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a b s t r a c t

Remote attestation is a powerful mechanism that allows a verifier to know if the hardware of an
IoT (Internet-of-Thing) device (acting as a prover) has been counterfeited or tampered with and if its
firmware has been altered. Remote attestation is based on collecting and reporting measurements in
a trusted way, and should be lightweight for resource-constrained IoT devices. This work proposes to
include a low-cost Root of Trust for Measuring and Reporting (RoTMR) in the prover, based on the
combination of a Physically Unclonable Function (PUF) and an Attestation Read-Only Memory (A-ROM),
and to use hash-based digital signatures in the attestation protocol. The proposed RoTMR is addressed
to IoT devices based on a microcontroller that executes some application code (the measurable
object) located in an external non-volatile memory accessible by an attacker. The secret keys required
by the digital signatures are not stored but reconstructed using the PUF. The A-ROM contains the
attestation instructions and ensures that its contents cannot be altered and that its instructions
are executed sequentially without modification. The use of hash-based digital signatures makes the
solution quantum-resistant and very robust because its security relies solely on the unidirectionality
of a hash function. The proposed attestation protocol takes advantage of the fact that One-Time
Signature (OTS) generation and Many-Time Signature (MTS) verification are very well suited for low-
end devices, and the MTS scheme is suitable for the verifier application context. The proposal was
validated experimentally with the ESP32 microcontroller, which is widely employed in IoT devices, by
using its SRAM as PUF and implementing WOTS+, which is a type of Winternitz One-Time Signature
scheme (WOTS), the One-Time Signature of Smart Digital Signatures scheme (SDS-OTS), and the MTS
schemes constructed with them. The OTS schemes require smaller codes and thus smaller A-ROM
than MTS and ECDSA (Elliptic Curve Digital Signature Algorithm). The code of one of the WOTS+ takes
about 4 times less space than ECDSA. In terms of execution times, the OTS schemes are very fast. One
of the WOTS+ performs all the signature operations in a few tens of milliseconds. The OTS schemes
(especially the SDS-OTS) are also very efficient in terms of communication bandwidth because they
use small signatures compared to other post-quantum solutions.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Internet of Things (IoT) is a promising technology that has
aptured the attention of researchers in academia and industry
round the world. The idea behind IoT is the interconnection
f Internet-enabled things or devices to achieve some common
oals. In the near future, IoT is expected to be seamlessly in-
egrated into our environment and people will be completely
ependent on it for a comfortable and easy lifestyle. Currently,
oT applications can be found in smart homes, wearable devices,
mart grids, industry, healthcare, and agriculture, among others.

∗ Corresponding author.
E-mail addresses: rrhajderek@us.es (R. Román), marjona@us.es (R. Arjona),

umi@us.es (I. Baturone).
ttps://doi.org/10.1016/j.future.2023.06.008
167-739X/© 2023 The Authors. Published by Elsevier B.V. This is an open access ar
It is very important that the IoT provides persistent security.
In fact, IoT security is a hot research topic today, mainly because
of its heterogeneous nature. If an IoT device is compromised, it
can cause serious damage where it is used. For example, a group
of compromised IoT devices could form a botnet and launch a
distributed Denial of Service (DoS) attack, or in the case of smart
grid power, they could inject misinformation about usage into
the control system, affecting the electrical network [1]. Since
cyber–physical systems are interconnected, a threat to one de-
vice can spread to others, with catastrophic consequences. An
attack at some point could have a direct impact on human lives.
For this reason, ensuring the trustworthiness of IoT devices is
a critical task. In particular, the security of low-end devices is
more challenging because they are constrained in terms of power,
computing, and memory resources.
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One way to know if a device is in a trusted state is through
ttestation [2]. An attestation scheme involves two mutually ex-
lusive parties: a verifier V, and a prover P. In the context of IoT
pplications, the prover is an IoT device and the verifier is usually
remote device (which can be another IoT device or a server),
hich explains the name of remote attestation. Attestation is
erformed using a challenge-response mechanism. P performs a
easurement of the device state to respond a challenge from V,
receives the measurement and then determines whether or not

t represents a valid device state.
For a proper attestation operation, two main properties should

e achieved [2]. The prover P should collect the measurements in
trusted way. This can be done by using a Root of Trust for Mea-
uring and Reporting (RoTMR) integrated in the prover device [3].
n addition, the measurement should be unforgeable, that is, non-
eplayable and non-reconstructible so that an attacker should not
e able to reproduce any measurement even if he knows the
unction used by P to compute the measurement or if the state
f the IoT device has not changed. This can be achieved with the
se of digital signatures.
Several taxonomies can be made depending on the form in

hich attestation is performed [4]. Hardware attestation focuses
n validating the authenticity and trustworthiness of the IoT
evice hardware, for example, to detect if a counterfeit device is
eing used instead of the expected one, or if a genuine device has
een tampered with. This type of attestation can be done by using
hysically Unclonable Functions (PUFs), which allow measuring
nique and intrinsic hardware properties of the IoT device and
etecting if the device has been tampered with. In the software
ttestation, the measurement includes the application code in the
evice, i.e., the state reflects if the software or firmware has been
ltered or it is as expected.
This paper focuses on both hardware and software attestation

or low-end IoT devices. Concerning hardware, a typical Root
f Trust can be implemented using a Trusted Platform Module
TPM), which is a dedicated integrated chip with its own secure
torage and execution unit. However, this solution is expensive
or low-end IoT devices. This work proposes a low-cost RoTMR
hat uses an Attestation ROM (A-ROM) and a secret key obfus-
ated with a PUF. The secret key can be generated inside the
evice or can be provided externally in the registration phase.
he proposed RoTMR is addressed to IoT devices based on a
icrocontroller executing some application code located in an
xternal non-volatile memory. It is assumed that the microcon-
roller contains an A-ROM for the trusted execution of some
pecific firmware, such as the instructions dedicated to the at-
estation process. It is also assumed that a PUF is present in the
ardware of the device. For software attestation, it is assumed
hat the application code is the measurable object and that it is
ocated in a memory accessible by an attacker. The measurement
s performed by applying a cryptographic hash function to the
ontents of the non-volatile memory.
In this work, hash-based signatures are explored for signing

he memory measurements. Unlike the most commonly used dig-
tal signature algorithms, such as Rivest–Shamir–Adleman scheme
RSA) and Elliptic Curve Digital Signature Algorithm (ECDSA),
ash-based signatures are post-quantum resistant, so no quan-
um computer can break them [5]. Unlike all other digital sig-
atures found in literature, the security of hash-based signatures
oes not rely on any computationally hard problem, but solely on
he unidirectionality of a hash function, making them very robust.

