
PHYSICAL REVIEW A 109, 022204 (2024)

Loophole-free Bell tests with randomly chosen subsets of measurement settings
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There are bipartite quantum nonlocal correlations requiring very low detection efficiency to reach the
loophole-free regime but that need too many measurement settings to be practical for actual experiments. This
leads to the general problem of what can be concluded about loophole-free Bell nonlocality if only a random
subset of these settings is tested. Here we develop a method to address this problem. We show that, in some
cases, it is possible to detect loophole-free Bell nonlocality by testing only a small random fraction of the
settings. The consequence is a higher detection efficiency. The method allows for the design of loophole-free
Bell tests in which, given a quantum correlation that violates a Bell inequality, one can calculate the minimum
fraction of contexts needed to reach the detection-loophole-free regime. The results also enforce a different
way of thinking about how local realistic models or classical communication can be used to simulate quantum
nonlocal correlations, as it shows that the amount of resources that are needed can be made arbitrarily large
simply by considering more contexts.
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I. INTRODUCTION

A. Motivation

Quantum advantage, based on the violation of Bell inequal-
ities [1–10], requires ensuring that the observed correlations
cannot be simulated with local realistic models [1,11–13].
This demands a detection efficiency above a certain threshold
ηcrit [14] that depends on the nonlocal correlations. Recently
[15,16], several bipartite quantum correlations between high-
dimensional quantum systems have been identified requiring
ηcrit smaller than those needed for qubits [17,18] and ququarts
[19], which are the systems used in the detection-loophole-
free Bell tests performed so far [20–27]. However, for all these
cases, achieving a small detection efficiency requires a large
number of settings. For example, to achieve ηcrit = 0.510 in
Ref. [15], each party has to measure 28 settings; to achieve
ηcrit = 0.324 in Ref. [16], each party has to measure 230 set-
tings. These correlations need too many settings to be useful
for actual experiments. This begs the question of whether it
is possible to detect loophole-free Bell nonlocality when the
parties only randomly choose a fraction of these settings.

B. Aim

In a bipartite Bell experiment, a measurement context is
one of the possible pairs of local settings used to evaluate
the Bell inequality. Here our aim is to investigate whether the
parties can detect loophole-free Bell nonlocality with a certain
confidence level using only a randomly chosen strict subset of
the measurement contexts. If they can, we want to know how
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large η must be to reach the loophole-free regime. Recipro-
cally, for a given detection efficiency, we want to know the
minimum fraction of contexts needed to detect loophole-free
Bell nonlocality. In particular, we want to elucidate whether
this approach is useful when applied to the correlations in
[15,16] and similar examples that may appear in the future.

C. Structure

The paper is organized as follows.
In Sec. II we develop a general method to obtain the

fraction of (randomly chosen) contexts needed to detect
loophole-free Bell nonlocality with a given confidence value,
provided we are given a correlation that violates a Bell in-
equality, and know the experimentally achievable detection
efficiency ηexpt (which has to be greater than the threshold
detection efficiency ηcrit in order to observe a violation). For
that, we analyze the case of a correlation that violates a gen-
eral bipartite Bell inequality and construct an estimator of the
value of the Bell parameter as a function of the fraction of
measurement contexts. Then, by using Chebyshev’s inequality
[28], we bound the minimum fraction of measurement con-
texts required.

In Secs. III and IV we apply the method to the quan-
tum correlations maximally violating the so-called penalized
N-product (PNP) Clauser-Horne-Shimony-Holt (CHSH) Bell
inequalities [15] and to some graph-theoretic Bell inequalities
[16], respectively. We focus on these quantum correlations
and Bell inequalities because they allow, with imperfect detec-
tion efficiency, us to produce loophole-free nonlocality even
with a fraction of measurement contexts. For these cases,
we also obtain how the detection efficiency depends on the
fraction of measurement contexts. In Sec. V we summarize
the pros and cons of the approach, explain why it offers a way
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to design loophole-free Bell tests, and discuss the implications
of our results for the attempts to simulate quantum nonlocality
with classical communication or local realistic models.

