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Abstract. This work introduces a set of analytical expressions that simplifies the
procedure of obtaining closed-form formulas to estimate the effective piezoelectric
properties of polycrystalline aggregates formed by crystals of all the 21 non-
centrosymmetrical classes and with arbitrary textures. The expressions are derived
from orientational averages of third-order piezoelectric tensors of the individual crystals
that are weighted by orientational distribution functions. The averaging is done by
using generalized spherical harmonic series expansions. Improvements with respect to
previous works in the literature are twofold: all crystal symmetries are considered and
no symmetry restrictions are imposed to texture. The versatility of the introduced
expressions is demonstrated on an example of BaTiO3 polycrystals with uniaxial and
biaxial textures characterized by single and double Gaussian distributions, respectively.
The results for uniaxial texture are in perfect agreement with the results published in
the literature. The biaxial texture is discussed in detail and analyzed for a set of
limiting cases.
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1. Introduction

Piezoelectric ceramics (Uchino, 2017) are generally used in the form of a collection
of perfectly bonded piezoelectric crystals with a large number of distinct polarization
orientations. Macroscopic piezoelectric properties of the material are governed by
this microscopic inhomogeneous crystal morphology. When the material is an
aggregate of randomly oriented piezoelectric crystals, no net polarization is realized
and so the material is not macroscopically piezoelectric. To achieve macroscopic
piezoelectric properties, the individual crystals must have a preferential orientation.
Generally, piezoelectric properties exhibit large anisotropy, which is an attractive feature
for material design. Preferred orientation of the crystallographic domains can be
accomplished by controlling growth parameters during fabrication (Kim et al., 2006)
or by subjecting the material to a large electric field at high temperature (Li et al.,
2005).

Optimization methods can be used to design materials specific piezoelectric
properties by tailoring their orientation distribution (texture). In the framework of
the implementation of an optimization algorithm, Finite Element Analysis (FEA)
is a versatile tool to compute effective piezoelectric properties (the optimization
objective function) by means of a numerical homogenization approach, see for instance
Jayachandran et al. (2011). However, closed-form analytical expressions for effective
piezoelectric properties are always preferable over the FEA homogenization approach,
as they simplify implementations and speed up calculations.

Effective piezoelectric properties can be estimated by averaging the properties of
single crystals in the aggregate taking into account macroscopic texture. To calculate
the effective properties for a polycrystal, the best averaging method is the self-consistent,
extended to piezoelectric polycrystals by Li (2000). However this method requires
computation of piezoelectric Eshelby tensor which involves, in general, numerical
integration. On the other hand, there are the simple volume averaging approaches,
like the Voigt model (see Li and Dunn (2001)), which are attractive because they allow
to deduce closed-form expressions for the effective properties. In particular, the Voigt
model assumes uniform strain and electric fields in the crystallites. This assumption is
valid for piezoelectric polycrystals with fiber textures under certain conditions (see Li et
al. (1999)) for which exact estimates of some of the electroelastic moduli result. Working
in the context of fiber texture, Li et al. (1999) and Li (2000) computed Voigt-Reuss
estimations for the electroelastic moduli of polycrystals by approaching the problem with
generalized spherical harmonics. Specifically, Li et al. (1999) considered fiber texture
of orthorhombic single crystals belonging to class symmetry 2mm, which includes as
particular cases classes of tetragonal 4mm and hexagonal 6mm symmetries (see Nye’s
book (Nye, 1985)). An interesting finding by Li (2000) was that aggregates of 4mm
crystals of barium titanate (BaTiO3) with their orientations around the polarization
direction characterized by a Gaussian distribution present an amplification effect of the
piezoelectric coupling with respect to the single crystal properties. Recently, some of the
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authors of the present work have used the Li’s framework for modelling modern lead-free
piezocomposites to find interesting behaviours attributable to such amplification effect
of the polycrystalline phase (Krishnaswamy et al., 2019a,b, 2020a,b,c).

Previous works address only orthorhombic crystal symmetry with transversely
isotropic texture. This work presents a comprehensive approach to derive closed-
form expressions for the estimation of the effective piezoelectric stress tensor of crystal
aggregates of any symmetry and general texture. The proposed approach is based on
the previous works by Li et al. in the use of generalized spherical harmonics expansion
and extends the ideas by Bunge (1982) and Roe (1965) among others, from elasticity
to piezoelectricity.