Hash-based signatures are hierarchical. At the core of any
cheme is a One-Time Signature (OTS) scheme which can be used
o sign only one message. On top of this are Many-Time Signature
MTS) schemes, which use a construction called Merkle tree to

ign many messages using the same public key. One specified
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MTS scheme is XMSS (RFC8391) that uses an OTS scheme called
WOTS+ [6]. More recently, an OTS scheme called SDS-OTS [7] was
proposed, which achieves smaller signatures than the WOTS+.
Among the MTS schemes, the XMSS and LMS (Leighton–Micali
Signatures) are stateful hash-based signature standards, whose
security depends on a careful state management so as to never
reuse an OTS key. If an attacker were able to obtain two different
messages signed with the same OTS key, he would be able to
forge signatures on arbitrary messages [8]. Stateless hash-based
signatures such as SPHINCS+ (which was selected for standardiza-
tion after the third round of the NIST post-quantum cryptography
standardization process [9]) do not require to keep track of any
state between signatures. However, SPHINCS+ is not suitable for
low-end devices. Therefore, this work proposes, in the one side,
an efficient combination of stateful hash-based signatures (OTS
and MTS schemes) because they are faster, produce smaller sig-
natures, and require less attestation code than stateless schemes
and, in the other side, a secure solution based on PUF and A-ROM
that avoids key reusing.

The main contributions of this paper are the following:

• To establish a Root of Trust for Measuring and Reporting
(RoTMR) based on the combination of an Attestation ROM
(A-ROM) with a PUF. In this way, the prover device does not
store the private keys employed in the one-time signatures,
but reconstructs them from its PUF and never reuses them.
Even in the context of simple authentication solutions with
PUFs, this solution has not been well studied yet.

• To propose a quantum-resistant protocol for remote at-
testation using hash-based signatures, based on one-time
signature generation and many-time signature verification.
Both of these are not overly demanding operations, and,
hence, they are well suited for low-end prover devices.

• To evaluate two different OTS schemes and an MTS scheme
on an ESP32 microcontroller, which is widely employed in
IoT devices. The chosen schemes are WOTS+ and the recent
SDS-OTS, with their secret seeds recovered by an SRAM
PUF from which different private keys are generated. Note
that no previous work exists about the implementation of
the SDS-OTS scheme in microcontrollers. In this work, the
SDS-OTS proposed in [7] is implemented.

• To demonstrate the suitability of the proposal for IoT devices
by measuring the sizes of the signatures and public keys to
communicate, as well as, the execution times and code sizes
of the relevant operations, which are mainly those related
with cryptographic operations.

The paper is organized as follows. Section 2 presents some pre-
liminaries needed to understand the proposal. Relevant works
found in the literature are discussed in Section 3. The proposed
solution for remote attestation is shown in Section 4 and ex-
perimental results are presented in Section 5 together with a
comparison with other proposals. Finally, Section 6 concludes the
paper.

2. Preliminaries

2.1. Physically obfuscating secrets with PUFs

A Physically Unclonable Function (PUF) can be defined as a
function that is embedded into a physical object. When queried
with a challenge, the PUF generates a response that depends
on both the challenge and the unique device-specific properties
of the physical object containing the PUF [10]. The most ap-
pealing PUFs for use in IoT devices are electronic PUFs where
the physical object is an integrated circuit or part of it and

the challenges and responses are represented as binary strings.
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UFs should satisfy robustness (when queried with the same
hallenge many times, the PUF returns similar responses with
igh probability), unclonability (it is unfeasible to produce two
ndistinguishable PUFs based on their challenge/response behav-
or), unpredictability (it is unfeasible to predict the response of a
UF to an unknown challenge, even if the PUF can be adaptively
ueried for a certain number of times) and tamper-resistance
the challenge/response behavior changes if the PUF is manip-
lated). PUFs are classified into weak and strong PUFs. Weak
UFs, such as Static Random-Access Memory (SRAM) PUFs and
ing Oscillator (RO) PUFs, provide a small number of challenge-
esponse pairs compared to their number of basic constituent
nits (SRAM cells or ROs), while the strong PUFs, such as arbiter
UFs, provide a large number of challenge-response pairs [11].
RAM PUFs are widely used in IoT devices because the SRAM is
constituent block of microcontrollers. In an SRAM PUF, binary
hallenges select a specific address range within the memory,
nd the responses are the power-up states of the cells at those
ddresses. The power-up states of SRAM cells can measure the
andom variability of the semiconductor manufacturing process.

The obfuscation and recovering of a secret with a PUF gen-
rally use a fuzzy extractor with a code-offset based secure-
ketch [11]. In a generation phase, helper data HD are computed
rom a PUF response R and a secret K generated by a True Random
umber Generator (TRNG). The secret is conveniently encoded,
nc(K ), by using the encoder of an error-correcting code. The
implest generation of HD uses XOR operations as follows HD =

⊕ Enc(K ). In a reproduction phase, another PUF response R′,
hich is similar to R but not exactly the same, is employed to
ecover R and the secret K from HD, by using the decoder of the
rror-correcting code, K = Dec(R′

⊕ HD) and R = HD ⊕ Enc(K ).
hen, using a hash function, the recovered R or K is usually
onverted into a cryptographically secure and uniform random
tring to be used as a secret key [12]. An important property of
uzzy extractors is that the HD can be stored and transmitted
ublicly without revealing the PUF response or the secret. An
RAM can be used to generate PUF responses and true random
umbers for this application because SRAM cells can be classified
nto stable and random cells. If the cell shows preference to
ower up as 0 or 1, it is a stable cell that is good to be part of the
UF. If the cell shows no preference for any state, it is a random
ell that is good to be part of a TRNG [13,14].