II. LOOPHOLE-FREE BELL VIOLATION USING A
SUBSET OF MEASUREMENT SETTINGS

A. Method

Consider two spatially separated parties Alice and Bob,
each of them performing measurements on a subsystem of a
composite system. Let us denote Alice’s measurement setting
by x and Bob’s measurement setting by y. Let us denote
the outcome of Alice’s measurement by a and the outcome
of Bob’s measurement by b. A Bell inequality is a bound
on the linear combination of joint conditional probabilities
p(a, b|x, y) for the outcomes of different combinations of
measurement settings of Alice and Bob. Specifically, a Bell
inequality is an expression of the form

β =
∑

a,b,x,y

cx,y
a,b p(a, b|x, y) =

M∑
j=1

β j � C, (1)

where j = (x, y) is the measurement context (hereafter sim-
ply called context) corresponding to the settings x and y,
and thus β j = ∑

a,b c j
a,b p(a, b| j), M is the total number of

contexts, and C is the maximum achievable value by local
realistic models. For example, in the CHSH Bell inequality
[29], cx,y

a,b = δa⊕b,xy, M = 4, and C = 3.
Alice and Bob randomly select a subset of contexts of

cardinality L and evaluate the corresponding joint probability
distributions. In principle, we assume that L < M. However,
as we will see, not all nonlocal correlations allow us to certify
nonlocality using only a subset of settings. Now Alice and
Bob want to estimate the value of β, that is, they want to obtain
the most likely value of β (whose detailed calculation requires
measuring all contexts) from the probabilities of contexts that
have been chosen.

For each of the chosen contexts, Alice and Bob evaluate
the corresponding β j . We assume that, for each of the contexts
chosen, Alice and Bob conduct K rounds of the experiment.
This allows them to determine β j up to some finite precision
ε′ and probability of failure δ′. Once all the terms β j are
evaluated, Alice and Bob can estimate β with some finite
precision ε and probability of failure δ. For the remainder
of this paper, we take the precision ε = β − C. Moreover, it
should be noted that the value of δ can be chosen by setting
the confidence level of the test [30]. Here the confidence level
is a measure of how sure one is about the results of the test.
It is generally stated in terms of the standard deviation σ of
a normal distribution, e.g., 4σ , 5σ , and 6σ . As the name sug-
gests, a higher confidence level indicates a lower probability
of failure. While it is possible to select higher values, for
the remainder of this paper we choose to have a 4σ level of
confidence, corresponding to δ = 0.000 03, as we find that it
is sufficient to showcase our results.

To estimate β, Alice and Bob can proceed as follows. They
select j ∈ {1, . . . , M} at random with probability p( j) = 1

M .
Here, for simplicity, we will assume a uniform probability dis-
tribution for p( j). However, p( j) can be tailored according to
β and may be not uniform. For simplicity, we will also assume

that it is possible to evaluate β j with infinite precision, i.e.,
that K → ∞. The case of finite precision will be discussed
later. Then an estimator of β is

X = Mβ j . (2)

By construction, 〈X 〉 = β, where the mean value is averaged
over the randomly selected contexts j. It should be noted that
this is not an average over the different experimental rounds
of the Bell experiment.

Then the parties choose L contexts. If the first context is
context p, then we define X1 = Mβp; if the second context is
context q 	= p, then X2 = Mβq; etc. Each Xl is an estimator of
the value of β. Let Y be the average value of these estimators,
that is,

Y = 1

L

L∑
l=1

Xl

= M

L

∑
i

βi, (3)

where the second sum also has L terms. The variance of each
Xl can also be bounded if we consider a uniform probability
distribution p( j) = 1

M . We have

Var(Xl ) = 〈
X 2

l

〉 − 〈Xl〉2

=
∑

j

p( j)M2β2
j − 〈Xl〉2

� M
∑

j

β2
j

� M
∑

j

β j

= Mβ, (4)

where the third equation is obtained using 〈Xl〉2 � 0. We
perform a further simplification to obtain the last inequality
by noting that, for the Bell inequalities we consider here in the
paper, β j � 1. From Eqs. (3) and (4) we obtain Var(Y ) � Mβ

