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ABSTRACT Extracting information of interest from continuous video streams is a strongly demanded
computer vision task. For the realization of this task at the edge using the current de-facto standard approach,
i.e., deep learning, it is critical to optimize key performance metrics such as throughput and energy con-
sumption according to prescribed application requirements. This allows achieving timely decision-making
while extending the battery lifetime as much as possible. In this context, we propose a method to boost
neural-network performance based on a co-execution strategy that exploits hardware heterogeneity on edge
platforms. The enabling tool is Apache TVM, a highly efficient machine-learning compiler compatible with
a diversity of hardware back-ends. The proposed approach solves the problem of network partitioning and
distributes the workloads to make concurrent use of all the processors available on the board following
a pipeline scheme. We conducted experiments on various popular CNNs compiled with TVM on the
Jetson TX2 platform. The experimental results based on measurements show a significant improvement in
throughput with respect to a single-processor execution, ranging from 14% to 150% over all tested networks.
Power-efficient configurations were also identified, accomplishing energy reductions above 10%.

INDEX TERMS Apache TVM, continuous inference, convolutional neural networks, edge vision, hetero-
geneous processing, jetson TX2, performance optimization.

I. INTRODUCTION
Edge computing, which brings computation close to the data
acquisition system, i.e., sensors, constitutes the reference
paradigm to replace cloud-based solutions for a wide set
of computer vision applications. It permits to save band-
width, remove communication latency, and preserve infor-
mation privacy. However, the execution of computation-
ally demanding convolutional neural networks (CNNs) on
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resource-constrained embedded devices calls for efficient
implementations. This remains a challenge, especially in
the scope of edge applications requiring real-time decision-
making and/or low-energy inference.

The trade-offs related to the realization of vision at the edge
have been addressed from diverse perspectives. Specific and
progressively more efficient devices have been developed in
the last few years, such as low-power edge GPUs [1], [2], [3],
neural-network accelerators [4], embedded CPUs [5], or ten-
sor processor units [6]. Strategies based on multiple devices
have also been proposed, including hybrid cloud-edge
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solutions [7], [8], [9], [10], [11], [12], [13] and collaborative
systems in the framework of the Internet of Things [14], [15],
[16], [17], [18]. These methods are highly dependent on the
availability of effective communication networks and require
additional algorithms, which increase resource utilization and
implementation cost. An intermediate solution consists in
exploiting hardware heterogeneity (iii). This means properly
leveraging the computational resources available on edge
platforms for the sake of boosting the inference perfor-
mance. The present work applies this intermediate solution,
which exploits heterogeneous processors included in an edge
platform through a co-execution collaborative scheme. The
advantages of this approach are as follows:
• There is no need for additional infrastructure, which is
particularly relevant given that many edge systems and
mobile devices already integrate a variety of processing
components: CPU, GPU, TPU, NPU, DSP, etc.

• Compared to cloud-based and multiple-node collabora-
tive solutions, local mobile computing (1) facilitates data
privacy and (2) mitigates the dependency on a commu-
nication network with enough bandwidth.

• The cost of inter-device data transmission of cloud-
dependent solutions is saved. This is important given
that data transfer latencies in the cloud are often high –
especially on 3G and LTE [8], [19].

• As long as the network model does not change, the
model partition algorithm only needs to be performed
once; thus, its cost can be amortized over continuous
executions.

This manuscript is organized as follows. Next sub-sections
of present Sect. I establish the context and scope of our study
within the state-of-the-art and emphasizes the relevance of the
reported results. Section II describes the proposed approach
and mathematically formulates the optimization problem.
Experimental set-up and practical implementation details are
provided in Sect. III. Corresponding performance results are
reported in Sect. IV. Finally, we discuss the strengths of
the proposed method in Sect. V, highlighting how it can be
extended to allow dynamic runtime scheduling.

A. RELATED WORK
The key question we aimed to answer with this study is
whether the hardware resources accessible in heterogeneous
edge platforms can be effectively exploited to attain signif-
icant performance enhancement. Certainly, previous works
on heterogeneous edge computing evidenced the advan-
tages of this approach. For instance, the effectiveness of
CNN workload distribution on the CPU-GPU architecture
of Google Pixel 2 was evaluated in [20]. In this case, the
proposed strategy is based on hardware allocation accord-
ing to the system runtime state, in contrast to network par-
tition schemes. Neural-network acceleration on the ARM
big.LITTLE architecture through heterogeneous processing
has also been reported [21], [22], [23]. Pipe-all [21] carries
out network partitioning to implement a CPU-GPU pipeline
schedule with ARM Compute Library (ARM-CL) running

on both ARM CPU and Mali GPU. Pipe-it [22] leverages
big.LITTLE technology – big and small quad-core CPU
clusters – by applying layer-level network distribution in
a co-execution scheme also based on ARM-CL. Similarly,
the authors in [23] built a pipeline processing scheme on a
multi-core platform by splitting the network into processing
stages assigned to groups of cores. An heterogeneous two-
stage processing pipeline on Jetson AGX Xavier has also
been proposed [24]. In this work, the accelerator included
in the board performs most of the CNN operations and then
offloads the last layers of the network to the CPU. When
processing batches of images with that pipeline-based strat-
egy, inference speedups are achieved. A more comprehensive
framework is represented by DeepX [25], which constitutes
a solution to execute neural networks on multiple proces-
sors through layer compression and workload distribution.
Scheduling of machine-learning (ML) tasks over heteroge-
neous FPGA-GPU or multi-FPGA embedded systems have
also been explored [26], [27], as well as layer-pipelined CNN
acceleration schemes tailored for FPGAs [28]. In contrast to
these approaches, our work aims to set the basis for gener-
alized heterogeneous hardware exploitation, by employing
1) the TVM library, which is compatible with a great variety
of hardware devices; and 2) allowing the scheduler to select
any combination of processing devices and number of stages.
We also focus on processing continuous image streams, both
in a fast-response or energy-saving manner.

