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A B S T R A C T

By applying a singular perturbation approach, canard explosions exhibited by a general family
of singularly perturbed planar Piecewise Linear (PWL) differential systems are analyzed. The
performed study involves both hyperbolic and non-hyperbolic canard limit cycles appearing
after both, a supercritical and a subcritical Hopf bifurcation. The obtained results are com-
parable with those obtained for smooth vector fields. In some sense, the manuscript can be
understood as an extension towards the PWL framework of the results obtained for smooth
systems by Dumortier and Roussarie in Mem. Am. Math. Soc. 1996, and Krupa and Szmolyan
in J. Differ. Equ. 2001. In addition, some novel slow–fast behaviors are obtained. In particular,
in the supercritical case, and under suitable conditions, it is proved that the limit cycles are
organized along a curve exhibiting two folds. Each of these folds corresponds to a saddle–node
bifurcation of canard limit cycles, one involving headless canard cycles, and the other involving
canard cycles with head. This configuration also occurs in smooth systems with N-shaped fast
nullcline. However, it has not been previously reported in the Van der Pol system. Our results
provide justification for this observation.

. Introduction

Planar slow–fast systems are differential systems involving two variables which evolve with very different time-scale. In fact, the
atio defining the time-scale separation of both variables is assumed to be as small as desired, and it is considered as the singular
arameter. This different scales splits the phase plane into regions where the orbits evolve in a very different way. Specifically,
lose to the fast nullcline, the flow evolves slowly, while far from it, the flow evolves quickly. This fact has important dynamical
onsequences as for instance an increasing sensitivity of the dependence of the dynamics with respect to the variation of the
arameters. One of the best known examples of this sensitivity is the so-called canard explosion where the amplitude of a small
imit cycle increases very suddenly while a system parameter varies in an exponentially small range, see [1–3].

The canard explosion phenomenon was first described and analyzed by Benoit et al. in 1981 [4] in the Van der Pol oscillator,
nd explains the fast transition, by varying a parameter, from a small amplitude limit cycle born at a supercritical Hopf bifurcation,
o a relaxation oscillation. Relaxation oscillations are oscillatory behavior characterized by long periods of quasi-static behavior
nterspersed with short periods of rapid transition. Since this behavior is usual in real-life phenomena, see [5] and references therein,
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models based in slow–fast differential equations are ubiquitous in many applications, such as chemical and biological ones, and in
particular in neuroscience [6–8].

The main tools for the analysis of the slow–fast dynamics are provided by Geometric Singular Perturbation Theory [9], and rely on
he ability of reconstructing the global dynamics by splitting and then joining, in a suitable way, the fast and slow behaviors. Under
yperbolicity conditions, Fenichel Theorems [10] describe the existence of invariant slow manifolds close to compact parts of the
ast nullcline and also describe the stability properties of these slow manifolds. When the fast nullcline folds, normal hyperbolicity is
sually lost at the fold, and Fenichel’s theory does not apply. Instead, the system may exhibit canard dynamics (see [5]), involving
eculiar trajectories that evolve close to the attracting branch of the slow manifold, pass near the folding point, and continue
ollowing the repelling branch of the slow manifold. Hence, in these systems, local aspects of the flow, as it is the local transition
ext the fold, can organize global dynamics.

A usual technique to analyze this local transition is the blow up of the fold [1,3,11]. Alternatively, some authors leverage the
iecewise smooth context to analyze this transition within a simpler computational framework, while retaining all its salient features.
ignificant progress has been done in this sense. For instance, in the recent work [12] author analyzes relaxation oscillations
n discontinuous piecewise smooth systems. Furthermore, in [13,14] the authors analyze the canard explosion in a continuous
iecewise smooth context. Indeed, the simplest scenario in which this phenomenon can be replicated is within the piecewise linear
PWL) framework. Although certain dynamical aspects of slow–fast behavior had been observed in PWL systems (see [15–17] and
eferences therein), understanding the proper replication of slow–fast dynamics in this context took some time (see [16,18,19]).
n [20], the authors analyze a portion of the canard explosion phenomenon within the PWL context, specifically focusing on the
xplosion of hyperbolic headless canards.

In the present manuscript, we explore an extension of the system analyzed in [20], which allows for the coexistence of canard
ycles, with and without head, as well as both hyperbolic and non-hyperbolic. Specifically, this extension involves replacing the fast
-shaped nullcline from the system in [20] with a fast N-shaped nullcline, represented by a four-segment polygonal curve. Three of

hese segments define the fold of the 𝑥-nullcline closer to the Hopf bifurcation point, maintaining the configuration and kink width
f order 𝑂(

√

𝜀) as in [20], which allows for the existence of headless canard cycles. The fourth segment establishes a global return,
facilitating the existence of canard cycles with head and relaxation cycles. This specific nullcline configuration has been shown to be
effective in producing the canard explosion phenomenon. In fact, numerical evidence for a canard explosion in a PWL system with
an equivalent nullcline configuration is presented in [17]. Conversely, approaches that do not take into account the third segment
to mimic the fold only exhibit what has been termed the superexplosion phenomenon [19].

The results we obtain analytically prove the existence of a one parameter family of limit cycles starting at a Hopf-like bifurcation
(both supercritical and subcritical) overcoming a canard explosion and ending at a relaxation oscillations. In addition, we give the
limits of the canard regime and the critical value at which the connection between the attracting and repelling slow manifolds
(maximal canard) occurs in terms of parameters. Our study allows for the analysis of the stability of the canard cycles. In particular,
we obtain the existence and localization of saddle–node canard cycles. These results can be seen as an extension to the PWL context
of the results obtained in the smooth context in [3].

Furthermore, we show new scenarios that, as far as we are aware, have not been previously reported in the smooth framework
with cubic fast nullcline. In particular, we find situations where two saddle–node canard cycles along the same canard explosion take
place: one saddle–node formed by the collapse of two headless canard cycles, and the other formed by the collapse of two canard
cycles with head. As a consequence, we prove the coexistence of three canard limit cycles. This configuration already features in one
of the simulation of PWL system showed in [17]. However, it is in the present work that a rigorous proof of its existence and of the
essential geometric elements for its appearance is given. With consideration of this essential geometry, we are able to properly tune
the Morris–Lecar neural model in order to exhibit two saddle–node canard cycles along the same canard explosion. This concludes
that the presence of two saddle–node canard cycles is not exclusive of the PWL context.

The article is organized as follows. In Section 2, we provide a brief overview of canard explosion and saddle–node canard cycles
in the smooth case. After that, in Section 3, we introduce the class of systems we aim to study. In Section 4, we present the main
results of the paper. Section 5 is devoted to the proofs of the main results. Finally, Section 6 is devoted to conclusions and possible
extensions of the present work. The technical issues of the proofs have been left to the Appendixes.

2. Background on canard cycles: canard explosion

In this section, based on [3,11], we briefly review the basic ingredients of the canard oscillatory behavior appearing in the
smooth framework. Typically, canard solutions take place in planar differential systems of the form

{

𝜀�̇� = 𝑓 (𝑥, 𝑦, 𝑎, 𝜀),

�̇� = 𝑔(𝑥, 𝑦, 𝑎, 𝜀),
(1)

where 𝑓, 𝑔 ∈ 𝑟, 𝑟 ≥ 3, (𝑥, 𝑦)𝑇 ∈ R2, 𝑎 ∈ R, 0 < 𝜀 ≪ 1 and the dot denotes the derivative with respect to the temporal variable 𝜏.
Since the norm of the derivative of solutions of system (1) is very different depending on the regions of the phase plane they are
crossing through (far from the 𝑥-nullcline it is big and the solutions evolve very fast, and close to the 𝑥-nullcline it is small and the
solutions evolve very slow), system (1) is often called slow–fast system.

After the rescaling in time 𝑡 = 𝜏∕𝜀, system (1) writes as
{

𝑥′ = 𝑓 (𝑥, 𝑦, 𝑎, 𝜀),
′

(2)
2

𝑦 = 𝜀𝑔(𝑥, 𝑦, 𝑎, 𝜀),
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Fig. 1. Draft of the critical manifold 𝑆 in the neighborhood of a canard point. An attracting branch 𝑆𝑎
𝜀 , and a repelling branch 𝑆𝑟

𝜀 , of the slow manifold obtained
fter singular perturbation are also represented. The canard cycles with and without head are obtained provided 𝑆𝑎

𝜀 flows along one side or the other of a
repelling manifold 𝑆𝑟

𝜀 .

where the prime denotes the derivative with respect to the fast time 𝑡. Systems (1) and (2) are equivalent through the identity when
> 0, but they have not the same limit for 𝜀 = 0. In fact, the limit of system (1), called slow subsystem, is a semi-explicit Differential

Algebraic Equation (DAE), where the relation between the variables is given by

𝑆 = {(𝑥, 𝑦) ∶ 𝑓 (𝑥, 𝑦, 𝑎, 0) = 0}.

ssuming that 𝑓𝑦(𝑥, 𝑦, 𝑎, 0) ≠ 0, it follows that 𝑆 is the graph of a differentiable function 𝑦 = 𝜑𝑎(𝑥), and the DAE reduces to the
ifferential equation

𝑓𝑥(𝑥, 𝜑𝑎(𝑥), 𝑎, 0)�̇� = −𝑓𝑦(𝑥, 𝜑𝑎(𝑥), 𝑎, 0)𝑔(𝑥, 𝜑𝑎(𝑥), 𝑎, 0), (3)

which is called the reduced equation. For a precise definition of the reduced flow we refer the reader to [5,9]. On the other hand,
the limit for 𝜀 = 0 of system (2), called fast subsystem, is a differential equation having 𝑆 as the locus of every equilibrium point.
From here, 𝑆 is called the critical manifold.

From Fenichel’s Theorems [10,21], we obtain an approximation of the overall slow dynamics through the slow subsystem, and
an approximation of the overall fast dynamics through the fast subsystem. In brief, Fenichel’s theory asserts that compact subsets
𝑆0 ⊂ 𝑆 formed by normally hyperbolic equilibrium points of the critical manifold, persist as locally invariant slow manifolds 𝑆𝜀 for
𝜀 > 0, which can be extended by the flow. Moreover, the stability properties of 𝑆𝜀 are equal to those of 𝑆0. Furthermore, the flow
over 𝑆𝜀 is a regular perturbation of the flow defined by the slow subsystem, or equivalently the reduced equation.

Typically, the breakdown of the normal hyperbolicity takes place at the points (𝑥0, 𝑦0) ∈ 𝑆 where the manifold folds,
.e., 𝑓𝑥(𝑥0, 𝑦0, 𝑎, 0) = 0 and 𝑓𝑥𝑥(𝑥0, 𝑦0, 𝑎, 0) ≠ 0. It is possible to assume, without loss of generality, that the fold point is at the
rigin when 𝑎 = 0, in that case we remove the sub-index at function 𝜑𝑎, and therefore 𝜑(𝑥) = 𝜌𝑥2 + 𝑂(𝑥3), with 𝜌 a constant value

different from 0. Hence, in a neighborhood of the origin two different branches of the critical manifold coexist, the attracting one,
𝑆𝑎
0 = {(𝑥, 𝑦) ∶ 𝑓𝑥(𝑥, 𝑦, 0, 0) < 0}, and the repelling one, 𝑆𝑟

0 = {(𝑥, 𝑦) ∶ 𝑓𝑥(𝑥, 𝑦, 0, 0) > 0}. Over each of these two branches the reduced
Eq. (3) can be written as the ODE

�̇� = −
𝑓𝑦(𝑥, 𝜑(𝑥), 0, 0)
𝑓𝑥(𝑥, 𝜑(𝑥), 0, 0)

𝑔(𝑥, 𝜑(𝑥), 0, 0) =
𝑔(𝑥, 𝜑(𝑥), 0, 0)

𝜑′(𝑥)
,

and, assuming that 𝑔(0, 0, 0, 0) ≠ 0, the flow defined by it has opposite orientation over each of these branches. In this case the fold
oint is called jump point.

A special situation occurs when the fold point at the origin satisfies that 𝑔(0, 0, 0, 0) = 0, together with the non-degeneracy
condition 𝑔𝑥(0, 0, 0, 0) ≠ 0. The reduced equation can be then regularized, defining a solution of the desingularized system which
asses from one branch, 𝑆𝑎

0 , to the other, 𝑆𝑟
0, through the fold point. In this case the fold point is called a canard point.

After perturbation, i.e., for 𝜀 > 0, Fenichel slow manifolds 𝑆𝑎
𝜀 and 𝑆𝑟

𝜀 behave in a different way near a jump fold point and near
a canard point. Around a jump point, an attracting Fenichel slow manifold 𝑆𝑎

𝜀 may follow closely the attracting branch 𝑆𝑎
0 , pass in

the vicinity of the fold point, and continue following approximately the fast dynamics, giving rise to the possibility of relaxation
oscillations. However, around a canard point, a Fenichel slow manifold 𝑆𝑎

𝜀 may follow closely the attracting branch of the critical
manifold, 𝑆𝑎

0 , pass in the vicinity of the fold point and then, surprisingly, continue following closely a repelling slow manifold 𝑆𝑟
𝜀,

see Fig. 1. From this we can conclude the existence of solutions of the system (1) with 0 < 𝜀 ≪ 1 containing canard segments.
Under the existence of another attracting Fenichel slow manifold, see Fig. 1, when 𝑆𝑎

𝜀 flows along one side or the other of the 𝑆𝑟
𝜀,

there can exist canards without head or canards with head, respectively. Since slow manifolds are exponentially close to one another,
the presence of exponentially small terms in the expansions in power series of 𝜀 of the slow manifolds implies that their respective
position can change upon an exponentially small parameter variation. This phenomenon is known as the canard explosion. Moreover,
the transition from canards without head to canards with head occurs typically when 𝑆𝑎

𝜀 connects to 𝑆𝑟
𝜀. This connection takes place
3

along a curve 𝑎𝑆 (𝜀) in the parameter plane (𝜀, 𝑎) and the associated canard solution is said to be a maximal canard.
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Canard cycles develop along a branch born at a Hopf bifurcation, at 𝑎 = 𝑎𝐻 , and the canard explosion takes place around a value
hich is at a distance of 𝑂(𝜀) from the 𝑎𝐻 . This means that very close to the bifurcation point 𝑎𝐻 , before the explosion, the cycles

have the characteristics of typical Hopf cycles. This Hopf bifurcation arises only for 𝜀 > 0 and is usually known as a singular Hopf
bifurcation [22,23].

The existence of saddle–node bifurcation of canard cycles in the smooth framework has been analyzed in [3]. There, the authors
consider two different cases, depending whether the Hopf bifurcation where the cycle is born is supercritical or subcritical. Thus,
after proving the existence of the maximal canard, they distinguish two different scenarios:

• Supercritical case: In Theorem 3.3, the authors state the existence of a family of periodic orbits. These periodic orbits can be
stable Hopf-type limit cycles, canard limit cycles or relaxation oscillations. To analyze the stability of the canard limit cycles,
they use the way in-way out function 𝑅(𝑠), which is the limit of the integral of the divergence along the slow manifolds when
𝜀 → 0. In Theorem 3.4, assuming that this function is negative, the authors state that the canard limit cycles of the family are
stable.

• Subcritical case: In Theorem 3.5, the authors state the existence of another family of periodic orbits. The orbits of that family
can be unstable Hopf-type limit cycles, canard limit cycles or relaxation oscillations. Again, to analyze the stability of canard
cycles, they use the way in-way out function 𝑅(𝑠). In Theorem 3.6, assuming that this function has exactly one simple zero at
𝑠 = 𝑠𝑙𝑝,0, the authors state that there exists a function 𝑠𝑙𝑝(

√

𝜀) having limiting point at 𝑠𝑙𝑝,0 when 𝜀 → 0, such that canard limit
cycles are unstable for 𝑠 < 𝑠𝑙𝑝(

√

𝜀) and stable for 𝑠 > 𝑠𝑙𝑝(
√

𝜀).

The concept of the way in-way out function 𝑅(𝑠) used in [3], derives from the idea of the slow divergence integral originally
ntroduced in [1] and used among others, for instance, in [24].

. The piecewise linear system: some preliminaries

In this section we introduce the family of PWL differential systems we are going to work with, together with some basic elements
f their dynamics. We also define some functions and quantities which are needed for stating the main results in the next section.

Let us consider the following family of planar differential systems depending on the four-dimensional parameter 𝜿 = (𝑎, 𝑘, 𝜀, 𝑚),
{

𝑥′ = 𝑦 − 𝑓 (𝑥, 𝑎, 𝑘, 𝜀, 𝑚),
𝑦′ = 𝜀(𝑎 − 𝑥),

(4)

where the prime denotes the derivative with respect to the time 𝑡, (𝑥, 𝑦)𝑇 ∈ R2, 0 < 𝜀 ≪ 1, and the 𝑥-nullcline is defined by the
graph of the continuous PWL function with four segments given by

𝑓 (𝑥, 𝑎, 𝑘, 𝜀, 𝑚) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 + 1 − 𝑘(
√

𝜀 − 1) − 𝑚(
√

𝜀 + 𝑎), if 𝑥 < −1,
−𝑘(𝑥 +

√

𝜀) − 𝑚(
√

𝜀 + 𝑎), if − 1 < 𝑥 ≤ −
√

𝜀,
𝑚(𝑥 − 𝑎), if |𝑥| ≤

√

𝜀,
𝑥 −

√

𝜀 + 𝑚(
√

𝜀 − 𝑎), if 𝑥 >
√

𝜀,

(5)

with 𝑘 > 2
√

𝜀 and |𝑚| < 2
√

𝜀.
Although the system looks like a piecewise linear version of the Van der Pol system (the 𝑥-nullcline profile is cubic-like, see

Fig. 2, and the 𝑦-nullcline profile is a vertical straight line), the fact that in the central region we have a small slope 𝑚 that can take
different signs means that the change of stability of the equilibrium point produces a bifurcation that can be either supercritical or
subcritical. Thus, although in appearance the system resembles a Van der Pol, in behavior it is closer to a FitzHugh–Nagumo, with
the advantage that it has only one equilibrium point located at 𝑥 = 𝑎. Since the slope of the outer segments of the 𝑥-nullcline is
equal 1, the parameter 𝑘 defines the relationship between the slope of the central segment and the slope of the outer ones.

We note that the three-segment fold in function 𝑓 is considered here to allow for a proper canard dynamic around the fold [20],
whereas the fourth segment is considered to allow for a global return that enables the existence of relaxation oscillations.

The PWL character of the vector field (4) allows the phase space to be divided into four regions: the lateral half-planes
𝜎𝐿𝐿 = {(𝑥, 𝑦) ∶ 𝑥 ≤ −1} and 𝜎𝑅 = {(𝑥, 𝑦) ∶ 𝑥 ≥

√

𝜀}, and the central bands 𝜎𝐿 = {(𝑥, 𝑦) ∶ −1 ≤ 𝑥 ≤ −
√

𝜀} and 𝜎𝐶 = {(𝑥, 𝑦) ∶ |𝑥| ≤
√

𝜀},
so that, restricted to these regions the vector field is linear and can be expressed in a matrix way as 𝐹𝑖(𝐱) = 𝐴𝑖𝐱 + 𝐛𝑖 with
𝑖 ∈ {𝐿𝐿,𝐿, 𝐶,𝑅}, being

𝐴𝐿𝐿 =
(

−1 1
−𝜀 0

)

, 𝐴𝐿 =
(

𝑘 1
−𝜀 0

)

, 𝐴𝐶 =
(

−𝑚 1
−𝜀 0

)

, 𝐴𝑅 =
(

−1 1
−𝜀 0

)

, (6)

𝐛𝐿𝐿 =
(

(𝑘 + 𝑚)
√

𝜀 + 𝑚𝑎 − (𝑘 + 1)
𝜀𝑎

)

, 𝐛𝐿 =
(

(𝑘 + 𝑚)
√

𝜀 + 𝑚𝑎
𝜀𝑎

)

, 𝐛𝐶 =
(

𝑚𝑎
𝜀𝑎

)

,

nd

𝐛𝑅 =
(√

𝜀(1 − 𝑚) + 𝑚𝑎
𝜀𝑎

)

.

The local behavior of the flow of system (4) at any of the regions 𝜎𝑖 with 𝑖 ∈ {𝐿𝐿,𝐿, 𝐶,𝑅} is determined by the trace 𝑡𝑖, the
eterminant 𝑑 = 𝜀, the discriminant 𝛥 = 𝑡2 − 4𝜀, the slow eigenvalue 𝜆𝑠, the fast eigenvalue 𝜆𝑞 , the slow eigenvector 𝐯𝑠 = (𝜆𝑠,−𝜀)𝑇
4

𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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Table 1
Significant quantities for the dynamics of system (4) in the lateral half-planes 𝜎𝐿𝐿 and 𝜎𝑅. Point
𝐞𝑖 = −𝐴−1

𝑖 𝐛𝑖 with 𝑖 ∈ {𝐿𝐿,𝑅} is an equilibrium point only when 𝐞𝐿𝐿 ∈ 𝜎𝐿𝐿 or 𝐞𝑅 ∈ 𝜎𝑅.