L .
Therefore, using Chebyshev’s inequality [28],

p

(
|Y − β| � λ

√
Mβ

L

)
� 1

λ2
, (5)

where λ > 0 is a real number.
Since we want Y with probability of failure δ and error ε,

we take

λ = 1√
δ

(6)

and

L = Mβ

ε2δ
(7)

to obtain

p(|Y − β| � ε) � δ. (8)

Then the fraction of contexts needed is

ν = L

M
= β

ε2δ
. (9)
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We now deal with the fact that K , the number of rounds
used to evaluate each of the terms β j , must be finite. In this
case, an estimator of β j is the average value

Bj = 1

K

K∑
k=1

β
(k)
j , (10)

where β
(k)
j is the value of β j obtained in round k. Let δ′ be the

probability of failure and ε′ the error in evaluating β j . Then
applying Hoeffding’s inequality [31], we have

p(Bj − β j � ε′) � δ′, (11)

where

δ′ = exp

(
− 2ε′2∑K

k=1

( β j

K

)2

)

= exp

(
−2ε′2K

β2
j

)
. (12)

This yields

K �
− ln(δ′)β2

j

2ε′2 , (13)

that is, the minimum number of rounds needed to estimate β j .
So far, we have obtained the minimum fraction of contexts

needed for a given β and thus for a given detection effi-
ciency. Another interesting problem is to obtain the minimum
detection efficiency needed for a given fraction of contexts.
For that, notice that ε = β − C, where β is the value of the
Bell parameter obtained when the detection efficiency is η.
Substituting this in Eq. (9) and rearranging terms, we obtain

(β − C)2

β
= 1

νδ
. (14)

In general, β is a function of η, the maximum quantum value
Q, and the local value C of the Bell inequality. The exact form
of the function depends on how the no-click events are treated
(see Ref. [16] for more details). However, for a given Bell
inequality and a model of detection efficiencies, Eq. (14) can
be solved for η in terms of ν.

B. The method does not always work

It is important to emphasize that the method is only useful
for some quantum correlations that violate a Bell inequality
with imperfect detection efficiency. In many cases, given a
quantum correlation that violates a Bell inequality with im-
perfect detection efficiency, the method only says that all the
contexts are needed. For example, consider the CHSH Bell
inequality written so it has local value C = 3 and maximum
quantum violation 2 + √

2 ≈ 3.414. The critical detection ef-
ficiency in this case is ηcrit = 2(

√
2 − 1) ≈ 0.828 [17]. Let us

suppose that the value of the CHSH Bell parameter is β =
3.272 (thus ε = 0.272) and has been achieved with η = 0.880
and V = 1, where V is the visibility of the quantum state. Let
us assume that δ = 0.000 03, which corresponds to a test with
a 4σ level of confidence, where σ is the standard deviation
of a normal distribution. By taking such a small value of δ

we ensure that the probability to erroneously identify a Bell

violation is also very small. Then L � 5 896 771. However,
the total number of contexts in the CHSH Bell inequality is
M = 4. Therefore, L > M indicates that it is not possible to
consider a strict subset of contexts and obtain a loophole-free
Bell violation.

III. THE PNP BELL INEQUALITIES
USING A SUBSET OF SETTINGS

Here we apply the tools described in Sec. II to the case of
the PNP Bell inequalities of Ref. [15].

A. The PNP Bell inequalities

Given a Bell inequality with local realistic bound C, its
PNP version is the product of n copies of that Bell inequality
with an extra penalization term chosen to guarantee that the
local realistic bound of the PNP version is Cn. More specifi-
cally, the PNP Bell inequality can be written as

βPNP =
∑

a,b,x,y

p(a, b|x, y)
n∏

i=1

cxi,yi

ai,bi
− κ (A + B) � Cn, (15)

where x = (x1, . . . , xn) is Alice’s measurement setting (which
can be seen as n measurement settings, one for each copy
of the original Bell inequality), y = (y1, . . . , yn) is Bob’s
measurement setting, a = (a1, . . . , an) is Alice’s outcome
(which can be seen as n outcomes, one for each copy of
the original Bell inequality) with ai ∈ [m] ∀ i ∈ {1, 2, . . . , n},
and b = (b1, . . . , bn) is Bob’s outcome with bi ∈ [m] ∀ i ∈
{1, 2, . . . , n}. In addition, κ = 2n−1(
n − Cn), where C is the
maximum local bound of the original Bell inequality and 
n is
the algebraic bound of Eq. (15) without the penalization term.
In addition,

