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Highlights

• Indentation response of aligned and randomly distributed CNT-polymer nanocomposites.

• A contact friction law has been considered to analyze the effect of fillers orientation.

• Micromechanics is based on the concept of equivalent solid fiber: a portion of matrix material and an
embedded CNT.

• Coupled effect of filler waviness and agglomeration is investigated.

Abstract

The unique intrinsic physical properties of Carbon NanoTubes (CNTs) suggest that they are ideal fillers for high-
performance composites. Although some experimental studies have revealed the potential of these nanoparticles
to tailor the tribological properties of polymer-based composites, the number of theoretical studies on the charac-
terization of their frictional behavior is still very low. This paper is aimed at filling this lacuna by addressing the
theoretical analysis of the indentation response of CNT-polymer nanocomposites. To do so, it is first necessary
to compute the overall mechanical properties of CNT-polymer composites. Secondly, these properties must be
used to evaluate the macroscopic indentation response of the composites. In this work, an extended Mori-Tanaka
approach is used to extract the constitutive properties of CNT-polymer nanocomposites. On the basis of ad hoc Es-
helby’s tensors accounting for particular wavy filler geometries, along with a two-parameter agglomeration model,
the homogenization process is performed considering the coupled effect of fillers’ waviness and agglomeration.
Afterward, a 3D boundary element formulation for contact modeling is applied to study the indentation response
of these nanocomposites. The main objective of this paper focuses on analysing the influence of micromechanical
features such as fiber content, orientation, waviness, and dispersion on the indentation response of CNT-polymer
nanocomposites. Detailed parametric analyses are presented to characterize this phenomenon under frictional
contact conditions. The numerical results demonstrate that fillers’ waviness and agglomeration have a coupled
detrimental effect on the macroscopic response of CNT-reinforced composites.
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1. Introduction

In recent years, a broad cross-section of the scientific community has been attracted by Carbon NanoTubes
(CNTs) due to their unique intrinsic physical properties. Their remarkable mechanical, thermal and electrical
properties open a vast range of applications as reinforcing fillers for high strength composites [1], as well as smart
materials with self-sensing capabilities [2–4]. In particular, there exists an increasing interest for the development
of polymer-based nanocomposites. Thanks to their excellent corrosion resistance, relatively low unit cost, facile
processing and recyclability, polymers are widely used in an extensive and diverse range of tribological areas [5].
The indentation response under frictional contact is a crucial feature for most vital engineering components and
systems in industrial applications such as gears, bearings, artificial human joint bearing surfaces, high performance
coatings, tires, etc. [6]. The specific development of CNT-polymer nanocomposites allows to obtain new materials
with superior indentation resistance and tribological behavior [7, 8]. Although some studies have evidenced the
promising potential of CNTs to tailor the tribological properties of polymer-based composites, the number of
theoretical studies concerning the frictional behavior of carbon nanotube reinforced composites is still very scant.
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In this sense, previous studies have shown that Carbon Nanotube-Reinforced Composite (CNTRC) materials
exhibit more stable frictional coefficients and lower wear rates [9–12]. Indentation techniques on thin-films and
bulk forms have been studied not only to have a better understanding of these materials under contact conditions
but also to measure their mechanical properties in CNTRCs [13, 14] and in composites doped with Vertically
Aligned Carbon Nanotubes (VACNT) [15–20] or with horizontal aligned CNTs [21]. As observed in the tribolog-
ical response, the indentation response of CNTRCs is highly affected by micromechanical aspects such as align-
ment and agglomeration. Computational virtual indentation tests allows to characterize the mechanical properties
of CNTRCs. In addition, this type of techniques has a great potential to design and maximize the effectiveness of
the reinforcement and therefore the properties of the CNTRC. Some works based on the Finite Element Method
(FEM) [22–24] have modeled the indentation response of CNTRC. Le and Huang [22] consider explicitly the
CNTs and Liu et al. [23, 24] assume the effective mechanical properties of nanoreinforced composites. However,
as observed in those works, a very fine mesh must be considered to approximate CNTs inclusions and the contact
problem between the indenter and the specimen. The Boundary Element Method (BEM) [25, 26] is recognized
as an accurate and efficient numerical tool for studying contact and interface problems. A few works have dealt
with the problem of CNTRC modeling using BEM [27–29], taking into account the microstructural approximation
of the CNT-polymer system. Although, in all these BEM formulations, no contact indentation conditions were
considered.