𝐿𝐿 𝑅

𝑡𝑖 −1 −1
𝛥𝑖 1 − 4𝜀 1 − 4𝜀

𝜆𝑠𝑖
−1+

√

1−4𝜀
2

= −𝜀 − 𝜀2 + 𝑂(𝜀3) −1+
√

1−4𝜀
2

= −𝜀 − 𝜀2 + 𝑂(𝜀3)
𝜆𝑞𝑖 −1 − 𝜆𝑠𝑖 −1 − 𝜆𝑠𝑖

𝐞𝑖
(

𝑎
1 + 𝑘 −

√

𝜀(𝑚 + 𝑘) − 𝑎(𝑚 − 1)

) (

𝑎
(𝑚 − 1)(

√

𝜀 − 𝑎)

)

Table 2
Significant quantities for the dynamics of system (4) in the central bands 𝜎𝐿 and 𝜎𝐶 . Point
𝐞𝑖 = −𝐴−1

𝑖 𝐛𝑖 is an equilibrium point only when 𝐞𝑖 is contained in its own region, that is, 𝐞𝐿 ∈ 𝜎𝐿
or 𝐞𝐶 ∈ 𝜎𝐶 . There is no time-scale separation in the region 𝜎𝐶 because the eigenvalues there
have the same modulus.

𝐿 𝐶

𝑡𝑖 𝑘 −𝑚
𝛥𝑖 𝑘2 − 4𝜀 𝑚2 − 4𝜀

𝜆𝑠𝑖
𝑘−

√

𝑘2−4𝜀
2

= 𝜀
𝑘
+ 𝜀2

𝑘3
+ 𝑂(𝜀3)

− 𝑚
2
±

√

4𝜀−𝑚2

2
i𝜆𝑞𝑖 𝑘 − 𝜆𝑠𝑖

𝐞𝑖
(

𝑎
−(𝑚 + 𝑘)(

√

𝜀 + 𝑎)

) (

𝑎
0

)

and the fast eigenvector 𝐯𝑞𝑖 = (𝜆𝑞𝑖 ,−𝜀)
𝑇 of the matrix 𝐴𝑖, and by the location of the point 𝐞𝑖 = −𝐴−1

𝑖 𝐛𝑖. We summarize all these
ignificant quantities in Tables 1 and 2.

We remark that 𝐞𝑖 are equilibrium points only when they are located in the region where the system (4) behaves as the linear
ystem 𝐅𝑖(𝐱) = 𝐴𝑖𝐱 + 𝐛𝑖.

From Lemma 4 in [25], the canonical slow manifold 𝑆𝜀 of system (4), with 0 < 𝜀 ≪ 1, is locally formed by segments, each
f them contained in a region 𝜎𝑖 with 𝑖 ∈ {𝐿𝐿,𝐿,𝑅} and defined by the slow eigenvector 𝐯𝑠𝑖 = (𝜆𝑠𝑖 ,−𝜀)

𝑇 associated to the slow
igenvalue 𝜆𝑠𝑖 . Hence,

𝑆𝜀 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜇𝐿𝐿 = 𝐞𝐿𝐿 + 𝑟𝐯𝑠𝐿𝐿 𝑟 ∈
[

− 1+𝑎
𝜆𝑠𝐿𝐿

,+∞
)

,

𝜇𝐿 = 𝐞𝐿 − 𝑟𝐯𝑠𝐿 𝑟 ∈
[

√

𝜀+𝑎
𝜆𝑠𝐿

, 1+𝑎𝜆𝑠𝐿

]

,

𝜇𝑅 = 𝐞𝑅 − 𝑟𝐯𝑠𝑅 𝑟 ∈
[

𝑎−
√

𝜀
𝜆𝑠𝑅

,+∞
)

.

(7)

ince |𝑚| < 2
√

𝜀, the matrix 𝐴𝐶 has complex eigenvalues with modulus equal to
√

𝜀, see Table 2. Therefore, in region 𝜎𝐶 there is not
a real splitting between fast and slow behavior at the level of the eigenvalues. Consequently, there is no branch of the slow manifold
contained in this region. On the contrary, the orbits flow along this region following in a completely regular way the continuation
of the attracting branch of the slow manifold 𝜇𝑅.

The region 𝜎𝐶 can be viewed as the domain where the Fenichel theory cannot be extended. In the smooth context, such a region
is considered the blow up region, and has size 𝑂(

√

𝜀), see Section 3.2 in [3]. From this, we fix the size of the central region in the
definition of 𝑓 to be 𝑂(

√

𝜀), see (5), and consider the region 𝜎𝐶 as a blow-up of the corner appearing in the graph of 𝑓 for 𝜀 = 0.
We conclude that 𝑆𝑎

𝜀 = 𝜇𝐿𝐿 ∪ 𝜇𝑅 and 𝑆𝑟
𝜀 = 𝜇𝐿 are the attracting branch and the repelling branch, respectively, of the canonical

slow manifold 𝑆𝜀. Moreover, the attracting branch 𝑆𝑎
𝜀 intersects with the switching lines {𝑥 = −1} and {𝑥 =

√

𝜀} at the points

𝐪𝐿𝐿1 =
(

−1
−𝜆𝑠𝐿𝐿(1 + 𝑎) − 𝑘(

√

𝜀 − 1) − 𝑚(
√

𝜀 + 𝑎)

)

, 𝐪𝑅1 =

(

√

𝜀
(𝑚 + 𝜆𝑠𝑅)(

√

𝜀 − 𝑎)

)

, (8)

respectively, see Fig. 2, whereas the repelling branch 𝑆𝑟
𝜀 intersects the switching lines {𝑥 = −1} and {𝑥 = −

√

𝜀} at the points

𝐪𝐿0 =

(

−
√

𝜀
−(𝑚 + 𝜆𝑠𝐿)(

√

𝜀 + 𝑎)

)

, 𝐪𝐿1 =
(

−1
−(𝑚 + 𝑘)(

√

𝜀 + 𝑎) + (1 + 𝑎)𝜆𝑞𝐿

)

, (9)

respectively. We also highlight the intersection points of the 𝑥-nullcline with the switching lines {𝑥 = −1}, {𝑥 = −
√

𝜀} and {𝑥 =
√

𝜀},

𝐩𝐿𝐿 =
(

−1
𝑘(1 −

√

𝜀) − 𝑚(
√

𝜀 + 𝑎)

)

, 𝐩𝐿 =

(

−
√

𝜀
−𝑚(

√

𝜀 + 𝑎)

)

, 𝐩𝑅 =

(

√

𝜀
𝑚(

√

𝜀 − 𝑎)

)

, (10)
5

espectively. We note that except at these points, where the flow is tangent, the flow is transverse to the switch lines.
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Fig. 2. Representation of the dynamical objects of system (4). Linearity regions 𝜎𝐿𝐿 , 𝜎𝐿 , 𝜎𝐶 and 𝜎𝑅 and switching lines {𝑥 = −1}, {𝑥 = −
√

𝜀} and {𝑥 =
√

𝜀}. The
fast nullcline given by the graph of the function 𝑦 = 𝑓 (𝑥, 𝑎, 𝑘, 𝜀, 𝑚) and the intersection points with the switching lines 𝐩𝐿𝐿 ,𝐩𝐿 and 𝐩𝑅. The slow nullcline 𝑥 = 𝑎
and the equilibrium point at the intersection with the fast nullcline. Canonical slow manifold 𝑆𝜀 with the attracting branch 𝑆𝑎

𝜀 = 𝜇𝐿𝐿 ∪ 𝜇𝑅, the repelling branch
𝑆𝑟
𝜀 = 𝜇𝐿, and the intersection points with the switching lines 𝐪𝐿𝐿1 ,𝐪𝑅1 and 𝐪𝐿0 ,𝐪

𝐿
1 , respectively. Headless canard limit cycle 𝛤𝑥0 with 𝑥0 ∈ (−1,−

√

𝜀), canard limit
cycle with head 𝛤𝑥1 with 𝑥1 < −1, and maximal canard trajectory connecting the points 𝐪𝑅1 and 𝐪𝐿0 .

Every limit cycle 𝛤 of system (4) intersects the 𝑥-nullcline (𝑥, 𝑓 (𝑥, 𝑎, 𝑘, 𝜀, 𝑚)) at exactly one point (𝑥𝛤 , 𝑓 (𝑥𝛤 , 𝑎, 𝑘, 𝜀, 𝑚)) with 𝑥𝛤 < 𝑎.
e call width of the limit cycle 𝛤 , to the first coordinate of this intersection point, that is 𝑥𝛤 .
One special limit cycle, assuming that it exists, is the one having width 𝑥𝛤 = −1. Such a limit cycle is tangent to the switching

ine {𝑥 = −1} at the point 𝐩𝐿𝐿, and therefore, it is the separation cycle between the limit cycles intersecting the lateral region 𝜎𝐿𝐿
nd those that do not intersect it. In a similar way, the limit cycle having width 𝑥𝛤 = −

√

𝜀 is tangent at 𝐩𝐿 to the switching line
{𝑥 = −

√

𝜀} and it is the separation cycle between the limit cycles intersecting the region 𝜎𝐿 and those that do not intersect it.
When 𝜀 is small enough, canard limit cycles 𝛤 with width 𝑥𝛤 > −1 will be referred to as headless canard cycles, whereas canard

imit cycles with width 𝑥𝛤 < −1 will be referred to as canard cycles with head. Therefore, the limit cycle with width 𝑥𝛤 = −1 will
e referred as the transitory canard, see [26], and it is the boundary between headless canard cycles and canard cycles with head.

In addition, every limit cycle 𝛤 where 𝑥𝛤 < −1, intersects the separation line {𝑥 = −1} at two points. Let (−1, ℎ) be the one
elow the point 𝐩𝐿𝐿, see Fig. 2. Moreover, every limit cycle, 𝛤 with 𝑥𝛤 ∈ (−1,−

√

𝜀), intersects the separation line {𝑥 = −
√

𝜀} also
at two points. Let (−

√

𝜀, ℎ) be the one over the point 𝐩𝐿. We refer to ℎ as the height of the limit cycle 𝛤 .
Therefore, any limit cycle can be labeled by the two different quantities that we have denoted by the width and by the height.

Let 𝛷 be the piecewise function which maps the width 𝑥 of a limit cycle into its height ℎ, i.e.

ℎ = 𝛷(𝑥) =
{

𝛷3𝑧(𝑥) if 𝑥 ∈ [−1,−
√

𝜀),
𝛷4𝑧(𝑥) if 𝑥 < −1,

(11)

where 𝛷3𝑧 is defined by the flow of the linear system in the region 𝜎𝐿, and 𝛷4𝑧 is defined by the flow, backward in time, of the linear
system in the region 𝜎𝐿𝐿. Therefore, through ℎ = 𝛷(𝑥) we can pass from the width 𝑥 of a limit cycle 𝛤 to its height ℎ. Typically,
the height ℎ is more convenient for computational purposes, whereas the width 𝑥 is more convenient for stating the results.

To analyze the stability of the canard limit cycles in the PWL framework, it is not possible to use the same approach that it is
used in the smooth context, since the singularity of the reduced flow cannot be removed through the desingularization process [3].
In fact, the reduced Eq. (3) associated to the system (4) writes as

�̇� =
{ 𝑥

𝑘 𝑥 < 0,
−𝑥 𝑥 > 0,

where the equilibrium point at 𝑥 = 0 persists after regularization. Therefore, the analysis of the stability of limit cycles through
techniques based on the singular flow, such as the way-in/way-out function, [3,11], or the slow divergence integral, see [5,26] and
references therein, cannot be successfully applied in this context. Nevertheless, this analysis can be performed directly when 𝜀 > 0
in the PWL context, by explicitly computing the integral of the divergence as the sum of the products of the traces of the linear
systems and the time taken by the orbit to travel from one switching line to the next one (time of flight) along a region of linearity,
see [27,28].
6
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4. Statement of the main results

In this section we present the main results of the article. These results concern to the existence of a one parameter family of
anard limit cycles in PWL system (4), and to the description about how this family organizes along a curve in the plane (𝑥, 𝑎),
here 𝑥 is the width of the canard limit cycle and 𝑎 is the parameter value. The results also provide information about the stability
f the limit cycles, paying special attention to semi-stable ones. We note that, for simplicity, we limit all the following analysis to
he values of the parameter |𝑚| < 2

√

𝜀, given by 𝑚 = −
√

𝜀 (for the supercritical case) and by 𝑚 =
√

𝜀 (for the subcritical case). We
suggest that the overall scenario 𝑚 = 𝐶

√

𝜀 with 0 < |𝐶| < 2 would not substantially differ from the one presented here, except for
the expressions appearing in the ensuing outcomes. Finally, we also note that in order to be fluid in the exposition, the proofs and
their technical issues are left for next sections.

In the first result we assure that the starting point of the curve organizing the family of limit cycles exhibited by system (4) takes
place at a Hopf-like bifurcation [28]. At this bifurcation, a limit cycle appears after the change of stability of the singular point, just
like in the Hopf bifurcation. Nevertheless, in the Hopf-like bifurcation, the change of the stability occurs because the equilibrium
point changes the region at which it is located. This results in differences between both bifurcations, particularly in the relationship
between the amplitude of the limit cycle and the bifurcation parameter. Whereas in the Hopf-like bifurcation, it is linear, in the
Hopf bifurcation, it is the square root.

The proof of the following result is a straightforward conclusion of Theorems 5.1 and 5.2 in [29], see also [28,30,31], and figures
therein.

Theorem 4.1 (Hopf-like Bifurcation). System (4) has a unique singular point 𝐞 = (𝑎, 𝑓 (𝑎)), which converges to the corner of the critical
manifold at the origin as (𝜀, 𝑎) tends to zero. Moreover, assume that 𝑚 = ±

√

𝜀, then the equilibrium changes its stability through a Hopf-like
ifurcation as 𝑎 passes through 𝑎 = −𝑚. In particular, when 𝜀 > 0 is sufficiently small, if 𝑚 = −

√

𝜀, a stable limit cycle appears in a
supercritical bifurcation when 𝑎 < −𝑚, and if 𝑚 =

√

𝜀, an unstable limit cycle appears in a subcritical bifurcation when 𝑎 > −𝑚. In both
cases, the amplitude of the limit cycle depends linearly on the distance |𝑚 + 𝑎|.

Next theorem is devoted to the existence of a trajectory connecting the attracting branch and the repelling branch of the slow
anifold. This connection is usually referred to as the maximal canard trajectory, see the piece of trajectory connecting the points
𝑅
1 and 𝐪𝐿0 in Fig. 2.

heorem 4.2 (Maximal Canard Trajectory). Let us consider system (4) with 𝑚 = 𝑠
√

𝜀 and 𝑠 = ±1, and let 𝐪𝑅1 and 𝐪𝐿0 be the points given
in (8) and (9), respectively. There exist a value 0 < 𝜇 ≪ 1 and two analytic functions 𝐴𝑆 and 𝜂𝑆 defined in 𝑈 = (0,+∞) × (−𝜇, 𝜇) such
hat, if 0 < 𝜀 < 𝜇2 and 𝑎 = 𝑎𝑆 (𝑘, 𝜀;𝑚) ∶=

√

𝜀𝐴𝑆 (𝑘,
√

𝜀; 𝑠), then the orbit of system (4) starting at the point 𝐪𝑅1 reaches the switching line
{𝑥 = −

√

𝜀} at the point 𝐪𝐿0 with the time of flight 𝜏𝑆𝐶 (𝑘, 𝜀;𝑚) ∶= 𝜂𝑆 (𝑘,
√

𝜀; 𝑠)∕
√

𝜀 > 0. In addition, the first terms of the expansions of 𝑎𝑆
and 𝜏𝑆𝐶 in terms of

√

𝜀 are given by

𝑎𝑆 (𝑘, 𝜀;𝑚) = −𝑠 𝑒
𝜋
√

3 − 1

𝑒
𝜋
√

3 + 1

√

𝜀 − 𝑒
𝜋
√

3

(

𝑒
𝜋
√

3 + 1
)2

(

1 − 𝑘2

𝑘2

)

𝜀3∕2 + 𝑂(𝜀2) (12)

and

𝜏𝑆𝐶 (𝑘, 𝜀;𝑚) =
2𝜋
√

3

1
√

𝜀
− 1 + 𝑘

𝑘
+ 𝑠 1 − 𝑘2

2𝑘2
√

𝜀 + 𝑂(𝜀). (13)

The existence of the maximal canard trajectory, together with the divergence of the flow in a neighborhood of the canonical
slow manifold, provide the arguments that we use in Section 5 to prove the following result about the existence of canard limit
cycles, both with and without head (see Fig. 2), of any suitable width. To state the result in a proper way we introduce, by means
of the function 𝑎𝑆 (𝑘, 𝜀;𝑚) defined in Theorem 4.2, the following values

𝑥𝑟 = 𝑎𝑆 −
2(1 + 𝑎𝑆 )
1 + 𝜀| ln(𝜀)|

, 𝑥𝑠 = −
√

𝜀 −

(

(

1 + 1
| ln 𝜀|

)1∕𝑘
− 1

)

(
√

𝜀 + 𝑎𝑆 ). (14)

These values correspond with the end points of the interval such that limit cycles having width contained in (𝑥𝑟, 𝑥𝑠) are canard limit
cycles, see Lemma A.1. In fact, limit cycles having width 𝑥 < 𝑥𝑟 are relaxation oscillations whereas limit cycles having width 𝑥 > 𝑥𝑠
are still under the effect of the Hopf-like bifurcation.

Theorem 4.3 (Existence of Canard Limit Cycles). Let us fix 𝜀0 > 0 sufficiently small and let us consider 𝑚 = 𝑠
√

𝜀 with 𝑠 = ±1, and
𝑥𝑟 and 𝑥𝑠 as given in (14) for 𝜀 ∈ (0, 𝜀0). There exists a function 𝑎𝑁 (𝑘, 𝜀, 𝑥0;𝑚), 𝐶∞ function of (𝑘,

√

𝜀, 𝑥0), defined in the open set
= (0,+∞) × (0, 𝜀0) × (𝑥𝑟, 𝑥𝑠) such that, for (𝑘, 𝜀, 𝑥0) ∈ 𝑈 and 𝑎 = 𝑎𝑁 (𝑘, 𝜀, 𝑥0;𝑚) system (4) possesses a canard limit cycle, 𝛤𝑥0 , passing

hrough (𝑥 , 𝑓 (𝑥 )). The canard limit cycle is headless if 𝑥 ∈ (−1, 𝑥 ) and with head if 𝑥 ∈ (𝑥 ,−1). Moreover, the following relations
7

0 0 0 𝑠 0 𝑟



Nonlinear Analysis: Hybrid Systems 52 (2024) 101472V. Carmona et al.
Fig. 3. Representation of the supercritical canard explosion. Width of limit cycles of system (4) versus the parameter 𝑎, in the supercritical case 𝑚 = −
√

𝜀. The
dotted line in all panels corresponds with the width of the transitory canard, i.e. the boundary between headless canard cycles and canard cycles with head.
Moreover, shaded parts of the curves refer to the regions where the sign of the functions 𝑅3𝑧 and 𝑅4𝑧 do not guarantee the stability of the limit cycle. In
panels (a) and (b) we represent the cases where 𝑘 < 1 and 𝑘 = 1, respectively. In these cases, the limit cycle appearing after the supercritical bifurcation at 𝑎𝐻
exhibits a canard explosion. Panel (c) corresponds with the case 𝑘 > 1. Here, two saddle nodes of width 𝑥1 < 𝑥2, take place at the values 𝑎1𝑠𝑛 < 𝑎2𝑠𝑛 after the Hopf
bifurcation at 𝑎𝐻 .

hold

|𝑎𝑁 (𝑘, 𝜀, 𝑥0;𝑚) − 𝑎𝑆 (𝑘, 𝜀;𝑚)| = 𝑂

(

|𝑥0 − 𝑎𝑆 |
𝑘𝑒−

|𝑥0−𝑎𝑆 |

𝑘

𝜀1+𝑘∕2

)

𝑥0 ∈ [−1, 𝑥𝑠),

|𝑎𝑁 (𝑘, 𝜀, 𝑥0;𝑚) − 𝑎𝑆 (𝑘, 𝜀;𝑚)| = 𝑂
⎛

⎜

⎜

⎝

|𝑥0 + 1|𝑒
− 𝑘

𝜀 ln
(

1+𝑎𝑆
√

𝜀+𝑎𝑆

)

⎞

⎟

⎟

⎠

𝑥0 ∈ (𝑥𝑟,−1),

(15)

where the function 𝑎𝑆 defined in Theorem 4.2.

