
(u = −εζwE/η) on the channel and post walls were used. In
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Ideal Rotation
Numeric Field
Numeric Field + EO

FIG. 7. Representation of the particle drift displacement after a
fixed timespan (ωt̄ = 500) as predicted by the different approaches.
Red: Ideal rotation with drift velocity following Eq. (12). Green: Tra-
jectories determined from the numerically calculated electric field.
Blue: Numerically calculated trajectories given by the numerical
field with the electro-osmotic back pressure. The green concen-
tric circle describes the crossover radius of zero drift velocity in
the simulation with the numeric electric field rC = 4.37. The blue
circumference represents the crossover radius found with the com-
bination of the numeric field and electro-osmotic flow rC = 7.66,
which reproduces the experimental crossover radius (see Supple-
mental Material, movie [14]). These trajectories were computed for
a typical experimental condition σ = 6 mS/m, f = 17 Hz (ũ =
0.418). The top right inset image shows a closer view of the particle
trajectories.

addition, a no flow conditions u = 0 was set on the electrode
boundaries. To compute the electro-osmotic mobility, the zeta
potential was set ζw = −25 mV, as determined from previous
measurements of surfactant-treated PDMS [13].

C. Comparison with experimental results

Figure 7 shows simulations of particle trajectories for the
original description of the ideal rotation (Sec. II) along with
the two major corrections presented above. The trajectory
in red is the ideal condition where rotation is driven by the
field given by Eq. (5) at different initial separation distances.
Plotted in green are the trajectories of particles when using the
numerically calculated field, and in blue the trajectories are
for particles undergoing electrophoresis together with a drag
force from the electro-osmotic flow created by the channel
walls, with the electric field and fluid velocity field numeri-
cally computed.

All particle trajectories are computed for a fixed amount
of time (t = 500) in order to illustrate the dependence of
velocity with initial separation from the post, for three differ-
ent models. Simulations were made for typical experimental
conditions: A conductivity of 6 mS/m, an electric field of
magnitude E0 = 10 kV/m, and frequency of f = 17 Hz, giv-
ing a reduced velocity of ũ = 0.418. The concentric dashed
circumferences represent the radius of zero drift velocity pre-
dicted by the numerical electric field (green circumference),

FIG. 8. Comparison between the experimental results and the
numerically calculated trajectories when including the numerical
electric field and the electroosmotic flow (solid lines). The plots show
the drift velocity as a function of (a) the distance to the post for a
fixed electric field frequency of f = 17 Hz and (b) the frequency
for a fixed distance to the post r0 = 2R. Data is plotted for different
condutivities: 1.5 mS/m (red), 3 mS/m (green) and 6 mS/m (blue).
Data for zeta potential was determined from the experimental results
in [13,15] and the Gouy-Chapman equation when needed for an
extrapolation to different conductivities.

and the crossover radius predicted by a combination of numer-
ical electric field and electro-osmotic flow (blue). Note that
the amplitude of the loops described by the particles resemble
the experimental conditions for the green and blue trajectories,
but only the complete numerical approach (blue) describes the
radial dependence of drift velocity that realistically describes
the change in direction at rNum

C = 7.66. The Supplemental
Material movie [14] shows the change in the drift velocity at
this radial for this distance.

Finally, Fig. 8 shows a comparison between the experimen-
tal drift velocities obtained by PIV measurements of the video
recordings and the results from the numerical simulations
obtained by averaging the angular displacement of particle
trajectories such as those shown in Fig. 7 (blue). Figure 8(a)
shows results for an electric field amplitude E0 = 10 kV/m
and frequency f = 17 Hz, for all experimental conductivi-
ties, as a function of distance to the center of the post. This
shows that the numerically calculated electric field and fluid
flow field ultimately results in a better description of the
dependence of ωp with r. Figure 8(b) shows a frequency
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sweep between 13 Hz and 46 Hz for a fixed initial radius at
r0 = 2R and the same electric field amplitude E0 = 10 kV/m.
The comparison shows that the dependence with frequency is
well predicted by the model.

To summarize for the TWE, the inclusion of the corrections
presented above provide an explanation of both the magnitude
of the observed drift velocity and the trend with frequency and
distance to the pillar.

Thus, our model predicts that this system would allow
fractionation of a sample mixture based on electrical mobility
(zeta potential). Particles starting at a certain position drift
around the post at different rates depending on mobility. The
fact that the effect of electro-osmosis on the particles becomes
dominant far from the post, where the TWE-induced angular
drift velocity vanishes, means that the fractionation capabili-
ties are most apparent in the vicinity of the pillar.

