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1. Introduction

This paper continues the “a posteriori Variational Multiscale” filtering procedure that the two
first authors presented in the proceedings of the “Computational Science for the 21st century”
conference held in Tours in 1997 celebrating the 60th birthday of Roland Glowinski [1].

We address the numerical treatment of the instabilities generated by the variational discretisa-
tion of convection-diffusion equations. These instabilities are due to the dominance of the con-
vection terms on the diffusion ones, when the discretisation parameters are not small enough.
This generates spurious oscillations in the discrete solutions that therefore are unreliable for
practical applications. The Variational Multiscale (VMS) method, introduced by Hughes in [2],
is a general technique to stabilise these unstable solutions (see Hughes (cf. [3, 4]).

The VMS methods are based upon the approximate solution of the small scale problem in
terms of the resolved scales, and the substitution of the resolved approximate small scales in the
resolved scales equation. This provides improved stable solutions, as under the VMS formulation
the resolved scales appear as solutions of a problem with enhanced diffusion, stemming from the
action of the sub-grid scales on the resolved ones (cf.[5–7]).

The purpose of the procedure introduced in [1] is to “cure” a solution of the convection-
diffusion equations presenting spurious oscillations due to convection dominance, without need
of solving again the equation on a finer grid or with stabilised methods. Only the information
provided by the oscillating solution is used. The basic idea is to take advantage of the stabilising
effect of the sub-grid scales. This is reached by means of a nodal-based “a posteriori” VMS
filtering of the discrete solution, that provides a quite accurate numerical solution at the even
nodes of the computational grid.

In this paper, on one hand we introduce a residual-based “a posteriori” VMS filtering that
needs the residual minimisation of a convenient projection of the oscillating solution on the grid
with double size. This procedure has the advantage of being able to be applied locally and admits
a ready extension to multi-dimensional problems. It provides quite close filtered solutions to the
exact one on the grid of double size, if the initialisation of the minimisation procedure for the
least-squares problem is conveniently provided.

We also extend the nodal-based “a posteriori” VMS to evolution non-linear convection-
diffusion problems that generate nearly discontinuous solutions in finite time. We actually ad-
dress the one-lane traffic equation. We have developed an iterative filtering procedure of the
Galerkin solution, using very small time steps to the solution at a targeted time. The filtering
procedure does not need to be applied in preceding times. It provides quite accurate solutions,
again at the nodes of a grid with double grid size.

The outline of the paper is the following. In Section 2 we describe the basics of the “a poste-
riori” VMS and the nodal version introduced in [1]. In Section 3 we address the residual-based
“a posteriori” VMS, while in Section 4 we extend it to non-linear convection-diffusion problems.
Finally, in Section 5 we present some numerical tests that exhibit the excellent accuracy of the
filtered solutions for all three filtering procedures.

2. Nodal “a posteriori” VMS method

The “a posteriori” VMS method, introduced in [1], takes advantage of the VMS stabilising effect
to generate a stable and accurate post-processing of the numerical solution, without needing to
re-solve the targeted PDE (in our case, the convection-diffusion equations). To describe it, let us
consider an elliptic variational problem:

Find x ∈ H such that b(x, w) = l (w), ∀ w ∈ H , (1)
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where H is a Hilbert space, b : H ×H 7→ R is bounded coercive bilinear form and l ∈ H ′. We solve
equation (1) by the Galerkin method, constructed with a family of finite element sub-spaces of H,
{Xh}h>0:

Find xh ∈ Xh such that b (xh , wh) = l (wh), ∀ wh ∈ Xh . (2)

We decompose Xh into Xh = Yh ⊕Zh (that is, Xh = Yh +Zh and Yh ∩Zh = {0}), for some subspaces
Yh and Zh of Xh . We consider that Yh and Zh respectively are a “large scales” and a “small scales”
spaces. For xh ∈ Xh , there is a unique decomposition xh = yh + zh such that yh ∈ Yh and zh ∈ Zh .
We may re-write problem (2) as an equivalent variational (“condensed”) problem for the only
unknown yh . To build this condensed problem, we need the static condensation operator on Zh ,
Rh : H ′ 7→ Zh defined for ϕ ∈ H ′ by:

b
(
Rh(ϕ), wh

)= 〈ϕ, wh〉, ∀ wh ∈ Zh .