The preceding result describes the canard explosion taking place in the PWL framework. There, it can be observed that the slope
of the explosion is different before and after the transitory canard taking place at 𝑥 = −1.

In the next result we establish the stability of the canard limit cycles obtained in the previous theorem. To do this, we compute
a piecewise smooth function

𝑅(𝑥) =
{

𝑅3𝑧(𝑥) 𝑥 ∈ [−1, 𝑥𝑠),
𝑅4𝑧(𝑥) 𝑥 ∈ (𝑥𝑟, 𝑥𝑢),

where

𝑥𝑢 = −1 −
(

1
| ln(𝜀)|

− 𝜀
)

(1 + 𝑎𝑆 ), (16)

(see Lemma A.1), 𝑎𝑆 is defined in Theorem 4.2, and functions 𝑅3𝑧(𝑥) and 𝑅4𝑧(𝑥) are given in (28) and (30), respectively. The function
𝑅 approximates the integral of the divergence along the limit cycle 𝛤𝑥, and uses the sign of this function to conclude the stability
of 𝛤𝑥. Nevertheless, this approach does not produce accurate results if the canard limit cycle is close to the transitory canard, the
one having width 𝑥 = −1. The interval where the sign of 𝑅(𝑥) does not provide the stability of the canard limit cycles is given by
(𝑥𝑢,−1). We organize the results into two theorems depending on whether the Hopf-like bifurcation is supercritical or subcritical.
We illustrate the Theorems with Figs. 3 and 4.

Theorem 4.4. Set 𝜀0 > 0 sufficiently small and let us consider 𝑚 = −
√

𝜀, 𝑥𝑟 and 𝑥𝑠 as given in (14), 𝑥𝑢 as given in (16) for 𝜀 ∈ (0, 𝜀0)
and 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢)∪[−1, 𝑥𝑠). Take 𝛤𝑥0 the canard limit cycle of system (4) whose existence has been proved in Theorem 4.3 for the parameter
value 𝑎 = 𝑎𝑁 (𝑘, 𝜀, 𝑥0;𝑚). The following statements hold:

(a) For 𝑘 ≤ 1, the canard limit cycle 𝛤𝑥0 is hyperbolic and stable.
(b) For 𝑘 > 1 and 0 < 𝜀 < 𝜀0 small enough, there exist exactly two values 𝑥1 ∈ (−1, 𝑥𝑠) and 𝑥2 ∈ (𝑥𝑟, 𝑥𝑢) such that the canard limit cycle

𝛤𝑥0 is hyperbolic and stable if 𝑥0 ∈ (𝑥𝑟, 𝑥2) ∪ (𝑥1, 𝑥𝑠), hyperbolic and unstable if 𝑥0 ∈ (𝑥2, 𝑥𝑢) ∪ (−1, 𝑥1), and a saddle–node canard
cycle if 𝑥0 = 𝑥1 and 𝑥0 = 𝑥2.

Remark 4.5. From Theorem 4.4, it could be concluded that any canard cycle 𝛤𝑥0 loses its stability when the parameter 𝑘 increases
and passes 𝑘 = 1. However, this is not the case; unstable canard orbits (those with 𝑥0 in the interval (𝑥1, 𝑥2)) appear only for fixed
𝑘 > 1 and 𝜀 sufficiently small, i.e. less than a value that depends on the parameter 𝑘.

Theorem 4.6. Set 𝜀0 > 0 small enough and let us consider 𝑚 =
√

𝜀, 𝑥𝑟 and 𝑥𝑠 as given in (14), 𝑥𝑢 as given in (16) for 𝜀 ∈ (0, 𝜀0), and
𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) ∪ [−1, 𝑥𝑠). Let 𝛤𝑥0 be the canard limit cycle of system (4) whose existence has been proved in Theorem 4.3 for the parameter
value 𝑎 = 𝑎 (𝑘, 𝜀, 𝑥 ;𝑚). The following statements hold:
8

𝑁 0
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Fig. 4. Representation of the subcritical canard explosion. Width of limit cycles of system (4), versus the parameter 𝑎, in the subcritical case 𝑚 =
√

𝜀. The dotted
line in all panels corresponds with the transitory canard cycle with width 𝑥 = −1. Moreover, shaded parts of the curves refer to the regions where the sign of
the functions 𝑅3𝑧 and 𝑅4𝑧 do not guarantee the stability of the limit cycle. In panels (a) and (b) we represent the cases where 𝑘 < 1 and 𝑘 = 1, respectively,
and in panel (c) we represent the case 𝑘 > 1.

(a) For 𝑘 < 1, there exists exactly one value 𝑥1 ∈ (−1, 𝑥𝑠) such that 𝛤𝑥0 is a hyperbolic limit cycle, if 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) ∪ (−1, 𝑥𝑠) ⧵ {𝑥1}, and
a saddle–node canard cycle, if 𝑥0 = 𝑥1. Moreover, 𝛤𝑥0 is stable if 𝑥0 < 𝑥1 and unstable if 𝑥0 > 𝑥1.

(b) For 𝑘 = 1, the canard limit cycle 𝛤𝑥0 is hyperbolic and stable if 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) and hyperbolic and unstable if 𝑥0 ∈ (−1, 𝑥𝑠).
(c) For 𝑘 > 1, there exists exactly one value 𝑥2 ∈ (𝑥𝑟, 𝑥𝑢) such that 𝛤𝑥0 is hyperbolic, if 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) ∪ (−1, 𝑥𝑠) ⧵ {𝑥2}, and a saddle–node

canard cycle, if 𝑥0 = 𝑥2. Moreover, 𝛤𝑥0 is stable if 𝑥0 < 𝑥2 and unstable if 𝑥0 > 𝑥2.

In the last main result, we state that for every width between the smallest canard cycle and the relaxation oscillation cycle, that
is, for every 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) ∪ [−1, 𝑥𝑠), there exist values of the parameters such that system (4) exhibits a saddle–node canard limit
cycle 𝛤𝑥0 of width 𝑥0. We refer to Section 5.4 and Fig. 9 for a description of this result.

Theorem 4.7. Set 𝜀0 > 0 small enough and let us consider 𝑚 = 𝑠
√

𝜀 with 𝑠 = ±1, 𝑥𝑟 and 𝑥𝑠 as given in (14), 𝑥𝑢 as given in (16) for
𝜀 ∈ (0, 𝜀0), and 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) ∪ [−1, 𝑥𝑠). There exist a value 𝜀1 and a function 𝑘𝑥0 (𝜀) defined for 𝜀 ∈ (0, 𝜀1), such that system (4) with
parameters 𝑘 = 𝑘𝑥0 (𝜀) and 𝑎 = 𝑎𝑁 (𝑘𝑥0 (𝜀), 𝜀, 𝑥0;𝑚) exhibits the saddle–node canard 𝛤𝑥0 whose existence has been stated in Theorem 4.4 for
𝑚 = −

√

𝜀 and in Theorem 4.6 for 𝑚 =
√

𝜀, respectively.

5. Proofs of the main results

Let us begin by introducing some notation. For chosen parameters 𝜿 = (𝑎, 𝑘, 𝜀, 𝑚), and a point 𝐩 ∈ R2, we denote by

𝜑(𝑡;𝐩,𝜿) = (𝑥(𝑡;𝐩,𝜿), 𝑦(𝑡;𝐩,𝜿))

the solution of system (4) with initial condition 𝜑(0;𝐩,𝜿) = 𝐩. The coordinates of 𝜑(𝑡;𝐩,𝜿) will be referred to as 𝑥𝑖(𝑡;𝐩,𝜿) and
𝑦𝑖(𝑡;𝐩,𝜿), with 𝑖 ∈ {𝐿𝐿,𝐿, 𝐶,𝑅}, depending on the region where the solution belongs to, for that value of 𝑡.

First, we proceed to prove Theorem 4.2.

5.1. Proof of Theorem 4.2

The existence of the maximal canard solution reduces to the existence of an orbit connecting points 𝐪𝑅1 and 𝐪𝐿0 , see Fig. 2. The
set of conditions characterizing this connection is given by the existence of two values 𝜏𝑆𝐶 > 0 and 𝑎𝑆 ∈ R, depending on 𝑘, 𝑚 = 𝑠

√

𝜀
and 𝜀 such that the following conditions hold:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹1(𝜏𝑆𝐶 , 𝑎𝑆 , 𝑘, 𝜀; 𝑠) = 0,

𝐹2(𝜏𝑆𝐶 , 𝑎𝑆 , 𝑘, 𝜀; 𝑠) = 0,

𝐹1(𝑡, 𝑎𝑆 , 𝑘, 𝜀; 𝑠) ∈
(

0, 2
√

𝜀
)

for all 𝑡 ∈ (0, 𝜏𝑆𝐶 ),

(17)

where 𝑚 = 𝑠
√

𝜀, 𝑠 = ±1, 0 < 𝜀 ≪ 1, 𝑘 > 0, |𝑎𝑆 | <
√

𝜀, and the functions 𝐹1 and 𝐹2 are given by
{

𝐹1(𝜏, 𝑎, 𝑘, 𝜀; 𝑠) = 𝑥𝐶 (𝜏;𝐪𝑅1 , 𝑎, 𝑘, 𝜀, 𝑠) +
√

𝜀,
𝐶 𝑅 𝑠 √ √ (18)
9

𝐹2(𝜏, 𝑎, 𝑘, 𝜀; 𝑠) = 𝑦 (𝜏;𝐪1 , 𝑎, 𝑘, 𝜀, 𝑠) + (𝜆𝐿 − 𝜀)( 𝜀 + 𝑎),
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being 𝑥𝐶 and 𝑦𝐶 are the solution of the linear differential system defined in the central band 𝜎𝐶 , given by,

𝑥𝐶 (𝜏;𝐪𝑅1 , 𝑎, 𝑘, 𝜀, 𝑠) =

𝑒−𝑠
√

𝜀
2 𝜏 (

√

𝜀 − 𝑎)
√

3

((

2𝜆𝑠𝑅
√

𝜀
+ 𝑠

)

sin

(
√

3𝜀
2

𝜏

)

+
√

3 cos

(
√

3𝜀
2

𝜏

))

+ 𝑎,

𝑦𝐶 (𝜏;𝐪𝑅1 , 𝑎, 𝑘, 𝜀, 𝑠) =

𝑒−𝑠
√

𝜀
2 𝜏 (

√

𝜀 − 𝑎)
√

3

(

(

𝜆𝑠𝑅 + 𝑠
√

𝜀
)
√

3 cos

(
√

3𝜀
2

𝜏

)

+
(

𝑠 𝜆𝑠𝑅 −
√

𝜀
)

sin

(
√

3𝜀
2

𝜏

))

.

(19)

The change of variables

(𝜏, 𝑎, 𝑘, 𝜀; 𝑠) =
(

𝜂𝛿−1, 𝐴𝛿, 𝑘, 𝛿2; 𝑠
)

, (20)

valid for 𝜀, 𝛿 > 0, allows to write the system 𝐹1 = 0 and 𝐹2 = 0 into the equivalent form 𝛿𝐺1(𝜂, 𝐴, 𝑘, 𝛿; 𝑠) = 0 and 𝛿2𝐺2(𝜂, 𝐴, 𝑘, 𝛿; 𝑠) = 0,
where 𝐺1 and 𝐺2 are given by

𝐺1(𝜂, 𝐴, 𝑘, 𝛿; 𝑠) =

3(𝐴 + 1) + (𝐴 − 1)𝑒−𝑠𝜂∕2

⎛

⎜

⎜

⎜

⎜

⎝

−3 cos

(
√

3𝜂
2

)

+

√

3(−2𝑠 + 5𝛿) sin
(

√

3𝜂
2

)

1 − 𝑠𝛿 +
√

1 − 4𝛿2

⎞

⎟

⎟

⎟

⎟

⎠

,

𝐺2(𝜂, 𝐴, 𝑘, 𝛿; 𝑠) =

3(1 + 𝐴)(𝑘 + 2𝑠𝛿)

𝑠𝑘 + 2𝛿 + 𝑠
√

𝑘2 − 4𝛿2
+ (𝐴 − 1)𝑒−𝑠𝜂∕2

⎛

⎜

⎜

⎜

⎜

⎝

3(−𝑠 + 2𝛿) cos
(

√

3𝜂
2

)

1 − 2𝑠𝛿 +
√

1 − 4𝛿2
+

√

3(𝑠 + 2𝛿) sin
(

√

3𝜂
2

)

𝑠 + 2𝛿 + 𝑠
√

1 − 4𝛿2

⎞

⎟

⎟

⎟

⎟

⎠

.

Since systems (𝐹1, 𝐹2) = (0, 0) and

𝐸𝑞(𝜂, 𝐴, 𝑘, 𝛿; 𝑠) ∶= (𝐺1(𝜂, 𝐴, 𝑘, 𝛿; 𝑠), 𝐺2(𝜂, 𝐴, 𝑘, 𝛿; 𝑠)) = (0, 0), (21)

are equivalent for 𝛿 =
√

𝜀 > 0, from now on, we will find solutions for the second one.
From straightforward computations, it follows that the points

(𝜂0, 𝐴0, 𝑘0, 𝛿0; 𝑠) = (2𝜋∕
√

3,∓(𝑒
𝜋
√

3 − 1)∕(𝑒
𝜋
√

3 + 1), 𝑘, 0; ±1)

are solutions of system (𝐺1, 𝐺2) = (0, 0). Since the partial derivatives in (𝜂0, 𝐴0, 𝑘0, 𝛿0; 𝑠) are

𝜕𝐺1
𝜕𝜂

= 0,
𝜕𝐺1
𝜕𝐴

= 3(1 + 𝑒
−𝑠 𝜋

√

3 ),

𝜕𝐺2
𝜕𝜂

= 3

1 + 𝑒
𝑠 𝜋
√

3

,
𝜕𝐺2
𝜕𝐴

= 3
2

(

1 + 𝑒
−𝑠 𝜋

√

3

)

,

the determinant of the Jacobian matrix is

det(𝐷𝜂,𝐴𝐺(𝜂0, 𝐴0, 𝑘0, 𝛿0; 𝑠)) =

|

|

|

|

|

|

|

|

|

𝜕𝐺1
𝜕𝜂

(𝜂0, 𝐴0, 𝑘0, 𝛿0; 𝑠)
𝜕𝐺1
𝜕𝐴

(𝜂0, 𝐴0, 𝑘0, 𝛿0; 𝑠)

𝜕𝐺2
𝜕𝜂

(𝜂0, 𝐴0, 𝑘0, 𝛿0; 𝑠)
𝜕𝐺2
𝜕𝐴

(𝜂0, 𝐴0, 𝑘0, 𝛿0; 𝑠)

|

|

|

|

|

|

|

|

|

=

−9𝑒
−𝑠 𝜋

√

3 ≠ 0.

(22)

Thus, from the Implicit Function Theorem we conclude that there exist a value 𝜇 > 0 and functions 𝐴𝑆 (𝑘, 𝛿; 𝑠) and 𝜂𝑆 (𝑘, 𝛿; 𝑠), ana-
ytic as a function of (𝑘, 𝛿), respectively, defined in the open set 𝑈 = (0,+∞)×(−𝜇, 𝜇) and such that 𝐸𝑞(𝜂𝑆 (𝑘, 𝛿; 𝑠), 𝐴𝑆 (𝑘, 𝛿; 𝑠), 𝑘, 𝛿; 𝑠) =
0, 0).

Therefore, the existence of the functions 𝜏𝑆𝐶 and 𝑎𝑆 are guaranteed by undoing the change of variable (20). Moreover, the lower
rder terms in

√

𝜀 of such a solution coincides with those in the expression (12)–(13). The remainder terms in this approximated
solution can be obtained by the method of the undetermined coefficients.

Finally, since the angle traveled by the solution from 𝐪𝑅1 to 𝐪𝐿0 satisfies that
√

3𝜀𝜏𝑆𝐶 (𝑘, 𝜀;𝑚)∕2 < 𝜋, and |𝑎𝑆 (𝑘, 𝜀;𝑚)| <
√

𝜀, it
follows that the inequality in third expression in (17) is fulfilled. Therefore, we conclude that for 𝑎 = 𝑎𝑆 (𝑘, 𝜀;𝑚) system (4) exhibits
n orbit connecting the slow manifolds with time of flight equal to 𝜏𝑆𝐶 (𝑘, 𝜀;𝑚) > 0.

Next, we provide the proof of Theorem 4.3.
10
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5.2. Proof of Theorem 4.3

We begin with the proof for the headless canard limit cycles. Consider a point (𝑥0, 𝑓 (𝑥0)) with 𝑥0 ∈ (−1, 𝑥𝑠), and the orbit 𝛤𝑥0
hrough this point, see Fig. 2. By integrating both forward and backward in time, the orbit targets the switching line {𝑥 = −

√

𝜀} at
two points, respectively,

(

−
√

𝜀
ℎ

)

, 𝐩0 = 𝐪𝐿0 +

(

0

ℎ𝑒
− 𝑘ℎ

𝜀(
√

𝜀−𝑎)

)

.

The expression of 𝐩0 follows from Lemma A.2, since ℎ = 𝛷3𝑧(𝑥0) > ℎ𝑠 provided that 𝑥0 ∈ (−1, 𝑥𝑠), see Lemma A.1. Moreover, 𝛤𝑥0
lso intersects forward in time the switching line {𝑥 =

√

𝜀} at the two points

𝐩 =
( √

𝜀
ℎ + 𝑂(𝜀2)

)

, 𝐩1 = 𝐪𝑅1 +

(

0

(ℎ + 𝑂(𝜀2))𝑒
− ℎ

𝜀(
√

𝜀−𝑎)

)

,

where the expression of 𝐩1 follows from Lemma A.2. The ordinate of the previous point 𝐩 follows by taking into account that the
𝑦-coordinate of the solutions increases while 𝑥 ∈ (−

√

𝜀, 𝑎) and decreases while 𝑥 ∈ (𝑎,
√

𝜀).
The conditions for 𝛤𝑥0 to be a limit cycle require the existence of parameter values 𝜿 = (𝑎, 𝑘, 𝜀, 𝑚) such that the solution of the

inear system in the central band 𝜎𝐶 , with an initial condition at 𝐩1, reaches the switching line 𝑥 = −
√

𝜀 at point 𝐩0 for the first
ime. In other words, 𝑒𝜏𝐴𝐶 (𝐩1 − 𝐞𝐶 ) + 𝐞𝐶 − 𝐩0 = 𝟎, where 𝛽𝜏 < 𝜋, with 𝐴𝐶 being the matrix defined in (6), and 𝛽 representing the
maginary part of the complex eigenvalue of 𝐴𝐶 . By substituting the values of 𝐩0 and 𝐩1, the previous equation writes as

𝑒𝜏𝐴𝐶 (𝐪𝑅1 − 𝐞𝐶 ) + 𝐞𝐶 − 𝐪𝐿0 + 𝑒𝜏𝐴𝐶

(

0

(ℎ + 𝑂(𝜀2))𝑒
− ℎ

𝜀(
√

𝜀−𝑎)

)

−

(

0

ℎ𝑒
− 𝑘ℎ

𝜀(
√

𝜀−𝑎)

)

= 𝟎. (23)

erforming the change of variables given in (20) and multiplying by the matrix

𝑀𝛿 =

(

1
𝛿 0
0 1

𝛿2

)

,

we obtain that expression (23) writes as 𝐸𝑝(𝜂, 𝐴, 𝑘, 𝛿, ℎ; 𝑠) = 𝟎, where

𝐸𝑝(𝜂, 𝐴, 𝑘, 𝛿, ℎ; 𝑠) = 𝐸𝑞(𝜂, 𝐴, 𝑘, 𝛿; 𝑠) +𝑀𝛿

(

𝑒𝜂𝐵
(

0

(ℎ + 𝑂(𝛿))𝑒
− ℎ

𝛿3(1−𝐴)

)

−

(

0

ℎ𝑒
− 𝑘ℎ

𝛿3(1−𝐴)

))

, (24)

matrix 𝐵 is given by

𝐵 =

(

𝑠 1
𝛿

−𝛿 0

)

,

with 𝑠 = sign(𝑚), and 𝐸𝑞(𝜂, 𝐴, 𝑘, 𝛿; 𝑠) is the function given in (21) whose zeroes provide the connection between 𝐪𝑅1 and 𝐪𝐿0 . Then,
the Jacobian matrix respect to the variables 𝜂 and 𝐴 satisfies

𝐷𝜂,𝐴𝐸𝑝
|

|

|(𝜂,𝐴,𝑘,𝛿,ℎ;𝑠)
= 𝐷𝜂,𝐴𝐸𝑞

|

|

|(𝜂,𝐴,𝑘,𝛿;𝑠)

+𝑀𝛿

⎛

⎜

⎜

⎜

⎝

𝑒𝜂𝐵
⎛

⎜

⎜

⎜

⎝

(ℎ + 𝑂(𝛿))𝑒
− ℎ

𝛿3(1−𝐴) 0

0 − (ℎ2+𝑂(𝛿))𝑒
− ℎ
𝛿3(1−𝐴)

𝛿3(1−𝐴)2

⎞

⎟

⎟

⎟

⎠

−
⎛

⎜

⎜

⎝

0 0

0 − 𝑘ℎ2𝑒
− 𝑘ℎ
𝛿3(1−𝐴)

𝛿3(1−𝐴)2

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

.