.2. WOTS+

The WOTS+ scheme [6] is parameterized by the security pa-
ameter n and by the Winternitz parameter w. Given them, the
ollowing sub-parameters are defined as:

t = log2(w),

en1 =

⌈n
t

⌉
,

len2 =

⌈
⌊log2(len1)⌋ + 1 + t

t

⌉
and

len = len1 + len2

where ⌈x⌉ is the ceil of x. The basic functions employed are a hash
function h and a PRF (Pseudo Random Function), which is defined
from h as:

PRF (key, in) = h(key∥ in)

where || is the concatenation operator.
The WOTS+ private key is composed of len strings sk(j) of size

n, SKOTS = (sk (0) ∥ . . . ∥ sk(len − 1)). The strings are generated
from a uniform random seed SKSEED,OTS as:

sk j = PRF (SK , j)
( ) SEED,OTS
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The WOTS+ public key is composed of len strings pk(j), PKOTS =

pk (0)∥ . . .∥pk (len − 1)). The strings are computed by applying
the hash function w − 1 times to each secret string sk(j) as:

pk (j) = hw−1(sk(j))

For the signature generation, the message digestmd (i.e. the result
of the hash function applied to the message) is divided in len1
strings md,w(j) of length t as:

md = (md,w (0)∥ . . .∥md,w(len1 − 1))

lso, a checksum C is computed as:

=

len1−1∑
j=0

(
w − 1 − md,w(j)

)
nd the result is encoded as a base-w value having as a result len2
trings Cw (j) of size t as:

w = (Cw (0)∥ . . .∥Cw(len2 − 1))

he concatenation of themd,w(j) and Cw(j) strings forms len blocks
(j). These blocks are used to create the signature strings as:

ig (j) = hb(j)(sk(j))

o that the signature is:

ig = (sig (0)∥ . . .∥ sig(len − 1))

he verification of a signature Sig ′
= (sig ′ (0)∥ . . .∥ sig ′(len − 1))

f a message m′ is carried out by applying the hash function
− 1 − b′(j) times to each signature string, where the blocks

′(j) are obtained from m′ as explained for the blocks b(j) in
he signature generation. Verification is successful if the result
atches the corresponding public key string as:

w−1−b′(j) (sig ′ (j)
)

= pk(j)

hat is, if the public key is reconstructed from the received signa-
ure.

.3. SDS-OTS

In the SDS-OTS scheme, which is presented in [7], there are
xactly 17 secret key strings sk (j) and each one has 384 bits,
KOTS = (sk (0) ∥ . . . ∥ sk(16)). The strings are generated from
uniformly random secret seed SKSEED,OTS by applying a hash

unction as:

k (j) = hj+1 (SKSEED,OTS
)

= h (sk(j − 1))

he public key PKOTS is also composed of 17 strings of 384 bits.
he 16 first strings are generated by applying the hash function
6 times to each secret portion, and the last string, by applying
he hash 1536 times. Note that the private and public keys have
fixed size of 816 bytes.
For the signature generation, the message digest md is divided

nto 96 blocks B (k) of 4 bits (i.e. 1 nibble). A mapping function
(x) is defined that transforms a decimal input x into the sum of

ts Tens and Units. For example, M(16) = 1 + 6 = 7 or M(92) = 9
2 = 11. Then, for every index j (from 0 to 16), a set of numbers

(r) is found, S (j) = {s (r)}, that are the results of the mapping
unction on the indexes k of the blocks whose decimal value is
qual to j. Once the sets S (j) are specified, the function y (md, j)
s computed as:

(md, j) =

(
|S(j)|∑

s(r)

)
mod 96 + 1
r=0
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or j from 0 to 15. For j = 16, the function is computed in a
hecksum manner as

(md, 16) =

15∑
j=0

(96 − y (md, j))

hen, the signature strings are computed as sig (j) = hy(md,j) (sk(j)),
o that the signature is Sig = (sig (0)∥ . . .∥ sig(16)).
The signature verification computes the function y

(
m′

d, j
)
from

he digest of the received message m′, following the same steps
s in the signature generation. Then, the public key strings are
omputed as:

k′ (j) = h96−y′(md,j)
(
sig ′ (j)

)
or j from 0 to 15. For j = 16, the corresponding string is
omputed as:

k′ (16) = h1536−y′(md,j)
(
sig ′ (16)

)
he signature is validated if all the public key strings obtained are
qual to the corresponding strings of the stored public key PKOTS .

.4. Many-time signatures: Merkle signature scheme (MSS) and
MSS

The OTS schemes described above are very lightweight but
mpractical for applications that require the signing of many
essages and their validation by multiple parties. This is because
any OTS public keys would have to be distributed among the
arties. The Merkle Signature Scheme (MSS) was proposed to
itigate such limitation. The main idea is to use a Merkle tree,
hich is a complete binary tree, of height H to compact 2H OTS
ublic keys in only one, called the MSS public key, PKMTS , whose
ize is equal to the size of the OTS public keys [15]. From the 2H

ublic–private key pairs generated by an OTS signature scheme, a
erkle tree is constructed where the leaves are the hashed public
eys, the inner nodes are the hash of the concatenation of the
hild nodes in pairs, and the root node is the public key to be
istributed. Using the same PKMTS , 2H messages can be signed.
The private keys are the 2H OTS private keys. The ith OTS

ecret seed is generated as:

KSEED,OTS (i) = PRF (SKSEED, i)