We may then state the condensed variational formulation to problem (2) as:

Find yh ∈ Xh such that bc (yh , vh) = lc (vh), ∀ vh ∈ Xh (3)

with

bc (y, v) = b(y, v)−b
(
Rh

(
A ∗v

)
,Rh

(
A y

))
, lc (v) = l (v)−b

(
Rh

(
A ∗v

)
,Rh( f )

)
, ∀ y, v ∈ H ;

where A ∗ denotes the adjoint of the operator A : H 7→ H defined for v ∈ H by

〈A v, w〉 = b(v, w), ∀ w ∈ H .

Then, in [1] is is proved that:

Theorem 1. Assume that the spaces Yh and Zh satisfy Yh ∩Zh =;. Then:

(1) Let xh = yh + zh be the unique decomposition that xh admits with yh ∈ Yh and zh ∈ Zh .
Then, xh is the solution of the Galerkin method (2) if and only if yh is the solution of the
condensed variational formulation (3), and zh =Rh(l −A (yh)).

(2) Assume, in addition, that the family of pairs of spaces {(Yh , Zh)}h>0 satisfies the saturation
property: there exists an angle σ> 0 such that

arccos

(
sup

yh ∈Yh \{0}, zh ∈Zh \{0}

(yh , zh)X

∥yh∥H∥zh∥H

)
>σ ∀ h > 0. (4)

Then, there exists a constant C > 0 such that

∥yh∥H +∥zh∥H ≤C ∥l∥H ′ , ∥ch∥H ≤C ∥l∥H ′ , (5)

where ch =Rh(A (yh)).

This results also holds if Zh is replaced by some infinite-dimensional small scale sub-space
Z of H such that H = Yh ⊕ Z and the angle between Yh and Z is not zero (that is, Yh and Z are
topological complements on H).

Observe that the estimate in (5) for ch may be interpreted as a stabilisation effect. Indeed,
the static condensation operator is a discrete Riesz operator that represents (the small scale
components of the) elements of H ′ on Zh . Then, ch may be interpreted as a representation on
Zh of the small-scale components of the convection-diffusion operator A acting on the large-
scale component yh of the solution xh . By (5), ch is uniformly bounded in H norm.

Let us now apply this theory to the convection-diffusion equation

(w u)′ −νu′′ = f in [0,1]
u(0) = α, u(1) = β

}
(6)

where w is the fluid convection velocity, ν is the diffusion coefficient andα,β are given constants.
We in principle assume that w and f are functions, although these will be considered as constants
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in some parts of the paper. We approximate this problem by the Galerkin method constructed on
piecewise affine finite elements. Consider a partition 0 = x0 < x1 < . . . < xN = 1 of the interval
[0,1] with an uniform spatial step h = 1/N .

Then, the space of approximation is

Xh =
{

xh ∈C 0[0,1] |xh |]x j−1,x j
[ ∈ P1 , 1 ≤ j ≤ N

}
.

Let {ϕi }N
i=0 be the Lagrange interpolation canonical base of Xh . The solution u of (6) is approxi-

mated by

uh =
N∑

i=0
ui ϕi ∈ Xh ,

with u0 =α, uN =β and ui = uh(xi ). Let

Peh = |w |h
2ν

be the so-called Péclet mesh number associated with the discretization. It is well known that
when w is constant, if Peh < 1, the discrete maximum principle is satisfied by the sequence
{ui }N

i=0, while this fails to occur when Peh > 1. When this last happens, typically in situations
of dominant convection, spurious oscillations appear in the discrete solution of (6).