The derived analytical expressions are verified and their versatility demonstrated
through a study problem consisting in a polycrystalline aggregate of BaTiO3 with various
orientational distribution functions. It is shown how the general expressions introduced
in this work can be reduced to those results by Li (2000) for specific cases.

The repeated index convention for addition is used in this work. Explicit sums are
indicated in expressions when deemed convenient for the sake of clarity.

2. Preliminaries

We concern with the computation of the anisotropic electromechanical coupling of
polycrystal piezoceramics from the properties of single crystallites and their orientations.
A simple approximation to compute this coupling is through the volume average of the
third-order piezoelectric stress tensor eijk, which satisfies eijk = eikj (i, j, k = 1 . . . 3).
Since in this case eijk depends only on the crystal orientation g(xi) (i = 1 . . . 3) at
each point x, the integration over a representative volume element V can be carried
out in two steps, as usual. We first integrate over all those volume elements dV with
orientation g, and then over all orientations g, thereby the average tensor is computed
by

hei = 8⇡2

I
e(g)w(g)dg, (1)

where the function w : SO(3) ! R�0 –called Orientation Distribution Function
(ODF)– appears as a weight function that accounts for the volumetric density of
crystallites oriented in dg. This Haar measure dg is —after normalization— given
by dg = 1/(8⇡2) sin ✓d✓d d� where ( , ✓,�) are the Euler’s angles. Then, the ODF is
normalized such as

8⇡2

I
w(g)dg = 1. (2)

Therefore, by expressing the crystal orientation in terms of ( , ⇠ = cos ✓,�), the Voigt
average becomes

hei =
Z 2⇡

0

Z 2⇡

0

Z +1

�1

e(⇠, ,�)w(⇠, ,�)d⇠d d�, (3)



Averaging piezoelectric third-order tensors 4

Note that the normalization factor 8⇡2 above results in a isotropic ODF, wiso = 1/(8⇡2)

(Bunge, 1982; Roe, 1965).
Among the different alternatives, we adopt the following convention to specify

rotations through Euler’s angles: one begins with the principal material coordinate
system x0

i (i = 1, 2, 3) fixed to the crystal and with the axes being parallel to those of
the global coordinate system xi (i = 1, 2, 3); then x0

i (i = 1, 2, 3) is first rotated about
the x0

3-axis through the angle  ; the second rotation is about the x0
2-axis (in its new

orientation) through ✓ and, finally, the third rotation is again about the x0
3-axis (in its

new orientation) through the angle �. All positive rotations are in counterclockwise
direction.

The piezoelectric components of e0 fixed to a crystal can be expressed in the global
coordinate system xi (i = 1, 2, 3) according to the transformation law for third-order
tensors

eijk(⇠, ,�) = ⌦im⌦jn⌦koe
0
mno = Timjnkoe

0
mno, (4)

where ⌦ –the matrix representation of the orientation g in the Euler’s space– is the
orthogonal transformation matrix (SO(3)) given by

⌦ =

0

B@
cos(✓) cos( ) cos(�)� sin( ) sin(�) � cos(✓) cos( ) sin(�)� sin( ) cos(�) sin(✓) cos( )

cos(✓) sin( ) cos(�) + cos( ) sin(�) cos( ) cos(�)� cos(✓) sin( ) sin(�) sin(✓) sin( )

� sin(✓) cos(�) sin(✓) sin(�) cos(✓)

1

CA . (5)

The sixth-order matrix Timjnko condenses the triple tensor product ⌦im⌦jn⌦ko; it
possesses major symmetries only (minor symmetries are not present because ⌦ is
nonsymmetric) given by the permutations of the disjoint cycles of indices

Cycles[(3 5)(4 6)], Cycles[(1 3)(2 4)], Cycles[(1 3 5)(2 4 6)]. (6)
These symmetries allow a considerable reduction in the number of components of Timjnko

to be computed. Thus, of the 729 components of Timjnko only 249 are different.
Finally, the averaging of equation (4) results in

heijk(⇠, ,�)i = hTimjnkoe
0
mnoi = hTimjnkoi e0mno, (7)

which shows that the estimation of the effective piezoelectric tensor of the polycrystalline
aggregate reduces to finding the hTimjnkoi for the corresponding ODF.