On the other hand, cloud-based and edge-only approaches
constitute other heterogeneous techniques enabling edge
applications. Neurosurgeon [8] employs Jetson TX1 and
a cloud server to dynamically adapt network partitioning
according to estimated runtimes or energy consumption.
Low-cost low-energy devices, such as Raspberry Pi and
Odroid, have also been employed in edge-cloud hybrid
solutions with dynamic network conditions [15], [29].
Multi-node edge-edge solutions can also optimize network
execution by applying layer fusion, data parallelism, or net-
work partition over clusters of edge devices [18], [19], [30],
[31], [32], [33]. For instance, [34] proposes spatial and chan-
nel partitioning to parallelize convolutional layers in multiple
devices using dynamic programming-based search. However,
in these methods, the need for data transfer between devices
in a network increases communication latency and incurs
high network traffic and privacy risks. Moreover, an extra
economic cost is also frequently incurred owing to the com-
plexity of distributed computing mechanisms.

Finally, an example of approach exploiting heteroge-
neous computing resources for real-time applications is
LoPECS [35], which enables running autonomous driving
services on a resource-constrained device.

B. MOTIVATION
A summary of related works reported in the literature is
provided in Table 1. Although previous studies showed the
potential of heterogeneous execution on specific platforms,
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TABLE 1. Related approaches to accelerate DNN inference at the edge. We propose a single-platform heterogeneous scheme that leverages a general
open-source machine-learning compiler (Apache TVM). This scheme has been tested for various CNNs runnning on Jetson TX2.

a
throughput denotes

the performance improvement in terms of that metric with respect to the performance of a single processor. It can be observed that the proposed
methodology presents state-of-the-art improvements.

the main challenge is to design a general approach that can
combine the specific strengths/weaknesses of the various
CPUs and accelerators in a close to optimal way (e.g., power
or performance wise). Note that the execution of pro-
cessing workloads on different components – TPU, VPU,
CPU, etc. – could be impossible due to software or hard-
ware incompatibilities. A second challenge is to achieve
efficient distribution of CNN layer operation into process-
ing units. The implementation of dynamic scheduling and
load balancing constitutes a third remaining challenge (note
that some approaches require prohibitive search optimization
times [21]). To address these issues, we propose a simple but
efficient method based on layer-level network mapping into
processors using TVM, a powerful general software compiler.

Apache TVM [36], [37] is an open-source framework
that allows compiling ML workflows on a vast set of hard-
ware back-ends. It is compatible with other ML frame-
works, such as TensorFlow, Keras, MXNet, PyTorch, and
DarkNet. In addition, TVM includes auto-tuner tools – i.e.,
autoTVM [37] and Ansor [38] – to automatically apply
graph-level and operator-level optimizations – e.g., operation
fusion or data transformations – to network graphs, generat-
ing highly efficient machine code. Another asset of TVM is
its so-called RPC interface to remotely cross-compile and run
ML tasks on an edge device. In summary, themain reasons for
selecting TVM as the enabling tool for leveraging hardware
heterogeneity are 1) the generation of highly efficient code,
2) the compatibility with a great deal of hardware devices
(thus becoming closer to the aforementioned general
approach), and 3) its ease of use.

We evaluated heterogeneous CNN inference on the Nvidia
Jetson TX2 board, a powerful edge device. This platform
integrates an Nvidia Pascal GPU compatible with CUDA
for intensive workloads and ARM processor cores. First,
we assessed the performance of TVM on this platform.

TVM allows CNN compilation with CUDA as the back-end.
Alternatively, for CPU execution, LLVM can be also set as
the target back-end of TVM. Inference runtimes for some
popular CNNs running entirely either on the GPU or CPU
of Jetson TX2 are reported in Fig. 1. Let us highlight two
relevant aspects at this point:
• The inference performance on the two hardware
back-ends available in Nvidia Jetson TX2 differs signif-
icantly.

• When deploying neural networks on edge platformswith
TVM, a particular target hardware – CPU or GPU in our
case – must be specified. However, this single-device
approach does not permit optimal exploitation of hetero-
geneous hardware resources. For example, under some
conditions, a neural network model may execute faster
on the CPU than on the GPU (SqueezeNet in Fig. 1).