V. CONCLUSIONS

We have demonstrated that the disturbance in a rotating
field caused by the presence of a dielectric cylinder produces a
traveling wave around the obstacle. This phenomenon occurs
because of the presence of the dielectric object in the system,
therefore we term it insulating traveling-wave electrophore-
sis (iTWE), analogous to the phenomenon of insulator-based
dielectrophoresis (iDEP) [16–18].

A simple two-dimensional extension of the published TWE
theory provides a qualitative description of the time-averaged
drift velocity that matches the observed dependence with fre-
quency of applied electric field and the decay with the distance
from the post. A more detailed description of the experimental
geometry that takes into account the electro-osmotic flows
generated in the channels provides a good agreement with the
experimental observations.

Additional effects such as electrothermal flows can be dis-
counted since the frequency-dependent behavior is not the
same, and the light illumination did not influence the exper-
imental observations [19]. Furthermore, the frequencies of
the ac voltages are too low to cause traveling-wave dielec-
trophoresis (twDEP) [20].

The observed phenomenon provides a new way for manip-
ulation of colloidal particles far from the electrodes—a major
problem in the field of microfluidics and electrokinetics, as
discussed in the introduction. An optimized geometry that
exploits these fundamental forces could be used to fractionate
a suspension of particles based on different mobilities.

The data that support the findings of this study are openly
accessible in the University of Southampton repository avail-
able in Ref. [21].
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APPENDIX A: ELECTRIC FIELD ANALYSIS

In order to understand the effect of the experimental elec-
tric field on particle trajectories, an analytical expression for

the electric potential in the neighborhood of the pillars is re-
quired. This was performed based on separation of variables in
polar cylindrical coordinates. First write a general solution for
the potential at time t = 0 that satisfies the boundary condition
on the pillar surface (n · ∇φ|S = 0 at r = 1), while preserving
the vertical and horizontal symmetry axes of the geometry
[see Fig. 4(b)]

φM (r, θ ) =
∞∑

n=0

An

(
r2n+1 + 1

r2n+1

)
cos[(2n + 1)θ ]. (A1)

Note that n = 0 represents the ideal electric potential, the most
relevant contribution.

To obtain the coefficients An, we equate the series ex-
pansion to the numerical solution of the potential at a
certain radius rcomp far from the post. We choose rcomp =√

2 × 2002/(2R). The first two coefficients are found to be
A0 = −0.6452 and A1 = −6.077 × 10−4. With only these
two modes, φM differs from the numerically calculated po-
tential by less than 3%.

We now proceed to write the full time-dependent electrical
potential. The experimental electric field is generated by two
sinusoidal ac signals which are out of phase by 90 degrees and
are applied to two pairs of electrodes rotated by 90 degrees.
That is, the time-dependent potential can be expressed as

φ(r, θ, t ) = φM (r, θ ) cos t + φM (r, θ − π/2) sin t

=
∞∑

n=0

An

(
r2n+1 + 1

r2n+1

)(
cos[(2n + 1)θ ] cos t

+ cos
[
(2n + 1)

(
θ − π

2

)]
sin t

)
. (A2)

Using the identity cos[(2n + 1)(θ − π/2)] = (−1)n

sin[(2n + 1)θ ], the above expression can be rewritten as

φ =
∞∑

n=0

An

(
r2n+1 + 1

r2n+1

)
cos[(2n + 1)θ − (−1)nt].

(A3)

This shows that the potential is the superposition of modes
rotating alternately clockwise or anticlockwise depending on
whether n is odd or even, respectively. This is the origin of the
reversal in the drift velocity with radius shown in Fig. 7 when
the rotation is calculated from the numerical field.

Using the HFA method, we now arrive at an analytical
expression for the particle drift angular velocity ωp:

ωp =
∑

n(−1)n(2n + 1)Gn

2/ũ2 − ∑
n(2n + 1)2Gn

, (A4)

where Gn are radial functions for each mode. This expression
and the first modes are derived in Appendix B. Interestingly,
the expression predicts a change of sign in drift angular ve-
locity as a function of r. Using just the first two modes of the
potential n = 0, 1 in Eq. (A4) and with G0 and G1 shown in
Eqs. (B11) and (B12), respectively, the crossover radius rC of
zero drift velocity is given by

rC ≈
(

A0

3A1

)1/4

≈ 4.37. (A5)
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APPENDIX B: HFA APPROXIMATION
FOR THE COMPLETE ELECTRICAL PROBLEM