The signer must update securely the index i every time an OTS
signature Sig(i) is generated. The verifier should know the index
i that indicates which of the 2H secret keys was used for the OTS
signature. Besides, the verifier needs the array of nodes required
to reconstruct the PKMTS from the reconstructed OTS public keys.
This array of nodes is called the authentication path, Auth(i), and
ust be generated by the signer every time a message is signed.
ig. 1 illustrates a simple Merkle tree of height 3.
The MSS scheme can use directly the SDS-OTS scheme be-

ause the security of the SDS-OTS scheme relies on the collision
esistance of the hash function used (the SHA384 is strongly
ecommend). In the case of the WOTS+ scheme, since its security
s based on the second-preimage resistance of the hash function
sed, the Merkle tree must be randomized. This is why the
Xtended Merkle Signature Scheme (XMSS) includes additional
teps to make the MSS scheme with WOTS+ more robust. First,
he leaves of the Merkle tree are not directly the hashes of the
TS public keys. Instead, N Merkle trees called L-trees are used.
he ith L-tree is a Merkle tree that uses the len OTS public key

strings of the ith OTS public key PKOTS (i) as leaves. Second, the
essage is not hashed alone to form the message digest. Instead,

he message is concatenated with the XMSS public key PKXMSS ,
the index i and a nonce R computed as:

R = PRF (SK , i)
PRF
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Fig. 1. Example of Merkle tree of height 3 with the authentication path of index
4 depicted in red.

Table 1
Number of hashes required for XMSS public key generation (PK gen.), signature
generation (Sig. gen.) and signature verification (Sig. ver.) depending on the tree
height H.
No. hashes

H PK gen. Sig. gen. Sig. ver.

10 123,016 5,725 1,149
16 79 · 106 9,163 1,155
20 1.268 · 109 11,455 1,159

The seed SKPRF must be uniformly random and must be kept
secret. Finally, the most important difference in terms of security
is that the hash functions are never used alone. Each time a
hash function is called, the value x to be hashed is XORed with
a bitmask bmj and a key kj is appended as a prefix before the
ash itself is applied. In the hash functions used for the L-trees
nd the main Merkle tree, two bitmasks are used (one for each
hild node). The keys and bitmasks should not be repeated, are
ublic, and must be known by the verifier. Since they represent
large amount of data to be stored and transmitted, they are
enerated pseudo-randomly using a public seed PUBSEED, a PRF
unction and two address structures ADRSK and ADRSbm, which
change to ensure that no key or bitmask is repeated.

XMSS is more complex than MSS. In addition, the algorithms
for public key generation, signature generation, and signature
verification are very different. To illustrate this issue, Table 1
shows the number of hashes required for each algorithm in the
XMSS scheme using three different tree heights [6]. Note that
for typical heights of 16 and 20, signature verification requires
almost an order of magnitude fewer hashes than signature gen-
eration. Note also that the number of hashes in the signature
verification algorithm increases very slightly with the tree height.

3. Related work

In [1] two remote attestation protocols are presented. In the
one aimed at resource-constrained devices, the prover must per-
form a one-time signature and generate two other one-time key
pairs each time it is attested, and does not verify any digital signa-
ture. The protocol relies on a Trusted Third Party that verifies the
prover’s new one-time public key and sends it to the verifier. Both
the verifier and the Trusted Third Party are allowed to use multi-
time signatures. Another protocol without a Trusted Third Party
is presented where the prover is assumed to be less resource-
constrained and is allowed to perform multi-time signatures and
verify the request of the verifier also with a multi-time scheme.

The solution is verified using an Arduino 101 with a WiFi shield.
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he work does not define a Root of Trust for Measurement (RoTM)
r a Root of Trust for Reporting (RoTR) for the prover device.
In [16], the use of hash-based signatures in Trusted Platform

odules (TPMs) for signing attestation requests is proposed. The
olution is intended for TPM-based solutions only. Typically, a
PM needs to manage multiple Attestation Identity Keys (AIK),
nd the use of MSS requires the storage of state information for
ach key in a trusted manner. Thus, the work presents a solution
or managing this state information, given that a TPM has limited
torage capabilities for storing information within the module.
lthough the solution is a step forward in the use of hash-based
ignatures for attestation purposes, it is not well suited to more
onstrained devices.
In [17], the authors integrate the quantum-resistant Crystals-

yber and SPHINCS+ schemes into the open-source mbedTLS
ibrary to investigate how the TPM 2.0 specification can com-
lement the migration towards post-quantum cryptography. The
ork is carried out in an Industrial Internet of Things (IIOT) en-
ironment and experimental results are presented using a Rasp-
erry Pi 3 Model B with an Infineon SLB9760 discrete TPM. The
PM is only used to generate random seeds and accelerate hash
perations, and the paper focuses mainly on mutual TLS (mTLS)
uthentication. The work does not investigate the attestation
apabilities of the TPM.
Direct Anonymous Attestation (DAA) is a topic that is currently

eing studied in order to increase the privacy of devices and,
onsequently, the information that they manage. The work in [18]
roposes an Enhanced Privacy ID (EPID), a DAA solution whose
uthentication technique is based on the group signature scheme
f Boneh, Boyen, and Shacham and the group signature scheme
f Furukawa and Imai. The work in [19] proposes a number of
ptimizations to EPID, mainly software-oriented but with the
ossibility of hardware acceleration. The authors argue that the
ptimizations make EPID suitable for constrained IoT devices
nd implement the solution in a 32 bit Intel Quark microcon-
roller. However, the latency using this form of attestation is high
17.9 s). In addition, EPID incorporates primitives that are not
ost-quantum resistant.
The use of hash-based signatures on constrained devices has

lso been studied in the literature. In [20], an area-latency-
ptimized hardware–software hybrid architecture is proposed
o enable the XMSS scheme on resource-constrained IoT motes.
or this, they use the Keccak-400 hash function (due to its
ightweight nature), a set of small parameters, and perform de-
ign optimizations at the architecture level. Their target security
s 128 bits. In [21], the authors provide a hardware–software co-
esign for the XMSS scheme on an embedded RISC-V processor.
he proposal has speedups of 42× and 17× for signature gen-

eration and verification, respectively. The work in [22] shows
the first secure boot using the XMSS scheme implemented in a
RISC-V core. While it is true that the authors of all these works
demonstrate that the use of XMSS is suitable for constrained IoT
devices, significant hardware acceleration is needed to achieve
low-latency signing times using the many-time scheme. Another
work related to the migration of hardware primitives to the
quantum world is [23]. It investigates the impact of using a
Crystals-Dilithium signature verification in the secure boot of
vehicle network processors.