These two important factors motivated us to implement
a hybrid co-execution method in order to 1) fully exploit
Jetson TX2 resources, in contrast with realizations based on
a single processor; 2) overcome the built-in assumption of
TVM concerning single-device execution, which had pre-
cluded its application for CNN-based acceleration of video-
stream processing based on heterogeneous co-execution. All
in all, these are the contributions of this study:
• To the best of our knowledge, we propose the first
fine-grain multi-back-end method that fully exploits the
TVM compiler. It is an easy-to-implement strategy that
sets the basis for advanced co-scheduling approaches
on the multitude of devices compatible with TVM
(in contrast to approaches relying on hardware-specific
libraries such as ARM-CL).

• We experimentally demonstrate the benefits from
exploiting heterogeneous edge platforms based on the
proposed approach, with improvements up to 2.5×
in throughput and energy reductions up to 66%.
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FIGURE 1. Inference performance of CNNs running entirely either on (a) the GPU, or (b) CPU of Jetson TX2.

Our extensive set of experiments encompasses five
CNNs under two compiling settings while quantifying
both runtime and energy.

• For standalone auto-tuned TVM kernels, we report
optimal configurations on Jetson TX2 to achieve
high-throughput or low-energy visual inference.

• We also demonstrate, through additional experiments
conducted under several system states, the advantages of
applying the proposed methodology to dynamic runtime
scheduling.

II. PROPOSED APPROACH
In most application scenarios, high-performance visual anal-
ysis is required. These days, this means the realization of
energy-efficient high-throughput CNN inference on input
streams. Neural-network performance depends on both the
network topology and its mapping on the hardware back-end,
as evidenced by the dissimilar runtimes tM shown in Fig. 1.
Continuous CNN processing on a video stream is illustrated
in Fig. 2a. In this case, the system processes the next image
as soon as the current frame has been processed, delivering
information at a rate of T = 1/tM (processed images per
second, img/s).1

In contrast to single-device execution setting, we pro-
pose a collaborative distributed scheme to accelerate net-
work workloads, as illustrated in Fig. 2b and explained
next.

• An s-stage network partition is built by splitting the
CNN computational graph into s separate sub-graphs.
Fig. 2b exemplifies two stages that, sequentially exe-
cuted, are equivalent to the original network. Thus, net-
work splitting does not modify network accuracy.

• Each sub-graph workload is compiled by TVM with a
different hardware target. This way, we overcome the
limitation of single-device execution on TVM.

1In this work, T denotes throughput.

• By pipelining sub-network execution on a stream, dif-
ferent hardware components collaboratively and concur-
rently execute network operators.

This unified scheme of co-execution can simultaneously
exploit all processors on a board. Throughput acceleration
depends on the slowest sub-graph T = 1/max

i
{tMi} (imgs/s).

Next, we define a generic graph-level partitioning problem
to optimize inference performance. Additionally, kernel-level
optimization is automatically achieved using TVM auto-
tuning, which renders highly efficient ML graphs [38].

A. PROBLEM FORMULATION
Deep neural networks are computational dataflows com-
monly expressed as directed acyclic graphs (DAGs).
In DAGs, nodes represent operators/layers, whereas edges
represent their dependencies. For instance, nodes in CNNs
embody convolutional, fully-connected, or softmax layers,
as well as their intrinsic parameters – kernel size, feature-map
size, etc.

Given a network modelM and a set of available hardware
devices hi ∈ H, the objective is to splitM into sub-graphs
Mi ∈ M running on heterogeneous devices to optimize
particular performance metrics. After network mapping, each
sub-graph Mi will contain a set of nodes from the original
graph M without modifying it, i.e., M is unambiguously
expressed as the concatenation of allMi.
In this paper we will assume that networks are sequential

– or that they contain a limited number of branches with
parallelism. This is indeed the case of many widely-used
classification networks such as AlexNet [39], ResNets [40],
MobileNets [41], [42], and VGG [43]. Many networks con-
taining branches can be expressed as a chain; otherwise,
the methodology proposed in this paper can still be applied,
although the scheduling algorithm needs to be replaced by
a more complex algorithm – scheduling algorithms are well
researched [44], [45], [46]. In this work, we will show the
advantages of the heterogeneous scheduling of neural net-
work chains (models detailed in Sect. III-B).
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FIGURE 2. CNN inference on input stream based on (a) single-device execution, or (b) pipeline scheme.

As an example, the two-stage network partition shown in
Fig. 2b schedules a modelM with N sequential nodes over
two devices {h0, h1}. Layers with indexes {0, 1, 2, . . . , n−1}
are assigned to graph0 and mapped into h0, whereas graph1
includes operators {n, n+1, . . . ,N −1} running on h1. Infer-
ence throughput optimization in this case involves finding the
point n ∈ [0,N − 1] that minimizes the maximum runtime
among all stages:

n̂ = min
n
[max{th0M0

(n), th1M1
(n)}] (1)

In this equation, runtimes are collected in advance through
network profiling – see data collection and related issues
in Sect. III-C.
Fig. 3 illustrates CNN inference on three consecutive

frames in two scenarios: (i) single-stage graph execution, and
(ii) two-stage network partition, exemplified with n = 5,
N = 8. Intermediate data at layer n − 1 must be transferred
from the first processing device to the second one. These
two scenarios of network workload distribution will be thor-
oughly studied in Sects. III–IV.