In what follows, the prime symbol will be dropped from the piezoelectric constants
in the crystal coordinate system in order to allow a cleaner notation.

3. Averaging in terms of generalized spherical harmonic series expansions

Following Gel’fand et al. (1963), generalized spherical harmonics form a complete
orthogonal basis for the Hilbert space L2(SO(3)), which is the set of all square integrable
real-valued functions on SO(3) with inner product defined by

(H1, H2) =

I
H1(g)H

⇤
2 (g)dg, H1, H2 2 L2(SO(3)), (8)
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where ⇤ denotes the complex conjugate. Thus, a general real function H 2 L2(SO(3))

can be expanded in series of generalized spherical harmonics. This is a useful approach
to evaluate the average of a general real function hHi. To do this, we expand both the
ODF w(⇠, ,�) and H(⇠, ,�) into generalized spherical harmonics series (Roe, 1965)
as follows:

w(⇠, ,�) =
1X

l=0

lX

m=�l

lX

n=�l

WlmnZlmn(⇠)e
�im e�in�, (9)

and

H(⇠, ,�) =
1X

l=0

lX

m=�l

lX

n=�l

HlmnZlmn(⇠)e
�im e�in�, (10)

where i =
p
�1 and Zlmn(⇠) is a generalization of the Legendre associated function Pmn

l

that can be expressed as

Zlmn(⇠) = in�m

r
2l + 1

2
Pmn
l (⇠), (11)

being

Pmn
l (⇠) =

(�1)l�min�m

2l(l �m)!


(l �m)!(l + n)!

(l +m)!(l � n)!

� 1
2

⇥ (1� ⇠)
�(n�m)

2

(1 + ⇠)
(n+m)

2

dl�n

d⇠l�n

⇥
(1� ⇠)l�m(1 + ⇠)l+m

⇤
. (12)

The associated Legendre function Pmn
l can be either real or purely imaginary, according

to whether m + n is even or odd, respectively. Consequently, Zlmn(⇠) is always real-
valued.

The coefficients of the expansions in (9) and (10) are (Bunge, 1982; Kocks et al.,
2005)

Wlmn =
1

4⇡2

Z 2⇡

0

Z 2⇡

0

Z +1

�1

w(⇠, ,�)Zlmn(⇠)e
im ein�d⇠d d�, (13)

the so-called texture coefficients, and

Hlmn =
1

4⇡2

Z 2⇡

0

Z 2⇡

0

Z +1

�1

H(⇠, ,�)Zlmn(⇠)e
im ein�d⇠d d�. (14)

Note that all information about the ODF is contained in the texture coefficients, which
are complex quantities satisfying

Wlmn = (�1)m+n W ⇤
lm̄n̄, (15)

due to the symmetry properties of Zlmn(⇠) (Roe, 1965). In equation (15), m̄ = �m.
From the normalization condition (2), it can be shown that

W000 =
1

4
p
2⇡2

. (16)

In practice, the normalization of w(⇠, ,�) is prefered by ensuring (16) instead of (2).
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Expansion coefficients Hlmn are complex and typically involve integration of simple
trigonometric functions (H contains products of direction cosines) and the generalized
spherical harmonics. Their analytical expressions can be found once H is specified.

Finally, the expansion for the average of a general real function hHi, is (Bunge,
1982; Kocks et al., 2005)

hHi = 4⇡2
RX

l=0

lX

m=�l

lX

n=�l

HlmnWlmn, (17)

where, from the truncation theorem by Ferrari and Johnson (1988), R = 3, the tensor
rank of eijk. In fact, all coefficients Hlmn are zero for l > 3.

It is worth to note that, unlike the works by Li (2000); Krishnaswamy et al. (2019a);
Li et al. (1999), the present analysis does not imposed any restriction on Wlmn. In the
next, we will use (17) to obtain the expressions for the average rotation tensor in (7),
which, in turn, will be used to compute the effective piezolectric tensor.