A =
n∑

i=1

∑
x

∑
x 	=x′|x′

i=xi

m−2∑
ai=0

|p(ai|x) − p(ai|x′)|, (16a)

B =
n∑

i=1

∑
y

∑
y 	=y′|y′

i=yi

m−2∑
bi=0

|p(bi|y) − p(bi|y′)|, (16b)

where the third summation is taken over x and x′ such that
they only match on the ith element, but are different on all
other elements, and similarly for the sum over y′. Let Q be the
maximum quantum value of the original Bell inequality. Then
the maximum quantum value of the corresponding PNP Bell
inequality is simply Qn.

B. The PNP CHSH Bell inequalities with a subset of settings

We focus on the PNP Bell inequalities constructed by tak-
ing n copies of the CHSH Bell inequality. In this case, cxi,yi

ai,bi
=

δai⊕bi,xiyi ∀ ai, bi, xi, yi, C = 3, and Q = 2 + √
2. There are

2n measurement settings per party and the total number of
contexts is M = 4n. For the time being, we will assume that
A + B = 0. Later on, we will consider the case of A + B 	= 0.
This scenario can also be visualized as having n bipartite
two-qubit states, on each of which we perform a copy of the
CHSH Bell test.

The parties randomly select L contexts. Each of them is
tested K times. Applying the tools in Sec. II, we obtain the
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FIG. 1. Fraction of the settings required for a loophole-free test
of the PNP CHSH Bell inequalities, as a function of n, the number of
CHSH Bell inequalities conducted in parallel

fraction of local settings that each party must choose randomly
to obtain a loophole-free Bell violation of the PNP CHSH Bell
inequality such that the probability of failure is δ = 0.000 03
and under the assumption that the visibility of each bipartite
two-qubit state is V = 0.9. The results are shown in Fig. 1.
There we observe that the fraction is smaller than 1 only after
n = 9.

Next we calculate the minimum detection efficiency ην for
a loophole-free Bell violation as a function of the fraction of
contexts chosen, ν = L

M . In order to do so, we model detection
inefficiencies as follows. We bin the no clicks to one of the
outcomes (always the same one). Then

βPNP = η2Qn + η(1 − η)
(
Pn

A + Pn
B

) + (1 − η)2Cn, (17)

with

Q =
∑

a,b,x,y

cx,y
a,btr

(
Ax

a ⊗ By
bρAB

)
, (18a)

PA =
∑

a,b,x,y

cx,y
a,btr

(
Ax

aρA
)
, (18b)

PB =
∑

a,b,x,y

cx,y
a,btr

(
By

bρB
)
, (18c)

where the state shared by Alice and Bob is of the form⊗n
i=1 ρAB, and

⊗n
i=1 Axi

ai
and

⊗n
i=1 B

yi

bi
are the elements of the

positive-operator-valued measures. We assume that Axi
ai

= Ax
a

and Byi

bi
= By

b ∀ i.
Figure 2 shows the minimum detection efficiency ην

needed for a loophole-free Bell violation, when using a frac-
tion ν of all the contexts in the PNP CHSH Bell inequality
for n = 10, 11, 12, 13, and 14, for δ = 0.000 03 and V = 1.
Notice that, in all cases, ν = 1 occurs before the respective
ηcrit is reached (ηcrit for n = 10, 11, 12, 13, and 14 are 0.43,
0.38, 0.34, 0.31, and 0.28, respectively). This implies that, for
very low Bell violations (with detection efficiency close to the
critical value) and a given confidence level (determined by δ),
our method cannot guarantee a loophole-free Bell violation

FIG. 2. Minimum detection efficiency ην needed to reach the
loophole-free regime as a function of the fraction ν of the contexts
for the PNP CHSH Bell inequality with different values of n. The
threshold detection efficiencies for n = 10, 11, 12, 13, and 14 are
ηcrit = 0.43, 0.38, 0.34, 0.31, and 0.28, respectively.

unless all contexts are measured. By choosing higher values of
δ (low confidence) it is possible to reach detection efficiencies
close to the critical values.