The SUPG (Streamline Upwind Petrov–Galerkin) method provides a technique to eliminate
these spurious oscillations (in one space dimension) or to reduce them (in higher space dimen-
sions). We recall that the stabilisation proposed by the SUPG method (cf. [8]) is equivalent for
1D advection-diffusion problems and constant data w , ν and f to discretising by the Galerkin
method in Xh the equation

w u′ − (ν+νnum)u′′ = f , (7)

where νnum = νPeh ξ(Peh), and

ξ(α) = coth(α)− 1

α
.

The above choice of νnum guarantees that the approximate solution uh provided by the
Galerkin method applied to equation (7), coincides with the exact solution of equation (6) at all
grid nodes, i.e., uh(xi ) = u(xi ), 0 ≤ i ≤ N .

In [9], it is shown that the numerical scheme provided by the SUPG method is equivalent to
adding to the space Xh , an “optimal” bubble per element and to “condense” it afterwards. Here,
“bubble” on, for example, the element ]xi−1, xi [ means any function of H 1

0 (xi−1, xi ), extended by
zero to the whole interval [0,1]. Then, problem (7) is cast as the condensed problem (3) when

Zh = Z =
N⊕

i=1
H 1

0 (xi−1, xi ).

A similar result is introduced in [1] in the fully discrete framework when w and f are constant:
if the number of nodes of the grid is odd, there exists a choice of the sub-grid scales space Zh

such that the filtered solution yh coincides with the exact solution u at the even nodes of the
grid. The subspace Yh is taken as the space of piecewise affine functions on the partitioning
0 = x0 < x2 < . . . < xN−2 < xN = 1 of the interval [0,1] with a uniform spatial step equal to
2h, assuming N = 2n for some integer n ≥ 1. Let us denote by {φi }n

i=0 the Lagrange basis of
the piecewise finite element space Yh . We set the space Zh = Span{ϕ1,ϕ3, . . . ,ϕ2n−1} for some
suitable ϕ1,ϕ3, . . . ,ϕ2n−1 ∈ Xh such that the decomposition

uh =
n−1∑
i=1

yiφi +
n∑

i=1
z2i−1ϕ2i−1, with yi = u(x2i ) for i = 1, · · · ,n −1, (8)

is fulfilled.
For this, the minimum support that must have ϕ2i−1, 2 ≤ i ≤ n, is the interval [x2i−3, x2i ], and

the minimum support of ϕ1, must be [x0, x2]. In this case, (8) can be uniquely solved analytically.
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Indeed, imposing that ϕ2i−1(x2i−1) = 1, then ϕ2i−1 is uniquely determined by its slope a2i−1 in
the interval (x2i−2, x2i−1), as follows,

ϕ2i−1(x) =


− 1

h (x −x2i−1)+1, if x ∈ [x2i−1, x2i ] ,
a2i−1(x −x2i−1)+1, if x ∈ [x2i−2, x2i−1[ ,( 1

h −a2i−1
)

(x −x2i−3), if x ∈ [x2i−3, x2i−2[ and i ≥ 2,
0 in other case.

(9)

Imposing now that the discrete solution coincides at the even nodes with the exact solution, we
recursively determine the coefficients z2i−1 and the slopes a2i−1 for i = 1,2, . . . , n by

z1 = uh(x1)− 1

2
u(x2), (10)

a1 = 1

h
, (11)

and for i = 2,3, . . . , n,

z2i−1 = uh(x2i−1)− 1

2

(
u(x2i−2)+u(x2i )

)
, (12)

a2i−1 = 1

h

[
1− uh(x2i−2)−u(x2i−2)

z2i−1

]
. (13)

The slopes a2i−1 in practice are positive, due to the oscillatory nature of uh that lets z2i−1 have a
different sign than uh(x2i−2)−u(x2i−2). Actually, a2i−1 increases as i increases (see Figure 1).