1) SCHEDULING SPACE
In a general case with multiple stages (s), the network parti-
tion is defined by a vector n of s−1 splitting points producing
the sub-graphsMi. In total, an s-stage workload distribution
with N − 1 possible partition points renders up to

(N−1
s−1

)
possible distributions.2

2This binomial coefficient is obtained assuming N sequential nodes
{l0, l1, . . . , lN−1} in the DAG, and s−1 partition points which can be located
at any of the N − 1 intermediate positions.

Once defined the s-stage distribution, and given nh avail-
able hardware devices, we can assign the s processing work-
loads to these processors in (nh)s possible sequential process-
ing orders. For instance, h2 → h0 → h1, h0 → h2 → h1,
or h1 → h0 → h1 are examples of device processing orders
for a three-stage pipeline on three available devices.

All in all, the total number of possible configurations to
distribute the workload over s stages is:(

N − 1
s− 1

)
(nh)s (2)

Starting from s = 1, the greater the number of stages s, the
greater the total number of possible configurations. To avoid
combinatorial explosion in the number of configurations to
be analyzed, in the next section we will show how to guide
the search taking the memory transfer cost into account.

2) SCHEDULING SEARCH PROBLEM
In general, the problem is to find the set of partition points n̂
that optimize at least one of the following target metrics:

Throughput: n̂ = min
n
[max

i
{thiMi

(n)}] (3)

Energy: n̂ = min
n

∑
i

EhiMi
(n) (4)

Latency: n̂ = min
n

∑
i

thiMi
(n) (5)

Note that in practice there will be a transfer cost due to
copying data between the devices – symbolically represented
in Fig. 3b with diagonal dashed arrows. So that, in the equa-
tions above, we are assuming that this transfer cost is already
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FIGURE 3. Network workload distribution for single- and two-stage approaches. CNN classification over three frames is shown for (a) single-stage
execution on a particular hardware, or (b) two-stage concurrent execution on two hardware devices.

FIGURE 4. Layer-wise runtimes for MobileNet running entirely either on (a) the GPU, or (b) CPU of Jetson TX2.

included in the stage cost: thiMi
is the runtime of stage Mi

running on device hi which also includes the transfer cost to
copy data to hi. This extra cost t

hi
transfer depends on the trans-

ferred data, which will be different for each partition point
and network architecture. To incorporate data-transfer cost
in the problem, we can experimentally measure or estimate
it – see Sect. III-C.

For such an optimization problem, an intuitive general
approach consists of starting with s = 1 and finding the opti-
mal solution. Then, we set s = 2, consider all possibilities,
and we find the optimal solution again. Next, we successively
minimize the function with increasing number of stages.
We can introduce a heuristic stopping rule for the search.
Given that the transfer cost is usually significant and given
that the number of devices nh is usually limited, eventually
no better solution can be found for s = ŝ + 1 than for s = ŝ.
At this point, it makes no sense to look for other solutions
with more stages. In case of our heterogeneous GPU-CPU
device, this will likely be the case for 2 stages (as exemplified
in Sect. IV-C).

3) SCHEDULING ON TX2 USING TVM
Image-classification neural networks are composed of multi-
ple layers that sequentially process data to produce an output
vector from an input image. In most architectures, the first
layers operate on data with higher dimensionality, whereas
smaller feature maps are processed at ending layers. As a
result, the computational demand varies among layers. This is
why the performance profile strongly depends on the network
architecture. As an example, Fig. 4 depicts the per-layer
processing time forMobileNet [41] entirely running on one of
the two processing components available in Jetson TX2, i.e.,
H = {GPU ,CPU} (nh = 2). Note that layer performance

also depends strongly on the selected hardware back-end.
Indeed, we will demonstrate that layer-wise operation dis-
tribution approach can benefit from high-performance com-
putation on the GPU while offloading less computationally
demanding layers to the CPU.

For instance, the simplest pipeline case is a two-stage net-
work execution in which case the neural network is pipelined
on CPU and GPU with only one memory transfer. In this
case, once we know the layer-wise execution runtime profile
{thi0 , thi1 , . . . , thiN−1} of the CNN on both processors h0 =
GPU , h1 = CPU (Fig. 4), we can estimate sub-graph
latencies:

th0M0
(n) =

n−1∑
l=0

th0l + t
h0
transfer (6)

th1M1
(n) =

N−1∑
l=n

th1l + t
h1
transfer (7)

We maximize throughput by solving (1). Then, the
expected throughput (T in img/s) and latency (L in seconds),
respectively, of the optimized 2-stage configuration running
on h0→ h1 are:

T =
1

max{th0M0
(n̂), th1M1

(n̂)}
(8)

L = th0M0
(n̂)+ th1M1

(n̂) (9)

This throughput optimization problem for s = 2 can be
solved with Algorithm 1. This algorithm assumes that we
have collected runtime profiling and we have estimated trans-
fer costs. It also returns the optimal device order ĥ0 → ĥ1,
e.g., GPU→ CPU. Because (6) and (7) can be pre-computed
inO(N ) and because the evaluation of (8) is achieved inO(N ),
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TABLE 2. Assessed neural networks.

the algorithmic time complexity is O(N ) as well. The algo-
rithm starts by assuming a processing order h′0 → h′1.
Then, for each possible partition point n, it calculates both

sub-graph runtimes t
h′0
M0

(n), t
h′1
M1

(n) and saves the pipeline

runtime max{t
h′0
M0

(n), t
h′1
M1

(n)}. After analyzing all possible

device orders, it finally obtains the minimum runtime over
all cases.