Notice that

𝑒𝜂𝐵 = 𝑒𝛼𝜂
⎛

⎜

⎜

⎜

⎝

− sin(𝛽𝜂)−
√

3 cos(𝛽𝜂)
√

3
2 sin(𝛽𝜂)
√

3𝛿

− 2 sin(𝛽𝜂)𝛿
√

3
sin(𝛽𝜂)+

√

3 cos(𝛽𝜂)
√

3

⎞

⎟

⎟

⎟

⎠

,

where 𝛼 = − 𝑠
2 and 𝛽 =

√

3
2 . Hence, for every ℎ with ℎ > 𝑂(𝛿3), the expression (24) can be extended to 𝛿 = 0, and we conclude that

𝐸𝑝(𝜂, 𝐴, 𝑘, 0, ℎ; 𝑠) = 𝐸𝑞(𝜂, 𝐴, 𝑘, 0; 𝑠) and 𝐷𝜂,𝐴𝐸𝑝
|

|

|(𝜂,𝐴,𝑘,0,ℎ;𝑠)
= 𝐷𝜂,𝐴𝐸𝑞

|

|

|(𝜂,𝐴,𝑘,0;𝑠)
.

From the proof of Theorem 4.2, it follows that

𝐸𝑝(2𝜋∕
√

3,∓(𝑒
𝜋
√

3 − 1)∕(𝑒
𝜋
√

3 + 1), 𝑘, 0, ℎ; ±1) = 𝟎,

det

(

𝐷𝜂,𝐴𝐸𝑝
|

|

|(2𝜋∕
√

3,∓(𝑒
𝜋
√

3 −1)∕(𝑒
𝜋
√

3 +1),𝑘,0,ℎ;±1)

)

= −9𝑒
∓ 𝜋

√

3 .

Thus, we can apply the Implicit Function Theorem to the set of equations 𝐸𝑝(𝜂, 𝐴, 𝑘, 𝛿, ℎ; 𝑠) = 𝟎, whose solutions provide the
connection between 𝐩1 and 𝐩0, and conclude the existence of the functions 𝜂 = 𝜂𝐻 (𝑘, 𝛿, ℎ; 𝑠) and 𝐴 = 𝐴𝐻 (𝑘, 𝛿, ℎ; 𝑠) satisfying
11

𝐸𝑝(𝜂𝐻 (𝑘, 𝛿, ℎ; 𝑠), 𝐴𝐻 (𝑘, 𝛿, ℎ; 𝑠), 𝑘, 𝛿, ℎ; 𝑠) = 𝟎.
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Furthermore, from the Mean Value Theorem in integral form for functions in several variables [32], it follows that

𝐸𝑝(𝜂𝐻 (𝑘, 𝛿, ℎ; 𝑠), 𝐴𝐻 (𝑘, 𝛿, ℎ; 𝑠), 𝑘, 𝛿, ℎ; 𝑠) − 𝐸𝑝(𝜂𝑆 (𝑘, 𝛿; 𝑠), 𝐴𝑆 (𝑘, 𝛿; 𝑠), 𝑘, 𝛿, ℎ; 𝑠) =

�̃�𝑝(𝜂𝐻 , 𝐴𝐻 , 𝜂𝑆 , 𝐴𝑆 , 𝑘, 𝛿, ℎ; 𝑠)
(

𝜂𝐻 (𝑘, 𝛿, ℎ; 𝑠) − 𝜂𝑆 (𝑘, 𝛿; 𝑠)
𝐴𝐻 (𝑘, 𝛿, ℎ; 𝑠) − 𝐴𝑆 (𝑘, 𝛿; 𝑠)

)

,

where

�̃�𝑝(𝜂𝐻 , 𝐴𝐻 , 𝜂𝑆 , 𝐴𝑆 , 𝑘, 𝛿, ℎ; 𝑠) = ∫

1

0
𝐷𝜂,𝐴𝐸𝑝(𝑠 𝜂𝐻 + (1 − 𝑠)𝜂𝑆 , 𝑠 𝐴𝐻 + (1 − 𝑠)𝐴𝑆 , 𝑘, 𝛿, ℎ; 𝑠) 𝑑𝑠.

Applying now Eq. (24), for 𝛿 small enough, it follows

−𝑀𝛿

(

𝑒𝜂𝑆𝐵
(

0

(ℎ + 𝑂(𝛿))𝑒
− ℎ

𝛿3(1−𝐴𝑆 )

)

−

(

0

ℎ𝑒
− 𝑘ℎ

𝛿3(1−𝐴𝑆 )

))

≈

⎛

⎜

⎜

⎜

⎜

⎝

0 3
(

1 + 𝑒
𝜋
√

3

)

2𝑒
𝜋
√

3

1+𝑒
𝜋
√

3
−1 − 𝑒

𝜋
√

3

⎞

⎟

⎟

⎟

⎟

⎠

(

𝜂𝐻 (𝑘, 𝛿, ℎ; 𝑠) − 𝜂𝑆 (𝑘, 𝛿; 𝑠)
𝐴𝐻 (𝑘, 𝛿, ℎ; 𝑠) − 𝐴𝑆 (𝑘, 𝛿; 𝑠)

)

.

Hence,

(

𝜂𝐻 (𝑘, 𝛿, ℎ; 𝑠) − 𝜂𝑆 (𝑘, 𝛿; 𝑠)
𝐴𝐻 (𝑘, 𝛿, ℎ; 𝑠) − 𝐴𝑆 (𝑘, 𝛿; 𝑠)

)

≈ −

⎛

⎜

⎜

⎜

⎜

⎝

1+𝑒
− 𝜋
√

3

6𝛿
1+𝑒

− 𝜋
√

3

2𝛿2
1

3𝛿

(

1+𝑒
𝜋
√

3

) 0

⎞

⎟

⎟

⎟

⎟

⎠

(

𝑒𝜂𝑆𝐵
(

0

ℎ𝑒
− ℎ

𝛿3(1−𝐴𝑆 )

)

−

(

0

ℎ𝑒
− 𝑘ℎ

𝛿3(1−𝐴𝑆 )

))

.

Isolating the second coordinates in the equality above, we conclude that

𝐴𝐻 (𝑘, 𝛿, ℎ; 𝑠) − 𝐴𝑆 (𝑘, 𝛿; 𝑠) ≈
2 sin(𝛽𝜂𝑆 )𝑒𝛼𝜂𝑆

3
√

3𝛿2
(

1 + 𝑒
𝜋
√

3

)ℎ𝑒
− ℎ

𝛿3(1−𝐴𝑆 ) ,

and then by undoing the change of variables we obtain

𝑎𝐻 (𝑘, 𝜀, ℎ;𝑚) − 𝑎𝑆 (𝑘, 𝜀;𝑚) = 𝑂

(

ℎ
√

𝜀
𝑒−

ℎ
𝜀3∕2

)

. (25)

Finally, we consider the change of variables from ℎ to the first component of the intersection of the orbit with the 𝑥−nullcline,
𝑥0. To do this change, let 𝜑(𝑡) be a solution of system (4) such that 𝜑(𝑡) ⊂ 𝜎𝐿 for 𝑡 ∈ (0, 𝑡0) and 𝑡0 > 0. By using the Krylov
base {𝐩𝐿, �̇�𝐿}, the solution can be parametrized by 𝜑(𝑡) = 𝑢1(𝑡)𝐩𝐿 + 𝑢2(𝑡)�̇�𝐿. Following Theorem 5 in [33], function 𝐻𝐿(𝑢1, 𝑢2) =

|𝑢1 + 𝜆𝑠𝐿𝑢2|
𝜆𝑞𝐿
|𝑢1 + 𝜆𝑞𝐿𝑢2|

−𝜆𝑠𝐿 is constant over the coordinates (𝑢1(𝑡), 𝑢2(𝑡)) with 𝑡 ∈ (0, 𝑡0), and it is called a first integral for system
(4) related to the Krylov base {𝐩𝐿, �̇�𝐿}. Therefore, the transition map from points on the 𝑥−nullcline in zone 𝜎𝐿 to points on the
switching line {𝑥 = −

√

𝜀}, is given by

𝐻𝐿(𝑢, 0) = 𝐻𝐿(1, 𝑣). (26)

Now, we have
(

𝑥0
𝑓 (𝑥0)

)

= 𝐞𝐿 + 𝑢(𝐩𝐿 − 𝐞𝐿),
(

−
√

𝜀
ℎ

)

= 𝐩𝐿 + 𝑣�̇�𝐿,

from where we obtain,

𝑢 =
𝑎 − 𝑥0
𝑎 +

√

𝜀
, 𝑣 = 1

𝜀

(

ℎ
√

𝜀 + 𝑎
+ 𝑚

)

.

By substituting these expressions of 𝑢 and 𝑣 in (26) and taking into account that 𝑢𝑘 ≈ 𝜀𝑣 + 1 (see function 𝐹 in expression (26)
in [30]), we deduce that,

ℎ =
⎛

⎜

⎜

⎝

(

𝑎 − 𝑥0
𝑎 +

√

𝜀

)𝑘

− (1 + 𝑚)
⎞

⎟

⎟

⎠

(𝑎 +
√

𝜀).

Finally, by substituting this expression in (25), we obtain the first expression in (15).
Let us continue with the proof in the case of a canard cycle 𝛤𝑥0 with head, that is 𝑥0 ∈ (𝑥𝑟,−1). Starting at the point (𝑥0, 𝑓 (𝑥0))

and integrating in backward time, the orbit targets the switching lines {𝑥 = −1} and {𝑥 = −
√

𝜀} at
(

−1
ℎ

)

and 𝐩0 = 𝐪𝐿0 −
⎛

⎜

⎜

0
− 𝑘

𝜀 ln
(

1+𝑎
√

𝜀−𝑎

)

⎞

⎟

⎟

,

12

⎝

(𝑘 − ℎ)𝑒
⎠
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respectively, where the expression of 𝐩0 follows from Lemma A.2. Moreover, integrating forward in time, the orbit targets the
witching line {𝑥 =

√

𝜀} at two points
(√

𝜀
ℎ̄

)

and 𝐩1 = 𝐪𝑅1 +

(

0

ℎ̄𝑒
− ℎ̄

𝜀(
√

𝜀−𝑎)

)

,

where the expression of 𝐩1 follows from Lemma A.2, and the constant ℎ̄ satisfies that 𝑘+𝑂(
√

𝜀) ≤ ℎ̄ ≤ 1 + 𝑘+𝑂(
√

𝜀). These bounds
or the value of ℎ̄ follows by taking into account that the 𝑦-coordinate of the solutions increases while 𝑥 ∈ (−1, 𝑎) and decreases
hile 𝑥 ∈ (𝑎,

√

𝜀).
The conditions for 𝛤𝑥0 to be a limit cycle require the existence of parameter values 𝜿 = (𝑎, 𝑘, 𝜀, 𝑚) such that the solution of the

inear system in the central band 𝜎𝐶 , with an initial condition at 𝐩1, reaches the switching line 𝑥 = −
√

𝜀 at point 𝐩0 for the first
ime. In other words, equation 𝑒𝜏𝐴𝐶 (𝐩1 − 𝐞𝐶 ) + 𝐞𝐶 − 𝐩0 = 𝟎 has to be satisfied. This equation can be written in a similar way as (23).
rom here on, the proof follows in analogous way.

.3. Proofs of Theorems 4.4 and 4.6

This subsection is devoted to the proof of Theorems 4.4 and 4.6. The outline of the proof is the following: First, we study the
yperbolicity/non-hyperbolicity of headless canard cycles. Second, we analyze the hyperbolicity/non-hyperbolicity of canard cycles
ith head. Finally, by proving a non-degeneracy condition on the derivative of the Poincaré map around the non-hyperbolic canard

ycles, we prove the correspondence of non-hyperbolic canard cycles to saddle–node bifurcations.

.3.1. Hyperbolicity/non-hyperbolicity of headless canard cycles
Let us begin by defining the Poincaré map in the neighborhood of periodic orbits visiting zones 𝜎𝐿, 𝜎𝐶 and 𝜎𝑅. Consider a point

0 = (
√

𝜀, 𝑦0) in the switching line {𝑥 =
√

𝜀} and located between 𝐩𝑅 and 𝐪1𝑅, see Fig. 2. From expressions (8) and (10) it follows
hat (𝑚 + 𝜆𝑠𝑅)(

√

𝜀 − 𝑎) < 𝑦0 < 𝑚(
√

𝜀 − 𝑎). Assume now that there exists a time of flight 𝜏𝐶𝑑 > 0 such that 𝑥𝐶 (𝜏𝐶𝑑 ;𝐩0,𝜿) = −
√

𝜀 and
𝑥𝐶 (𝑡;𝐩0,𝜿) ∈ (−

√

𝜀,
√

𝜀) for all 𝑡 ∈ (0, 𝜏𝐶𝑑 ), where 𝑥𝐶 (𝑡;𝐩0,𝜿) is the first coordinate of the solution through 𝐩0 reduced to the central
region 𝜎𝐶 , see (19). In such a case, we can define the Poincaré half-map between the switching lines {𝑥 =

√

𝜀} and {𝑥 = −
√

𝜀} at
the point 𝑦0 as 𝛱𝐶𝑑

(𝑦0,𝜿) = 𝑦𝐶 (𝜏𝐶𝑑 ;𝐩0,𝜿). Similarly, we can define the Poincaré half-map between the switching lines {𝑥 = −
√

𝜀}
and {𝑥 =

√

𝜀} at a point 𝑦2 > −𝑚(
√

𝜀 + 𝑎) as 𝛱𝐶𝑢
(𝑦2,𝜿) = 𝑦𝐶

(

𝜏𝐶𝑢
;𝐩2,𝜿

)

, where 𝜏𝐶𝑢
> 0 is the time of flight and 𝐩2 = (−

√

𝜀, 𝑦2).
Consider now a point 𝐩1 = (−

√

𝜀, 𝑦1) in the switching line {𝑥 = −
√

𝜀} and located between 𝐪0𝐿 and 𝐩𝐿, that is, 𝑦1 ∈
(

−(𝑚 + 𝜆𝑠𝐿)(
√

𝜀 + 𝑎),−𝑚(
√

𝜀 + 𝑎)
)

. Assume that there exists a time of flight 𝜏𝐿 > 0 such that 𝑥𝐿(𝜏𝐿;𝐩1,𝜿) = −
√

𝜀 and 𝑥𝐿(𝑡;𝐩1,𝜿) ∈
(−1,−

√

𝜀) for all 𝑡 ∈ (0, 𝜏𝐿). Here 𝑥𝐿(𝜏𝐿;𝐩1,𝜿) is the first coordinate of the solution through 𝐩1 and reduced to the region
𝐿. In such a case, we can define the Poincaré half-map between the switching line {𝑥 = −

√

𝜀} and itself at the point 𝑦1 as
𝐿(𝑦1,𝜿) = 𝑦𝐿

(

𝜏𝐿;𝐩1,𝜿
)

. Similarly, we can define the Poincaré half-map between the switching line {𝑥 =
√

𝜀} and itself at the
point 𝑦3 > 𝑚(

√

𝜀− 𝑎) as 𝛱𝑅(𝑦3,𝜿) = 𝑦𝑅
(

𝜏𝑅;𝐩3,𝜿
)

, where 𝜏𝑅 > 0 is the time of flight and 𝐩3 = (
√

𝜀, 𝑦3). Expressions for 𝛱−1
𝐿 and 𝛱𝑅

an be found in Lemma A.2.
At this point, the Poincaré map for an orbit of system (4) visiting zones 𝜎𝐿, 𝜎𝐶 and 𝜎𝑅 can be defined.

efinition 5.1. The Poincaré map 𝛱 in the neighborhood of an orbit 𝛤𝑥0 of system (4) visiting zones 𝜎𝐿, 𝜎𝐶 and 𝜎𝑅 is defined as

𝛱(𝑦0,𝜿) = 𝛱𝑅(𝛱𝐶𝑢
(𝛱𝐿(𝛱𝐶𝑑

(𝑦0,𝜿),𝜿),𝜿),𝜿),

rovided the composition of Poincaré half-maps is possible, where 𝑦0 = 𝛱−1
𝐶𝑑 (𝛱

−1
𝐿 (𝛷3𝑧(𝑥0),𝜿),𝜿).

For 𝜀 fixed and small enough, suppose the existence of a headless canard limit cycle 𝛤𝑥0 , see Fig. 2, obtained under the parameter
elation 𝑎 = 𝑎𝑁 (𝑘, 𝜀, 𝑥0;𝑚) given in Theorem 4.3. The cycle 𝛤𝑥0 corresponds to the fixed point of the Poincaré map 𝛱(𝑦0, 𝜼), where
0 = 𝛱−1

𝐶𝑑 (𝛱
−1
𝐿 (𝛷3𝑧(𝑥0),𝜿),𝜿).

To take into account the non-hyperbolicity of the canard cycle 𝛤𝑥0 , we consider the derivative of the Poincaré map, which
orresponds to the exponential of the integral of the divergence of the system along 𝛤𝑥0 , see [27]. In the particular case of PWL
ystems, the integral of the divergence can be explicitly computed as the sum of the products of the traces and the time of flight of
𝑥0 in each region of linearity, see [28].

Let 𝜏𝐿 and 𝜏𝑅 be the time of flight of 𝛤𝑥0 along the regions 𝜎𝐿 and 𝜎𝑅, respectively, and let 𝜏𝑆𝐶 (𝑘, 𝜀;𝑚) be the time of flight from
𝑅
1 to 𝐪𝐿0 obtained in Theorem 4.2. From Lemmas A.1 and A.2, when 𝑥0 ∈ [−1, 𝑥𝑠) it follows that 𝛤𝑥0 intersect the switching lines
𝑥 = −

√

𝜀} and {𝑥 =
√

𝜀} exponentially close to 𝐪𝐿0 and 𝐪𝑅1 , respectively. Therefore, the values of 𝜏𝐿 and 𝜏𝑅 can be approximated by
the time of flight of the orbit from 𝐪𝐿0 to (−

√

𝜀, ℎ) and from (
√

𝜀, ℎ) to 𝐪𝑅1 , respectively. Hence, 𝜏𝐿 = 𝜏𝐿(ℎ) and 𝜏𝑅 = 𝜏𝑅(ℎ) are the ones
omputed in Lemma A.3. Notice that when 𝑥𝑠 < 𝑥0 < −

√

𝜀, we cannot assure that 𝛤𝑥0 intersects neither {𝑥 = −
√

𝜀} nor {𝑥 =
√

𝜀}
exponentially close to 𝐪𝐿0 and 𝐪𝑅1 , respectively, see Fig. 5. In a such case, expressions in Lemma A.3 are not good approximations
to 𝜏𝐿 and 𝜏𝑅, respectively. Therefore we have eliminated the interval (𝑥𝑠,−

√

𝜀) from the scope of Theorems 4.4 and 4.6.
Then, we examine the derivative of the Poincaré map 𝛱(𝑦0,𝜿), with respect to 𝑦0, where 𝑦0 = 𝛱−1

𝐶𝑑 (𝛱
−1
𝐿 (ℎ,𝜿),𝜿) and ℎ = 𝛷3𝑧(𝑥0).

his derivative corresponds to the exponential of the integral of the divergence along the limit cycle, as discussed in [27]. In the
13
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Fig. 5. Zoom of the flow in a neighborhood of the contact point 𝐩𝐿. Orbits having width in 𝑥𝑠 < 𝑥 < −
√

𝜀 do not pass exponentially close of 𝐪𝐿0 . Therefore, the
time of flight 𝜏𝐿 cannot be computed as it is done in Lemma A.3.

case of PWL systems, the integral of the divergence can be explicitly computed by summing the product of the trace and the time
of flight for the limit cycle in each linear region, see [28],

𝜕𝛱
𝜕𝑦

(𝑦0, �̄�) = 𝑒𝑡𝐿𝜏𝐿−𝑚𝜏𝐶+𝑡𝑅𝜏𝑅 + 𝑂(𝜀
3
2 ), (27)

where 𝜏𝐶 = 𝜏𝑆𝐶 (𝑘, 𝜀;𝑚) and 𝜏𝐶𝑢
is taken into account in the term 𝑂(𝜀

3
2 ).