Recent works on the tribological properties of CNT reinforced polymer composites showed that it would
be desirable to control the alignment and the dispersion of the nanoinclusions in the matrix [30, 31]. In this
context, aligned and well-dispersed CNTs are desirable to develop new advanced composites for more demanding
applications and high-performance tribomaterials [21, 32, 33]. However, due to the electronic configuration of the
tube walls of CNTs, as well as their high specific surface area, CNTs tend to agglomerate in bundles resulting in
non-homogeneous filler dispersions. In addition, due to their low bending stiffness, CNTs within polymer matrices
usually present a certain degree of waviness. Notwithstanding there exists a number of aligning techniques such
as the application of magnetic fields [34] and electrospinning [35], as well as dispersing methodologies such
as the use of dispersants or sonication, obtaining uniform dispersions of aligned CNTs remains an enormously
challenging task. Furthermore, the cost and complexity of these manufacturing processes limit the scalability
for this type of configurations [36]. For this reason, the analysis of accurate filler microstructures, including
waviness and agglomeration effects, is of pivotal importance for assisting the design of these composites. Despite
considerable efforts can be found in the literature on this respect, most studies limit themselves to the study of
waviness and agglomeration acting independently.

In light of the previous literature review, this work is aimed at investigating the indentation response of CN-
TRC under frictional contact conditions with CNT waviness and agglomeration effects. The effective constitutive
properties of CNTRCs are predicted by an extended Mori-Tanaka homogenization approach. The agglomeration
of CNTs in bundles is analyzed by means of a two-parameter agglomeration model. In addition, an ad hoc Es-
helby’s approach for accounting for particular wavy filler microstructures. In virtue of the ad hoc definition of
the Eshelby’s tensor of wavy fillers, it is possible to study the coupled effect of waviness and agglomeration. The
analysis of the indentation response of CNTRCs is conducted by a 3D BEM formulation. A contact constitu-
tive friction law for ACNT fibers is considered and incorporated to an augmented Lagrangian contact resolution
scheme, which allows us to solve the contact problem taking into account both the mechanical and the tribological
anisotropic characteristics (i.e. anisotropic bulk properties and anisotropic wear and frictional conditions). The
proposed methodology is applied to study the indentation response of a CNTRC half-space configurations, and
how micro and nanomechanics affect the contact compliances. The potential of the present work is illustrated by
detailed parametric analyses on the influence of microstructural features such as filler orientations, filler content,
as well as the sliding direction and the thickness of the film on the normal and tangential contact forces. Finally,
the coupled effect of waviness and agglomeration on the indentation response is investigated. The results demon-
strate that both mechanisms have detrimental influence on the overall stiffness and, when act simultaneously, their
effect add up. Overall, the present work presents a comprehensive micromechanics-based 3D formulation for the
analysis of the tribological response of CNTRCs, including a realistic definition of the microstructural features.

The remainder of this work is organized as follows: Section 2 presents the problem description, Section 3
presents the micromechanical constitutive models for CNTRCs. Section 4 overviews the basic governing equa-
tions of the indentation response and the non-linear contact conditions. The literature on BEM formulations is
quite extensive, so in Section 5 we briefly present the basic ideas of a boundary element formulation to solve
contact problems. Section 6 presents the numerical results and discussion and, finally, Section 7 concludes the
paper.
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2. Problem description

Let us consider an elastic half-space Ω1 and an elastic indentor Ω2 over in R3, see Fig. 1. The boundary of Ωl

(l = 1, 2), ∂Ωl, is divided into three disjoint parts: ∂Ωl
t with prescribed tractions t̃l

i (i = 1, 2, 3), ∂Ωl
u with imposed

displacements ũl
i and ∂Ωl

c represents the potential contact surfaces, which have outward unit normal vectors nl
i.