Algorithm 1 Two-Stage Network Partitioning

Input: {tl}h0 , {tl}h1 , {ttransfer,l}h0 , {ttransfer,l}h1

Output: n̂, t̂ , ĥ0, ĥ1
t̂ ←∞
for (h′0, h

′

1) in all combinations({h0, h1}) do
tM0 ← 0

tM1 ←
∑
i
t
h′1
i

for i← 0 to N − 1 do
tM0 ← tM0 + t

h′0
i /* Partition 0: [0,i] */

tM1 ← tM1 − t
h′1
i /* Partition 1: [i+1,N-1] */

m[i]← max{tM0 + t
h′0
transfer,i, tM1 + t

h′1
transfer,i}

end for
if min

i
m[i] < t̂ then

t̂ ← min
i
m[i] /* new optimal found for h′0→ h′1 */

n̂← argmin
i
m[i]

ĥ0← h′0
ĥ1← h′1

end if
end for
return n̂, t̂ , ĥ0, ĥ1

III. EXPERIMENTAL PROCEDURE
A. HARDWARE AND SOFTWARE
The selected system, Nvidia Jetson TX2, was designed to
jointly achieve power efficiency and high performance for
different embedded applications. It is a popular commercial
board that integrates a 256-core Nvidia Pascal GPU and
a 64-bit ARMv8 general-purpose multi-processor. The mem-
ory and storage included in the platform are 32-bit 8GB
LPDDR4 and 32GB eMMC 5.1, respectively. A camera
expansion connector is included to endow the system with
on-board video analysis capabilities. The Jetson TX2 plat-
form was selected due to the (compared to a desktop CPU
and GPU) relatively low power consumption (7.5W – 15W),
while still providing sufficient throughput for many deep
learning applications.

Using TVM on this platform, we can (1) define, (2) tune,
(3) compile, and (4) run ML models:

1) ML models are internally represented in TVM as com-
putational graphs in a so-called Tensor Expression
language. Users can define models in an interme-
diate representation on TVM, or alternatively net-
works can be loaded from files compatible with other
ML frameworks, such as TensorFlow, Keras, MXNet,
PyTorch, or DarkNet.

2) TVM integrates auto-tuner tools to generate efficient
code for the targeted platform [37], [38]. Specifically,
the results presented in this paper regarding auto-tuned
models were compiled with Ansor [38], [49]. This tool
finds the best compiling options for each back-end to
reduce the corresponding runtime – see Sect. IV-A.

3) TVM compiles graphs to generate the C++ code that
will run on the target hardware. We used the TVM
Python interface, which greatly facilitates network def-
inition and execution (other available interfaces are
TVMC [50] and C++).

B. NEURAL NETWORKS
Table 2 summarizes the architecture of the CNNs considered
in this study. We used the TVM definitions of these net-
works [51]. TVM can process them using two types of data
orders called NHWC and NCHW. Experiments in this work
refer to channel-first (NCHW) layout. Layers in the network
are represented by nodes in the graph, sequentially connected
to compose the overall architecture. Although the networks
may contain modules with parallel branches – as in the Fire
module of SqueezeNet and Inception of Inception-v3 –, they
are treated as individual nodes in the proposed procedure.
Therefore, ‘# modules’ in Table 2 refers to the number of
sequential nodes N in the graph. Note that even if these mod-
els contain layers other than those listed in Table 2, such as
ReLU, batch normalization, or dropout, TVM automatically
optimizes the computational graph by fusing these operations
with the previous layer.

C. LAYER-WISE PERFORMANCE PROFILING
In short, the proposed method comprises a first stage of
layer-level network performance profiling and a second stage
of operator mapping to the available hardware components.
Concerning the first stage, for each hardware component hi,
we must obtain a performance profile of the N nodes in
the model. Then, in the second stage, we solve the network
partition problem for any of the equations (3)–(5).We assume
that the neural-network layer execution performance is
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independent of the input data, that is, we do not consider
dynamic neural networks and influences of L1/L2 caching
are ignored.
• Runtime. Throughput optimization in Jetson TX2
means solving (1) (or (3), more generally) with the
profiling of the network expressed as {tl}GPU , {tl}CPU

∀l ∈ [0,N − 1]. An example was depicted in Fig. 4
for MobileNet; this figure clearly exemplifies how a
pipelined approach distributing operations over the GPU
and CPU in TX2 benefits from their dissimilar perfor-
mance. The operation of Algorithm 1 solving (1) for
a cooperative GPU → CPU execution is illustrated in
Fig. 5, which shows the runtime tMi of the stage as a
function of the selected partition point n. Up to N + 1
solutions are possible, being the optimal one n̂ = 23,
which means that 23 nodes run on the GPU and the rest
on the CPU.

FIGURE 5. Throughput optimization for a two-stage pipeline on
MobileNet running in Jetson TX2 with order GPU → CPU. Sub-graph
execution runtimes tMi (n) depend on the selected partition point n.