A necessary condition on the limit cycle 𝛤𝑥0 to be non-hyperbolic is that 𝜕𝛱
𝜕𝑦 (𝑦0, �̄�) = 1 with 𝑦0 = 𝛱−1

𝐶𝑑 (𝛱
−1
𝐿 (𝛷3𝑧(𝑥0),𝜿),𝜿). In

erms of the right side of (27) this condition can be approximated by 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) = 𝑒𝑡𝐿𝜏𝐿+𝑡𝑅𝜏𝑅 −𝑒𝑚𝜏𝐶 = 0. By using the expression
f 𝜏𝐿, 𝜏𝑅 and 𝜏𝐶 computed at Lemma A.3 it follows that

𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) =

(

1 +
ℎ + (𝑚 + 𝜆𝑠𝐿)(

√

𝜀 + 𝑎)

(𝜆𝑞𝐿 − 𝜆𝑠𝐿)(
√

𝜀 + 𝑎)

)

𝑘
𝜆𝑠𝐿

(

1 +
(𝑚 + 𝜆𝑠𝑅)(

√

𝜀 − 𝑎) − ℎ

(𝜆𝑞𝑅 − 𝜆𝑠𝑅)(
√

𝜀 − 𝑎)

)

1
𝜆𝑠𝑅

− 𝑒𝑚𝜏𝐶 . (28)

otice that the function 𝑅3𝑧 writes in terms of the height ℎ of the cycle 𝛤𝑥0 , with ℎ = 𝛷3𝑧(𝑥0). In the next result we compute the
tability of a canard cycle through the sign of the function 𝑅3𝑧.

roposition 5.2. For 𝜀 fixed and small enough, there exists 0 < 𝛿 ≪ 1 such that for 𝑥0 ∈ [−1, 𝑥𝑠) and ℎ = 𝛷3𝑧(𝑥0):

(a) If 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) < −𝛿, then 𝛤𝑥0 is a hyperbolic headless stable canard cycle.
(b) If ℎ is a simple root of 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚), then in a neighborhood of 𝛤𝑥0 there is a nonhyperbolic headless canard cycle.
(c) If 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚) > 𝛿, then 𝛤𝑥0 is a hyperbolic headless unstable canard cycle.

Proof. The proposition is a straightforward consequence of the definition of 𝑅3𝑧(ℎ, 𝑘, 𝜀;𝑚) and Eq. (27). □

By fixing parameters 𝑘 and 𝜀 we next describe the qualitative behavior of 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) as a function of ℎ, both in the
upercritical case, 𝑚 = −

√

𝜀, and in the subcritical case, 𝑚 =
√

𝜀. Even when the domain of definition of 𝑅3𝑧, as a function of
ℎ, is greater, we only consider the reduction of 𝑅3𝑧 to the interval (ℎ𝑠, ℎ𝑀 ] where ℎ𝑠 = 𝛷3𝑧(𝑥𝑠) and ℎ𝑀 = 𝛷3𝑧(−1), see Lemma A.1.

e pay special attention to the existence of simple zeros of 𝑅3𝑧.

roposition 5.3. Consider the function 𝑅3𝑧(ℎ, 𝑘, 𝜀;𝑚) defined in (28).

(a) Under the supercritical condition 𝑚 = −
√

𝜀 we obtain that:

(a-1) For 𝑘 ≤ 1, then 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) < 0 when ℎ ∈ (ℎ𝑠, ℎ𝑀 ].
(a-2) For 𝑘 > 1 and 𝜀 small enough, the function 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚) behaves as it is represented in Fig. 6(a). More specifically:

(a-2-1) limℎ↘ℎ𝑠 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) < 0 and 𝑅3𝑧(ℎ𝑀 , 𝑘,
√

𝜀;𝑚) > 0,
(a-2-2) let ℎ∗ ∈ (ℎ𝑠, ℎ𝑀 ] be a zero of 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚), then 𝜕𝑅3𝑧
𝜕ℎ

|

|

|(ℎ∗ ,𝑘,
√

𝜀;𝑚)
> 0, and

(a-2-3) denoting by ℎ∗(𝑘, 𝜀;𝑚) the unique positive zero of 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) in (ℎ𝑠, ℎ𝑀 ], then

ℎ∗(𝑘, 𝜀;𝑚) = 2

1 + 𝑒
𝜋
√

3

𝑘
𝑘2

𝑘2−1 𝑒
𝜋
√

3
𝑘2−2𝜀
𝑘2−1

√

𝜀 + 𝑂(𝜀).

(b) Under the subcritical condition 𝑚 =
√

𝜀 we obtain that:

(b-1) For 𝑘 < 1 and 𝜀 small enough, the function 𝑅 (ℎ, 𝑘,
√

𝜀;𝑚) behaves as it is represented in Fig. 6(c). More specifically:
14
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f

Fig. 6. Graphs of the functions 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) and ℎ∗(𝑘, 𝜀;𝑚) in Proposition 5.3 for different values of 𝜀. In particular, blue/dotted curves correspond with
𝜀 = 0.05, green/dashed curves with 𝜀 = 0.01 and red/solid curves with 𝜀 = 0.005. First column contains the graphs of the function 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚) as a function
of ℎ for the previous values of 𝜀: panel (a) when 𝑘 = 2.5 and 𝑚 = −

√

𝜀 and panel (c) when 𝑘 = 0.75 and 𝑚 =
√

𝜀. Second column contains the graphs of the
unction ℎ∗(𝑘, 𝜀;𝑚) as a function of 𝑘 for the previous values of 𝜀: panel (b) when 𝑚 = −

√

𝜀 and panel (d) when 𝑚 =
√

𝜀.

(b-1-1) limℎ↘ℎ𝑠 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) > 0 and 𝑅3𝑧(ℎ𝑀 , 𝑘,
√

𝜀;𝑚) = −𝑒
2𝜋
√

3 ,
(b-1-2) let ℎ∗ > 0 be a zero of 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚) = 0, then 𝜕𝑅3𝑧
𝜕ℎ

|

|

|(ℎ∗ ,𝑘,
√

𝜀∶𝑚)
< 0.

(b-1-3) denoting by ℎ∗(𝑘, 𝜀;𝑚) the unique zero of 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) = 0 in (ℎ𝑠, ℎ𝑀 ], then

ℎ∗(𝑘, 𝜀;𝑚) = 2

1 + 𝑒
𝜋
√

3

𝑘
𝑘2

𝑘2−1 𝑒
𝜋
√

3
1−2𝜀
1−𝑘2

√

𝜀 + 𝑂(𝜀),

(b-2) for 𝑘 ≥ 1, then 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) > 0 when ℎ ∈ (ℎ𝑠, ℎ𝑀 ].

Proof. By straightforward computations we write

𝑅3𝑧(0, 𝑘,
√

𝜀;𝑚) =

(

1 +
𝑚 + 𝜆𝑠𝐿
𝜆𝑞𝐿 − 𝜆𝑠𝐿

)
𝑘
𝜆𝑠𝐿

(

1 +
𝑚 + 𝜆𝑠𝑅
𝜆𝑞𝑅 − 𝜆𝑠𝑅

)
1
𝜆𝑠𝑅

− 𝑒𝑚𝜏𝐶

=

⎛

⎜

⎜

⎜

⎝

1 + 1
𝜆𝑞𝐿−𝜆

𝑠
𝐿

𝑚+𝜆𝑠𝐿

⎞

⎟

⎟

⎟

⎠

𝑘
𝜆𝑠𝐿 ⎛

⎜

⎜

⎜

⎝

1 + 1
𝜆𝑞𝑅+𝑚

−(𝜆𝑠𝑅+𝑚)

⎞

⎟

⎟

⎟

⎠

− 1
𝜆𝑠𝑅

− 𝑒𝑚𝜏𝐶

=
(

1 + 1
𝑧1

)
𝑘
𝜆𝑠𝐿

(

1 + 1
𝑧2

)− 1
𝜆𝑠𝑅 − 𝑒𝑚𝜏𝐶 ,

where

𝑧1 =
𝜆𝑞𝐿 − 𝜆𝑠𝐿
𝑚 + 𝜆𝑠𝐿

= 𝑘
𝑚

− 1 + 𝑂(𝑚),

𝑧2 =
𝜆𝑞𝑅 + 𝑚

−(𝑚 + 𝜆𝑠𝑅)
= 1

𝑚
− 𝑂(𝑚).
15
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Since 𝑧1 and 𝑧2 tend to ∞ or −∞ depending on 𝑠 = sign(𝑚), as 𝜀 tends to zero, we obtain

lim
𝜀↘0

𝑅3𝑧(0, 𝑘,
√

𝜀;𝑚) = 𝑒
lim𝜀↘0

1
𝑧1

𝑘
𝜆𝑠𝐿

− 1
𝑧2

1
𝜆𝑠𝑅 − 𝑒

𝑠 2𝜋
√

3 = 𝑒
lim𝜀↘0 𝑠

𝑘+1
√

𝜀
+1+𝑂(𝜀1∕2)

− 𝑒
𝑠 2𝜋
√

3 .

oreover, as ℎ𝑠 tends to zero when 𝜀 does, we conclude that 𝑠𝑅3𝑧(ℎ𝑠, 𝑘,
√

𝜀;𝑚) > 0, provided 𝜀 is small enough.
Expanding the different operands in the expression (28) in power series of 𝜀, and keeping the lower order terms, we obtain the

following power series in 𝜀 of 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) given by

𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

𝐴
√

𝜀
+ 1 + 𝑂(𝜀

1
2 )
)𝑘2

𝐵
√

𝜀
+ 1 + 𝑂(𝜀

1
2 )

⎞

⎟

⎟

⎟

⎟

⎟

⎠

1
𝜀

− 𝑒
𝑠 2𝜋
√

3 + 𝑂(𝜀
1
2 )

=

(

𝐴𝑘2

𝐵

)
1
𝜀

𝜀
1−𝑘2
2𝜀 − 𝑒

𝑠 2𝜋
√

3 + 𝑂(𝜀
1−𝑘2
2𝜀 + 1

2 , 𝜀
1
2 ),

here 𝐴, 𝐵, and 𝐴𝑘2

𝐵 depends on 𝑠 in the following way. If 𝑠 = 1 then

𝐴 =
(𝑒

𝜋
√

3 + 1)ℎ
2𝑘

, 𝐵 =
(𝑒

𝜋
√

3 + 1)ℎ

2𝑒
𝜋
√

3

, 𝐴𝑘2

𝐵
= 𝑒

𝜋
√

3

𝑘

⎛

⎜

⎜

⎝

(𝑒
𝜋
√

3 + 1)ℎ
2𝑘

⎞

⎟

⎟

⎠

𝑘2−1

nd, if 𝑠 = −1 then

𝐴 =
(𝑒

𝜋
√

3 + 1)ℎ

2𝑘𝑒
𝜋
√

3

, 𝐵 =
(𝑒

𝜋
√

3 + 1)ℎ
2

, 𝐴𝑘2

𝐵
= 1

(

𝑘𝑒
𝜋
√

3

)𝑘2

⎛

⎜

⎜

⎝

(𝑒
𝜋
√

3 + 1)ℎ
2

⎞

⎟

⎟

⎠

𝑘2−1

.

From here, we obtain the sign of the function 𝑅3𝑧 at ℎ𝑀 = 𝛷3𝑧(−1) = 𝑘 + 𝑂(
√

𝜀), depending on the parameters. That is, for fixed
𝑘 > 1 then 𝑅3𝑧(ℎ𝑀 , 𝑘,

√

𝜀;𝑚) > 0 provided that 𝜀 is small enough; when 𝑘 = 1 the sign of the function 𝑅3𝑧(ℎ𝑀 , 𝑘,
√

𝜀;𝑚) is equal to

he sign of 𝑚; and for 𝑘 < 1 then 𝑅3𝑧(ℎ𝑀 , 𝑘,
√

𝜀;𝑚) = −𝑒
𝑠 2𝜋
√

3 < 0.
From the previous assertions, we conclude the existence of a zero ℎ∗ ∈ (ℎ𝑠, ℎ𝑀 ] of the function 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚) for the parameters
𝑚 = −

√

𝜀 and 𝑘 > 1, and for 𝑚 =
√

𝜀 and 𝑘 < 1. The expression of ℎ∗ stated in the theorem follows by equalizing to zero the
approximation of 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚) given above.
The partial derivative of 𝑅3𝑧(ℎ, 𝑘,

√

𝜀;𝑚) with respect to ℎ can be written as follows

𝜕𝑅3𝑧
𝜕ℎ

|

|

|

|(ℎ,𝑘,
√

𝜀;𝑚)
=
(

𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) + 𝑒
𝑠 2𝜋
√

3

)

(

𝑘
𝜆𝑠𝐿((𝜆

𝑞
𝐿 + 𝑚)(

√

𝜀 + 𝑎) + ℎ)
− 1

𝜆𝑠𝑅((𝜆
𝑞
𝑅 + 𝑚)(

√

𝜀 − 𝑎) − ℎ)

)

=
(

𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) + 𝑒
𝑠 2𝜋
√

3

)(

𝑘2 − 1
ℎ𝑚2

+ 𝑂(𝜀−
1
2 )
)

.

herefore, assuming the existence of a zero ℎ∗ of 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚), we obtain that 𝜕𝑅3𝑧
𝜕ℎ

|

|

|(ℎ∗ ,𝑘,
√

𝜀)
< 0 if 𝑘 < 1, and 𝜕𝑅3𝑧

𝜕ℎ
|

|

|(ℎ∗ ,𝑘,
√

𝜀)
> 0 if

𝑘 > 1, which implies the uniqueness of such zero. From here, we conclude that function 𝑅3𝑧 does not change sign in (ℎ𝑠, ℎ𝑀 ] neither
when 𝑚 = −

√

𝜀 and 𝑘 ≤ 1 nor when 𝑚 =
√

𝜀 and 𝑘 ≥ 1. □

5.3.2. Hyperbolicity/non-hyperbolicity of canard cycles with head
As in the previous section, we start this one by defining the Poincaré map in neighborhood of orbits visiting the four regions

𝜎𝐿𝐿, 𝜎𝐿, 𝜎𝐶 and 𝜎𝑅. Consider the Poincaré half-maps 𝛱𝐶𝑑 , 𝛱𝐶𝑢, 𝛱𝑅, and the time of flight 𝜏𝐶𝑑 , 𝜏𝐶𝑢, and 𝜏𝑅 previously defined.
Let 𝐩1 = (−

√

𝜀, 𝑦1) be a point in the switching line {𝑥 = −
√

𝜀} and located below the point 𝐩𝐿, and assume that there exists a time
of flight 𝜏𝐿𝑑 > 0 such that 𝑥𝐿(𝜏𝐿𝑑 ;𝐩1,𝜿) = −1 and −1 < 𝑥𝐿(𝑡;𝐩1,𝜿) < −

√

𝜀 for all 𝑡 ∈ (0, 𝜏𝐿𝑑 ). In such a case, we define the Poincaré
alf-map between the switching lines {𝑥 = −

√

𝜀} and {𝑥 = −1} at the point 𝑦1 as 𝛱𝐿𝑑 (𝑦1,𝜿) = 𝑦𝐿
(

𝜏𝐿𝑑 ;𝐩1,𝜿
)

. Moreover, consider a
point 𝐩2 = (−1, 𝑦2) located below the point 𝐩𝐿𝐿 and assume that there exists a time of flight 𝜏𝐿𝐿 > 0 such that 𝑥𝐿𝐿(𝜏𝐿𝐿;𝐩1,𝜿) = −1
and 𝑥𝐿𝐿(𝑡;𝐩1,𝜿) < −1 for all 𝑡 ∈ (0, 𝜏𝐿𝐿). We define the Poincaré half-map between the switching line {𝑥 = −1} and itself at the
point 𝑦2 as 𝛱𝐿𝐿(𝑦2,𝜿) = 𝑦𝐿𝐿

(

𝜏𝐿𝐿;𝐩2,𝜿
)

. Finally, let 𝐩3 = (−1, 𝑦3) be a point in the switching line {𝑥 = −1}, located over the point
𝐩𝐿𝐿, and assume that there exists 𝜏𝐿𝑢 > 0 such that 𝑥𝐿(𝜏𝐿𝑢;𝐩3,𝜿) = −

√

𝜀 and −1 < 𝑥𝐿(𝑡;𝐩3,𝜿) < −
√

𝜀 for all 𝑡 ∈ (0, 𝜏𝐿𝑢). We define
he Poincaré half-map between the switching lines {𝑥 = −1} and {𝑥 = −

√

𝜀} at the point 𝑦3 as 𝛱𝐿𝑢(𝑦3,𝜿) = 𝑦𝐿
(

𝜏𝐿𝑢;𝐩3,𝜿
)

.
At this point, the Poincaré map for an orbit of system (4) visiting zones 𝜎 , 𝜎 , 𝜎 and 𝜎 can be defined.
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Fig. 7. Zoom of the flow in a neighborhood of the contact point 𝐩𝐿𝐿. Orbits having width in 𝑥𝑢 < 𝑥0 < −1 do not pass exponentially close of 𝐪𝐿𝐿1 . Therefore,
the time of flight 𝜏𝐿𝐿 cannot be computed as in Lemma A.3.

Definition 5.4. The Poincaré map 𝛱 in the neighborhood of an orbit 𝛤𝑥0 of system (4) visiting zones 𝜎𝐿𝐿, 𝜎𝐿, 𝜎𝐶 and 𝜎𝑅 is defined
as

𝛱(𝑦0,𝜿) = 𝛱𝑅(𝛱𝐶𝑢(𝛱𝐿𝑢(𝛱𝐿𝐿(𝛱𝐿𝑑 (𝛱𝐶𝑑 (𝑦0,𝜿),𝜿),𝜿),𝜿),𝜿),𝜿),

provided the composition of Poincaré half-maps is possible, where 𝑦0 = 𝛱−1
𝐶𝑑 (𝛱

−1
𝐿𝑑 (𝛷4𝑧(𝑥0),𝜿),𝜿).

For 𝜀 fixed and small enough, suppose the existence of a canard limit cycle with head 𝛤𝑥0 , see Fig. 2, obtained under the parameter
relation 𝑎 = 𝑎𝑁 (𝑘, 𝜀, 𝑥0;𝑚) given in Theorem 4.3. The cycle 𝛤𝑥0 corresponds to the fixed point of the Poincaré map 𝛱(𝑦0,𝜿), where
0 = 𝛱−1

𝐶𝑑 (𝛱
−1
𝐿𝑑 (𝛷4𝑧(𝑥0),𝜿),𝜿).

The non-hyperbolicity of 𝛤𝑥0 can be obtained, similarly as in the case of headless canard cycles, through the sum of the products
f the traces of the matrices of the differential linear systems, and the corresponding time of flight, namely 𝜏𝐶𝑑 , 𝜏𝐿𝑑 , 𝜏𝐿𝐿, 𝜏𝐿𝑢, 𝜏𝐶𝑢,

and 𝜏𝑅.
By analogous arguments than those for headless canard limit cycles, we conclude that 𝜏𝐶𝑑 = 𝜏𝑆𝐶 (𝑘, 𝜀;𝑚) obtained in Theorem 4.2,

nd that the values of 𝜏𝐶𝑢 and 𝜏𝐿𝑢 are negligible. On the other hand, when 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) the canard cycle 𝛤𝑥0 intersects the switching
ine {𝑥 = −1} exponentially close to 𝐪𝐿𝐿1 , see Lemmas A.1 and A.2. Therefore, the value of 𝜏𝐿𝐿 can be approximated by the time of
light of 𝛤𝑥0 from the point (−1, ℎ), where ℎ = 𝛷4𝑧(𝑥0), to the point 𝐪𝐿𝐿1 . Then, from Lemma A.3, we obtain 𝜏𝐿𝐿 = 𝜏𝐿𝐿(ℎ) and

𝜏𝑅 = 𝜏𝑅(ℎ0) = − 1
𝜆𝑠𝑅

ln

(

1 +
𝜆𝑠𝑅(

√

𝜀 − 𝑎) + 𝜆𝑠𝐿𝐿(1 + 𝑎) + 𝑘(
√

𝜀 − 1) + 2𝑚
√

𝜀

(𝜆𝑞𝑅 − 𝜆𝑠𝑅)(
√

𝜀 − 𝑎)

)

, (29)

where ℎ0 = −𝜆𝑠𝐿𝐿(1 + 𝑎) − 𝑘(
√

𝜀 − 1) − 𝑚(
√

𝜀 + 𝑎) is the second coordinate of 𝐪𝐿𝐿1 . Notice that when 𝑥𝑢 < 𝑥0 < −1, we cannot assure
that 𝛤𝑥0 intersects {𝑥 = −1} exponentially close to 𝐪𝐿𝐿1 , see Fig. 7. In this case, neither expression in Lemma A.3 nor expression
(29) are good approximations for 𝜏𝐿𝐿 and 𝜏𝑅, respectively. Therefore, we have eliminated the interval (𝑥𝑢,−1) from the stated of
Theorems 4.4 and 4.6.

