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Oscillatory neural networks (ONNs) exhibit a high potential for energy-efficient 
computing. In ONNs, neurons are implemented with oscillators and synapses 
with resistive and/or capacitive coupling between pairs of oscillators. Computing 
is carried out on the basis of the rich, complex, non-linear synchronization 
dynamics of a system of coupled oscillators. The exploited synchronization 
phenomena in ONNs are an example of fully parallel collective computing. A fast 
system’s convergence to stable states, which correspond to the desired processed 
information, enables an energy-efficient solution if small area and low-power 
oscillators are used, specifically when they are built on the basis of the hysteresis 
exhibited by phase-transition materials such as VO2. In recent years, there have 
been numerous studies on ONNs using VO2. Most of them report simulation 
results. Although in some cases experimental results are also shown, they do 
not implement the design techniques that other works on electrical simulations 
report that allow to improve the behavior of the ONNs. Experimental validation 
of these approaches is necessary. Therefore, in this study, we describe an ONN 
realized in a commercial CMOS technology in which the oscillators are built using 
a circuit that we have developed to emulate the VO2 device. The purpose is to 
be able to study in-depth the synchronization dynamics of relaxation oscillators 
similar to those that can be performed with VO2 devices. The fabricated circuit is 
very flexible. It allows programming the synapses to implement different ONNs, 
calibrating the frequency of the oscillators, or controlling their initialization. It uses 
differential oscillators and resistive synapses, equivalent to the use of memristors. 
In this article, the designed and fabricated circuits are described in detail, and 
experimental results are shown. Specifically, its satisfactory operation as an 
associative memory is demonstrated. The experiments carried out allow us to 
conclude that the ONN must be operated according to the type of computational 
task to be solved, and guidelines are extracted in this regard.
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1 Introduction

Current society demands more and more applications that require applying computationally 
hard and data-intensive algorithms, for example, neural networks. These are generally run on 
devices such as CPUs or GPUs, which offer great computing power but also require high energy 
consumption for their operation, which limits their use in edge computing. An alternative to 
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the use of CPUs or GPUs is their implementation in hardware. 
Currently, the development of these custom-specific hardware 
platforms is an area of high interest. It comprises many approaches, 
including digital and analog implementations. In the latter, the use of 
unconventional computing devices and paradigms is very promising. 
In this line of oscillatory neural networks (ONNs), the connection of 
a multitude of oscillator circuits by means of electrical coupling 
elements creates an intelligent collective system called oscillatory 
neural networks (ONNs) (Hoppensteadt and Izhikevich, 1999, 2000; 
Follmann et al., 2015; Sharma et al., 2015; Raychowdhury et al., 2019), 
with a high potential for energy-efficient computing. In ONNs, 
neurons are implemented with oscillators and synapses with resistive 
and/or capacitive coupling between pairs of oscillators. Computing is 
carried out on the basis of the rich, complex, non-linear 
synchronization dynamics of a system of coupled oscillators. When 
the oscillators synchronize in frequency, they tend to adopt a phase 
relationship that minimizes energy. The most commonly used ONN 
encodes information about the relationship between oscillator phases. 
Depending on the type of coupling, the phases of two interconnected 
oscillators tend to get closer (to be in phase) or to separate (to be out 
of phase or anti-phase). The energy landscape of the system is 
determined by the coupling configuration. Thus, the idea behind 
computing with ONNs is to map the solutions of the target task into 
their minimal energy states. The exploited synchronization 
phenomena are an example of what is called collective computing and 
are fully parallel. Convergence to the stable system state is fast, which 
paves the way for energy efficiency associated with low computation 
times. It has been proposed to be used as associative memory (AM) 
by configuring the couplings such that the patterns to be  stored 
(training patterns) are minimal energy states of the system (Nikonov 
et al., 2015). ONNs are also useful for solving optimization problems 
by formulating them as an Ising model (Lucas, 2014) and mapping 
them to an ONN (Dutta et al., 2021). The Ising model problem is 
solved by the natural evolution of the ONN state to states associated 
with minimum values in its energy function (Hamiltonian). The 
relationship between ONNs and Hopfield neural networks (HNNs) 
(Hopfield, 1982) is evident at this point.

ONN implementations with different types of oscillators have 
been reported (phase-locked loops and voltage-controlled oscillators 
(Hoppensteadt and Izhikevich, 2000), non-volatile logic based on 
magnetic tunnel junctions (Calayir and Pileggi, 2013), micro-electro-
mechanical systems and a feedback loop with transconductance 
amplifiers (Kumar and Mohanty, 2017), comparator and a digital 
circuit in Jackson et al. (2018), CMOS ring oscillators (Csaba et al., 
2016; Ahmed et al., 2021; Moy et al., 2022), STOs (Popescu et al., 
2018), or VO2 (Corti et al., 2018), (Dutta et al., 2019, 2021; Corti et al., 
2020; Núñez et al., 2021).