In [24], the authors propose a new reputation and PUF-based
remote identity attestation protocol for massive IoT devices in
response to the security concerns in the identity attestation of
massive IoT devices in smart cities. Three parties (aggregators,
ordinary IoT devices, and Intelligent Operation Center (IOC)) in-
teract in the protocol. Aggregators are the nodes with the highest
reputation and help ordinary IoT devices to mutually authenticate
with the IOC. The solution does not specify a specific Root of Trust
to perform the attestation and focuses mainly on strong PUFs.
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In [25], SIMPLE is proposed. It is a scheme that meets the
minimal hardware requirements needed for remote attestation
via trusted software. The proposal is based on a Security Micro-
Visor (SµV), which is a formally verified software-based memory
isolation technique presented in [26]. The SIMPLE protocol uses
a HMAC to authenticate the prover’s digest to the verifier. Since
HMAC is a symmetric cryptographic primitive, non-repudiation
is not achieved, which can be a limitation in certain application
contexts.

Several Roots of Trust other than the standard TPM solutions
can be found in the literature for remote attestation, most of them
targeting constrained devices. In [27], SMART is presented. It is a
simple solution for establishing a dynamic Root of Trust for em-
bedded devices. They use a minimal architecture which primarily
relies on an attestation ROM and must guarantee key isolation,
atomic execution and memory safety. Atomic execution means
that instructions within the ROM memory cannot be executed
in an isolated manner, and this is achieved by making minor
changes to the hardware. The attestation key is stored inside the
device and can only be accessed by the attestation ROM. Like
other solutions focused on constrained devices, the prover uses
an HMAC to authenticate to the verifier. Later, other solutions
appeared, such as TrustLite [12], which added more features, such
as support for interrupting tasks. More recent works use the idea
of the attestation ROM with atomic execution in RISC-V based
systems. In [28], LIRA-V is proposed. It is a lightweight system
suitable for constrained devices that aims to establish a Root of
Trust for remote attestation using the RISC-V architecture. They
take advantage of the Physical Memory Protection (PMP) of the
RISC-V and define a protocol where the prover device signs the
attestation measurement with a digital signature. However, they
do not consider quantum-secure primitives.

The combination of PUF solutions along with post-quantum
cryptography and hardware security primitives is a recent line of
research. In [13], the use of a SRAM-based PUF-TRNG is proposed
to generate and obfuscate the secret seed used in the XMSS
digital signature. However, like most works in the literature,
no security is specified to prevent malicious access to the PUF,
which is assumed to be secure. In [29], the first solution for
secure sealed storage of sensitive data is proposed, combining
a PUF with an atomic ROM and using quantum-resistant prim-
itives, specifically Crystals-Dilithium and Saturnin. Three parties
interact in the solution: a manufacturer, an application developer
and the IoT device. In [30], the use of one-time hash-based
digital signatures and SRAM PUFs is proposed for the secure
boot of a microcontroller-based IoT device, achieving very low
latency. No attestation protocol is proposed. In [31], the au-
thors present a cryptosystem based on Hermitian curves suit-
able for IoT devices. The proposed algorithms perform encryp-
tion and decryption operations, but no authentication solution is
presented.

4. The proposal for remote attestation

The proposal requires a Root of Trust in the IoT device that is
described in Section 4.1. The security assumptions of our proposal
are given in Section 4.2. The proposed protocol and its variants
are presented in Section 4.3.

4.1. Device root of trust for measuring and reporting (RoTMR)

The proposed RoTMR has two main components, the Attes-
tation Read-Only Memory (A-ROM) and the Physically Unclonable
Function (PUF ). These and other components such as the addi-
tional secure hardware S-HW are shown in Fig. 2.
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Fig. 2. Interaction between the RoTMR components: Attestation Firmware, the
UF and additional secure hardware S-HW, and the Attestable memory.

The A-ROM contains the Attestation Firmware (AF ), which is
he code that the prover must execute each time that the verifier
equests an attestation. The region of addresses to be measured
s referred to in this paper as the Attestable memory. The A-ROM
must have two properties: (1) it must be immutable, i.e. its mem-
ory contents cannot be changed; and (2) it must be atomic, i.e. it
must ensure that all the instructions are executed in a sequential
order, and it must ensure the execution of each instruction. All
the operations performed by the Attestation Firmware will be
explained in the following sections. The immutable property is
easily obtained by using a ROM. The public key of the verifier is
included in the A-ROM since this key should also be immutable.

The atomic property of the A-ROM must be enforced by using
the additional secure hardware S-HW. Different proposals for this
additional hardware can be seen in [32] and in [33]. A useful
approach is to validate the Program Counter (PC) with hardware.
With this approach, if the Program Counter is an address within
the Attestation Firmware other than the first instruction address,
the S-HW should ensure that the previous instruction was also
within the Attestation Firmware.

The PUF is used to obfuscate and recover the secret seed
SKSEED,OTS used to sign the measurements in the OTS schemes.
The PUF accepts a challenge C and returns a response R, both of
which are processed by the Attestation Firmware. Using the PUF,
the sensitive secret seed is not stored anywhere, but is recovered
when needed, provided that the device is genuine and has a valid
state. As mentioned in the previous sections, the use of Helper
Data HD is necessary to obfuscate the secret seed. These Helper
Data can be stored in a non-volatile memory as they are not
sensitive data. It is very important that the PUF module is only
accessed when it is executed by the Attestation Firmware. If this
module is compromised, the trustworthiness of the attestation
process is also compromised. This is again ensured by the S-HW,
which can check whether the Program Counter is in the expected
range of addresses, i.e. the addresses of the Attestation Firmware.