4. Effective piezoelectric tensors for all crystal symmetries

Note first that each of the components Timjnko are real functions Timjnko : SO(3) ! R,
similar to function H. Then, derivation of the expressions for the average rotation matrix
in (7) can be performed via expression (17). This methodology involves the computation
of the coefficients Hlmn for each of thse 249 different components of Timjnko according to
(14). This was done analytically using Mathematica (2020). Due to space limitations,
the full expressions are reported in Supplementary Material 1. All 249 components
are necessary in order to consider a general case with any symmetry.

Two sources of symmetry are considered when computing the average piezoelectric
tensor (7): the ones due to the crystallite structures and the others due to the
ODF. No symmetry restrictions are imposed on the ODF –and hence to the texture
coefficients in (17)– in this work. In respect to the crystallite symmetries, all the
non-centrosymmetrical classes (Nye, 1985) are considered. The expressions of (7)
for each of the 21 classes are presented in Supplementary Material 2. The heijki
in Supplementary Material 2 are functions of the texture coefficients Wlmn, which
are necessary to specify for each case of analysis according to the adopted ODF. The
property (15) has been used to present the expressions of heijki in real form. Note that
from the 21 non-centrosymmetrical classes only 20 are piezoelectric. Thus, the cubic
class 432 results in all components of heijki identically zero, no matter what the Wlmn

are. Some of the piezoelectric classes share the matrix structure reducing the amount
of expressions as it can be observed in Supplementary Material 2.

Two supplementary materials provide all the details of the main contribution of
this work. The next section analyzes the tetragonal 4mm class in detail.
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5. Study problem: Tetragonal class 4mm

The theory introduced above is applied for the analysis of polycrystalline aggregate of
BaTiO3 in order to verify and illustrate the derived results. Barium titanate is both
a lead-free material (Saito et al., 2004) and environmentally friendly in its processing
(Ibn-Mohammed et al., 2017). Interesting novel applications (Wang et al. (2018) among
others) have been proposed while BaTiO3-based composites can be fabricated in a
scalable manner using emerging additive manufacturing methods (Kim et al., 2017,
2019; Phatharapeetranun et al., 2017). Li (2000), among others (see for example (Li et
al., 1999; Ruglovsky et al., 2006)), has studied the average piezoelectric properties of
BaTiO3 polycrystalline aggregates.

The BaTiO3 crystal belongs to the point group class 4mm, with their piezoelectric
constants listed in Table 1 (Li, 2000). Thus, the expressions for the average components
heijmi for the tetragonal symmetry are retrieved from Supplementary Material 2 and
summarized below:

he111i =� 4

105
⇡2

⇣p
14(5eA � eB)<

⇣p
3W310 �

p
5W330

⌘
+

14
p
3eB<(W110)

⌘
,

(18)

he122i =
4

315
⇡2

⇣
14
p
3<(W110)(2eA � eB + 3eC)+

p
14(eB � 5eA)<

⇣p
3W310 + 3

p
5W330

⌘⌘
,

(19)

he133i =
8⇡2

�
7<(W110)(2eA � eB + 3eC) + 2

p
14(5eA � eB)<(W310)

�

105
p
3

, (20)

he123i =
8⇡2(5eA � eB)=(W320)

3
p
105

, (21)

he113i =
2

315
⇡2

⇣
7
p
6<(W100)(2(eA + eB) + 3eC)+

2
p
7(5eA � eB)<

⇣
3
p
2W300 � 2

p
15W320

⌘⌘
,

(22)

he112i =
4

315
⇡2

⇣
7
p
3=(W110)(2(eA + eB) + 3eC)+

p
14(5eA � eB)=

⇣p
3W310 � 3

p
5W330

⌘⌘
,

(23)

he211i =� 4

315
⇡2

⇣
14
p
3=(W110)(2eA � eB + 3eC)+

p
14(eB � 5eA)=

⇣p
3W310 � 3

p
5W330

⌘⌘
,

(24)

he222i =
4

105
⇡2

⇣p
14(5eA � eB)=

⇣p
3W310 +

p
5W330

⌘
+

14
p
3eB=(W110)

⌘
,

(25)
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he233i =
8

105
p
3
⇡2 (7=(W110)(�2eA + eB � 3eC)+

2
p
14(eB � 5eA)=(W310)