Structurally, the ONN resembles an artificial network based on 
the Hopfield model, HNN, which has been studied in-depth with 
regard to AM and pattern recognition tasks. The HNN has a simple 
conceptual model comprising a single, recurrent, fully connected layer 
of neurons with synaptic weights. Typically, the HNN model considers 
bipolar-state neurons. The state of each neuron is represented by Si 
and it takes values in {−1, +1}. State updates as:
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with Wij the weight of the synapse connecting neuron i and 
neuron j, Wij = Wji, and Wii = 0. The HNN gradually transitions from 
an initial input state until a fixed point is reached. Fixed (stable or 
attractors) states are determined by the synaptic weights. In 
AM applications, the weight values are assigned (trained) in such a 
way that the patterns to be stored are fixed as attractor states. When 
an input pattern is applied, it evolves toward the closest stored pattern. 
In other words, when a distorted version of a training pattern is 
applied to the HNN, the original one is retrieved (inference).

Of course, energy-efficient oscillators are also necessary to achieve 
the target goal of energy-efficient computation. In this sense, 
oscillatory-based computing is not new. There were early contributions 
from pioneers such as Von Neumann (1957) and Goto (1959) in the 
1950s. However, recent advances in technology have made it a popular 
and active research area. This is due to the emergence of phase-
transition devices that can implement highly efficient and compact 
oscillators with minimal energy consumption based on various 
physical phenomena. VO2 devices, in particular, stand out for their 
hysteresis in the characteristic I–V curve, which enables compact 
low-power relaxation oscillators (Csaba and Porod, 2020).

VO2 material undergoes metal–insulator transitions under given 
electrical stimuli. That is, abrupt switching occurs from/to a high 
resistivity state (insulating phase) to/from a low resistivity state 
(metallic phase). Without electrical stimuli, it tends to stabilize in the 
insulating phase. When the applied voltage increases and the current 
density flowing through it reaches a given amount, an insulator-to-
metal transition (IMT) occurs. Once in the metallic state, when the 
voltage decreases and the current density drops below a second given 
value, a metal-to-insulator transition (MIT) takes place. Figure 1A 
shows the I–V characteristic of a generic VO2. A compact oscillator 
has been proposed on its basis (Figure 1B; Maffezzoni et al., 2015; 
Parihar et al., 2015). Figure 1C depicts waveforms for the oscillator 
output. The state of the VO2 is also shown to better illustrate the circuit 

A

C

B

FIGURE 1

(A) I–V characteristic of the VO2 device. (B) VO2-based oscillator. 
(C) Output waveform of the oscillator including the state of the VO2 
device.
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behavior. VO2,STATE = ‘INS’ means the device is in the insulating state. 
VO2,STATE =  ‘MET’ corresponds to the device in the metallic state. 
Assuming that the VO2 is in an insulating state (marked with “A” in 
Figure 1C), the oscillator output is discharged through the resistor. 
This increases the voltage drop across the VO2 (VDD – VOUT) and so 
does the current through it. Once enough current density circulates, 
it switches to the metallic state (marked with “B” in Figure  1C). 
Equivalently, using the electrical model, switching to the metallic state 
occurs once the VO2 voltage reaches VIMT. The capacitor is then 
charged through the VO2. This charging is very fast because of the low 
RMET value. The voltage seen by the VO2 decreases until it reaches VMIT 
and the transition from metal-to-insulator state occurs. These nano-
oscillators are attractive for their area and potential energy efficiency.

Figure 2 shows an ONN design using VO2-based nano-oscillators 
as neurons and resistive couplings as synapses (Corti et  al., 2018, 
2020). In this work it is shown that two resistively-coupled oscillators 
synchronize in phase when coupling strength is high enough 
(resistance value low enough) and in anti-phase for large enough 
resistance values. That is, they proposed to use resistive coupling for 
both positive and negative weights. However, it is not easy to select 
suitable resistance values in actual applications. In fact, capacitively 
coupling is the easiest way to achieve anti-phase synchronization. 
Both types of coupling can be implemented using only resistance or 
capacitances with differential oscillators. A differential VO2 oscillator 
has been proposed (Shamsi et al., 2021). It resorts to coupling two 
oscillators capacitively to force both outputs to be out of phase (180° 
apart). It allows for implementing both types of interactions using 
only capacitive or resistive coupling. This is very attractive from the 
point of view of implementing the coupling elements with memristor 
or ferroelectronic devices in crossbar architectures. On the basis of 
this oscillator, an ONN working as AM was shown by simulation 
(Shamsi et al., 2021).