Finally, we analyze the case when A + B 	= 0. The value of
this sum cannot be very large; otherwise a violation will not be
observed. This is because κ increases exponentially with n. As
an example, consider A + B = 10−6, for which the parties can
observe a violation up to n = 14. We use this particular value
of A + B so that some violation of the PNP Bell inequality
can be observed for at most n = 14 (which corresponds to
the last data point in Fig. 1). It can be seen that, by construc-
tion of Eq. (15), for larger values of A + B, no violation can
be observed for n = 14 due to an exponentially large value
of κ .

Then the maximum quantum violation for the PNP Bell
inequality is βn − 10−6κ . As it can be seen from Fig. 1,
the number of random local settings chosen by either of the
parties does not increase significantly from the case when
A + B = 0. Therefore, it is possible for Alice and Bob to
detect nonlocality even when A + B 	= 0.

IV. GRAPH-THEORETIC BELL INEQUALITIES
USING A SUBSET OF SETTINGS

Here we apply the tools described in Sec. II to the case of
the graph-theoretic Bell inequalities of Ref. [16].

A. Graph-theoretic Bell inequalities

Consider two separated parties Alice and Bob, each of
them having access to a set of measurement settings cor-
responding in quantum mechanics to projectors {�i}, each
of them having two outcomes, and such that the graph G
describes the relations of orthogonality between the members
of {�i}: Each element of {�i} is represented by a vertex of
G and orthogonal projectors correspond to adjacent vertices.
Then the corresponding graph-theoretic Bell inequality can be
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written as

βG =
∑
i∈V

p
(
�A

i = �B
i = 1

)

−
∑

(i, j)∈E

1

2

[
p
(
�A

i = �B
j = 1

) + p
(
�A

j = �B
i = 1

)]
� C, (19)

where V is the vertex set of G, E is the edge set of G,  is
the Xi number of G (which, for simplicity, can be taken to
be 1), and p(�A

i = �B
j = 1) is the probability for Alice and

Bob to obtain the outcome 1 when they measure �A
i and �B

j ,
respectively. Interestingly, both the maximum local realistic
value C and the maximum quantum value Q can be related to
properties of G. Specifically, C is the independence number of
G and Q is |V|

ξ
, where ξ is the orthogonal rank of the graph G

(see Ref. [16] for details).

B. Graph-theoretic Bell inequalities with a subset of settings

For any graph G, the number of settings per party in βG in
(19) is |V| and the total number of contexts is M = |V| + 2|E |.
To estimate βG, Alice and Bob choose settings i and j from the
set V with the nonuniform probability distribution

p(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

|V|
|V|+2|E| for i = j

2|E|
|V|+2|E| for (i, j) ∈ E
0 otherwise.

(20)

Then the estimator is

Xi, j =

⎧⎪⎨
⎪⎩

1
p(i, j)βi, j for i = j
−1

p(i, j)βi, j for (i, j) ∈ E
0 otherwise,

(21)

where βi, j = p(�A
i = �B

j = 1). It can be seen that the mean
value of the estimator Xi, j , when averaged over the variables
i and j, is simply 〈Xi, j〉 = βG. When (i, j) ∈ E or i = j, the
average is simply over the randomly selected contexts. Again,
it should be noted here that this is not an average over the
different rounds of the Bell experiment.

Then Alice and Bob choose L contexts according to the
distribution p(i, j) to evaluate the corresponding L estimators
Xi, j . In this case, we apply Hoeffding’s inequality instead of
Chebyshev’s inequality to evaluate the number of contexts
required. The reason is that Chebyshev’s inequality requires
evaluating the variance of each estimator in terms of the Bell
value, which is not possible in this case because of the inherent
asymmetry in the Bell inequality. Instead, we can use the
fact that each estimator Xi, j is a function of a probability
distribution and can thus be bounded.