With this construction Zh is a subspace of H 1
0 (]0,1[). In addition, it is straightforward that

Xh = Yh +Zh . Indeed, any function xh ∈ Xh has the decomposition

xh = yh + zh , with yh =
n∑

i=1
ŷ iφi ∈ Yh , zh =

n∑
i=1

ẑ2i−1ϕ2i−1 ∈ Zh , (14)

where the coefficients ŷ i and ẑi , are recursively given by

ẑ2i−1 = xh(x2i−2)−2xh(x2i−1)+ ŷ i

−1−ha2i−1
, ŷ i−1 = 2

(
xh(x2i−1)− ẑ2i−1

)− ŷ i , (15)

for i = n,n − 1, . . . , 1. As the slopes a2i−1 are positive, the denominators −1−ha2i−1 are strictly
negative and, therefore, the values of ẑ2i−1 are well defined for 1 ≤ i ≤ n .

Figure 1. Optimal Zh basis for the convection-diffusion equation (6), for Peh = 10.
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Figure 1 shows the Zh basis functions for Peh = 10. It can be observed how the slopes a2i−1

increase as the points x2i−1 approach the boundary layer. The projection zh of uh on the small-
scales space Zh determined by (14) “absorbs” the oscillations of uh , letting its projection yh on
the large scales space Yh coincide with the exact solution at the even nodes.

On the other hand, it is clear that Zh depends on the exact solution u. Now, for constant w , ν
and f = 0, it holds

u
(
x2 j

)= αePe −β
ePe −1

+ β−α
ePe −1

e4 j sign(w)Peh ,Pe = w

ν
. (16)

Then, Zh depends only on the global and the Péclet mesh numbers. This allows to generalise
the definition of Zh to problems with variable convection velocity by changing the Péclet mesh
number that defines each slope a2i−1 (through identity (16)), by an average of the Péclet mesh
number in a neighbourhood of x2i−1, and computing Pe as an average Péclet number in the
same neighbourhood.

The method presented above can be seen as an “a posteriori” Variational Multiscale method,
in which for the case of constant coefficients, the exact solution is recovered at the nodes of the
mesh of grid size 2h. Our “resolved” scales are searched for in the space Yh , while the “subgrid”
scales (with respect to Yh) belong to the space Zh . Further, space Zh is fully determined by the
values of the solution u at the even nodes and the (oscillating) solution uh on Xh .

3. Residual-based “a posteriori” VMS

An alternative strategy that does not need the knowledge of the exact solution is to minimise,
among all possible choices of the small-scales space Zh , the residual of the projection of xh on the
large scales space Yh . This strategy has two additional advantages: it is readily extended to multi-
dimensional problems and can be applied locally, in a region of the domain that concentrates the
oscillations of the numerical solution.

To specify this procedure, we remark that the slopes a2i−1, i = 1, · · · , n uniquely determine
the functions ϕ2i−1, i = 1, · · · , n by (9), and consequently the slopes a2i−1 determine a unique
small-scale space Zh , spanned by these piecewise affine functions ϕ2i−1. Also, that once Zh

is determined in this way, there is a unique decomposition of any xh ∈ Xh given by (14)-(15),
xh = yh+zh with yh ∈ Yh and zh ∈ Zh (excepting for very particular slopes, given by a2i−1 =−1/h).

We may then search for the filtered solution as the one that minimises the residual of the
large-scales component yh , with respect to the slopes a2i−1, i = 2, · · · ,n. We thus define K =
(R\ {−1/h})n−1 and consider the functional

J : K →R given by J (a3, · · · , a2n−1) = ∥∥R(yh(a3, · · · , a2n−1))
∥∥2

H−1(0,1),

where yh(a3, · · · , a2n−1) is obtained by (14)-(15) with xh = uh (that is, the Galerkin solution of
the convection-diffusion problem (6) on Xh), and R(yh) ∈ H−1(0,1) is the residual of yh , that is
R(yh) = l −A (yh). We define the residual minimisation-based “a posteriori” VMS filtered solu-
tion as

yh (ã3, · · · , ã2n−1) where (ã3, · · · , ã2n−1) = argminK J .