– As previously stated, data-transfer latency can
be incorporated into the scheduling model. Even
though the GPU memory is integrated in the CPU
memory in TX2 through CUDA, the TVM imple-
mentation (and many other implementations) uses
distinct memory regions for CPU and GPU, still
requiring a transfer between both. Several tech-
niques exist to mitigate or reduce the data trans-
fer latency, but none of them totally eliminates
the cost. For example, the transfer latency can be
improved by using CUDA pinned host memory,
but due to the lack of hardware support for cache
coherence between the CPU and GPU caches of the
Jetson TX2, a costly synchronization step (in prin-
ciple, a call to the cudaDeviceSynchronize
or cudaStreamSynchronize function) is
needed, leading again to a performance cost.
Another solution is to use CUDA unified memory;
in this case, the transfer is handled transparently by
the GPU driver, but there is still a cost (which mani-
fests as a slower execution of the kernel function of
the particular neural network layer(s), as well as the
need for calling the cudaDeviceSynchronize

function). In addition, by using multiple streams,
CUDA allows overlapping of memory transfers
with the actual computations, reducing the transfer
costs. At the time of writing, the TVM support of
this feature is in an initial stage (see e.g., [52]).
However, it is generally known that this tech-
nique does not reduce the transfer cost significantly
in most practical cases with a high GPU kernel
occupancy.
To experimentally characterize this transfer over-
head, we could assume linear dependence w.r.t. the
size of the transferred data ttransfer = k · B (where
k is an arbitrary constant that depends on the con-
sidered hardware, and B is the number of bytes).
We thoroughly measured ttransfer in TX2, including
several batch sizes and CNN models in experimen-
tal data. In particular, we measured the time cost of
the set_input function of the GraphModule
TVM python class, which transfers data to the CNN
and incurs high costs. The results confirmed this
linear dependence – see Fig. 6. Indeed, the method-
ology assessment presented in Sects. IV–V further
validated this assumption.

FIGURE 6. Data transfer time overhead on TVM-Python.

• Energy. The main power supply to the TX2 module is
provided by a single DC input. According to its docu-
mentation [53], the voltage of this DC input ranges from
5.5 V to 19.6 V, with a maximum current of 4000 mA.
Two INA3221 power monitors are included in the TX2
carrier board. We measured the per-layer power demand
of CNNs, {Pl}hi , using the TVM debugger and software
included in Tegra Linux Driver Package [54].

– When it comes to taking accurate power consump-
tion measurements, the limited time resolution of
the INA3221 sensors plays a major role. Therefore,
mismatches between per-layer and overall CNN
power consumption are common [55], [56], [57].
For instance, Cai et . [56] showed that per-layer
energy profiling is lower than actual CNN energy
consumption in all of their study cases. An inter-
esting aspect highlighted in [57] is that monitoring
system-level power consumption (instead of tak-
ing separate GPU and CPU measurements) renders
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FIGURE 7. Inference performance of various software frameworks for running CNNs on TX2, and comparison with TVM. (a) CNN execution on GPU, and
(b) CNN execution on CPU.

better estimations because, among other aspects,
the energy consumed by memory accesses is also
taken into account. This is why we measured power
at system level. Interestingly, the aforementioned
approaches reported in the literature do not try
to correct measurement errors because estimating
the energy-consumption trend is enough, instead of
finding exact energy values. As we will discuss in
Sect. V, the proposed scheduling model is indeed
able to find the optimal cases.

IV. PERFORMANCE EVALUATION
A. SINGLE-DEVICE EXECUTION
The baseline performance of network execution on each
hardware component of the platform (i.e., on each TVM
target) is shown in Fig. 1. Notwithstanding, as previously
pointed out, one of the advantages of TVM is its open-source
auto-tuning tool, which generates highly efficient code and
boosts inference performance. In this regard, we measured a
performance improvement (up to 87%) in terms of runtime
between (i) default TVM network execution (Fig. 1), and
(ii)3 tuned network execution (using Ansor [38]), as reported
in Fig. 7.
Furthermore, for a baseline performance reference on our

platform, Fig. 7 also presents a inference runtime comparison
that includes other software frameworks. The performance of
each library depends on the architecture of theDLmodel [58],
[59]. TVM definitively constitutes as a promising general
framework.

B. TWO-STAGE EXECUTION
Once the layer-wise performance measurements were taken
(as explained in Sect. III-C), performance optimization was
conducted according to (3)–(5). To define network sub-
graphs, we edited the pre-defined networks [51] in TVM.

3We will use ‘‘(i)’’ to denote networks compiled with TVM by default
and ‘‘(ii)’’ for models compiled with compiling optimizations produced by
Ansor auto-tuning tool.

The proposed co-execution pipeline scheme was enabled
by developing TVM-Python code to compile network
sub-graphs and continuously offload the corresponding pro-
cessing stage to each back-end. This code of ours is available
in [60].

1) THROUGHPUT-OPTIMIZED CONFIGURATIONS
Tables 3–4 report the resulting device mapping with high-
est inference rate. The last two columns confirm that
the ‘expected’ performance (from the optimization prob-
lem defined by (3) and network profiling data) is remark-
ably close to the experimental measurements. ‘Measured’
experimental performance is also reported in Fig. 8, with
additional comparison with single-device execution. Interest-
ingly, heterogeneous hardware exploitation achieves through-
put improvements w.r.t. the best single-device case ranging
from 22% to 150% for models compiled by default; and up
to 22% for auto-tuned models. Only for tuned MobileNet and
SqueezeNet, the performance resulting from the proposed
two-stage approach remains similar to GPU-only execution,
as otherwise analytically expected.