Following Eq. (3), let Y be the average value of the esti-
mators corresponding to the L contexts chosen by the parties.
Since Y is a sum of independent random variables Xl

L , we can
apply Hoeffdings’s inequality to bound its value. In order to
do so, we can bound each of the estimators by noting that
their achievable maximum and minimum values are (|V|+2|E|)

|V|
and −(|V|+2|E|)

2|E| , respectively. Using Hoeffding’s inequality, we

TABLE I. Fraction ν of contexts needed to detect loophole-free
Bell nonlocality for different values of the detection efficiency η, for
the correlations violating some of the graph-theoretic Bell inequali-
ties. Bell inequality indicates the Bell inequality considered, d is the
dimension of each of the local quantum systems, and M is the total
number of contexts. Here we assume the visibility of the quantum
states V = 1 and δ = 0.000 03.

Bell inequality d M η ν

Y44 44 4.62 × 1024 0.163 1
Y44 44 4.62 × 1024 0.200 7.01 × 10−19

Y44 44 4.62 × 1024 0.400 7.01 × 10−21

Y44 44 4.62 × 1024 0.600 1.12 × 10−21

Y44 44 4.62 × 1024 0.800 3.31 × 10−22

Y44 44 4.62 × 1024 0.950 1.62 × 10−22

Y36 36 7.79 × 1019 0.260 1
Y36 36 7.79 × 1019 0.400 7.07 × 10−16

Y36 36 7.79 × 1019 0.600 7.06 × 10−17

Y36 36 7.79 × 1019 0.800 1.84 × 10−17

Y36 36 7.79 × 1019 0.950 8.66 × 10−18

Y32 32 3.22 × 1017 0.326 1
Y32 32 3.22 × 1017 0.400 4.51 × 10−13

Y32 32 3.22 × 1017 0.600 2.03 × 10−14

Y32 32 3.22 × 1017 0.800 4.54 × 10−15

Y32 32 3.22 × 1017 0.950 2.02 × 10−15

Y28 28 1.34 × 1015 0.407 1
Y28 28 1.34 × 1015 0.600 7.19 × 10−12

Y28 28 1.34 × 1015 0.800 1.20 × 10−12

Y28 28 1.34 × 1015 0.950 4.99 × 10−13

P4(R) 16 8752320 0.516 1
P4(R) 16 8752320 0.600 3.84 × 10−4

P4(R) 16 8752320 0.800 2.40 × 10−4

P4(R) 16 8752320 0.950 8.29 × 10−5

P3(C) 8 341280 0.730 1
P3(C) 8 341280 0.750 0.098
P3(C) 8 341280 0.850 0.002
P3(C) 8 341280 0.950 6.17 × 10−4

P3(R) 8 25440 0.730 1
P3(R) 8 25440 0.850 0.072
P3(R) 8 25440 0.950 0.019
P2(C) 4 960 0.894 1
P2(C) 4 960 0.950 0.668
P2(R) 4 240 0.912 1

have

p(Y − βG � ε) � δ. (22)

For a fixed precision ε and probability of failure δ, the number
of contexts that Alice and Bob would need to evaluate is

L = − ln(δ)(|V| + 2|E |)4

8ε2|E |2|V|2 . (23)

Now we calculate the minimum detection efficiency ην

needed for loophole-free Bell violation as a function of the
fraction ν of the contexts. In order to model the detection
inefficiency, we bin the no clicks to the outcome 0. This out-
come is chosen because no terms corresponding to it appear in
the Bell inequality (19). This simplifies the evaluation of the
critical detection efficiency, which, in this case, is now only a
function of the maximum local realistic and quantum values.
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Then the minimum detection efficiency is

ην =
[

1

Q

(− ln δ(|V| + 2|E |)3

2ν|V|2|E |2
)1/2

+ C

Q

]1/2

. (24)

Next we consider nine different correlations associated
with the maximum quantum violation of a different Bell in-
equality, each of them corresponding to a different graph. The
details of these graphs can be found in Ref. [16] but are not
relevant for our purposes. For each case, we calculate the
fraction of contexts needed for a given detection efficiency
η. The results are presented in Table I. As it can be seen
in Table I, in all the cases except the last correlation, by
randomly selecting a small strict subset of the contexts, the
parties can claim loophole-free Bell nonlocality with a very
small probability of failure. In the last correlation presented
in Table I, the parties will have to select all contexts for all
η � ηcrit = 0.912.