To compare with the solution provided by the nodal-based procedure, it is preferable to replace
the a2i−1, i = 2, · · · , n as degrees of freedom, by the values αi−1, i = 2, · · · , n reached by the ϕ2i−1,
i = 2, · · · , n at the nodes x2i−2, that is

αi−1 =ϕ2i−1(x2i−2) = 1−h a2i−1.

We then consider J as a functional depending on the values α1, · · · , αn−1 defined on the domain
Σ= (R \ {2})n−1, considering that a2i−1 =−1/h ⇔ αi−1 = 2. We compute the norm of the residual
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(a) (b)

Figure 2. Residual-based a posteriori VMS. Representation of the functional j given by (18)
(squared dual norm of the residual) on two segments linking the parameters αi = αnb

i ,
corresponding to the optimal nodal solution, to the singular values αi = 2. The parameter
range close to 2 is avoided as j reaches very large values in this range.

in H−1(0,1) as the norm in H 1(0,1) of its Riesz representation. That is, if we denote Rh =
R(yh(a3, · · · , a2n−1)), and define rh ∈ H 1

0 (0,1) as the solution of

−r ′′
h = Rh , (17)

then

∥Rh∥H−1(0,1) = ∥rh∥H 1(0,1).

In practice we approximate rh by its Galerkin finite element approximation on a grid of size
smaller than h.

In Figure 2 we have represented the functional J when Pe = 400, h = 1/22 in a segment Γ
linking the nodal-based optimal values αnb

i = 1−h anb
2i−1 with anb

2i−1 defined by (9) to (13), with
the singular values αi = 2, that is, we represent the function

j : [a,b] →R; j (λ) = J
(
(1−λ)α⃗nb +λβ⃗

)
, (18)

where α⃗nb = (αnb
1 , · · · , αnb

n−1) and β⃗= (2, · · · , 2) ∈Rn−1. Observe that j is a strictly convex function
in a neigbourhood of its minimum. Moreover, j (λ) tends to infinity as λ → 2 and to constant
values, larger than its minimum, as λ → −∞ and as λ → +∞. Note that the minimum of j in
Γ is reached at a value γmax ∈ Γ somewhat larger than 0.4. Thus, it is close, but not equal, to
the nodal-based optimal values (corresponding to λ = 0). Therefore, the nodal-based and the
residual-based “a posteriori” VMS methods provide different filtered approximations.

4. Nodal-based “a posteriori” VMS for transient nonlinear convection-diffusion equa-
tions

In this section we apply the nodal-based “a posteriori” VMS procedure to a nonlinear transient
diffusive convection problem, modelling the traffic flow in a one-lane road.
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The traffic flow equation for a one-lane road can be written as
u,t (x, t )+F,x (u(x, t ))−νu,xx (x, t ) = f (x, t ), x ∈ [0,1], t ∈ [0,T ]
u(x,0) = u0(x) x ∈ [0,1],
u(0) = uL , u(1) = uR ,

(19)

where u represents the traffic density, f is a source term, u0 is the given initial condition, uL and
uR are given numbers, and the flux function F is twice differentiable and verifies

F (0) = 0, F (umax) = 0,

F (u) > 0 and F ′′(u) < 0 for 0 < u < umax .

(20)

The flux function can be modeled in different ways and is dependent on the road on which the
traffic circulates; the model case we consider here is the given by

F (u) = u(1−u).

If we consider the Riemann problem

u0(x) =


uL if x ∈ [0,1/2],

uR if x ∈ [1/2,1],

(21)

with uL < uR , the solution is made of two steady states united by a diffusive shock which is shifted
to the left.

To solve (19), we discretize in time by using a semi-implicit Euler scheme, obtaining an
equation with the following structure:

1

∆t
un+1 +w

(
un) (

un+1)′−ν (
un+1)′′ = f n+1 + 1

∆t
un

un+1(0) = uL , un+1(1) = uR ,

 (22)

where w(v) = F ′(v). The boundary conditions in (22) come from (21), and hold before the shock
initially located at x = 1/2 reaches the boundary of the domain.