We write the expression Eq. (A3) as

φ(r, θ, t ) =
∞∑

n=0

Fn(r) cos[knθ − (−1)nt]. (B1)

The equations for particle motion become

dr

dt
= −ũ

∞∑
n=0

fn(r) cos[knθ − (−1)nt], (B2)

dθ

dt
= ũ

∞∑
n=0

kn
Fn(r)

r2
sin[knθ − (−1)nt], (B3)

where we define fn(r) = F ′
n (r). As in Eq. (6), Sec. II, we

write r and θ as the sum of time-averaged and oscillating
components, leading to

dr′

dt
= −ũ

∞∑
n=0

fn(r′ + r0) cos(knθ
′ − 
nt ),

ωp + dθ ′

dt
= ũ

∞∑
n=0

kn
Fn(r′ + r0)

(r′ + r0)2
sin(knθ

′ − 
nt ),

where we define 
n = (−1)n − knωp. Suppose now that
r′, θ ′ � 1, meaning that to first order we can write

dr′

dt
= − ũ

∞∑
n=0

[ fn(r0) cos(
nt ) + f ′
n(r0) cos(
nt )r′

+ kn fn(r0) sin(
nt )θ ′ + ...], (B4)

ωp + dθ ′

dt
= ũ

∞∑
n=0

kn

[
−Fn(r0)

r2
0

sin(
nt )

−
(

fn(r0)

r2
0

− 2Fn(r0)

r3
0

)
sin(
nt )r′

+ kn
Fn(r0)

r2
0

cos(
nt )θ ′ + ...

]
. (B5)

It can be observed from the above equations that the oscillat-
ing functions not only have the frequency modes {
n}, n ∈
{0,N} but also cross terms with frequencies {|
i ± 
 j |}, i �=
j ∈ {0,N}. However, as we are only interested in the time-
averaged part of Eq. (B5), then only the first terms (and not
all of them) in Eq. (B4) and the oscillating part of Eq. (B5)
survive:

dr′

dt
= −ũ

∞∑
n=0

fn(r0) cos(
nt ), (B6)

dθ ′

dt
= −ũ

∞∑
n=0

kn
Fn(r0)

r2
0

sin(
nt ). (B7)

These can be readily integrated and substituted into Eq. (B5).
Taking the time average yields terms of the form

〈sin(
nt ) sin(
mt )〉 = δn,m

2
, 〈cos(
nt ) cos(
l t )〉 = δn,l

2
,

1 r
C

=4.37 10
10

-8

10
-6

10
-4

10
-2

10
0

HFA First Mode

HFA Second Mode

HFA First Two Modes

Numeric First Mode

Numeric Second Mode

Numeric First Two Modes

r0

|ω
p
|

rC = 4.37

FIG. 9. Comparison between the HFA approximation results and
direct numerical simulations of particle trajectories. Drift velocities
corresponding to the first and second modes are shown in green
and blue, respectively. The combination of the first two modes is
represented in red, where the reversal in velocity can be observed
at rC . A0 = −0.6452, A1 = −6.077 × 10−4, ũ = 0.5.

where δi, j is the Kronecker delta, whose value is 1 if i = j and
0 otherwise. We can finally write

ωp = ũ2

2R2

∞∑
n=0

kn


n

×
[

f 2
n (r0) − 2

r0
Fn(r0) fn(r0) + k2

n

r2
0

F 2
n (r0)

]
. (B8)

Defining the generatrix function

Gj = G{Fj (r0)}

= 1

r2
0

[
f 2

j (r0) − 2

r0
Fj (r0) f j (r0) + k2

j

r2
0

F 2
j (r0)

]
(B9)

and noting that 
n = (−1)n − knωp, we can express the drift
velocity in the limit ωp � 1 as

ωp =
∑

n(−1)nknGn

2/ũ2 − ∑
n k2

nGn
, (B10)

which is the equation presented in Eq. (A4).
For the first two modes we have

F0(r) = A0

(
r + 1

r

)
, F1(r) = A1

(
r3 + 1

r3

)
,

together with k0 = 1 and k1 = 3, so that

G{F0(r0)} = 4A2
0

r6
0

, (B11)

G{F1(r0)} = 12A2
1

[
2

r10
0

+ r2
0

]
. (B12)

To test the validity of the average drift velocity obtained
from the HFA approximation, Fig. 9 compares the resulting
ωp with the numerical simulations for the same electric field,
using the first two modes. The absolute value is used to allow
comparison with the second mode.
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