In recent years, there have been numerous studies on ONNs using 
VO2. Most of them report simulation results. Although in some cases 
experimental results are also shown (Shukla et al., 2016; Corti et al., 
2018, 2020; Dutta et al., 2019), they are not implementing the design 
techniques that other works on electrical simulations report that allow 
to improve the behavior of the ONNs (Shamsi et al., 2021). Therefore, 

experimental validation of these approximations is necessary. In this 
study, we  describe an ONN realized in a commercial CMOS 
technology in which the oscillators are built using a circuit that 
we  have developed to emulate the VO2 device. The purpose is to 
be able to study in-depth the synchronization dynamics of relaxation 
oscillators similar to those that can be performed with VO2 devices. 
The ONN has been designed to emulate not only VO2 devices but also 
fundamental characteristics of ONNs with this type of device, such as 
the fact that the interconnections between neurons are bidirectional. 
The fabricated circuit is very flexible since it allows programming the 
synapses to implement different ONNs, calibrating the frequency of 
the oscillators, or controlling their initialization. It uses differential 
oscillators and resistive synapses, equivalent to the use of memristors.

There are other two additional topics that must be introduced 
before proceeding with the CMOS ONN description.

The first one is the technique used to discretize the phase of the 
oscillators such that only two values are possible, and so the binary 
neurons of the reference HNN previously explained are reproduced. 
This can be achieved by Second Harmonic Injection Locking (SHIL) 
(Neogy and Roychowdhury, 2012). When a suitable synchronization 
signal, VSYNC, is injected into a non-linear oscillator, SHIL occurs, and 
the oscillator adopts a frequency half the frequency of VSYNC (fSYNC) and 
becomes phase-synchronized within one of the two possible phases 
that are 180° apart. For this to occur, the natural frequency of the 
oscillator must be close to fSYNC/2. SHIL is also extremely useful to 
stabilize the oscillator frequency against variability effects, easing the 
oscillators to synchronize in frequency, which is required for proper 
operation of the ONN.

Finally, the AM operation requires the application of an input 
pattern to the ONN. This is equivalent to forcing a given ONN state 
(a given phase pattern). In Corti et al. (2018), a method for this is 
presented. The authors proposed forcing a given initial state by 
selectively delaying the supply voltage of each neuron. For example, 
assuming that only binary patterns are applied, such as black and 
white pixel images, the initial state of the network has only two 
different phases, 180° apart. Those oscillators corresponding to black 
pixels are in one phase, and those corresponding to white ones are in 
the other phase. To achieve this, the black oscillators are switched on 

FIGURE 2

ONN design.
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at T0 and the white ones at T0 + TOSC/2, where TOSC is the period of 
the oscillations.

The rest of the study is organized as follows. Section “Materials 
and Methods” describes in detail the designed and fabricated 
integrated circuit, along with the experimental setup prepared for 
testing it. Section 3 presents the experimental measurements and 
characterization of the circuit. Specifically, the ONN operation as an 
associative memory is demonstrated satisfactorily. The experiments 
carried out allow us to conclude that the ONN must be operated 
according to the type of computational task to be  solved, and 
guidelines are extracted in this regard. Finally, section 4 summarizes 
the conclusions.

2 Materials and methods

2.1 Description of the fabricated CMOS 
differential ONN

An integrated circuit demonstrator of an analog 9-neuron ONN 
using a deep-submicron commercial CMOS technology (TSMC 
65 nm – 1.2 V) has been designed, fabricated, and tested. The 
differential oscillators forming the neurons closely resemble those 
developed using VO2 devices and previously introduced. Oscillator 
frequencies can be calibrated. Couplings or synapses are implemented 
with a four-terminal six-transistor circuit, which conductive 
characteristics are determined by two voltages, allowing the 
implementation of positive and negative weights. The ONN is fully 
connected and programmable. For flexibility, it can operate both with 
and without SHIL. Operation of the fully differential ONN described 
in this section was extensively validated at post-layout level simulation.

Figure 3 shows the layout of the fabricated circuit, showing the 
three types of circuits included (3×3 ONN, simple circuits, and 
differential oscillators with analog outputs) and their connections to 

the pad ring. The 3×3 ONN occupies a rectangle of 776 μm∙747 μm 
with some empty area inside, and the complete chip area, including 
pad ring, is 1710 μm∙1710 μm.