4.2. Assumptions

An attacker is assumed to be able to control all the writable
memories of the prover device, and write and read any part of
them for malicious purposes. Hence, an attacker can discover any
secret if it is stored in plaintext. Since the Application Code can be
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stored in the non-volatile memory, its code execution flow can be
modified by the attacker. Thus, he can have a persistent presence
in the prover device. The A-ROM can be read by the attacker, but
the functions stored in it cannot be modified and its execution
cannot be altered.

An adversary is assumed to not perform sophisticated hard-
ware attacks such as fault injection attacks, which could, for
example, modify the value of the Program Counter or the received
information conveniently signed by the verifier. These ones are
assumed to be avoided by tamper-resistance techniques as men-
tioned in [27]. Also, the employed PUF is assumed to be resistant
to side-channel attacks so that the attacker cannot read any phys-
ical response R from the PUF module and, hence, cannot obtain
any information from the Helper Data and the secret is always
obfuscated. The attacker may also have access to a quantum com-
puter to break classical asymmetric cryptographic primitives such
as ECDSA. Finally, concerning network capabilities, the adversary
may have control over the communication channel between the
prover device and the verifier.

4.3. Proposed protocol

The proposed protocol has two phases: enrollment and au-
thentication. In the enrollment phase, the verifier V and the
prover P exchange the necessary information to authenticate
each other in the attestation process, which are the many-time
public key of V , PKMTS,V , and the first one-time public key of
P , PKOTS,P (0). V also needs a reference memory measurement
of P , MMEM,GOLD. The enrollment should be done in a secure
way. The manufacturer of the prover device could act as an
intermediary between the two parties. In a simple scheme, P
generates the secret seed SKSEED,P internally in the manufacturing
facilities, obfuscates it having as a result the public Helper Data
HDP that are stored into its non-volatile memory, and generates
the first one-time public key PKOTS,P (0). Later, P sends the key
PKOTS,P (0) to the manufacturer M and M certifies it by using its
SKMTS,M , thus resulting CERTM (PKOTS,P (0)). Finally, M sends the
certificate CERTM (PKOTS,P (0)) and PKOTS,P (0) to V and grabs the
verifier’s many-time public key PKMTS,V in the prover device. It is
assumed that V and M have the public keys of each other. This
process is shown in Fig. 3. When the enrollment is finished, the
manufacturer’s role is also finished.

The authentication phase consists of 6 steps, as shown in Fig. 4.
Each step is explained in the following:
1. Authentication starts with the verifier V signing a request RQST
to the prover P to execute its Attestation Firmware and verify its
state. V uses a Many-Time Signature (MTS) scheme like XMSS and
must keep track of the number of its signatures with the index iV .
Since the prover’s signatures must be synchronized, V must also
keep track of the attestation index iATT . Furthermore, V updates
its authentication path AUTHMTS,V (iV ) to be used in subsequent
communications and stores it in its non-volatile memory. We
assume that V can have multiple relationships with multiple
devices, so iV does not necessarily match iATT . Both indexes iV and
iATT must be stored in a secure manner by the verifier, otherwise
the security of the signatures may be compromised.
2. The verifier sends to the prover the request RQST , the at-
testation index iATT and its signature sigMTS,V (iV ) along with the
information needed to verify it, which is the verifier’s signature
index iV and the authentication path AUTHMTS,V (iV ).
3. The prover P executes its Attestation Firmware. The first thing
that P does is to verify that the signature sent by the verifier V is
correct. This verification is necessary because P will only proceed
to execute its Attestation Firmware if the request comes from an
authorized verifier. Since the signature scheme used by V is an
MTS one, the verification process is divided into two steps: the
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Fig. 3. Interactions between the verifier V, the prover P and the manufacturer M in the enrollment phase.
Fig. 4. Steps performed by the verifier and the prover in the authentication phase of the proposed protocol.
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omputation and the extraction of the root public key PKMTS,V us-
ng the array of authentication nodes specified in AUTHMTS,V (iV ).
f the signature is verified, the Attestation Firmware performs the
easurement of the memory portions to be attested by applying
hash function to their contents, resulting in MMEM (iATT ). The
emory portions were accorded with V in the enrollment phase.
hen, the obfuscated secret seed SKSEED,P is recovered with the
elper Data HDP stored in the non-volatile memory of the prover
evice and with a fresh PUF response RP . Using a pseudo-random
unction (PRF ), the secret seed SKSEED,P and the attestation index
ATT are mapped to SKSEED,OTS,P (iATT ). This seed is expanded to
orm the one-time private key SKOTS,P (iATT ), which is used to
ign the memory measurement number iATT . Also, the secret
eed SKSEED,OTS,P (iATT + 1) is computed with the pseudo-random
unction PRF and also expanded to SKOTS,P (iATT +1). Then, the OTS
ublic key for the next attestation, PKOTS,P (iATT + 1), is computed
sing SKOTS,P (iATT + 1), and the OTS key generation algorithm. Fi-
ally,MMEM (iATT ) is signed together with PKOTS,P (iATT +1) using the
rivate key SKOTS,P (iATT ) and the OTS signature algorithm. Fig. 5
ummarizes how the data involved in this step are generated.
. The prover P sends to the verifier V the information that attests
he state of its memory, which is the measurement MMEM (iATT ),
he OTS public key for the next attestation execution
KOTS,P (iATT + 1) and the signature of the concatenation of these
wo data sigOTS,P (iATT ). Note that the signature reflects the hard-
are state of P , since only the device with the correct PUF can
ecover the secret seed SKSEED,OTS,P (iATT ).
. In this step the verifier V checks if the state of the prover device
s the expected one or if it has been compromised. The first step

o do this is to verify if the OTS signature sigOTS,P (iATT ) made by the
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rover P is correct by using the OTS public key PKOTS,P (iATT ) and
he OTS verification algorithm. If the OTS signature verification
rocess is successful, it means that the hardware state of P is
orrect. Then, the received measurement MMEM (iATT ) is compared
ith the expected MMEM,GOLD. If the two values are equal, the

prover P is considered to be in a trusted state.
6. At the end of the protocol, the verifier V deletes the public key
PKOTS,P (iATT ), which is replaced by PKOTS,P (iATT + 1), and updates
the attestation index from iATT to iATT + 1. Since the verifier is
assumed to be trusted and an attacker cannot modify the index
received by the prover or forge the verifier’s signature, the prover
never uses the same private key for two different messages.