⌘
,

(26)

he223i =
2

315
⇡2

⇣
7
p
6<(W100)(2(eA + eB) + 3eC)+

2
p
7(5eA � eB)<

⇣
3
p
2W300 + 2

p
15W320

⌘⌘
,

(27)

he213i =
8⇡2(5eA � eB)=(W320)

3
p
105

, (28)

he212i =� 4

315
⇡2

⇣
7
p
3<(W110)(2(eA + eB) + 3eC)+

p
14(5eA � eB)<

⇣p
3W310 + 3

p
5W330

⌘⌘
,

(29)

he311i =� 4

315
⇡2

⇣
7
p
6<(W100)(2eA � eB + 3eC)+

p
7(eB � 5eA)<

⇣
3
p
2W300 � 2

p
15W320

⌘⌘
,

(30)

he322i =� 4

315
⇡2

⇣
7
p
6<(W100)(2eA � eB + 3eC)+

p
7(eB � 5eA)<

⇣
3
p
2W300 + 2

p
15W320

⌘⌘
,

(31)

he333i =
4

105

⇣
2
p
14⇡2(eB � 5eA)<(W300) + 7

p
6⇡2eB<(W100)

⌘
, (32)

he323i =
4

105
p
3
⇡2 (7=(W110)(2(eA + eB) + 3eC)+

4
p
14(eB � 5eA)=(W310)

⌘
,

(33)

he313i =� 4

105
p
3
⇡2 (7<(W110)(2(eA + eB) + 3eC)+

4
p
14(eB � 5eA)<(W310)

⌘
,

(34)

and

he312i =
8⇡2(5eA � eB)=(W320)

3
p
105

, (35)

where eA = 2e113 + e311, eB = 4e113 + 2e311 + 3e333 and eC = 2e113 � 4e311. Note that
this set of analytical expressions reduce to those presented by Li (2000) when ODF is
such that texture coefficient W320 vanishes. However, expressions (18) - (35) are more
general as shown below.

To verify these results, we first consider the ODF
w�(⇠, ,�) = �(⇠ � 1), (36)

where �(⇠ � 1) is the Dirac delta function at ⇠ = 1. This ODF describes an aggregate
with all the crystallites oriented with ✓ = 0 and random values for  and �, which
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Table 1. Piezoelectric constants of tetragonal BaTiO3 single crystal (Cm�2) (Li,
2000).

e113 = e223 e311 = e322 e333

21.3 -2.69 3.65

means that the piezoelectric is a perfectly oriented polycrystal in the x0
3 orientation.

By substituing (36) into equation (13), we obtain the following non-vanishing texture
coefficients:

W �
100 =

q
3
2

4⇡2
, (37)

and

W �
300 =

q
7
2

4⇡2
. (38)

Due to the six-fold axis symmetry of the tetragonal crystal with the x0
3-axis, the

BaTiO3 single crystal properties should be recovered from the effective properties of
the polycrystal. This was successfully verified by substituting the texture coefficients
(37) and (38) into (18)-(35). The same verification was performed for all the formulas
for the different crystal symmetries in Supplementary Material 2. In this case, when
the ODF is given by

w�(⇠, ,�) = �(⇠ � 1)�( )�(�), (39)
the non-zero texture coefficients used for these verifications are:

W �
11̄1̄ = W �

100 = W �
111 =

q
3
2

4⇡2
, (40)

W �
22̄2̄ = W �

21̄1̄ = W �
200 = W �

211 = W �
222 =

q
5
2

4⇡2
, (41)

and

W �
33̄3̄ = W �

32̄2̄ = W �
31̄1̄ = W �

300 = W �
311 = W �

322 = W �
333 =

q
7
2

4⇡2
. (42)

This paper used both generalized spherical harmonics ODF and Gaussian ODF for
model derivation, but did not discuss the relationship between them. This may cause
confusion to readers. These two types of ODF can be unified or connected in general,
as discussed in the Reference [1] below.

Next, two Gaussian ODFs are considered. Gaussian ODFs allow for the analytical
integration of the texture coefficients and for the comparison with results published
in the literature. These analytical Gaussian ODFs are not the series expansion
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representation ODFs given by equation (9) so this should not cause confusion. These
two ODFs are clearly related as discussed by Sha (2018).