2.1.1 Differential oscillator
Each neuron consists of a differential relaxation oscillator that is 

formed by two single-ended oscillators whose outputs (VOUT1 and 
VOUT2) are coupled by a capacitance (CC). In turn, each of the single-
ended oscillators consists of a couple of resistors (R1 and R2), a P 
transistor, a capacitance (C), and a CMOS circuit that emulates the 
voltage–current characteristic of a VO2, as shown in Figure 4A. The 
emulator (Figure  4B) has been designed using a Schmitt-Trigger 
inverter whose output is connected to a CMOS inverter that controls 
the gate voltage of an NMOS transistor (N2). Its drain and source 
terminals are the two terminals of the emulator. The input of the 
Schmitt-Trigger inverter is connected to the output of the oscillator. 
Unlike the conventional Schmitt-Trigger oscillator (Hodges and 
Jackson, 1983), in the proposed design, the output of the Schmitt-
Trigger inverter is decoupled from the rest of the circuit, allowing its 
integration in complex oscillatory neural networks without penalty 
in energy efficiency by not having to increase its sizing. It also avoids 
using the floating resistor that appears in the conventional Schmitt-
Trigger, whose implementation usually includes a switched 
capacitance and a switch. Additionally, the circuit includes the 
control functionality of the switching voltages VIMT and VMIT, with the 
voltage VN on the gate of transistor N3, providing the proposed 
solution with greater flexibility as it allows to make programmable 
both the frequency and the amplitude of the resulting oscillator.

A step supply voltage is included for each single-ended oscillator 
(VDD,OSC1 and VDD,OSC2), through which the initial phase shift of the 
oscillator is controlled and, therefore, serves to establish the initial 
state of each neuron. Additionally, there are two inputs (VCTRL1 and 
VCTRL2), whose aim is to help with the frequency synchronization of 
the different oscillators in case it is compromised by the inherent 

Basic circuits

3x3 ONN

Differential oscillator
with analog outputs

 
FIGURE 3

Layout of the fabricated circuit.
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variability of the process and mismatch. Each oscillator can 
be connected to any of the six available calibration voltages by means 
of programmable switches controlled by programming registers. This 
scheme is illustrated in Figure 5.

As previously mentioned, a general method to improve the 
stability and synchronization of oscillatory neural networks is using 
SHIL. In this circuit, SHIL is injected through PMOS transistors, 
which are turned on and off through the input signal VSHIL.

2.1.2 Synapse
As an analogy of the Wheatstone bridge, Figure 6A shows the 

schematic of the synaptic circuit, which is capable of providing 
positive, negative, and zero weights. Being a four-terminal circuit 
makes it appropriate for differential structures. Depending on the gate 
voltages, it is possible to have positive (VP > VN), negative (VN > VP), or 
zero weight (VP=VN). The two PMOS transistors are used for 
controlling the current between the neurons. Transistors between the 
positive branches can transfer current when (VP-V1

+) < VTH because 
VP is applied to their gate. In addition, transistors between the negative 
branches can transfer current when (VN-V2

+) < VTH because VN is 

applied to their gate. Therefore, the current between the neurons is 
controlled using these PMOS transistors. Figure  6B depicts the 
topology of the fabricated differential ONN.

A training rule is used to store patterns in neural networks, 
adjusting the synaptic weights accordingly. Once the weights are 
known, we propose a mapping rule to obtain the physical resistances 
for the memristor-bridge synapses. To store patterns in the ONN, 
we use the Hebbian rule to calculate the weights:

 
W

L
b b i j Lij

k

P
i
k
j
k= ∈ …{ }

=
∑1 1 2 3

1

, , , , ,

 
(2)

where P is the number of stored patterns and L is the number of 
pixels in each pattern (which is equal to the number of neurons in the 
ONN). Elements bi and bj of all stored patterns are used to calculate 
the weight Wij.

We propose here the following rules to map the sign and value of 
the above weights to the controlling voltages VP and VP. Weights Wij 
are mapped to the VP and VP values using the following relation:

A B

FIGURE 4

(A) Schematic of a differential oscillator. (B) Schematic of the circuit that emulates the behavior of the VO2 device.

 

 
FIGURE 5

Schematic of oscillator calibration voltage selection based on series/parallel loading of the control word.
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where α >1 is a constant value. The design parameters of the 
synaptic circuit are Wij, α, and V0. Parameters α and V0 will be obtained 
based on correctly functioning hardware.

Each synapse control voltage can be connected selectively to different 
voltages using programmable switches controlled by programming 
registers, similar to the oscillator calibration shown in Figure 5.

2.2 ASIC description

The ASIC consists of the following blocks:

 - ONN of nine differential oscillators is fully interconnected with 
each other through 36 synapses. The ONN includes a control 
system from which the voltages defining the synapse weights can 
be selected, as well as an oscillator calibration mechanism to 
improve network synchronization. The oscillator outputs are 
connected to digital pads through Schmitt-Trigger buffers with 
configurable hysteresis to regenerate rail-to-rail signal swings and 
to cope with the waveform shape of relaxation oscillators.