V. DISCUSSION

A. Pros and cons of the approach

So far, we have shown that, for some bipartite correlations
that violate a Bell inequality with imperfect detection effi-
ciency and under the assumption that the detection efficiency
available is above the critical value, a small fraction of the
contexts is enough to detect loophole-free Bell nonlocality
with a given confidence. For example, in the PNP CHSH Bell
inequality with n = 13, we have shown that the parties need
only a fraction of 0.528 of the contexts to detect loophole-free
nonlocality. However, then the detection efficiency must be
higher than the critical detection efficiency had the parties
measured all contexts (specifically, it must be η � 0.4, while
ηcrit = 0.313 when all contexts are measured). Moreover, the
number of settings (0.528 × 1013) needed to measure that
fraction of contexts is still too large to be practical.

Therefore, measuring only a fraction of the contexts is
sometimes enough to detect loophole-free Bell nonlocality.
However, this comes at the cost of a higher detection ef-
ficiency and, at least in the example, the reduction in the
number of settings is not enough to be practical for standard
experiments.

Then the question is what this approach useful for. In the
following, we will argue that (i) it provides a way to design
loophole-free Bell tests; (ii) it enforces a different way to look
at the classical simulation of quantum correlations, as it shows
that the amount of classical resources may depend on how
large the fraction of random contexts is, which is a choice
that can be modified during the experiment; and (iii) it may
stimulate the search for correlations with many settings and
low detection efficiency, to which no attention has been paid
so far.

B. Designing loophole-free Bell tests

The method introduced here offers a different approach
to the design of loophole-free Bell tests. Suppose that one
can prepare the correlations needed to maximally violate
the Bell inequality Y32 in Table I (for simplicity, we as-
sume that V = 1) and have in the laboratory a detection

efficiency ηexpt > ηcrit , where ηcrit = 0.326. So far, the only
option to detect loophole-free Bell nonlocality was evaluating
all M = 3.22 × 1017 contexts. The method offers an alterna-
tive. Suppose that ηexpt � 0.400. Then the method shows that
a randomly chosen fraction of contexts ν � 4.51 × 10−13 is
enough to conclude loophole-free Bell nonlocality. Similarly,
if ηexpt � 0.600, then the fraction of contexts further reduces
to ν � 2.03 × 10−14, which can be further reduced to ν �
4.54 × 10−15 if ηexpt � 0.800, etc. This way, by knowing the
detection efficiency, the method gives the minimum fraction ν

of contexts needed.
Even if ν is still too large to be practical, it is important

to observe that the fact that the contexts are randomly cho-
sen allows us to estimate the value of a Bell parameter that
cannot be fully evaluated. For example, in all the examples
considered, all the local measurements are equally difficult
from an experimental point of view. For example, all the local
measurements needed for the maximum quantum violation
of the graph-theoretic Bell inequalities associated with the
graphs Yd are represented by projectors that only differ in
phases (see [16] for details). Therefore, it is reasonable to
expect that all contexts are equally affected by the experi-
mental imperfections. Therefore, by measuring a sufficiently
large random subset of contexts, a reliable estimate can be
obtained of what would be obtained if a larger fraction were
measured. This way, the correlations considered in this work
can be used to estimate whether or not an experiment would
reach the loophole-free regime if left running longer.