First, we consider the simple (fiber texture) Gaussian ODF

wA(✓ |µ✓, �✓) =
exp

⇣
� (✓�µ✓)2

2�2
✓

⌘

p
2⇡�✓

, (43)

where µ✓ is the mean of the Euler’s angle ✓, and �✓ is its standard deviation. The
orientations due to angles  and � are assumed to be randomly distributed. The
ODF wA is used to compute the texture coefficients through equation (13). This
results in only two non-zero texture coefficients, WA

100 and WA
300, that are reported in

Supplementary Material 3. Note that these expressions reduce to those presented by
the authors in Ref. Krishnaswamy et al. (2019a) for µ✓ = 0. The texture coefficients in
Supplementary Material 3 together with (18-35) provide the fully analytic expressions
for the effective piezoelectric tensor of a BaTiO3 (or any 4mm class crystal) aggregate
with the ODF in equation (43). The effective piezoelectric tensor is obtained after
replacing WA

100 and WA
300 in equations (18-35). Figure 1 shows the components of the

three non-zero components of the effective piezoelectric stress tensor, he113i, he311i and
he333i, as functions of the Gaussian distribution parameter �✓. The results for µ✓ = 0

–the continuous lines in the plot– are in perfect agreement with those by Li (2000).
Discontinuous lines show the results for µ✓ = ⇡/12 and ⇡/6.

The asymptotic behaviors of heijki are clear from Figure 1. For �✓ ! 1, WA
100

and WA
300 tend both to zero, as well as all the components of heijki; this behavior

reflects the fact that the aggregate has null effective piezoelectric properties for a fully
random distribution of the crystals. For the other extreme case, �✓ ! 0, the Gaussian
distribution wA tends to the Dirac delta function w� and hence all crystals have identical
orientation in x3-axis, so the single crystal properties are recovered for the aggregate
behaviour, as shown in the example above. In accordance with this, the effective values
for µ✓ = 0 in Figure 1 for �✓ ! 0 converge toward the crystal values in Table 5. The
same behavior is verified for µ✓ = ⇡/12 and ⇡/6, however, for these cases, it is necessary
to consider that the global coordinate system (xi, i = 1 . . . 3) does not coincide with that
of the crystals; consequently the limit values for the two cases with µ✓ 6= 0 are those of
Table 5 but rotated by the corresponding µ✓.

Figure 1 also allows observing the marked amplification effects on he311i and he333i
for µ✓ = 0 at �✓ ' 0.6, with absolute peak values greater than those of the single crystal.
This effect was also noted by Li (2000). In addition, we can see here that the positions of
the maximums shift towards lower dispersion values when the mean orientation direction
moves away from x3, i.e. when µ✓ 6= 0. To better illustrate this, the 3D plot in Figure
2 shows the combined effects of �✓ and µ✓ on he333i. It can be observed that the overall
maximum he333imax = 16.116 C/m2 is for µ✓ = 0.92 rad in the limit case �✓ ! 0, that
is, the maximum coupling effect that can be achieved by rotating a single crystal.

The second case of analysis is an aggregate with biaxial Gaussian distributions for



Averaging piezoelectric third-order tensors 11

Figure 1. Effective piezoelectric moduli of polycrystal BaTiO3 as a function of the
Gaussian distribution parameter �✓. Continuous lines represent the constants for a
mean value µ✓ = 0. Discontinuous lines correspond to mean values of µ✓ = ⇡/12 and
⇡/6.

Figure 2. Effective piezoelectric constant he333i of polycrystal BaTiO3 as a function
of the mean value µ✓ of the Euler’s angle ✓, and the Gaussian distribution parameter
�✓.

 and ✓ (Ruglovsky et al., 2006) given by

wB(✓ |µ✓, �✓; |µ , � ) =
exp

⇣
� (✓�µ✓)2

2�2
✓

� ( �µ )2

2�2
 

⌘

2⇡�✓� 
, (44)

and a random distribution for � (in fact, due to the tetragonal symmetry of the BaTiO3,
the behaviour of the aggregate is independent of �).
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The evaluation of equation (13) for wB results in 6 texture coefficients, these are:
WB

100, WB
110, WB

300, WB
310, WB

320 and WB
330. The analytic expressions of the coefficients

are given in Supplemtary Material 3. Coefficients WB
110, WB

310, WB
320 and WB

330 are
complex-valued, meanwhile WB

100 and WB
300 are real. Moreover, WB

100 and WB
300 are

equal to WA
100 and WA

300 (the texture coefficients of the first case of analysis) and so,
independent of  and � .