 - Basic circuits. Specifically, a single-ended oscillator, a differential 
oscillator, and two differential oscillators connected through a 
synapse similar to the one used in the ONN have been included. 
In all of them, the output is digital, as in the ONN. In addition, a 
differential oscillator has been included whose outputs are 
connected directly to analog pads in order to be able to observe 
the waveforms without digitizing.

2.2.1 Description of key signals/pads
The signals involved in the circuit are divided into the 

following categories:

 - Oscillator supply voltages: Since differential oscillators are being 
used and there are nine oscillators in the ONN, 18 signals are 
required. These signals are generated externally and applied to 
digital pads that generate step signals between 0 V and 

1.2 V. Controlling the relative timing on the initial phase selection 
step is essential: a delay between both signals corresponding to 
half a period involves applying input stimuli with opposite phases.

 - Control system signals: Includes the clock signal, the signal that 
codifies the information to be  loaded into the calibration/
programming voltage selection registers, and the signal that 
indicates that the information has been loaded into the serial 
registers and serial-to-parallel conversion can be done.

 - Oscillator calibration signals: These six signals can take values 
between 0 V and 1.2 V and allow the oscillator frequency to 
be tuned.

 - Synapse programming signals: These 12 signals are used to set 
the weights for the synapses. They take values between 0 V 
and 1.2 V.

 - Output stage configuration signals: These signals are used to set 
the thresholds of the ONN output Schmitt-Trigger buffer.

 - Synchronization signal: It is a digital signal that ranges between 
0 V and 1.2 V, with a frequency double that of the ONN’s 
oscillators, used to enable the SHIL mechanism.

2.2.2 Control logic for calibration and 
programming

Each oscillator and each synapse have twice as many flip-flops as 
switches to be controlled. That is, 12 for each oscillator (see Figure 5) 
and 12 for each synapse. Half of them are configured in a single shift 
register, generating, therefore, a connection of 12∙9 + 12∙36 = 540 
memory elements. These registers are controlled by the clock signal. 
A control word is serially loaded in the shift register. It contains the 
calibrating and programming bits indicating which switches are 
closed and which are not. Obviously, for each oscillator or synapse, 
only one of its switches should be closed. Once the control word is 
fully loaded, a signal that indicates that the data are ready to be loaded 
is activated, and the information contained in the shift registers is 
loaded in parallel to the flip-flops directly controlling the switches.

2.3 Test board and experimental setup

The experimental verification of the ASIC has been performed 
using a custom-designed test PCB for this purpose. The block diagram 
of the setup and test equipment is shown in Figure 7A, together with 

A B

FIGURE 6

(A) Schematic of the synapsis. (B) Differential ONN implementation from Shamsi et al. (2021).
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a photograph of the test PCB and its wiring in Figure 7B. The FPGA is 
used for programming the ONN (providing the bitstream that 
configures the assignment of synapses and calibration voltages) and for 
controlling the time-delayed power-on of the differential oscillators. A 
discrete micro-switch on-board allows to configure the initial state of 
the system, on which basis input patterns are applied to the ONN.

The main features of the PCB are summarized hereafter. First, the 
initialization of the differential oscillators is performed using two 
digital signals (common for each of them), which abruptly commute 
from low to high level with a delay equivalent to half an oscillator 
period. These signals are applied as the supply voltages of the 
differential oscillators. The order in which they are applied is given by 
the position of the micro-switch associated with each oscillator 
(labeled in Figure  7B as ‘Initial State Switches’). These signals are 
generated and switched off by the custom digital design in the FPGA, 
commanded by START and RESET signals sent by the Digital 
Discovery instrument. A commercial software application linked to 
the instrument allows the PC user to trigger these signals.

In addition, the synchronization signal for SHIL is provided using 
the Tektronix AFG3102 function generator, whose output is connected 
to the SMA connector on the PCB, which has access to an ASIC’s 
digital pad. Typically, the waveform used for the synchronization 
signal is a square signal with a voltage range between 0 V and 3.3 V. It 
is controlled by a trigger signal generated from the FPGA, allowing 
for the control of the time scheduling of both the start of the 
synchronization signal and the initialization of the oscillators.

The generation of the calibration and programming voltages is 
carried out on-board with a simple circuit consisting of an operational 
amplifier, a potentiometer, resistors, and capacitors. Each of the 12 
programming and the six calibration voltages has one instance of this 
circuit dedicated, with an individual potentiometer, as can be seen in 
the ‘Calibration’ and ‘Synapses’ boxes in Figure 7B.

Finally, regarding output observation, digital ones are monitored 
using oscilloscope probes or the logic analyzer included in the Digilent 
Digital Discovery instrument. Furthermore, the FPGA I/O pins are 
compatible with reading it directly. Analog outputs can be observed using 
oscilloscope probes. A Keysight DSOX4104A oscilloscope has been used.