Following similar arguments that those applied in Section 5.3, a necessary condition on the canard cycle 𝛤𝑥0 to be non-hyperbolic
can be approximated by 𝑅4𝑧(ℎ, 𝑘, 𝜀;𝑚) = 𝑒𝑡𝐿𝜏𝐿𝑑+𝑡𝐿𝐿𝜏𝐿𝐿+𝑡𝑅𝜏𝑅 − 𝑒𝑚𝜏𝐶 = 0. By using the expressions of 𝜏𝐿𝑑 , 𝜏𝐿𝐿, 𝜏𝑅 and 𝜏𝐶 in Lemma A.3
we obtain

𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) =

(

1 +
ℎ + 𝑚(

√

𝜀 + 𝑎) + 𝜆𝑠𝐿(2
√

𝜀 + 𝑎 − 1)

(𝜆𝑞𝐿 − 𝜆𝑠𝐿)(
√

𝜀 + 𝑎)

)

𝑘
𝜆𝑠𝐿

(

1 +
ℎ + 𝑚(

√

𝜀 + 𝑎) + 𝑘(
√

𝜀 − 1) + 𝜆𝑠𝐿𝐿(1 + 𝑎)

(𝜆𝑞𝐿𝐿 − 𝜆𝑠𝐿𝐿)(1 + 𝑎)

)

1
𝜆𝑠𝐿𝐿

(30)

(

1 +
𝜆𝑠𝑅(

√

𝜀 − 𝑎) + 𝜆𝑠𝐿𝐿(1 + 𝑎) + 𝑘(
√

𝜀 − 1) + 2𝑚
√

𝜀

(𝜆𝑞𝑅 − 𝜆𝑠𝑅)(
√

𝜀 − 𝑎)

)

1
𝜆𝑠𝑅

− 𝑒𝑚𝜏𝐶 .

n the next result, we find the stability of a canard cycle with head, through the sign of function 𝑅4𝑧

Proposition 5.5. For 𝜀 fixed and small enough, there exists 0 < 𝛿 ≪ 1, such that, for 𝑥0 ∈ (𝑥𝑟, 𝑥𝑢) and ℎ = 𝛷4𝑧(𝑥0):

(a) If 𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) < −𝛿, then 𝛤𝑥0 is a hyperbolic stable canard cycle with head.
(b) If ℎ is a simple root of 𝑅4𝑧(ℎ, 𝑘,

√

𝜀;𝑚), then in a neighborhood of 𝛤𝑥0 there is a nonhyperbolic canard cycle with head.
(c) If 𝑅4𝑧(ℎ, 𝑘,

√

𝜀;𝑚) > 𝛿, then 𝛤𝑥0 is a hyperbolic unstable canard cycle with head.

Proof. The proposition follows similarly to Proposition 5.2. □
17



Nonlinear Analysis: Hybrid Systems 52 (2024) 101472V. Carmona et al.

L

P

Next, we describe the qualitative behavior of 𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚), as a function of ℎ, for fixed values of the parameters 𝑘 and 𝜀.
Even when the domain of the function 𝑅4𝑧 is greater, we consider it reduced to (ℎ𝑟, ℎ𝑢), where ℎ𝑟 = 𝛷4𝑧(𝑥𝑟) and ℎ𝑢 = 𝛷4𝑧(𝑥𝑢), see
emma A.1.

roposition 5.6. Consider the function 𝑅4𝑧(ℎ, 𝑘, 𝜀;𝑚) defined in (30).

(a) If 𝑘 < 1, or 𝑘 = 1 and 𝑚 = −
√

𝜀, and 𝜀 small enough, then 𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) < 0 in (ℎ𝑟, ℎ𝑢).
(b) If 𝑘 > 1, or 𝑘 = 1 and 𝑚 =

√

𝜀, and 𝜀 small enough, then 𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) behaves as in Fig. 8(a) or in Fig. 8(c), depending on the
supercritical case, 𝑚 = −

√

𝜀, or the subcritical case, 𝑚 =
√

𝜀, respectively. More specifically:

(b-1) 𝑅4𝑧(ℎ𝑟, 𝑘,
√

𝜀;𝑚) < 0 and 𝑅4𝑧(ℎ𝑢, 𝑘,
√

𝜀;𝑚) > 0, see Fig. 8(a) and (c);
(b-2) let ℎ∗ ∈ (ℎ𝑟, ℎ𝑢) be a zero of 𝑅4𝑧(ℎ, 𝑘,

√

𝜀;𝑚), then 𝜕𝑅4𝑧
𝜕ℎ

|

|

|(ℎ∗ ,𝑘,
√

𝜀;𝑚)
> 0;

(b-3) denoting by ℎ∗(𝑘,
√

𝜀;𝑚) the unique zero of 𝑅4𝑧(ℎ, 𝑘, 𝜀;𝑚) in (ℎ𝑟, ℎ𝑢), it follows that, if 𝑘 > 1, then

ℎ∗(𝑘,
√

𝜀;𝑚) = (𝑘 + 1)𝑒
2−𝑘2
2 (

√

𝜀)
𝑘2−1
𝑘2 + 𝑂(

√

𝜀),

see Fig. 8(b) and (d), and if 𝑘 = 1 then

ℎ∗(1,
√

𝜀;𝑚) = 2

1 + 𝑒
𝜋
√

3

+ 𝑂(
√

𝜀),

see Fig. 8(d).

Proof. Setting 𝑚 = ±
√

𝜀 and 𝑠 = sign(𝑚), and expanding in power series of 𝜀 every term in the expression of 𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚), we
obtain that

𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) =
⎛

⎜

⎜

⎝

1 + 𝑘 − ℎ −
2𝑘 + ℎ(𝑒

𝑠 𝜋
√

3 − 1)

1 + 𝑒
𝑠 𝜋
√

3

√

𝜀 + 𝑂(𝜀)
⎞

⎟

⎟

⎠

− 1
𝜀 +1+𝑂(𝜀)

⎛

⎜

⎜

⎝

𝑘(1 + 𝑒
−𝑠 𝜋

√

3 )
2

1
√

𝜀
−

𝑘(1 + 𝑒
−𝑠 𝜋

√

3 ) − 2
2

+ 𝑂(𝜀
1
2 )
⎞

⎟

⎟

⎠

− 1
𝜀 +1+𝑂(𝜀)

⎛

⎜

⎜

⎝

ℎ(1 + 𝑒
𝑠 𝜋
√

3 )
2𝑘

1
√

𝜀
+ 1 −

⎛

⎜

⎜

⎝

𝑒
𝑠 𝜋
√

3 + 1 − 2𝑘𝑠
2𝑘2

+
𝑒
𝑠 𝜋
√

3 (𝑘2 − 5) − 4
4𝑘3

ℎ
⎞

⎟

⎟

⎠

√

𝜀 + 𝑂(𝜀)
⎞

⎟

⎟

⎠

𝑘2
𝜀 −1+𝑂(𝜀)

− 𝑒
𝑠 2𝜋
√

3
−𝑠 𝑘+1𝑘

√

𝜀+𝑂(𝜀)
.

By changing the sign in the exponent of the first two terms, it follows that

𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) =

⎛

⎜

⎜

⎜

⎜

⎝

1
1 + 𝑘 − ℎ

+
2𝑘 + ℎ(𝑒

𝑠 𝜋
√

3 − 1)
(

1 + 𝑒
𝑠 𝜋
√

3

)

(1 + 𝑘 − ℎ)2

√

𝜀 + 𝑂(𝜀)

⎞

⎟

⎟

⎟

⎟

⎠

1
𝜀 −1+𝑂(𝜀)

⎛

⎜

⎜

⎝

2

𝑘(1 + 𝑒
−𝑠 𝜋

√

3 )

√

𝜀 + 𝑂(𝜀)
⎞

⎟

⎟

⎠

1
𝜀 −1+𝑂(𝜀)

(31)

⎛

⎜

⎜

⎝

ℎ(1 + 𝑒
𝑠 𝜋
√

3 )
2𝑘

1
√

𝜀
+ 1 −

⎛

⎜

⎜

⎝

𝑒
𝑠 𝜋
√

3 + 1 − 2𝑘𝑠
2𝑘2

+
𝑒
𝑠 𝜋
√

3 (𝑘2 − 5) − 4
4𝑘3

ℎ
⎞

⎟

⎟

⎠

√

𝜀 + 𝑂(𝜀)
⎞

⎟

⎟

⎠

𝑘2
𝜀 −1+𝑂(𝜀)

− 𝑒
𝑠 2𝜋
√

3
−𝑠 𝑘+1𝑘

√

𝜀+𝑂(𝜀)
.

Then

𝑅4𝑧(0, 𝑘,
√

𝜀;𝑚) =
( 1
1 + 𝑘

+ 𝑂(
√

𝜀)
)

1
𝜀 −1+𝑂(𝜀) ⎛

⎜

⎜

⎝

2

𝑘(1 + 𝑒
−𝑠 𝜋

√

3 )

√

𝜀 + 𝑂(𝜀)
⎞

⎟

⎟

⎠

1
𝜀 −1+𝑂(𝜀)

⎛

⎜

⎜

1 − 𝑒
𝑠 𝜋
√

3 + 1 − 2𝑠𝑘
2𝑘2

√

𝜀 + 𝑂(𝜀)
⎞

⎟

⎟

𝑘2
𝜀 −1+𝑂(𝜀)
18

⎝ ⎠
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l

ℎ

− 𝑒
𝑠 2𝜋
√

3 + 𝑂(
√

𝜀),

which can be expanded in power series of 𝜀 as follows

𝑅4𝑧(0, 𝑘,
√

𝜀;𝑚) =
⎛

⎜

⎜

⎝

2
√

𝜀

𝑘(1 + 𝑘)(1 + 𝑒
−𝑠 𝜋

√

3 )
−

(𝑒
𝑠 𝜋
√

3 + 1 − 2𝑠𝑘)𝜀

𝑘(1 + 𝑘)(1 + 𝑒
−𝑠 𝜋

√

3 )
+ 𝑂(𝜀

3
2 )
⎞

⎟

⎟

⎠

1
𝜀

− 𝑒
𝑠 2𝜋
√

3 + 𝑂(
√

𝜀).

The first operand in the right side of previous equation tends to zero provided that 𝜀 does. Hence, for 𝜀 small enough we obtain

that −𝑒
𝑠 2𝜋
√

3 < 𝑅4𝑧(0, 𝑘,
√

𝜀;𝑚) < 0. Same expression is also satisfied by 𝑅4𝑧(ℎ𝑟, 𝑘,
√

𝜀;𝑚) since lim𝜀↘0 ℎ𝑟 = 0. Thus, we conclude that

−𝑒
𝑠 2𝜋
√

3 < 𝑅4𝑧(ℎ𝑟, 𝑘,
√

𝜀;𝑚) < 0.
On the other hand, from expression (31) it follows that

𝑅4𝑧(𝑘, 𝑘,
√

𝜀;𝑚) =
(

1 + 𝑘
√

𝜀 + 𝑂(𝜀)
)

1
𝜀 −1+𝑂(𝜀) ⎛

⎜

⎜

⎝

2

𝑘(1 + 𝑒
−𝑠 𝜋

√

3 )

√

𝜀 + 𝑂(𝜀)
⎞

⎟

⎟

⎠

1
𝜀 −1+𝑂(𝜀)

⎛

⎜

⎜

⎝

1 + 𝑒
𝑠 𝜋
√

3

2
1
√

𝜀
+ 1 + 𝑂(

√

𝜀)
⎞

⎟

⎟

⎠

𝑘2
𝜀 −1+𝑂(𝜀)

− 𝑒
𝑠 2𝜋
√

3
−𝑠 𝑘+1𝑘

√

𝜀+𝑂(𝜀)

=
⎛

⎜

⎜

⎝

21−𝑘2 (1 + 𝑒
𝑠 𝜋
√

3 )𝑘2−1𝑒
𝑠 𝜋
√

3

𝑘
𝜀

1−𝑘2
2 + 𝑂

(

𝜀
2−𝑘2
2

)

⎞

⎟

⎟

⎠

1
𝜀

− 𝑒
𝑠 2𝜋
√

3 .

Hence, for 𝜀 small enough we obtain that if 𝑘 > 1, then 𝑅4𝑧(𝑘, 𝑘,
√

𝜀;𝑚) > 0; and if 𝑘 < 1, then 𝑅4𝑧(𝑘, 𝑘,
√

𝜀;𝑚) < 0. Moreover,
when 𝑘 = 1 it follows that 𝑅4𝑧(𝑘, 𝑘,

√

𝜀;𝑚) has the same sign than 𝑚. Since lim𝜀↘0 ℎ𝑢 = 𝑘, previous inequalities are also satisfied by
𝑅4𝑧(ℎ𝑢, 𝑘,

√

𝜀;𝑚).
Let ℎ𝑟 < ℎ∗ < ℎ𝑢 be a zero of 𝑅4𝑧(ℎ, 𝑘,

√

𝜀;𝑚). Straightforward computations shows that

𝜕𝑅4𝑧
𝜕ℎ

|

|

|

|(ℎ∗ ,𝑘,
√

𝜀;𝑚)
= 𝑒

𝑠 2𝜋
√

3
−𝑠 𝑘+1𝑘

√

𝜀+𝑂(𝜀)
(

𝑘3 + 𝑘2(1 − ℎ∗) + ℎ∗

ℎ∗(𝑘 + 1 − ℎ∗)𝜀
+ 𝑂

(

1
√

𝜀

))

> 0,

which implies that, when it exists, the zero ℎ∗ is unique. Moreover, by keeping the lower order terms in (31), we obtain the following
implicit expression for an approximation to the solution ℎ∗(𝑘,

√

𝜀) of 𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) = 0, that is,

( 1
1 + 𝑘 − ℎ∗

)
⎛

⎜

⎜

⎝

2
√

𝜀

𝑘(1 + 𝑒
−𝑠 𝜋

√

3 )

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ℎ∗(1 + 𝑒
𝑠 𝜋
√

3 )
2𝑘

1
√

𝜀

⎞

⎟

⎟

⎠

𝑘2

= 𝑒
𝑠 2𝜋
√

3
𝜀
.

hen 𝑘 = 1, the equation above can be solved and it follows that

ℎ∗ = 2

1 + 𝑒
𝑠 𝜋
√

3

+ 𝑂(
√

𝜀),

which implies that ℎ∗ < ℎ𝑢 only if 𝑚 =
√

𝜀. When 𝑘 ≠ 1 the solution of the equation can be approximated by the undetermined
coefficients method

ℎ∗ = (𝑘 + 1)𝑒
2−𝑘2
2 (

√

𝜀)
𝑘2−1
𝑘2 + 𝑂(

√

𝜀). □

In Fig. 8(a) we represent 𝑅4𝑧(ℎ, 𝑘, 𝜀;𝑚) as a function of ℎ for different values of 𝜀 and 𝑘 > 1. We notice that function 𝑅4𝑧(ℎ, 𝑘, 𝜀;𝑚)
s negative for ℎ close to ℎ𝑟, and positive for values close to ℎ𝑢. Moreover, as it follows from the proof of the previous theorem,

im𝜀↘0 𝑅4𝑧(0, 𝑘,
√

𝜀;𝑚) = −𝑒
2𝜋
√

3 . Furthermore, the unique zero ℎ∗(𝑘,
√

𝜀) tends to zero as 𝜀 tends to zero. In Fig. 8(b) we represent
function ℎ∗(𝑘,

√

𝜀) as a function of 𝑘 for different values of 𝜀. Notice that all the curves have a common point at 𝑘 = 1 and
∗ = 2𝑒

1
2 ≈ 3.297442541400256… > 𝑘, which lies out of the interval (ℎ𝑟, ℎ𝑢) since ℎ𝑢 ≈ 𝑘. Therefore, this part of the curves do

not correspond to non-hyperbolic canard cycles, see Fig. 9.

5.3.3. Correspondence to saddle–node bifurcations
To finish with the proof of Theorems 4.4 and 4.6, in this subsection we are going to prove that the non-hyperbolic canard limit

cycles whose existence has been proved in the previous sections correspond, indeed, to a saddle–node bifurcation. We start with
the proof in the case of headless canard cycles.

We will prove that the non-degeneracy conditions on the Poincaré map hold, that is, the second derivative of the Poincaré map
with respect to the initial condition and the derivative of the Poincaré map with respect to parameter 𝑎 are both different from zero,
see [34,35].

Consider a non-hyperbolic headless canard cycle 𝛤𝑥0 corresponding to a fixed point of the Poincaré map 𝑦0 for parameters 𝜿 = �̄�,
−1 −1 ̄ ̄
19

i.e. 𝑦0 = 𝛱𝐶𝑑 (𝛱𝐿 (𝛷(𝑥0),𝜿),𝜿). First, we compute the second derivative of the Poincaré map with respect to the initial condition
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Fig. 8. Graphs of the functions 𝑅4𝑧(ℎ, 𝑘,
√

𝜀;𝑚) and ℎ∗(𝑘, 𝜀;𝑚) in Proposition 5.6 for different values of 𝜀. In particular blue/dotted curves correspond with
𝜀 = 0.05, green/dashed curves with 𝜀 = 0.01 and red/solid curves with 𝜀 = 0.005. First column contains the graphs of the function 𝑅4𝑧(ℎ, 𝑘,

√

𝜀;𝑚) as a function
of ℎ for the previous values of 𝜀: panel (a) when 𝑘 = 1.3 and 𝑚 = −

√

𝜀 and panel (c) when 𝑘 = 0.75 and 𝑚 =
√

𝜀. Second column contains the graphs of the
function ℎ∗(𝑘, 𝜀;𝑚) as a function of 𝑘 for the previous values of 𝜀: panel (b) when 𝑚 = −

√

𝜀 and panel (d) when 𝑚 =
√

𝜀.

Fig. 9. Curves of saddle–node canard cycles of system (4) with 𝜀 = 1𝑒−5. Pointed/blue curves correspond with three zonal saddle–node canard cycles (headless
canards). Solid/red curves correspond with four zonal saddle–node canard cycles (canards with head). The diagonal is the value of the height ℎ𝑀 as a function
of 𝑘. The part of the curves over the diagonal corresponds to zeros of the function 𝑅3𝑧 and 𝑅4𝑧 which are not saddle–node canards. Panel (a) represents the two
saddle–node canard cycles appearing in the supercritical case 𝑚 = −

√

𝜀 for 𝑘 > 1. Panel (b) represents the saddle–node canard cycles appearing in the subcritical
case 𝑚 =

√

𝜀, in this case for each value of 𝑘 only one saddle–node limit cycle can appears.

and we will see that, in a headless non-hyperbolic canard cycle this derivative is nonzero if and only function 𝑅3𝑧 is non zero at
ℎ̄ = 𝛷3𝑧(𝑥0). Second, we compute the derivative of the Poincaré map with respect to parameter 𝑎 and we test that this derivative
does not vanish.

From expression (27), the second derivative of Poincaré map with respect to ℎ in the non-hyperbolic fixed point ℎ̄ is given by

𝜕2𝛱 (𝑦0, �̄�) =
𝜕𝐺 (ℎ̄, �̄�), (32)
20
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where

𝐺(ℎ,𝜿) = 𝑒𝑡𝐿𝜏𝐿−𝑚𝜏𝐶+𝑡𝑅𝜏𝑅 .

It is easy to see that

𝐺(ℎ,𝜿) = (𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) + 𝑒𝑚𝜏𝐶 )𝑒−𝑚𝜏𝐶 = 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚)𝑒−𝑚𝜏𝐶 + 1.

s in a non-hyperbolic headless canard cycle 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) = 0, it is easy to see that,

𝜕𝐺
𝜕ℎ

(ℎ̄, �̄�) =
𝜕𝑅3𝑧
𝜕ℎ

(ℎ̄, �̄�)𝑒−𝑚𝜏𝐶 .