C. Making classical simulations asymptotically impossible

The tools introduced here also enforce a way to look at the
cost of simulating Bell nonlocality using local realistic models
or classical communication [32–34]. It should be noted that
this cost of simulating nonlocal correlations is different from
a computational cost, where the cost may incorporate the
memory and/or the time required to simulate the correlations.
As an example, it is possible to computationally simulate
the CHSH Bell nonlocal correlations without any high cost.
However, this simulation is not possible using only a local
realistic model. In a local realistic model that tries to simulate
certain nonlocal correlations, the detection efficiency is also
a target of the simulation (see, e.g., [35–37]), that is, the
local realistic model not only should reproduce the quantum
statistics but should also simulate a fixed detection efficiency
η < ηcrit . However, there are correlations that can be classi-
cally simulated for a fixed η that cannot be simulated when
more contexts are added. The problem is identifying them.

For example, consider a local realistic model which sim-
ulates η = 0.9 and the correlations maximally violating the
Bell inequality in P2(R) for the 240 contexts in Table I. Such
a local realistic model is possible because the simulated η

is smaller than the corresponding critical detection efficiency
ηcrit = 0.912; otherwise the simulation would be impossible.
Now note that the correlations maximally violating the P2(R)
Bell inequality are a subset of the correlations maximally
violating P2(C) (see [16] for details). If the parties decide to
test more contexts until they cover all the 960 contexts needed
for the correlations maximally violating the P2(C) Bell in-
equality, then no local realistic model simulating η = 0.9 can
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also simulate the correlations. The reason is that simultane-
ously simulating the correlations for P2(C) and η = 0.9 is
impossible since, in this case, ηcrit = 0.894 (see Table I).

However, it is not true that this is always the case. For
example, the correlations maximally violating the P3(R) Bell
inequality are a subset of the correlations maximally violating
P3(C). However, the critical detection efficiency is the same
in both cases (see Table I).

Moreover, both examples above refer to nonlocal correla-
tions in which we can identify a subset of them which is also
nonlocal and we can compute the corresponding ηcrit . The
problem is that identifying such subsets of correlations can
be difficult. Nevertheless, in this work we have found corre-
lations (all those in Fig. 1 and Table I) for which a smaller
randomly chosen fraction always requires a larger ηcrit than
a larger randomly chosen fraction. As mentioned, this is not
true in general, even in the case when the parties are allowed to
choose specific subsets. However, the power of our approach
is that now the parties can calculate ηcrit for any fraction of
contexts. In all the cases in Fig. 1 and Table I (except for the
last correlation in Table I; this is why there is only a single
row there), by simply increasing the fraction of contexts, the
parties can make it impossible for a local realistic model to
simulate the correlations.

This brings us to a final thought: Can the classical simu-
lation succeed in reproducing the nonlocal correlations when
the parties do not fix a specific number of contexts to measure
prior to performing the Bell experiment? As an example, the
parties can choose to terminate the experiment anytime after
they have reached a sufficient number of contexts. In such a
case, for not failing, the simulation should work for all con-
texts. There are probably cases in which the resources needed
for the simulation rapidly tend to infinity as the number of
all contexts in the Bell inequality increases. This question
and this conjecture indicate that it would be interesting to
investigate how fast these resources can grow with the number
of contexts.

D. Further research

While our tools allow for the detection of loophole-free
nonlocality by using only fractions of contexts (at the cost
of a higher detection efficiency), when we apply these tools
to the correlations in Fig. 1 and Table I, then the number of
measurements required is either still too large for practical
Bell tests or not too large but then they offer critical detec-
tion efficiencies that are comparable to the ones needed in
existing detection-loophole-free experiments with smaller di-
mension and number of settings. In other words, the examples
used in this work do not yet provide practical targets with
sufficiently low critical detection efficiency and number of
settings.

However, it is important to emphasize that the examples we
have used to illustrate our tools are based on correlations ob-
tained by sophisticated but arguably suboptimal methods with
the purpose of showing that the critical detection efficiency
can be arbitrary low without the need of quantum systems
of dimension impossible to achieve in the laboratory. Earlier
it was shown that high-dimensional quantum systems can
tolerate a detection efficiency that decreases with an increase
in the local dimension d [38]. However, an improvement
over the qubits systems can only observed for d > 1600. The
correlations we study here require systems with significantly
lower d . Presumably, there are many quantum correlations
with sufficiently low critical detection and number of settings
waiting to be discovered. Our hope is that the tools introduced
here stimulate the search for such correlations.
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