3 Results

3.1 Exploring the dynamics

The first aim of the ASIC was to be able to explore the dynamics 
of coupled oscillator systems. Thus, before describing its application 
to solve computation tasks, we  report on the results of a set of 
experiments carried out to analyze the behavior of neurons, synapses, 
and the SHIL mechanism.

3.1.1 Oscillator performance
Although the ONN system has only digital outputs, simple analog 

oscillators were also included in the chip and connected to analog 
pads in order to be able to observe their behavior. Figure 8 depicts the 
experimental waveforms for an analog differential oscillator identical 
to the ones in the ONN. As expected, both outputs are 180° apart. The 
output average voltage ranges from 379 mV to 763 mV. Note that the 
small oscillation amplitude justifies the carefully designed Schmitt-
Trigger-based output stage included for digitalization.

Figure 9 depicts the two outputs of one of the oscillators after 
digitalization and applying two calibration voltages. Figure 9A is 
for 1.2 V, where it can be observed that the outputs are out of 
phase, showing correct operation. The waveforms in Figure 9B 
correspond to the same experiment for a calibration voltage of 
0.9 V. Note the frequency differences: by reducing the voltage 
applied to the calibration input, the frequency increases. The 
measured frequencies are 5.9 MHz and 7.18 MHz, respectively. 
The nine ONN oscillators have been characterized with a 
calibration voltage of 1.2 V. The average frequency obtained 
ranges between 5.5 MHz and 5.9 MHz, with a relative standard 
deviation between 25 m and 8 m. By varying the calibration 
voltage, it is possible to individually tune the frequencies of each 
oscillator between 6.02 MHz and 6.12 MHz, leading to a 
frequency difference reduction of a factor of 4.

Figure 10 depicts the obtained waveforms for the positive output 
of oscillator 1 with 1.2 V in the calibration voltages for different 
configurations of the output buffer stage. It can be observed that the 

A B

FIGURE 7

(A) Block diagram and (B) photograph of the test setup.
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duty cycle of the digital oscillator changes. In Figure 10C, control 
voltages have been selected so that an undesired glitch is observed.

All these experiments have been carried out with deactivated 
SHIL. This is achieved by applying a constant of 3.3 V to the SHIL 
signal PAD.

3.1.2 Second harmonic injection locking 
performance

A common SHIL signal, externally provided, enables the 
synchrony between the oscillators when the SHIL frequency is found 
in a determined range related to the natural oscillator frequency. To 
illustrate the impact of applying SHIL, the average frequency and the 
deviation with and without SHIL were measured. With SHIL at 
13.9 MHz, the average frequency increases to 6.95 MHz, and the 
relative deviation reduces to 4 m. Note that the oscillator synchronizes 

to half the SHIL signal as expected, and the SHIL signal helps to 
reduce the impact of oscillator jitter on frequency variation.

It is well-known that SHIL discretizes the oscillator phase so that 
only two phases can occur. These two phases are ideally 180° apart. 
This is shown in Figure 11. The output of two uncoupled oscillators is 
depicted with and without SHIL. Figures 11A,B corresponds to the 
case with SHIL. Since each oscillator can be in one of the two phases, 
they can both be either in-phase or anti-phase. We have been able to 
capture the two behaviors by slightly modifying the SHIL frequency. 
Note that the frequencies of the signals in Figures 11A,B are very close 
(6.769 MHz and 6.778 MHz), indicating that the modification of the 
SHIL signal has been minimal and yet able to introduce noise that 
leads to an oscillator being able to jump from one phase to the other. 
In no case has a situation been observed where the two oscillators have 
a phase difference other than 0° or 180°. By deactivating SHIL, any 
phase difference is possible (Figure  11C). Note that in these 
experiments, the two oscillators were individually calibrated to 
equalize their frequencies.

3.1.3 Synapse performance
As it was described, the implemented synapse can 

be programmed to enable both a positive and a negative coupling 
between a pair of oscillators. Positive (negative) coupling forces the 
two oscillators to be in phase (out of phase). Figure 12 shows the 
two cases. In Figure 12A, the synapse connecting the two oscillators 
was programmed with VP = 0 V and VN = 0.95 V. Figure  12B 
corresponds to VP = 0.95 V and VN = 0 V. The depicted waveforms 
have been obtained with SHIL activated. In this condition, the range 
of synapse voltages for which coupling is achieved is wide (from 
0.25 V to 1.2 V). However, when there was no SHIL, this range was 
significantly reduced. The minimum required voltage increases to 
0.95 V. Additionally, the range of valid SHIL frequencies is reduced 
with the synapse voltage. That is, both SHIL and coupling strength 
contribute to the operation of coupled oscillator systems.

To finish this first section on experimental results, we describe the 
behavior of three coupled oscillators with all-to-all connectivity. That is, 

 
FIGURE 8

Experimental waveforms for a differential oscillator with analog 
outputs.