5. Experimental results and discussion

In order to evaluate and validate the proposal, the selected
IoT Platform acting as prover device was the Pycom WiPy 3.0
Development Board [34] based on the Espressif ESP32 microcon-
troller [35]. Specifically, the ESP32D0WDQ6 version was used.
The board is equipped with an 8 MB SPI Flash memory for non-
volatile storage outside the microcontroller. The ESP32 used can
support applications with WiFi and Bluetooth connectivity since
it comes with an integrated antenna switch, RF balun, power
amplifier, low-noise receive amplifier, filters and power manage-
ment modules. The external SMD antenna included in the WiPy
3.0 board makes this development board a good candidate for IoT
devices.

The processor used by the ESP32 chip is the 32 bit dual-core
Xtensa LX6 with a 16/24 bit instruction set. The available CPU

frequencies are 80, 160 and 240 MHz synthesized by a 40 MHz
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Fig. 5. Generation of the data involved in step 3 of the authentication phase.
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Table 2
Signature and public key sizes for WOTS+ and SDS-OTS schemes.
Scheme WOTS+

(w = 4)
WOTS+
(w = 16)

WOTS+
(w = 256)

SDS-OTS

Signature size (bytes) 4256 2144 1088 816
Public Key size (bytes) 32 32 32 48

crystal oscillator. It also has on-chip SRAM with a size of 520
kB. The WiPy 3.0 board incorporates a 4 MB pSRAM but it was
not used to execute the Attestation Firmware because the on-chip
emory was sufficient for this purpose. The on-chip SRAM of

he ESP32 was used as an SRAM PUF as described and evaluated
n [13] and [36]. The ESP32 has support for Random Number
eneration (RNG) using noise captured at the antenna, but this
unctionality was not used since the start-up values of the ran-
om cells of the SRAM were used to generate the secret seed
equired by the OTS schemes.

The SHA hash function was used to hash the messages and also
o generate and verify the signatures. The SHA256 and SHA384
mplementations found in the mbedtls library were used for SHA
omputations in software. The SHA accelerator available in the
SP32 microcontroller was used to accelerate the hash opera-
ions. The hwcrypto library was used for hardware acceleration.
he achieved speedup for WOTS+ schemes was of ×2.15 but the
ost benefited was the SDS-OTS scheme, with a speedup of ×4.
The main aspects considered in this study were the execution

times of the different operations explained in Section 5, and the
sizes of the signatures, the public keys and the codes, since they
are related to the power consumption and memory resources of
the prover device. The execution times were obtained by reading
the CCOUNT register of the Xtensa LX5 processor, which returns
the cycle count of the CPU clock. A comparison using the two
OTS schemes explained in Section 2 is offered to know which one
may be more suitable in the context of device attestation. Follow-
ing the RFC8391 specification [6], the three possible Winternitz
parameters (w equal to 4, 16, and 256) and a security of 256
bits were chosen for the WOTS+ scheme. As shown in Section 2,
the Winternitz parameter establishes a trade-off between the size
of the signature/keys and the latency in the execution of the
algorithms [6].

The signature sizes using the WOTS+ and SDS-OTS schemes
are shown in Table 2. The SDS-OTS signature scheme provided
the smallest signature size and, therefore, the least amount of
communication bandwidth is consumed by this scheme. This is
particularly important for hash-based signatures since they have
relatively large signatures. The WOTS+ scheme manages larger
signatures, which vary depending on the Winternitz parameter
chosen. As the Winternitz parameter increases, the signature size
decreases, with the largest being 4256 bytes and the smallest
being 1088 bytes for Winternitz parameters of 4 and 256, respec-
tively. The Winternitz parameter of 16 had a moderately large
signature size (2144 bytes). Table 2 also shows the size of the one-
time public keys. The technique used was that reported in [37],
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Table 3
Execution times related to signature operations of WOTS+ and SDS-OTS schemes
Execution times in ms

Scheme WOTS+
(w = 4)

WOTS+
(w = 16)

WOTS+
(w = 256)

SDS-OTS

PK gen. 64.81 149.93 1265.33 109.53
Sig. gen 32.96 66.78 594.36 55.38
Sig. ver. 44.80 96.03 684.01 65.99

Total 142.57 312.74 2543.70 230.90

which replaces the L-trees with simple hash calls. Thus, the public
keys were more compact and smaller in size.

Execution times are primarily dominated by the OTS signature
generation, the MTS signature verification, and the public key
generation, as these are clearly the most expensive operations
of the Attestation Firmware for a moderate size of the Attestable
memory.

Table 3 shows the execution timing results for the different
OTS scheme variants. The message used for signing and verifica-
tion was ‘‘Good message 707070’’. The CPU frequency used was
160 MHz. The Merkle tree used was of height H = 20. The seed
expansion was included in the public key generation, ‘‘PK gen.’’,
and the signature generation, ‘‘Sig. gen.’’, as well, as the hash
operation to transform the SKSEED,P into the SKSEED,OTS,P (iATT ). Note
that the total execution time of ‘‘Sig. ver.’’ + ‘‘PK gen.’’ + ‘‘Sig.
gen.’’ includes all major operations of the Attestation Firmware
except for the memory measurement and the PUF-related op-
erations. The authentication path verification is included in the
‘‘Sig. ver.’’ operation. Table 3 shows that the public key gener-
ation is the most expensive operation among the cryptographic
operations of the Attestation Firmware. The table also shows that
the SDS-OTS scheme reported shorter times in all the operations
compared to WOTS+ (w = 16). WOTS+ (w = 4) is significantly
faster than the other schemes with the disadvantage of larger
signature sizes, as shown in Table 2. It is interesting to note that
the verification time of an ECDSA (secp256r1) in this ESP32 was
203.74 ms, which means that the MTS schemes with SDS-OTS,
WOTS+ (w = 4) and WOTS+ (w = 16) are faster.