Thus, from expression (32), in a non-hyperbolic headless canard cycle,

𝜕2𝛱
𝜕𝑦2

(𝑦0, �̄�) =
𝜕𝑅3𝑧
𝜕ℎ

(ℎ̄, �̄�)𝑒−𝑚𝜏𝐶 , (33)

and then the sign of 𝜕2𝛱
𝜕𝑦2

(𝑦0, �̄�) is that of 𝜕𝑅3𝑧
𝜕ℎ (ℎ̄, �̄�), which is non zero from Proposition 5.3 (a-2-2), (b-1-2) and Proposition 5.6

(b-2). To compute the derivative of the Poincaré map with respect to parameter 𝑎 in the neighborhood of a non-hyperbolic
headless canard cycle 𝛤𝑥0 , we will use the following reasoning. Taking a point (

√

𝜀, 𝑦1) in a neighborhood of (
√

𝜀, 𝑦0) where
𝑦0 = 𝛱−1

𝐶𝑑 (𝛱
−1
𝐿 (𝛷3𝑧(𝑥0),𝜿),𝜿). The image through the Poincaré map of 𝑦1, that is 𝛱(𝑦1,𝜿), will be exponentially close to the second

component of 𝐪𝑅1 , that is,

𝛱(𝑦1,𝜿) = (𝑚 + 𝜆𝑠𝑅)(
√

𝜀 − 𝑎) + 𝜒(𝑦1,𝜿),

with function 𝜒(𝑦1,𝜿) and its derivatives 𝑂(exp(−𝑐∕𝜀)) small, where 𝑐 is a positive constant depending on 𝑦1. Hence,

𝜕𝛱
𝜕𝑎

(𝑦1,𝜿) = −(𝑚 + 𝜆𝑠𝑅) +
𝜕𝜒
𝜕𝑎

(𝑦1,𝜿) ≃ −𝑚 + 𝜀,

and 𝜕𝛱
𝜕𝑎 (𝑦1,𝜿) ≠ 0 as 𝑚 = ±

√

𝜀 ≠ 0. This implies that every non-hyperbolic canard cycles obtained in the proof of Proposition 5.2
re saddle–node canard cycles.

Regarding the proof in the case of canard cycles with head (obtained in Proposition 5.5) we proceed in a similar way by using
ow function 𝑅4𝑧 to describe the analogous of the function 𝐺 in expression (32).

By combining in a suitable way the results obtained in Proposition 5.2 and in Proposition 5.5 we conclude the proof of
heorem 4.4 and of Theorem 4.6.

.4. Proof of Theorem 4.7

In Fig. 6(a) we draw the graph of the function 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) as a function of ℎ by fixing parameter 𝑘 = 2.5 and parameter

𝜀 ∈ {0.05, 0.01, 0.005}. As it has been obtained in the proof of Proposition 5.3, 𝑅3𝑧(ℎ, 𝑘,
√

𝜀;𝑚) tends to −𝑒
2𝜋
√

3 as ℎ decrease to ℎ𝑠,
and it tends to ∞ as ℎ tends to ℎ𝑀 . In panel (a) we also represent the zero, ℎ∗ ∈ (ℎ𝑠, ℎ𝑀 ], at which the function changes the sign.
As it can be observed, this tends to zero as 𝜀 tends to zero.

From Proposition 5.3(c), in Fig. 6(b) we draw function ℎ∗(𝑘,
√

𝜀) for different values of 𝑘 < 1. As it can be observed, for a fixed
< 1, the height of the saddle–node tends to zero assuming 𝜀 does. We conclude that fixed 𝑘 the singular limit of every saddle–node

s the equilibrium point at the fold.
Nevertheless, for any ℎ0 ∈ (ℎ𝑠, ℎ𝑀 ] ∪ (ℎ𝑟, ℎ𝑢), we prove that there exists a suitable election of the parameter 𝑘 such that

lim
𝜀↘0

ℎ∗(𝑘(𝜀), 𝜀;𝑚) = ℎ0,

hich means that we can chose parameter 𝑘 in such a way that the singular limit of the saddle–node is a singular cycle of prefixed
eight, ℎ0.

Next, we address the supercritical case 𝑚 = −
√

𝜀 and ℎ0 ∈ (ℎ𝑠, ℎ𝑀 ]. The remainder cases follow by similar arguments. In order
to obtain the parameter value 𝑘 allowing the existence of a saddle–node canard cycle with height ℎ0, we use implicit equation
ℎ∗(𝑘, 𝜀;𝑚) = ℎ0, where the function ℎ∗(𝑘, 𝜀;𝑚) is given in Proposition 5.3(a-2-3). Since the partial derivative

𝜕ℎ∗

𝜕𝑘
(𝑘, 𝜀;𝑚) =

2
√

𝜀𝑘
𝑘2

𝑘2−1
+1𝑒

𝜋
(

𝑘2−2𝜀
)

√

3(𝑘2−1)
(

2
√

3𝜋(2𝜀 − 1) + 3𝑘2 − 6 ln(𝑘) − 3
)

3
(

1 + 𝑒
𝜋
√

3

)

(

𝑘2 − 1
)2

,

is different from zero when 𝑘 is greater but close to 1 and 𝜀 > 0, the Implicit Function Theorem can be applied, and there exists
(ℎ, 𝜀;𝑚) such that the differential system (4) with parameters 𝑘 = 𝑘(ℎ, 𝜀;𝑚) and 𝑎 = 𝑎𝑁 (𝑘(ℎ, 𝜀;𝑚), 𝜀, 𝑥0;𝑚) exhibits the saddle–node
anard 𝛤 , with 𝑥 = 𝛷−1(ℎ), whose existence has been stated in Theorem 4.4, finishing the proof.
21
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Fig. 10. Coexistence of three canard limit cycles. Simulation of three canard limit cycles close to a saddle–node configuration for the supercritical case 𝑚 = −
√

𝜀.
According with Fig. 9(a) two configuration are possible when 𝑘 > 1: a saddle–node canard cycle without head and saddle–node canard cycle with head. Panel
(a) depicts a configuration close to the saddle–node canard cycle without head for 𝜀 = 0.1, 𝑘 = 2.5 and 𝑎 = 𝑎1 = 0.2305968812. The three canard cycles have
initial conditions (0, 0.595), (0, 0.642), (0, 2.12361). Panel (b) depicts a configuration close to the saddle–node canard cycle with head for 𝜀 = 0.1, 𝑘 = 2.5 and
= 𝑎2 = 0.23059688315966, the three canard cycles have initial conditions (0, 0.561), (0, 2.10673), (0, 2.12). Note that |𝑎1 − 𝑎2| ≈ 2𝑒− 9 ≈ 𝑒−

2
𝜀 , then both saddle–node

canard cycles take place exponentially close.

6. Conclusions and perspectives

In this work we have analyzed the canard explosion in the PWL framework, both under supercritical and under subcritical
conditions, paying special attention to the saddle–node bifurcations of canards cycles. In particular, counterparts to results in [3]
have been derived in the PWL context. As we have already commented, there, the authors considered two different scenarios,
depending whether the Hopf bifurcation where the family of cycles is born is supercritical or subcritical. Here, we point out the
similarities and differences that we have found in this study in both cases:

• In [3], canard cycles develop along a branch born at a Hopf bifurcation, at 𝑎 = 𝑎𝐻 , and the canard explosion takes place at a
value which is at a distance of 𝑂(𝜀) from the 𝑎𝐻 . In the PWL context, we have checked that the canard explosion takes place
at a value 𝑎𝑆 which is at a distance of 𝑂(

√

𝜀) from the 𝑎𝐻 . This result is compatible with the approximation to the critical
value obtained in [17]. The distance between the Hopf-like bifurcation and the canard explosion is 𝑂(

√

𝜀) due to two factors.
On the one hand, the size of the central zone is 𝑂(

√

𝜀) and on the other hand, the growth of the amplitude of the cycle born
at a Hopf-like bifurcation is linear with the parameter. Thus, for the limit cycle to enter the canard regime, it must first pass
through the central region.

• Supercritical case, 𝑚 = −
√

𝜀: System (4) is able to reproduce the dynamics in the smooth case with 𝑘 ≤ 1, that is, the existence
of a family of stable canard cycles. By letting 𝑘 increase, we find new scenarios that have not been reported in the smooth
framework with cubic fast nullcline. In particular, when 𝑘 > 1, we find situations where two saddle–node bifurcations of canard
cycles take place, one of headless canards and another one of canards with head, see Fig. 9, panel (a). In this case, three canard
limit cycles can coexist, see Fig. 10. In [17] authors present numerical evidences of the existence of the two saddle–nodes and
hence, of the coexistence of the three canard cycles. It can be checked that systems (4) in the present manuscript and (2)
in [17] are, locally, linear conjugated. Moreover, the values corresponding to the parameter sets II, III and IV appearing in
Table 1 in [17], correspond with the parameter 𝑘 = 2.40, 𝑘 = 2.89 and 𝑘 = 11, respectively, in our framework. Therefore, from
Theorem 4.4, we can explain the unusual shape of the canard explosions appearing in Figure 6 and Figure 7A in [17].

• Subcritical case, 𝑚 =
√

𝜀: In this case, system (4) is able to reproduce the dynamics in the smooth case, with the advantage
that in the PWL case we can easier control the different behaviors that appear. In particular, we have proved the existence of
saddle–node bifurcation of headless canards for 𝑘 < 1, and of canards with head for 𝑘 > 1, see Fig. 9, panel (b).

• Both in the supercritical and the subcritical scenario, the height of saddle–node canard cycles is a function of
√

𝜀, see function
ℎ∗ in Propositions 5.3 and 5.6, as it is in the smooth context, see Theorem 3.6 in [3]. In fact, the existence of a non-hyperbolic
canard cycle is derived in [3] after assuming the existence of a simple zero of the function 𝑅(𝑠). Nevertheless, in Propositions 5.3
and 5.6 we have already proved the existence of saddle–node canard cycles, by showing the existence of a zero of the function
𝑅3𝑧 and 𝑅4𝑧.

eyond the comparison with the results reported in [3], in Theorem 4.7 we have stated that, both in subcritical and supercritical
ases, for every height between the smallest canard cycle and the relaxation oscillation cycle, there exist parameters 𝑘 and 𝜀 such

that a saddle–node canard limit cycle with this height exists.
Furthermore, note that in Fig. 9 we have represented the height of the saddle–node canard cycles versus the parameter 𝑘 for

a particular value of 𝜀. The straight line corresponds with the height, ℎ𝑀 , of the canard orbit through the tangent point 𝐩𝐿𝐿,
and coincides with the maximum height of a 3-zones, that it, the transitory saddle–node canard cycle. Hence, for 𝑘1 < 𝑘 < 𝑘2
the saddle–node canard cycles predicted by function ℎ∗(𝑘,

√

𝜀;𝑚) do not correspond neither with 3-zones nor 4-zones saddle–node
22
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Fig. 11. Supercritical canard explosion in the Morris–Lecar neural model. 𝐻𝐵 stands for supercritical Hopf Bifurcation and 𝑆𝑁 for Saddle–Node bifurcation. (a)
Canard explosion with ratio 𝑘 = 0.8514 < 1 where all the canard cycles are hyperbolic and stable (green curve). (b) Canard explosion with ratio 𝑘 = 3.3540 > 1
where two saddle–node cycles appear as collision of hyperbolic stable limit cycles (green part of the curve) and hyperbolic unstable limit cycles (blue part of
the curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

canard cycles. It is clear that there must be a transition between both types of saddle–node canards and, as we have mentioned
along the manuscript, such a transition cannot be obtained through the functions 𝑅3𝑧 and 𝑅4𝑧, see (28) and (30), respectively. A
similar situation happens in the smooth context, see [26], where slow divergence integral results to be not enough for the analysis
of these transitory orbits. Although the results in the present article do not apply to transitory saddle–node canard cycles, from
them, we can establish the following conjecture:

Conjecture 6.1. For 𝜀 = 0, consider the transitory singular canard 𝛤 , see [26], formed by the critical manifold in [−1, 1] and the segment
{(𝑥, 𝑘) ∶ 𝑥 ∈ [−1, 1]}. There exist values of 𝜀 > 0 and 𝑘 close to 1 such that corresponding system (4) exhibits one, two or three canard limit
cycles in a neighborhood of 𝛤 . Even more, the system also exhibits zero, one or two saddle–node canard cycles in a neighborhood of 𝛤 .

Finally, in the subcritical case, the existence of saddle–node bifurcation of headless canards for 𝑘 < 1, and of canards with head
for 𝑘 > 1, leads us to come up with:

Conjecture 6.2. System (4) in the subcritical case (𝑚 =
√

𝜀) possesses a saddle–node bifurcation of transitory canard cycles for 𝑘 = 1.

The use of this simpler family of slow–fast systems to reproduce canard dynamics brings us some information which could be
interesting when revisiting the smooth context. In particular, the conditions 𝑘 < 1 and 𝑘 > 1 organizing the dynamics in the main
results, suggest the importance of the ratio between the slopes of the fast nullcline in order to exhibit or not saddle–node canard
cycles with head. Assuming this idea, we claim that saddle–node canard cycles with head can only appear when the average slope
of the repelling branch of the critical manifold is greater than the average slope of the attracting branches of the critical manifold
(in absolute value). As this is not the case in the Van der Pol system, it explains why only headless saddle–node canard cycles are
possible in that system. To support the assertion about the linkage between the ratio of the slopes and the existence of saddle–
node canard cycles, in Fig. 11 we show the behavior of the supercritical canard explosion in the Morris–Lecar neural model (37),
see Appendix B for the definition of the elements involved. In particular, in panel (a) we show the supercritical canard explosion
with ratio 𝑘 = 0.8514.... < 1 where no saddle–node canard cycles are presented, as it is suggested by Theorem 4.4(a). On the contrary,
in panel (b) we show the supercritical canard explosion with ratio 𝑘 = 3.3539... > 1 where two saddle–node cycles appear, as it is
also suggested by Theorem 4.4(b).

We finally point out that some quantitative information obtained in the manuscript could be relevant for applications. As example
of such information we highlight the period of the canard cycles, see Lemma A.3, and the location of the saddle–node canards in
terms of the parameter, see Propositions 5.2 and 5.5. Finally, the dependence between the height of a canard cycle and the bifurcation
parameter 𝑎 at which it appears has been approximated in the estimation |𝑎𝑁 − 𝑎𝑆 | appearing in Theorem 4.3. Note that, it can be
observed that the slope of the explosion is different before and after the transitory canard.
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Appendix A. About Poincaré half-maps and times of flight

In this section we summarize the main technical results on piecewise linear dynamics that we use along the manuscript. In
particular we provide approximations for the Poincaré half-map and for the time of flight of the solutions inside the regions of
linearity.

Lemma A.1. For 𝜀0 > 0 sufficiently small, set 𝜀 < 𝜀0, 𝑎 <
√

𝜀, the values of 𝑥𝑟 and 𝑥𝑠 given in (14) and 𝑥𝑢 given in (16). Let 𝛤𝑥0 be a
limit cycle of system (4) having width 𝑥0 ∈ (𝑥𝑟, 𝑎). It holds that:

(a) If 𝑥0 ∈ (𝑥𝑠, 𝑎) then 𝛤𝑥0 is under Hopf regime.
(b) If 𝑥0 ∈ (𝑥𝑟, 𝑥𝑠) then 𝛤𝑥0 is under canard regime.
(c) If 𝑥0 ∈ (𝑥𝑢,−1) then 𝛤𝑥0 is a canard cycle in transitory region.

oreover, if ℎ = 𝛷(𝑥) is the function relating the width 𝑥 of a limit cycle with its height ℎ, see (11), then:

ℎ𝑠 = 𝛷(𝑥𝑠) =
(

𝑘
| ln(𝜀)|

− 𝑚
)

(
√

𝜀 + 𝑎),

ℎ𝑀 = 𝛷(−1) = 𝑝2,

ℎ𝑢 = 𝛷(𝑥𝑢) = 𝑝2 −
1

| ln(𝜀)|
(1 + 𝑎),

ℎ𝑟 = 𝛷(𝑥𝑟) = −(𝑚 + 𝜆𝑠𝐿)(
√

𝜀 + 𝑎),

where 𝑝2 = −𝑚
(

√

𝜀 + 𝑎) + 𝑘(1 −
√

𝜀
)

is the second coordinate of 𝐩𝐿𝐿.

Proof. This proof is similar to that of Lemma 4.1 in [30] and is performed through the analysis of the divergence in a neighborhood
of the repelling slow manifold.

In particular, for the first statement it suffices to adapt the proof of statement (a) of Lemma 4.1 in [30], taking into account that
the trace in zone 𝜎𝐿 in now 𝑘, instead of 1, as we summarize below.

Let 𝜑(𝑡) be a solution of system (4) such that 𝜑(𝑡) ⊂ 𝜎𝐿 for 𝑡 ∈ (0, 𝑡0) and 𝑡0 > 0. By using the Krylov base {𝐩𝐿, �̇�𝐿}, the solution
an be parametrized by 𝜑(𝑡) = 𝑢1(𝑡)𝐩𝐿 + 𝑢2(𝑡)�̇�𝐿. Following Theorem 5 in [33], the function 𝐻𝐿(𝑢1, 𝑢2) = |𝑢1 + 𝜆𝑠𝐿𝑢2|

𝜆𝑞𝐿
|𝑢1 + 𝜆𝑞𝐿𝑢2|

−𝜆𝑠𝐿

is constant over the coordinates (𝑢1(𝑡), 𝑢2(𝑡)) with 𝑡 ∈ (0, 𝑡0), and it is called a first integral for system (4) related to the Krylov base
{𝐩𝐿, �̇�𝐿}. Therefore, the transition map from points on the switching line {𝑥 = −

√

𝜀} to itself, i.e., from points 𝐩𝐿 − 𝑢�̇�𝐿 to points
𝐩𝐿 + 𝑣�̇�𝐿, is given by 𝐻𝐿(1,−𝑢) = 𝐻𝐿(1, 𝑣).

Thus, following the same steps that in the proof of statement (a) of Lemma 4.1 in [30], we can deduce that the transition map
from points in {𝑥 = −

√

𝜀} into points in the 𝑥−nullcline in zone 𝜎𝐿 is given by,

𝐻𝐿(1,−𝑢𝑠(𝜀)) = 𝐻𝐿(𝛾, 0). (34)

Moreover, 𝐻𝐿(1,−𝑢𝑠(𝜀)) = 1+ 1
| ln(𝜀)| . Also 𝐻𝐿(𝛾, 0) = 𝛾𝜆

𝑞
𝐿−𝜆

𝑠
𝐿 which can be approximated at first order by 𝛾𝑘. Taking this into account,

rom expression (34) we find that 𝛾𝑘 ≈ 1+ 1
| ln(𝜀)| . Thus, 𝑥𝑠 can be computed as the first coordinate of the point 𝐞𝐿 + 𝛾(𝐩𝐿 − 𝐞𝐿), from

hich we obtain the second expression in (14).
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Let us proceed now to the computation of 𝑥𝑟. Following the same steps as in the proof of statement (b) in Lemma 4.1 in [30],
e get that,

𝑟𝜆
𝑞
𝐿−𝜆

𝑠
𝐿𝐹 (−𝑣) = 𝑟𝜆

𝑞
𝐿−𝜆

𝑠
𝐿
1 − 𝑣𝜆𝑠𝐿
1 − 𝑢𝑟𝜆𝑠𝐿

≈ 𝑟𝑘
1 − 𝑣𝜆𝑠𝐿
1 − 𝑢𝑟𝜆𝑠𝐿

,

nd we conclude that 𝑣𝑟(𝜀) =
1
𝜆𝑠𝐿

(

1 − 𝜀1∕𝑘
(

1 + 1
| ln(𝜀)|

))

.

Now, by using the Krylov base {𝐩𝐿𝐿, �̇�𝐿𝐿}, the solution can be parametrized by 𝜑(𝑡) = 𝑢1(𝑡)𝐩𝐿𝐿 + 𝑢2(𝑡)�̇�𝐿𝐿. Following again
heorem 5 in [33], function 𝐻𝐿𝐿(𝑢1, 𝑢2) = |𝑢1 + 𝜆𝑠𝐿𝐿𝑢2|

𝜆𝑞𝐿𝐿
|𝑢1 + 𝜆𝑞𝐿𝐿𝑢2|

−𝜆𝑠𝐿𝐿 is constant over the coordinates (𝑢1(𝑡), 𝑢2(𝑡)) with 𝑡 ∈ (0, 𝑡0),
nd it is called a first integral for system (4) related to the Krylov base {𝐩𝐿𝐿, �̇�𝐿𝐿}. Therefore, the transition map from points on the
witching line {𝑥 = −1} to itself, i.e., from points 𝐩𝐿𝐿 − 𝑢�̇�𝐿𝐿 to points 𝐩𝐿𝐿 + 𝑣�̇�𝐿𝐿, is given by 𝐻𝐿𝐿(1,−𝑢) = 𝐻𝐿𝐿(1, 𝑣), and we can

deduce that the transition map from points in {𝑥 = −1} into points in the 𝑥−nullcline in zone 𝜎𝐿𝐿 is given by,

𝐻𝐿𝐿(1,−𝑣𝑟(𝜀)) = 𝐻𝐿𝐿(𝛾, 0). (35)

Also, 𝐻𝐿𝐿(𝛾, 0) = 𝛾𝜆
𝑞
𝐿𝐿−𝜆

𝑠
𝐿𝐿 which can be approximated at first order by 𝛾−1. Taking this into account, from expression (35) we

find that 𝛾 ≈ 2∕(1 + 𝑣𝑟)𝜀. Thus, 𝑥𝑟 can be computed as the first coordinate of the point 𝐞𝐿𝐿 + 𝛾(𝐩𝐿𝐿 − 𝐞𝐿𝐿), from which we obtain
the first expression in (14).