A B

FIGURE 9

Experimental waveforms corresponding to the outputs of one of the oscillators after digitalization applying two calibration voltages: (A) 1.2  V and 
(B) 0.9  V.
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each of the three differential oscillators is coupled, as depicted in 
Figure 13A. The type of coupling is negative, and so the phases of each 
pair of oscillators are forced to separate from each other. We have just 
shown that a pair of negative-coupled oscillators evolved toward the 
anti-phase relationship. Clearly, when there are three connected 
oscillators, as in Figure 13A, it is not possible to satisfy that relationship 
for every pair of oscillators. It is not possible that O1 is in anti-phase 
with O2 and with O3, and, at the same time, O2 and O3 are also in anti-
phase. It is interesting to check that our system behaves as expected. 
This expected behavior is completely different whether SHIL is applied 
or not. Assuming identical coupling, when no SHIL is applied, the three 
phases tend to be equally distributed (ideally to be 120° apart from each 
other). This is the state of the network that minimizes energy. With 
SHIL, since the phases are binarized, such a phase pattern is not allowed. 
The system tends to satisfy as many anti-phase relationships as possible. 
In this case, two out of the three can be satisfied.

The waveforms we  experimentally obtained are depicted in 
Figure 13B when no SHIL was applied and in Figure 13C when SHIL 
was applied. The three synapses were programmed identically with 
VP = 0 V and VN = 0.8 V. It can be observed that the expected behavior 
is obtained. Note that without SHIL, the three oscillators are not 
exactly 120° apart in phase. This can be due to variability in synapses, 
so that although the applied voltages are identical, the coupling 
strength can be slightly different.

It is interesting to point out that in these examples, we are in fact 
using physics to solve well-known computation problems. Without 
SHIL, the system solves the graph coloring problem (Wu et al., 2011; 
Parihar et al., 2017) associated with the triangle in Figure 13A. Different 

phases mean different colors for the nodes associated with the 
oscillators. With SHIL, the system obtains the Max-Cut of the 
corresponding graph. Nodes are split into two sets such that the 
number of edges between both groups is the maximum. A cut value 
of 2 was obtained in this case. Max-Cut is just one example of a 
problem that can be solved by coupled oscillator systems. A great 
interest has recently aroused in implementing oscillator-based Ising 
Machines (OIMs). OIMs efficiently solve Ising models, and there are 
procedures to map many hard-combinational problems into Ising 
models (Lucas, 2014).

3.2 ONN as associative memory

As it was described in the introductory section, an ONN can 
be used as an AM useful for pattern recognition applications. Unlike 
the graph coloring or Ising solver functionalities of the ONN 
described in the previous sub-section, the AM operation required 
applying an input pattern to the ONN. Thus, the initial phase pattern 
in the oscillators needs to be controlled in order to represent the 
input information. Corti et al. (2018) proposed to do it by controlling 
the timing of the power-on of each oscillator. Different works have 
shown that AM  functionality can be  achieved with this method 
(Núñez et al., 2021; Shamsi et al., 2021). In order to be able to use 
this initialization mechanism, the supply voltage of each oscillator 
can be  independently controlled in our design, as previously 
described. Thus, we can test the operation of the fabricated ONN 
as an AM.

 

A

C

B

FIGURE 10

Impact of the configuration of the output buffer stage on the duty cycle of the output voltage. (A, B) show how the duty cycle of the output voltage 
varies when the output buffer configuration is modified. (C) shows that an undesired glitch may appear if the setting is not correct.
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Figure 14A depicts the two selected patterns to be stored, and 
Figure 14B shows the distorted test patterns applied to validate 
the AM operation. Note: We used binary patterns representing a 
black and white 3×3 image to approximate the pattern 
recognition application.

The required coupling type (positive or negative) and strength 
were determined for each synapse from the weight matrix obtained 
with Hebb’s rule, and so the ONN was programmed accordingly. 
There were three different coupling values (one positive, one negative, 
and one null for uncoupling). Therefore, only two different voltages 

A

C

B

FIGURE 11

Output of two uncoupled oscillators is depicted with and without SHIL. (A) and (B) with SHIL and (C) without SHIL.

A B

FIGURE 12

Two coupled oscillators in which the synapse is programmed with (A) negative coupling: VP  =  0  V and VN  =  0.95  V and (B) positive coupling: VP  =  0.95  V 
and VN  =  0  V.
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were required for biasing the synaptic circuit. Positive (negative) 
couplings were coded with VP = 0.85 V and VN = 0 V (VP = 0 V and 
VN = 0.85 V) and uncoupled with VP=VN = 0 V. A SHIL signal of 
14.3 MHz was injected.