Now, we discretize (22) by the standard Galerkin method, using for this purpose the space of
Finite Elements Xh . In this way, at each time step we solve the problem:

Findun+1
h ∈ Xh verifying that ∀ vh ∈ Xh ,

1

∆t

(
un+1

h , vh
)+ (

w
(
un+1

h

)′
, vh

)
−ν

((
un+1

h

)′
, v ′

h

)
= 〈

f n+1, vh
〉+ 1

∆t

(
un

h , vh
)

un+1
h (0) = uL , un+1

h (1) = uR .


(23)

When this problem is solved by the Galerkin method using piecewise affine Finite Elements,
again for high values of the Péclet mesh number the numerical solution is affected by strong
oscillations, in this case around the shock (see Fig. 3).

To treat this instability, it is possible to apply to the solution of (23) the optimal filtering
described in the previous section, at each time step. This eliminates the spurious oscillations.

It is also possible to apply this filtering only at the time instant at which one is interested to
compute the solution accurately. Specifically, we consider the following algorithm to obtain a
filtered solution of (23) at a pre-set time T :



Tomás Chacón Rebollo, Antonio Domínguez-Delgado and Macarena Gómez Marmol 9

Non-linear case Optimal Filtering Algorithm:

(0) Initialization. The values N ,△t = T /N ,u0
h and △t∗ are specified, where △t∗ is a number

close to the computer accuracy (but slightly higher).

(I) Iteration in time without filtering. The system (23) is solved, obtaining un+1
h from un

h for
n = 0,1, . . . , N −1.

(II) Filtering.
(a) The system (23) is solved, obtaining uN∗

h from uN
h using the time step △t∗.

(b) The “optimal” filtering of uN∗
h is done, using the “optimal” basis of Zh determined

from the averages of w N∗
h over each interval [x2i−2; x2i ]. That is, uN∗

h is computed
by (14)-(15) using the values of z2i−1, a2i−1 given by (12) and (13). In (13), the value of
u(x2i ) is given by (16), computing Peh as an average value of the grid Péclet number
in [x2i−1, x2i ].

(c) If the filtered solution exhibits spurious oscillations, take uN
h = uN∗

h and return
to (IIa).

Let us note again that the filtering is not performed until it is reached just the time T at which
we want to obtain the solution.

5. Numerical Tests

In this section we present a test for each of the three a-posteriori Variational Multi-Scale methods
introduced in the previous sections.

Figure 3. Test 1. Exact solution (line marked by +) of the convection-diffusion equation
with linear source term and homogeneous boundary conditions, approximation by FEM
Galerkin P1 (line marked by ∗) and nodal “a posteriori VMS” filtering (line marked by ◦), for
Peh = 10.

Test 1: Nodal filtering. Linear convection-diffusion equation

At first we reproduce the results of a test for the linear convection-diffusion equation (6), with
linear source term f (x) = x, constant velocity w = 400 and diffusion ν= 1, homogeneous boun-
dary conditions α = β = 0, and discretisation parameters n = 40 and Peh = 10, presented in
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the Computational Science for the 21st Century congress celebrating the 60th anniversary of
R. Glowinski.

The result obtained is shown in Figure 3. As can be seen in this figure, the nodal “a posteriori
VMS” filtering technique indeed allows to recover the exact solution at the nodes of the mesh
with grid size 2h.

Test 2: Residual-based filtering. Linear convection-diffusion equation

Figure 4. Residual-based a posteriori VMS. Filtered solutions obtained with initial values
for the parametersαi for the gradient method. The filtered solution approaches values very
close to those of the oscillating solution at even grid nodes, as the residual is computed with
successively refined grids.