2) ENERGY-OPTIMIZED CONFIGURATIONS
GPU-only execution is the most energy-efficient configu-
ration for all the networks except for default SqueezeNet.
The underlying reason is the combination of reduced
runtime on GPU with reduced data-transfer energy cost.
In the particular case of default SqueezeNet, it is opti-
mized in terms of both frame rate and energy when using
a heterogeneous GPU → CPU pipeline with n̂ = 32.
Experimental energy-consumption measurements agree with
these analytical expectations, as will be demonstrated
in Sect. V.

3) LATENCY-OPTIMIZED CONFIGURATIONS
Similarly, GPU-only execution is the best configuration for
fast-response applications. Optimal latency metrics corre-
spond to those shown in Fig. 7a.
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TABLE 3. Throughput-optimized configurations – (i) default TVM models.

TABLE 4. Throughput-optimized configurations – (ii) tuned TVM models.

FIGURE 8. Throughput (img/s) comparison of one-device execution vs. throughput-optimized cases. Four CNN models were assessed (i) without and
(ii) with TVM auto-tuning.

4) GENERAL TRADE-OFFS
Finally, Fig. 9 shows performance metrics for each CNN
under various configurations. Single-device execution is pre-
sented with green markers for GPU, and blue ones for
CPU. Energy-optimized and latency-optimized configura-
tions match with GPU execution – in green – (except
for default SqueezeNet). Two-stage scheduling for optimal
throughput is shown in black. A particularly remarkable case
is precisely default SqueezeNet, whose throughput increases
150% when running upon a heterogeneous scheme, with an
energy reduction of 66%.

The proposed scheme found the energy-optimized cases,
although no hybrid execution might be needed. If we choose
appropriate lowest-energy configurations, we obtain energy
savings above 10% w.r.t. best-throughput cases. Concerning
latency, its behaviour is similar to energy in all cases (x-axis
in Fig. 9): pipelining slightly increases latency, being GPU
the lowest-latency configuration in most cases.

We conclude that the proposed optimization approach
leads to throughput enhancement, especially when runtime
on each device match with each other.

C. K-STAGE EXECUTION
In the previous results, we considered 2 stages. However,
mathematically, better solutions for more than 2 stages might
be possible. Fig. 10 exemplifies an optimal 3-stage pipeline
(e.g., CPU→ GPU→ CPU). However, network scheduling
with more than one partition point requires 1) execution
times on each device matching with each other, thus avoiding
timeline gaps (in this example, tCPUM0

+ tCPUM2
≈ tGPUM1

), and
2) limited transfer costs (the greater the number of stages,
the larger the increase in latency). These assumptions are
difficult to meet in practice; and indeed we confirmed it
experimentally. In general, achieving optimal work balancing
on pipelines with more than two stages requires joint kernel
code and scheduling optimization. This will be part of our
future work.

V. DISCUSSION
The tests conducted on networks schedules resulting from
the optimization problem posed in Sect. II-A validated
the expected performance metrics. However, the proposed
method relies on experimental measurements, which vary
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FIGURE 9. Performance trade-offs for GPU-only (green), CPU-only (blue), and throughput-optimized pipeline (black) for the CNNs considered in this
study;‘‘(i)’’ denotes networks compiled with TVM by default whereas ‘‘(ii)’’ denotes models compiled with compiling optimizations produced by Ansor
auto-tuning tool.

FIGURE 10. Exemplary optimal CNN workload distribution over a 3-stage pipeline.

among different executions, and depends on per-layer profil-
ing, which may differ from actual network performance [9],
[55], [56], [57] – see related comments in Sect. III-C. This
hinders the capability of the proposed procedure to produce
accurate estimates of performance metrics. This is why all
performance metrics reported in this paper were averaged
over several executions. We conducted additional experi-
ments to verify that these issues do not greatly affect the
scheduling optimization results. While our pipeline sched-
uler does not provide exact performance values, our exper-
imental findings did not reveal any better solutions than
those deemed optimal by our method. Fig. 11 shows the
performance of eight different network schedules for tuned
SqueezeNet (3 CPU → GPU, 3 GPU → CPU, CPU-only,
and GPU-only). The ‘estimated’ performance in these plots
is obtained from (3)–(5) according to per-layer profiling
measurements. Note that per-layer profiling measurement
errors in single-device execution (CPU-, GPU-only) can
certainly impact the optimization problem and the corre-
sponding estimations. Notwithstanding, for the eight stud-
ied cases, although predicted values do not exactly match
experimental ones, the method correctly estimates high- and

low-throughput cases, as well as high- and low-energy con-
figurations. Indeed, we found no case in which the proposed
optimization procedure were unpredictably outperformed.
Therefore, we convincingly state that predicted ‘optimal’
cases actually match with the best performance configura-
tions when experimentally assessed.