The behavior of the texture coefficients strongly depends on the parameter values.
As examples, Figures 3 and 4 show the diversity of behaviors of the real and imaginary
parts of the texture coefficients as functions of �✓ for the arbitrary set of parameters
µ✓ = 0, µ = ⇡/3 and � = 1; Figures 5 and 6 do so as function of � for µ✓ = 0,
µ = ⇡/3 and �✓ = 0.6. It is observed that some of the texture coefficients vanish for
standard deviations tending to infinity or tending to zero, while others do not.

It is interesting to analyze the limiting case �✓ ! 0 for Figures 3 and 4. Note
that both the real and imaginary parts of all the complex coefficients vanish, and the
real texture coefficients take the values WB

100 ⌘ W �
100 and WB

300 ⌘ W �
300, (see equations

(37) and (38)). These results can be verified by taking the limits of the expressions
for WB

100 and WB
300 in Supplementary Material 3. For this limit, the x3-axis of the

polycrystal coincides with the global x3-axis and the x0
1-axis is rotated µ = ⇡/3 with

respect to the x1-axis. Due to the tetragonal symmetry of the BaTiO3, the piezoelectric
tensor is invariant under rotations about x0

3-axis, and as a consequence, the effective
properties of the polycrystal are the same as the crystal. For the other limiting case,
�✓ ! 1, Figures 3 and 4 show that only a few texture coefficients vanish and the
resulting effective piezoelectric tensor is transversely isotropic with x2 as the symmetry
axis.

Figures 5 and 6 show that all texture coefficients converge to finite values for
the limiting case � ! 0, which results in a fully populated matrix for the effective
piezoelectric behaviour. Conversely, the real and imaginary parts of all complex
coefficients vanish for � ! 1, that is, when Euler’s angle  is randomly distributed. In
this situation, only the terms that contain the coefficients WB

100 and WB
300 will remain in

equations (18-35) to obtain expressions for he223i, he311i and he333i that match those of
the previous case of analysis. It can also be verified that in the case where � ! 1 and
�✓ ! 1 simultaneously, regardless of the values of µ and µ✓, all the texture coefficients
vanish and so an isotropic material with no piezoelectric properties is obtained.

Figure 7 shows all the 18 components of heijki of the polycrystal as functions of �✓
for µ✓ = 0, µ = ⇡/3 and � = 1 (the same parameters for the texture coefficients in
Figures 5 and 6). It is clear that all components can be different from zero for a general
case. Figure 8 shows, in particular, the behavior of he112i as a function of the mean
value for the first Euler’s angle, µ , and its dispersion, � , when µ✓ = 0 and �✓ = 0.6.
The minimum value he112imin =-12.854 C/m2 was found for µ = ⇡/2 rad and zero
dispersion (� = 0).

In virtue of the symmetry eijk = eikj (i, j, k = 1 . . . 3), the usual two-index reduction
mapping eijk 7! ei↵ (↵ = 1 . . . 6) is used to represent the results in matrix form, according
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Figure 3. Real parts of the texture coefficients Wlmn as functions of Gaussian
distribution parameter �✓ when the mean values are µ✓ = 0 and µ = ⇡/3, and
� = 1.

Figure 4. Imaginary parts of the texture coefficients Wlmn as functions of Gaussian
distribution parameter �✓ when the mean values are µ✓ = 0 and µ = ⇡/3, and � = 1.

to the next set of index rules km 7! ↵: 11 7! 1, 22 7! 2, 33 7! 3, 23 7! 4, 13 7! 5, 12 7! 6.
Thus, Table 2 compares the matrix structures of the effective piezoelectric coupling
tensors resulting from the two Gaussian ODFs (see Figures 1 and 7 ). It can be observed
that the simple Gaussian ODF for the Euler’s angle ✓ (the line labelled wA) results always
in a polycrystal with an effective piezoelectric tensor with the same point-group class
4mm symmetry of the single crystal. On the other hand, the double Gaussian ODF for
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Figure 5. Real parts of the texture coefficients Wlmn as functions of Gaussian
distribution parameter � when the mean values are µ✓ = 0 and µ = ⇡/3, and
�✓ = 0.6.