Compared to the execution times shown in Table 3, the time to
recover the secret seed SK_SEED is very small, being of 2.02 ms for
WOTS+ and 3.03 for SDS-OTS, as reported in [36]. The difference
between the schemes is due to the use of a seed of 32 bytes in
WOTS+ and a seed of 48 bytes in SDS-OTS. The error correcting
code used was an 8 bit repetition correcting code and the Helper
Data Algorithm was a simple XOR operation, as explained in
Section 2. The time required to measure a 4 kB sector of the non-
volatile memory (Attestable memory) was of 1.73 ms for WOTS+
and 1.70 ms for SDS-OTS. Note that SDS-OTS uses the SHA384
hash algorithm instead of SHA256 (SHA384 processes fewer data
chunks than SHA256).

Regarding code size, the measurements considered the main
cryptographic operations required by the protocol. They are shown
in Fig. 6. Since the code size of the WOTS+ scheme does not

depend much on the Winternitz parameter, only the case with w
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Fig. 6. Code size that must be stored for OTS operations along with the ECDSA case and XMSS for WOTS+ and MSS for SDS-OTS cases in bytes.
Table 4
Comparison with related work on remote attestation.
Proposal RoTMR PUF A-ROM Post-Quantum

signatures
Low-end
devices

[1] No No No Yes Yes
[16] Yes No No Yes No
[25] No No No No Yes
[27] Yes No Yes No Yes
[12] Yes No Yes No Yes
This work Yes Yes Yes Yes Yes

= 16 is shown, together with the SDS-OTS scheme. In the case
of WOTS+ and SDS-OTS, the code for the one-time public key
generation, signature generation and the verification are consid-
ered. In the case of ECDSA, XMSS and MSS, only the signature
generation and verification operations are considered (because it
is assumed that no public key needs to be generated). The code
for the WOTS+ scheme was about 4 times smaller than ECDSA.
The XMSS scheme had a code size approximately 3.3 times larger
than WOTS+. Similar results were found for SDS-OTS. It should
be emphasized that the code size of WOTS+ and SDS-OTS is
dominated by the hash operation, being 56% of the former and
49% of the latter. Thus, our proposal requires a smaller Attestation
ROM memory. In addition, the use of the SHA accelerator allowed
a 23.69% reduction in the code size of the WOTS+ variant and a
21.33% reduction in the code size of the SDS-OTS variant. Code
sizes were extracted from .map files.

Considering the proposal and the experimental results, some
points can be discussed:

• More flexibility using WOTS+. The fact that the WOTS+ speci-
fied in [6] allows the use of three different parameters, more
flexibility is achieved in the proposal. If a very fast response
from the prover device is needed, WOTS+ (w = 4) can be
used, and if a small bandwidth is needed, WOTS+ (w = 256)
can be used. WOTS+ (w = 16) is the best compromise.
Note that WOTS+ with w = 4 has a large signature size
compared to the other variants, but it has a signature size
even smaller than other post-quantum digital signatures
such as Crystals-Dilithium, which has a signature size of
4595 bytes.

• Advantages of SDS-OTS. The SDS-OTS scheme has smaller
signatures and is the proposal with the lowest bandwidth. It
also has speed advantages over WOTS+ (w = 16) if the hash

function is hardware accelerated since SHA384 processes
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fewer data chunks than SHA256. However, if a 32 bit pro-
cessor is used, and no hardware acceleration is employed,
WOTS+ (w = 4) and WOTS+ (w = 16) are faster than SDS-
OTS because SHA256 processes 32 bit chunks. Note that the
results shown in Table 3 use the SHA accelerator. However,
SDS-OTS is a less studied scheme in the literature and may
not fit future standards for post-quantum cryptography.

• Smaller code sizes for OTS schemes. The OTS algorithms (es-
pecially the WOTS+ with w = 16) require smaller code sizes
and, hence, smaller A-ROM than MTS and ECDSA.

As can be seen in Table 4, which compares our proposal with the
related work summarized in Section 3, our proposal differs from
the others mainly by combining lightweight primitives such as a
PUF, an A-ROM, and post-quantum OTS schemes.

6. Conclusions

This work proposes a lightweight remote attestation protocol
for low-end IoT devices. It is based on the use of a low-cost Root
of Trust for Measuring and Reporting (RoTMR) included in the IoT
device acting as prover. The main components of the RoTMR are
a Physically Unclonable Function (PUF) and an Attestation Read-
Only Memory (A-ROM). The PUF avoids the storage of secret keys
while the A-ROM allows attestation instructions to be immutable
and executed in an atomic way. Hash-based signatures, which are
quantum-resistant, are employed in the protocol. The prover de-
vice generates one-time signatures (OTS) and verifies many-time
signatures (MTS) sent by the verifier.

To evaluate the proposal, the Pycom WiPy 3.0 Development
Board, which includes an ESP32 microcontroller, was employed
as IoT device. The on-chip SRAM in the microcontroller was
used as PUF and as True Random Number Generator (TRNG)
to generate the secret seed needed by the OTS schemes. Two
OTS schemes (WOTS+ and SDS-OTS) and the MTS constructed
with them were implemented in the ESP32. Parameters were
selected to achieve a post-quantum security of 256 bits. Results
were obtained using the hardware accelerator incorporated in the
ESP32 microcontroller for the hash operations.

Although WOTS+ achieves more compact and smaller sizes
than SDS-OTS in terms of public key sizes, the SDS-OTS scheme
is the best in terms of communication bandwidth because it uses
signatures with the smallest sizes. In terms of code sizes of the
main operations, the results are similar for WOTS+ and SDS-OTS.
Both use less code than ECDSA and XMSS. In terms of execution
times, WOTS+ with w = 4 is the fastest option.
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Future work is planned to evaluate the impact of using the
tandardized SPHINCS+ in the signature verification step of the
rotocol.
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