In this section we test the residual-based “a posteriori VMS” filtering procedure. We have
minimised the functional J by a gradient method with fixed step, that provides good results if
the step is appropriately tuned. We present in Figure 4 the filtered solution when we use constant
initial values αi = −0.1 for the gradient method. We use progressively refined grid sizes, smaller
than h, to compute the residual for the convection-diffusion equation with constant velocity and
Peh = 10. We observe that the filtered solution values at even grid nodes is quite close to those of
the oscillating solution uh . This filtered solution provides a local minimum of the residual norm,
although it is rather far from the actual exact solution.

In Figure 5 we also show the filtered solutions when we use the nodal-based solution as initial
condition for the gradient method, that is, the initial values are given by αi = αnb

i . We observe
that the filtered solution is quite close to the exact one at the even grid nodes (although, as we
have commented before, it does not coincide with the exact solution). We thus observe that the
functional J has several local minima, and that these seem not to present spurious solutions. Also
that some of them provide filtered solutions quite close to the exact one at even grid nodes. The
choice of the initialization of the gradient method appears as a crucial choice to fit an appropriate
residual-based “a posteriori” VMS solution.

Let us remark that this procedure can be applied locally, only in some sub-domain of the
domainΩwhere the solutions present rather large oscillations, to reduce the computational cost
of the filtering procedure. This is quite important for the post-treatment of oscillating solutions
of multi-dimensional flows.
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Figure 5. Residual-based “a posteriori VMS”. Filtered solution obtained whit initial values
for the parameters yielding the optimal nodal values αnb

i for the gradient method. The
filtered solution approaches values very close to those of the exact solution at even grid
nodes, when the residual is computed with a fine enough grid.

Figure 6. Test 2. Galerkin approximation (oscillating line), filtered approximation (line
marked by ◦) and exact solution (solid line), for N = 60,ν= 0.001 and T = 0.1.

Test 3: Evolution traffic flow equation

In the third test the post-processing technique has been applied to the nonlinear traffic problem
given by (19) with the initial conditions (21). The test data are: N = 60,ν = 0.001,T = 0.1,△t =
1/200,uL = 0.2;uR = 0.9.

The grid Péclet number corresponding to these data is Peh = 16.66. Once the final time is
reached (through 20 time steps), a total of 6 of filtering steps are performed (step II.3). The results
obtained are presented in Figure 6. We observe that all spurious oscillations have disappeared, no
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overshoot or undershoot are presented in the filtered solution that, in addition, provides a rather
accurate approximation to the shock solution at the targeted final time.

6. Conclusions

In this paper we have introduced two extensions of the “a posteriori VMS” filtering procedure that
we presented in the proceedings of the “Computational Science for the 21st century” conference
held in Tours in 1997 celebrating the 60th birthday of Roland Glowinski. The purpose of this
procedure is to “cure” a solution of the convection-diffusion equations presenting spurious
oscillations due to convection dominance, without need of solving again the equation on a finer
grid or with stabilised methods. Only the information provided by the oscillating solution is used.
The basic idea is to take advantage of the stabilising effect of the sub-grid scales.

On one hand we have introduced a residual-based “a posteriori” VMS that needs the solution
of a least-squares problem (residual minimisation of a convenient projection of the oscillating
solution on the grid with double size). Quite close filtered solutions to the exact one on the grid of
double size are obtained, if the initialisation of the minimisation procedure for the least-squares
problem is conveniently provided.

On another hand, we have applied the nodal-based “a posteriori” VMS to evolution non-linear
convection-diffusion problems generating shocks in finite time (the one-lane traffic equation).
We have developed an iterative filtering procedure using very small time steps to the solution at a
targeted time. The filtering procedure does not need to be applied in preceding times. It provides
quite accurate solutions, again at the nodes of a grid with double grid size.

Presently we are developing the extension of the residual-based “a posteriori” VMS procedure
to multi-dimensional problems to be applied locally. The purpose is to obtain cures of the
oscillating solutions only in sub-domains where it is needed.
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