Figure 6. Imaginary parts of the texture coefficients Wlmn as functions of Gaussian
distribution parameter � when the mean values are µ✓ = 0 and µ = ⇡/3, and
�✓ = 0.6.

the Euler’s angles ✓ and  (the line labelled wB) can produce a fully-populated effective
piezoelectric tensor.

Also it can be noted that he123i, he213i and he312i are equal, thus resulting –for the
wB ODF– in a matrix structure as shown in Table 2.
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Figure 7. Effective piezoelectric moduli of polycrystal BaTiO3 as a function of the
Gaussian distribution parameter �✓ for µ✓ = 0, µ = ⇡/3 and � = 1.

Figure 8. Effective piezoelectric constant he112i of the BaTiO3 polycrystal as a
function of µ and � for µ✓ = 0 and �✓ = 0.6.

Table 2. Matrix structures of the effective piezoelectric coupling tensors resulting
from the two Gaussian ODFs.

ODF Crystal matrix structure Polycrystal matrix structure

wA

0

@
0 0 0 0 e223 0
0 0 0 e223 0 0

e311 e311 e333 0 0 0

1

A
0

@
0 0 0 0 he223i 0
0 0 0 he223i 0 0

he311i he311i he333i 0 0 0

1

A

wB

0

@
0 0 0 0 e223 0
0 0 0 e223 0 0

e311 e311 e333 0 0 0

1

A
0

@
he111i he122i he133i he123i he113i he112i
he211i he222i he233i he223i he123i he212i
he311i he322i he333i he323i he313i he123i

1

A
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6. Conclusions

This work provides general analytical expressions for volume averages of piezoelectric
properties of polycrystalline aggregates. The expressions are derived from orientational
averages of third-order piezoelectric tensors that are weighted by orientational
distribution functions that account for texture. The expressions are derived by using
spherical harmonic series expansions.

Improvements of this work with respect to the previous works in the literature are
twofold: all crystal symmetries are considered and no symmetry restrictions are imposed
to texture. Thus, this work provides the analytical formulas to compute the average
piezoelectric tensor of polycrystalline aggregates formed by crystals of all the 21 non-
centrosymmetrical classes. These expressions are open to be specialized for any texture,
which is specified in terms of Euler´s angles ( , ✓,�).

The versatility of the introduced expressions is demonstrated for BaTiO3

polycrystals with uniaxial texture given by a single Gaussian dispersion for ✓, and
with biaxial texture given by a double Gaussian dispersion for ✓ and  . The results
for the first case, which consisted in a Gaussian distribution centered around ✓ = 0,
showed to be in perfect agreement with results published in the literature. This case
has the particularity that all the texture coefficients and all the expressions of the
average piezoelectric properties are real. On the other hand, no previous study was
found to verify the results for the simple Gaussian distributions with mean value ✓ 6= 0

and for the case with biaxial textures. The biaxial texture leads to complex-valued
texture coefficients and complex formulations for the averaged piezoelectric properties.
Results for the BaTiO3 polycrystal with biaxial texture have been discussed in detail
and analyzed for a set of limiting cases. In all cases, the results showed to be consistent.

The main contribution of this work is the set of analytical expressions that simplifies
obtaining closed-form formulas to estimate the effective piezoelectric properties of
polycrystals with arbitrary symmetries and textures. These expressions are suitable
to perform parametric studies like those presented in this work for BaTiO3 polycrystals,
and –provided the textures characterized by smooth ODFs– to implement efficient
analytical optimization methods to find configurations at the microstructural level in
order to maximize piezoelectricity.

It is straightforward to adapt the expression herein derived for the piezoelectric
stress tensor e to other piezoelectric properties, such as d, g, h (see IEEE Standard on
Piezoelectricity (1988)) or the piezomagnetic moduli.
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