Finally, we deal with the computation of 𝑥𝑢. As it can be seen in Fig. 7, this value corresponds to the first component of the
intersection with the 𝑥−nullcline of the orbit from an initial point in the separation line 𝑥 = −1, such that the following intersection
with this separation line is below and exponentially close to 𝐪𝐿𝐿1 .

Again, by using the Krylov base {𝐩𝐿𝐿, �̇�𝐿𝐿}, we know that the transition map from points on the switching line {𝑥 = −1} to
itself, is given by 𝐻𝐿𝐿(1,−𝑢) = 𝐻𝐿𝐿(1, 𝑣), and we can deduce that the transition map from points in the 𝑥−nullcline in zone 𝜎𝐿𝐿
into points in {𝑥 = −1} is given by,

𝐻𝐿𝐿(𝛾, 0) = 𝐻𝐿𝐿(1, 𝑣𝑢(𝜀)). (36)

Taking into account that, 𝐻𝐿𝐿(𝛾, 0) = 𝛾𝜆
𝑞
𝐿𝐿−𝜆

𝑠
𝐿𝐿 , which can be approximated at first order by 𝛾−1, we find from expression (36)

that 𝛾 ≈ 1+ 1∕| ln 𝜀|− 𝜀. Thus, 𝑥𝑢 can be computed as the first coordinate of the point 𝐞𝐿𝐿 + 𝛾(𝐩𝐿𝐿 − 𝐞𝐿𝐿), from which we obtain the
first expression in (16).

Now we deal with the computations of the height ℎ𝑠, the reminder values follow in a similar way. Since 𝑢𝑠 is known, from
expression 𝐻𝐿(1,−𝑢𝑠) = 𝐻𝐿(1, 𝑣𝑠), we obtain the value

𝑣𝑠 =
1

𝜆𝑠𝐿| ln(𝜀)|
= 𝑘

𝜀| ln(𝜀)|
.

Therefore, ℎ𝑠 can be computed as the second coordinate of the point 𝐩𝐿 + 𝑣𝑠�̇�𝐿, given the expression provided in the lemma. □

Lemma A.2. For 𝜀0 > 0 fixed and small enough, and 𝜀 ∈ (0, 𝜀0) it follows that

𝛱−1
𝐿

((

−
√

𝜀
ℎ

))

− 𝐪𝐿0 =

(

0

(ℎ + 𝑂(𝜀))𝑒
− 𝑘ℎ

𝜀(
√

𝜀−𝑎)

)

, for ℎ > ℎ𝑠,

𝛱𝑅

((√

𝜀
ℎ

))

− 𝐪𝑅1 =

(

0

(ℎ + 𝑂(𝜀))𝑒
− ℎ

𝜀(
√

𝜀−𝑎)

)

, for ℎ > ℎ𝑅 ∶=
(

𝑚 + 1
| ln(𝜀)|

)

(
√

𝜀 − 𝑎),

𝐪𝐿𝐿1 −𝛱𝐿𝐿

((

−1
ℎ

))

=

(

0

(𝑘 − ℎ + 𝑂(𝜀))𝑒−
𝑘(𝑘−ℎ)
𝜀(1+𝑎)

)

, for ℎ < ℎ𝑢,

𝐪𝐿0 −𝛱−1
𝐿𝑑

((

−1
ℎ

))

=
⎛

⎜

⎜

⎝

0

(𝑘 − ℎ + 𝑂(𝜀))𝑒
− 𝑘

𝜀 ln
(

1+𝑎
𝑎+

√

𝜀

)

⎞

⎟

⎟

⎠

, for ℎ ∈ (ℎ𝑟, 𝑝2),

here ℎ𝑠, ℎ𝑢 and ℎ𝑟 are provided in Lemma A.1, and 𝑝2 = 𝑘(1 −
√

𝜀) − 𝑚(
√

𝜀 + 𝑎) is the second coordinate of the point 𝐩𝐿𝐿.

Proof. Next, we compute the expressions of the Poincaré half-maps 𝛱𝑅 and 𝛱𝐿𝑑 , the remainder expressions in the lemma follows
in a similar way.

Following Chapter 3 in [36], the coordinates 𝑢 and 𝑣 of the points 𝐩 and 𝛱𝑅(𝐩) in the Krylov base {𝐩𝑅, �̇�𝑅}, that is, 𝐩 = 𝐩𝑅 − 𝑢�̇�𝑅

and 𝛱𝑅(𝐩) = 𝐩𝑅 + 𝑣�̇�𝑅, are invariant through translations and linear transformation. Therefore, 𝑢 and 𝑣 satisfy that 𝑣 ∈
(

0,− 1
𝜆𝑞𝑅

)

and

(1 + 𝑣𝜆𝑠𝑅
𝑠

)

𝜆𝑞𝑅
𝜆𝑠𝑅 =

1 + 𝑣𝜆𝑞𝑅
𝑞 ,
25

1 − 𝑢𝜆𝑅 1 − 𝑢𝜆𝑅
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where 𝜆𝑠𝑅 and 𝜆𝑞𝑅 are the slow and the fast eigenvalues of the matrix 𝐴𝑅. For 𝜀 small enough, 𝜆𝑠𝑅 tends to zero and hence, taking
he limit of the left side term in the previous identity as 𝜆𝑠𝑅 tends to zero, we obtain that 𝑣 can be implicitly approximated by

𝑣 = 1
𝜆𝑞𝑅

(

−1 + (1 − 𝑢𝜆𝑞𝑅)𝑒
𝜆𝑞𝑅(𝑢+𝑣)

)

.

Since the 𝑢-coordinate of 𝐩 = (
√

𝜀, ℎ)𝑇 in the Krylov base is

𝑢 =
ℎ − 𝑚(

√

𝜀 − 𝑎)

𝜀(
√

𝜀 − 𝑎)
> 0,

e conclude that

𝛱𝑅(𝐩) = 𝐩𝑅 + 1
𝜆𝑞𝑅

(

−1 + (1 − 𝑢𝜆𝑞𝑅)𝑒
𝜆𝑞𝑅(𝑢+𝑣)

)

�̇�𝑅

=

⎛

⎜

⎜

⎜

⎝

√

𝜀

(𝑚 + 𝜆𝑠𝑅)(
√

𝜀 − 𝑎) −
(

𝜆𝑠𝑅(
√

𝜀 − 𝑎) − 𝑢𝜀(
√

𝜀 − 𝑎)
)

𝑒𝜆
𝑞
𝑅(𝑢+𝑣)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

√

𝜀

(𝑚 + 𝜆𝑠𝑅)(
√

𝜀 − 𝑎) −
(

(𝑚 + 𝜆𝑠𝑅)(
√

𝜀 − 𝑎) − ℎ
)

𝑒
𝜆𝑞𝑅(𝑣+

ℎ−𝑚(
√

𝜀−𝑎)
𝜀(
√

𝜀−𝑎)
)

⎞

⎟

⎟

⎟

⎟

⎠

= 𝐪𝑅1 +

⎛

⎜

⎜

⎜

⎜

⎝

0

(

ℎ − (𝑚 + 𝜆𝑠𝑅)(
√

𝜀 − 𝑎)
)

𝑒
𝜆𝑞𝑅𝑣+

ℎ−𝑚(
√

𝜀−𝑎)
𝜆𝑠𝑅 (

√

𝜀−𝑎)

⎞

⎟

⎟

⎟

⎟

⎠

.

aking into account that −1 < 𝜆𝑞𝑅𝑣 < 0, the exponent in the previous expression can be approximated by ℎ
𝜆𝑠𝑅(

√

𝜀−𝑎)
, provided that,

ℎ − 𝑚(
√

𝜀 − 𝑎)

𝜆𝑠𝑅(
√

𝜀 − 𝑎)
< − 1

𝜀| ln(𝜀)|
.

rom this we conclude that ℎ >
(

𝑚 + 1
| ln(𝜀)|

)

(
√

𝜀 − 𝑎), what finishes the proof of the second expression of the lemma.
Consider now the transformation 𝛱𝐿𝑑 , from points of the form 𝐩𝐿 − 𝑢�̇�𝐿 to points of the form 𝐩𝐿𝐿 − 𝑣�̇�𝐿𝐿. Even when the

relationship between the coordinates 𝑢 and 𝑣 of these points is not explicitly computed in [36], we can use the same arguments
than there to obtain that 𝑣 ∈

(

0, 1
𝜆𝑠𝐿

)

and

(1 − 𝑣𝜆𝑠𝐿
1 − 𝑢𝜆𝑠𝐿

)

𝜆𝑞𝐿
𝜆𝑠𝐿 = 𝑟

1−
𝜆𝑞𝐿
𝜆𝑠𝐿

(

1 − 𝑣𝜆𝑞𝐿
1 − 𝑢𝜆𝑞𝐿

)

,

where 𝑟 = 1+𝑎
√

𝜀+𝑎
satisfies that 𝐩𝐿𝐿 − 𝐞𝐿 = 𝑟(𝐩𝐿 − 𝐞𝐿). Taking the limit of the left side term in the previous identity as 𝜆𝑠𝐿 tends to

zero, we obtain a new implicit relation between the coordinates 𝑢 and 𝑣 given by

𝑢 = 1
𝜆𝑞𝐿

⎛

⎜

⎜

⎝

1 − 𝑟(1 − 𝑣𝜆𝑞𝐿)𝑒
−

𝜆𝑞𝐿
𝜆𝑠𝐿

ln(𝑟)+𝜆𝑞𝐿(𝑣−𝑢)
⎞

⎟

⎟

⎠

.

ince the 𝑣 coordinate of a point (−1, ℎ) = 𝐩𝐿𝐿 − 𝑣�̇�𝐿𝐿 satisfies that

𝑣 =
𝑘(1 −

√

𝜀) − 𝑚(
√

𝜀 + 𝑎) − ℎ
𝜀(1 + 𝑎)

∈
(

0, 1
𝜆𝑠𝐿

)

,

t follows that

𝑘(1 −
√

𝜀) − 𝑚(
√

𝜀 + 𝑎) − 𝜆𝑞𝐿(1 + 𝑎) < ℎ < 𝑘(1 −
√

𝜀) − 𝑚(
√

𝜀 + 𝑎),

nd therefore, the preimage by 𝛱𝐿𝑑 of the point (−1, ℎ) is

𝐩𝐿 − 𝑢�̇�𝐿 = 𝐪𝐿0 +
⎛

⎜

⎜

⎝

0
(

(1 + 𝑎)𝜆𝑠 + 𝑚(𝑎 +
√

𝜀) − 𝑘(1 −
√

𝜀) + ℎ
)

𝑒
−1−

𝜆𝑞𝐿 (1+𝑎) ln(𝑟)−𝑘(1−
√

𝜀)+𝑚(
√

𝜀+𝑎)+ℎ
𝜆𝑠𝐿(1+𝑎)

⎞

⎟

⎟

⎠

.

26
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For 𝜀 small enough previous expression can be rewritten as

𝐩𝐿 − 𝑢�̇�𝐿 = 𝐪𝐿0 +
⎛

⎜

⎜

⎝

0
(

(𝑚 + 𝑘)(𝑎 +
√

𝜀) − 𝜆𝑞𝐿(1 + 𝑎) + ℎ
)

𝑒
− 𝑘

𝜀 ln
(

1+𝑎
√

𝜀+𝑎

)

⎞

⎟

⎟

⎠

.

he lemma for 𝛱𝐿𝑑 follows by considering 𝜀 small enough. □

Let 𝜏𝑅(ℎ) be the time of flight of the solution between the points (
√

𝜀, ℎ)𝑇 and 𝛱𝑅(
√

𝜀, ℎ), let 𝜏𝐿(ℎ) be the time of flight between
(−

√

𝜀, ℎ)𝑇 and 𝛱𝐿(−
√

𝜀, ℎ), let 𝜏𝐿𝐿(ℎ) be the time of flight between (−1, ℎ)𝑇 and 𝛱𝐿𝐿(−1, ℎ), let 𝜏𝐿𝑑 (ℎ) be the time of flight between
(−

√

𝜀, ℎ)𝑇 and 𝛱𝐿𝑑 (−
√

𝜀, ℎ) and let 𝜏𝑅𝑅 be the time of flight between 𝐪𝑅𝑅0 and 𝐪𝑅1 , see Fig. 2, that is, 𝜏𝑅𝑅 = 𝜏𝑅(ℎ0) where ℎ0 is the
second coordinate of 𝐪𝐿𝐿1 . In the following lemma, we provide such times of flight.

Lemma A.3. For 𝜀 > 0 fixed and small enough it follows that

𝜏𝑅(ℎ) = − 1
𝜆𝑠𝑅

ln

(

1 +
(𝑚 + 𝜆𝑠𝑅)(

√

𝜀 − 𝑎) − ℎ

(𝜆𝑞𝑅 − 𝜆𝑠𝑅)(
√

𝜀 − 𝑎)

)

,

𝜏𝐿(ℎ) =
1
𝜆𝑠𝐿

ln

(

1 +
ℎ + (𝑚 + 𝜆𝑠𝐿)(

√

𝜀 + 𝑎)

(𝜆𝑞𝐿 − 𝜆𝑠𝐿)(
√

𝜀 + 𝑎)

)

,

𝜏𝐿𝑑 (ℎ) =
1
𝜆𝑠𝐿

ln

(

1 +
ℎ + 𝑚(

√

𝜀 + 𝑎) + 𝜆𝑠𝐿(2
√

𝜀 + 𝑎 − 1)

(𝜆𝑞𝐿 − 𝜆𝑠𝐿)(
√

𝜀 + 𝑎)

)

,

𝜏𝐿𝐿(ℎ) = − 1
𝜆𝑠𝐿𝐿

ln

(

1 +
ℎ + 𝑚(

√

𝜀 + 𝑎) + 𝑘(
√

𝜀 − 1) + 𝜆𝑠𝐿𝐿(1 + 𝑎)

(𝜆𝑞𝐿𝐿 − 𝜆𝑠𝐿𝐿)(1 + 𝑎)

)

,

𝜏𝑅𝑅 = − 1
𝜆𝑠𝑅

ln

(

1 +
𝜆𝑠𝑅(

√

𝜀 − 𝑎) + 𝜆𝑠𝐿𝐿(1 + 𝑎) + 𝑘(
√

𝜀 − 1) + 2𝑚
√

𝜀

(𝜆𝑞𝑅 − 𝜆𝑠𝑅)(
√

𝜀 − 𝑎)

)

.

Proof. Consider a point 𝐩 = (
√

𝜀, ℎ)𝑇 and its image by the Poincaré map 𝛱𝑅(𝐩). From Lemma A.2, since 𝜀 is small enough, we can
substitute the point 𝛱𝑅(𝐩) by the exponentially close point 𝐪𝑅1 . In an equivalent way, we approximately compute the time 𝜏𝑅(ℎ) as
the time of flight of the solution for traveling from 𝐩 to 𝐪𝑅1 . To do that, we project the point 𝐩 onto the point 𝐩𝑠 contained in the
slow manifold 𝜇𝑅, see (7), by following the fast eigenvector, 𝐯𝑞𝑅. The point 𝐩𝑠 is obtained by solving with respect the unknowns
𝑟𝑠, 𝑟𝑞 ∈ R+ the linear system of equations

𝐩𝑠 = 𝐩 − 𝑟𝑞𝐯
𝑞
𝑅 = 𝐞𝑅 − 𝑟𝑠𝐯𝑠𝑅.

We conclude that

𝑟𝑠 =
(
√

𝜀 − 𝑎)(𝑚 − 1 − 𝜆𝑠𝑅) − ℎ

𝜆𝑠𝑅(𝜆
𝑠
𝑅 − 𝜆𝑞𝑅)

=
(
√

𝜀 − 𝑎)(𝑚 + 𝜆𝑞𝑅) − ℎ

𝜆𝑠𝑅(𝜆
𝑠
𝑅 − 𝜆𝑞𝑅)

.

Then, we compute 𝜏𝑅(ℎ) as the time of flight of the solution to travel from the projected point 𝐩𝑠 to 𝐪𝑅1 , that is,

𝑒𝜆
𝑠
𝑅𝜏𝑅(ℎ) =

‖𝐪𝑅1 − 𝐞𝑅‖
‖𝐩𝑠 − 𝐞𝑅‖

=

𝑎−
√

𝜀
𝜆𝑠𝑅

‖𝐯𝑠𝑅‖

𝑟𝑠‖𝐯𝑠𝑅‖
=

(
√

𝜀 − 𝑎)(𝜆𝑞𝑅 − 𝜆𝑠𝑅)

(
√

𝜀 − 𝑎)(𝑚 + 𝜆𝑞𝑅) − ℎ
.

he lemma follows by isolating 𝜏𝑅(ℎ). The remainder functions are computed by following similar arguments. □

Appendix B. Morris–lecar neural model

In this section we introduce the Morris–Lecar neural model [37]

⎧

⎪

⎨

⎪

⎩

𝐶�̇� = 𝐼 − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝑁𝑎𝑚∞(𝑉 )(𝑉 − 𝐸𝑁𝑎) − 𝑔𝑘𝑛(𝑉 − 𝐸𝐾 ),

�̇� =
𝑛∞(𝑉 ) − 𝑛

𝜏𝑛(𝑉 )
(37)

where

𝑚∞(𝑉 ) = 1

1 + 𝑒
𝑉𝑚−𝑉
𝑘𝑚

, 𝑛∞(𝑉 ) = 1

1 + 𝑒
𝑉𝑛−𝑉
𝑘𝑛

, 𝜏𝑛(𝑉 ) = 𝜏𝑛.

e also provide the values of the parameters allowing for the canard explosions in Fig. 11. In particular, for the panel (a) the used
arameters are: 𝐶 = 1, 𝐸𝑁𝑎 = 40, 𝐸𝐾 = −70, 𝐸𝐿 = −78, 𝑔𝑁𝑎 = 5, 𝑔𝑘 = 5, 𝑔𝐿 = 8, 𝑘𝑚 = 3, 𝑉𝑚 = −20, 𝑘𝑛 = 1.188, 𝑉𝑛 = −24 and

𝜏𝑛 = 1. For these parameters, the local minimum and maximum of the 𝑉 −nullcline are located at the points (−26.6758, 0.3223) and
27

(−16.2482, 0.6344), respectively. Moreover, for computing the ratio of the slopes we also consider the point (−35.2413, 0.6234) on the
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𝑘

𝑉
t
t
𝑠
r

R

𝑉 −nullcline. Therefore, the slope of the left attracting branch of the slow manifold is given by 𝑠𝑎 = 0.6234−0.3223
35.2413−26.6758 = 0.0352, and

the slope of the repelling branch of the slow manifold is given by 𝑠𝑢 = 0.6344−0.3223
26.6758−16.2482 = 0.0299. The ratio between the slopes are

= 𝑠𝑢
𝑠𝑎

= 0.0299
0.0352 = 0.8514.

For the panel (b) the used parameters are: 𝐶 = 1, 𝐸𝑁𝑎 = 60, 𝐸𝐾 = −90, 𝐸𝐿 = −78, 𝑔𝑁𝑎 = 7, 𝑔𝑘 = 10, 𝑔𝐿 = 8, 𝑘𝑚 = 1.28,
𝑚 = −20, 𝑘𝑛 = 0.9, 𝑉𝑛 = −22 and 𝜏𝑛 = 0.2. For these parameters, the local minimum and maximum of the 𝑉 −nullcline are located at
he points (−24, 5655, 0.0762) and (−16.4965, 0.6454), respectively. Moreover, for computing the ratio of the slopes we also consider
he point (−50.7586, 0.6271) on the 𝑉 −nullcline. Therefore, the slope of the left attracting branch of the slow manifold is given by
𝑎 = 0.6271−0.0762

50.7586−24.5655 = 0.0210, and the slope of the repelling branch of the slow manifold is given by 𝑠𝑢 =
0.6454−0.0762

24.5655−16.4965 = 0.0705. The
atio between the slopes are then 𝑘 = 𝑠𝑢

𝑠𝑎
= 0.0705

0.0210 = 3.3540.
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