Table 1 reports the obtained results for the two stored patterns (P1 
and P2) and the 10 test patterns (T1–T10) that had been used during 
design for post-layout validation. For each, we indicate:

 • Hamming distance to the closest store pattern (in parenthesis).
 • The expected pattern is to be  retrieved according to the 

associative memory functionality. For each test pattern, we expect 
to retrieve the closest stored one in terms of Hamming distance. 
This distance metric is the number of elements that are different 
between two patterns.

 • Experimentally retrieved (read) pattern. A total of 100 trials were 
carried out for each input pattern. The number of times P1 is 
retrieved, followed by the number of times P2 is retrieved, is 
depicted. The reading operation is carried out at different time 

instants after the application of the test patterns, concretely at 3, 
10, and 720 oscillation cycles from the beginning. Considering 
that the oscillation period is approximately 140 ns, these 
measurements correspond to 42 ns, 1.4 μs, and 100.5 μs.

The test patterns were evaluated with the mathematical HNN 
model obtaining the expected pattern for all of them, as well as the 
ONN does. Particularly, T4 is the only test pattern that did not 
converge the expected pattern in 90 out of 100 at the first reading at 
3 cycles, but it quickly inferred and stabilized in the correct pattern 
from the second reading at 10 cycles, 1 μs later. Additionally, it can 
be  observed from the third read at 720 cycles that the retrieved 
pattern is kept. So, it is concluded that the ONN successfully stores 
the two patterns. In fact, the only two stable states that were observed 
in all our experiments are those patterns. It has also been 
demonstrated that the ONN exhibits associative memory 
functionality. That is, it is able to retrieve a stored pattern from an 
applied pattern that is not a stored one.

A

B C

FIGURE 13

(A) Three coupled oscillators with an all-to-all connectivity. Output waveforms: (B) when SHIL is not applied and (C) when SHIL is applied.

A B

FIGURE 14

(A) Two stored patterns and (B) 10 test patterns selected for the measured 3×3 ONN AM.
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4 Discussion

A 9-neuron CMOS ONN resembling a VO2-based ONN has 
been designed, fabricated, and tested. It uses a CMOS sub-circuit 
emulating the I–V characteristic of VO2 devices to build differential 
oscillators. The synapse is implemented with a 6-transistor bridge 
topology, enabling resistive coupling among oscillators. Both 
positive and negative weights can be realized. The fabricated ASIC 
is programmable, with a large degree of controllability and 
observability to be  able to dive into the dynamics of coupled 
non-linear oscillators, on which basis the computation is carried out.

Experiments carried out with two coupled oscillators (sub-section 
3.1.3) have allowed us to experimentally sustain that both SHIL and 
coupling strength contribute to the synchronization of the oscillators.

The AM functionality has been demonstrated. It is important to 
point out that when we started to test the AM functionality, the results 
were not completely deterministic. That is, repeating an experiment 
several times led to different results. For some of the test patterns, 
sometimes P1 was retrieved, while for others it was P2. After carefully 
analyzing this behavior, we noted that conditions were not actually 
identical across the 100 trials since the SHIL signal was continuously 
running. So, the timing of oscillators power-on with respect to the 
SHIL phase was not fixed. We solved it by synchronizing the SHIL 
signal triggering and the initialization of the oscillators. Even after this 
modification of the experimental setup, there was still some 
indeterministic behavior in the system associated with input patterns 
equidistant (in terms of Hamming distance) to the two stored patterns. 
For those input patterns, sometimes P1 was retrieved while others 
were P2. It was due to the impact of noise.

Furthermore, it was observed that the system could evolve from 
one stable state to another. For example, as described in sub-section 
3.1.2, a slight frequency shift of the SHIL induces noise that triggers 
a phase shift of an oscillator. Moreover, without any intended action 
on the experimental setup, and due to internal noise and other 
non-controllable noise sources, the phase flip can occur. It is 
extremely important to point out that the rate of this event is very 
different whether SHIL is applied or not. Under SHIL, this rate is 
much lower. In fact, we were not able to observe jumps from P1 to 
P2  in the AM  with SHIL, although they occurred if SHIL 
was deactivated.

This observed behavior is very interesting from the point of view 
of the application of ONNs as Ising machines. The OIM application 
requires being able to escape from local energy minima. Our findings 
illustrate that scaping is easier in the absence of SHIL and that it can 
be enhanced by noise. This agrees with different works stating the 
importance of the SHIL signal schedule to improve the probability of 
exactly solving the associated Ising model. That is, obtaining a phase 
distribution corresponding to the minimum configuration of the 
Ising Hamiltonian. The next step in the exploitation of this integrated 
circuit is linked to the validation of the results reported in Avedillo 
et  al. (2023), related to the resolution of combinatorial 
optimization problems.
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