Concerning energy consumption, minimizing the number
of memory transfers is expected to minimize the energy
as well. Indeed, we found in our experiments that the
energy-optimal configuration coincides in most cases with
GPU-only networks execution – Sect. IV-B. However, adding
energy transfer costs in (4) would further improve our
scheduling method in general cases.

A. DYNAMIC RUNTIME SCHEDULING
As mentioned in Sect. I, the proposed TVM co-execution
scheme makes it possible to select the appropriate schedul-
ing according to the current system state, in particular, for
repeated neural network inferences (e.g., when processing
video frames in real-time).

For instance, Algorithm 2 exemplifies a method to dynam-
ically select the optimal partition point when there is limited
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FIGURE 11. Experimental performance (darker bars) vs. expected
performance from per-layer profiling data (lighter bars) for several
network partition schedules on SqueezeNet.

FIGURE 12. Pipeline execution time as a function of n. Black points
represent dynamic scheduling for a two-stage pipeline on MobileNet
according to Algorithm 2. Best runtime found is marked in red.
Performance of additional non-optimal pipeline schedules is shown in
gray dots for the sake of completeness, but they were not explored using
Algorithm 2.

availability of computational resources. This method depends
on measurements of the pipeline Mh0

0 (n) → Mh1
1 (n) for

each n. To better deal with transients (sudden temporary
changes in the processing), we can use a recursive mov-
ing averaging filter on these measurements (depending on
parameter α in Algorithm 2). The method starts by selecting

an arbitrary partition point n ∈ [0,N ]; for instance, the
initial value of n can be the optimal configuration when the
system is not executing extra workloads – i.e., configurations
Mh0

0 (n)→Mh1
1 (n) reported in Tables 3–4, with runtimes t .

Then, it dynamically increases (or decreases) n until no better
execution time is found (local minimum). Note that other
optimizations algorithms could be applied that leverage our
heterogeneous pipeline.

We built TVM pipelines – as explained in Sect. IV-B – to
test this dynamic method. In particular, we performed exper-
iments on MobileNet under different scenarios of system
resources availability. More specifically, our simulations
included (a) reading and displaying a MP4 video file on a
monitor with hardware acceleration enabled; (b) executing
the glmark2 benchmark; (c) executing the stress com-
mand; and (d) executing the glxgears demo application.
Table 5 reports the best solutions found for these cases. Note
that single-device execution is compared with the best het-
erogeneous pipeline. For further clarification, Fig. 10 shows

TABLE 5. Single-processor cases vs. throughput-optimized configurations
under dynamic scheduling for MobileNet.

Algorithm 2 Dynamic Two-Stage Network Partitioning
Input: n, h0, h1, t , m /* n layers h0→ (N-n) layers h1 */
Output: n̂, t̂
t̂ ← t
/* Increase n until finding minimum: */
for i← n to N do
m[i]← m[i]+ α ∗ measure{tM0(i)→M1(i)}

if m[i] ≤ t̂ then
n̂← i /* new optimal found */

else
break for

end if
end for
/* If no better solution was found, then decrease n: */
if n̂ = n then
for i← n− 1 to 0 do
m[i]← measure{tM0(i)→M1(i)}

if m[i] ≤ t̂ then
n̂← i /* new optimal found */

else
break for

end if
end for

end if
t̂ ← m[n̂]
return n̂, t̂ , m

35018 VOLUME 11, 2023



D. Velasco-Montero et al.: Pipelining-Based Heterogeneous Scheduling and Energy-Throughput Optimization Scheme

partial results m[i] from executing Algorithm 2 in Case (b).
It starts with n = 23 and stops in n = 27, being n̂ = 26 the
optimal partition point found (see Table 5).
Similar to the results previously presented under

full resource availability, the proposed heterogeneous
pipeline keeps outperforming single-device execution for
Cases (a)–(d).

VI. CONCLUSION
In this paper, we explored TVM as a tool for joint exploitation
of different processing resources available in edge devices.
Hardware compatibility, easy implementation, and efficient
compiled models are remarkable assets of the proposed
approach. A large variety of tests demonstrate that an optimal
co-schedule boosts the performance of edge vision systems
in terms of throughput. We also confirmed that the pro-
posed approach can automatically identify whether a particu-
lar pipeline schedule outperforms single-device execution in
terms of energy or latency.

This work sets the basis for extending this method to
other platforms, such as multi-GPU boards, GPU-FPGA sys-
tems, or host-accelerator systems. In future work, we will
investigate platforms providing support for integer operation
to analyze how integer quantization can improve inference
performance while affording a small loss in accuracy.Wewill
also explore the flexibility offered by the Nvidia nvpmodel
tool to achieve performance-power trade-offs by adjusting the
GPU and CPU operation frequencies. We will also address
the implementation of the method hereby reported in a fully
automated manner. A model to predict layer performance
from the number of floating-point operations will be also
explored. In addition, heterogeneous scheduling with more
than 2 stages is also of interest, especially for multi-GPU
configurations. This requires joint kernel code and schedule
optimization in order to achieve an optimal workload distri-
bution, as exemplified in Fig. 10. Finally, an interesting aspect
to be pointed out is that our energy-throughput optimized
solution enables us to accommodate application requirements
in real time (energy-saving or fast-response) by selecting the
appropriate co-execution scheduling.
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