Under small displacement and strain assumption, these boundaries are almost coincident (i.e. ∂Ω1
c ≃ ∂Ω2

c) so we
can define a common contact surface ∂Ωc with a normal vector nc,i ≃ n1

i ≃ −n2
i . Moreover, the infinitesimal strain

tensor εi j can be obtained from derivatives of the displacements field ui inΩ1∪Ω2as: εi j = (ui, j+u j,i)/2 inΩ1∪Ω2.

Figure 1: The physical setting. Domain Ω1 is the CNT reinforced composite domain and Ω2 is the indenter.

On the domains Ωl, assuming static loading conditions, the mechanical equilibrium equations in the absence
of body forces are:

σi j, j = 0 in Ω1 ∪Ω2,
σi jnl

j = t̃i on ∂Ω1
t ∪ ∂Ω2

t ,

σ1
i jnc, j = −σ2

i jnc, j = pi on ∂Ωc,
(1)

with σi j being the components of Cauchy stress tensor, ni the unit normal on ∂Ω1
t ∪ ∂Ω2

t , pi is the contact traction
and σ1

i j and σ2
i j are restrictions of σi j to a particular domain Ωl

t. In this work, summation convention is adopted
unless explicitly stated otherwise (so repeated indexes imply sum). Finally, the stress and strain tensors for a
general anisotropic linear elastic material are related through the linear constitutive law as follows:

σi j = Ci jklεkl, (2)

where Ci jkl denotes the elastic stiffness tensor, which is positive definite and satisfies the following symmetries:
Ci jkl = C jikl = Ci jlk = Ckli j.

3. Micromechanics constitutive modeling of CNTRCs

In this work, the macroscopic elastic moduli of CNT-reinfoced polymer composites are computed by mean-
field homogenization approaches. In particular, three different filler arrangements are considered, namely com-
posites doped with uniformly distributed straight CNTs in Subsection 3.1, composites doped with uniformly dis-
tributed wavy CNTs in Subsection 3.2, and composites doped with heterogeneous dispersions of CNTs in Subsec-
tion 3.3. Throughout this section, a boldface letter stands for fourth-order tensor, and a colon between two tensors
denotes inner product, A : B ≡ Ai jklBklmn.
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3.1. Composites doped with uniformly distributed straight CNTs.

Let us define the Representative Volume Element (RVE) sketched in Fig. 2 of a polymer matrix doped with
a sufficient number of straight CNTs in such a way that, from a statistical perspective, the RVE represents the
composite as a whole [37]. The matrix is defined as isotropic with Young’s modulus Em and Poisson’s ratio
νm, and perfect bonding between phases is assumed. In order to define the orientation of the inclusions, a local
coordinate system {1′, 2′, 3′} is fixed at each filler as represented in Fig. 2. The constitutive matrix for inclusions
with transversely isotropic properties (1’ is the axis of material symmetry) in the local coordinate system takes the
form:

1

2

3

1
,

3
,

2
,

α
1

0

α
2

CNT 

Matrix
x

1

x
2

x
3

Figure 2: RVE of polymer matrix doped with straight CNTs.

Cr =



nr lr kr − mr 0 0 0
lr kr + mr lr 0 0 0

kr − mr lr kr + mr 0 0 0
0 0 0 mr 0 0
0 0 0 0 pr 0
0 0 0 0 0 pr


(3)

where kr, lr, mr, nr and pr are fiber Hill’s elastic moduli; kr is the plane-strain bulk modulus normal to the fiber
direction, nr is the uniaxial tension modulus in the fiber direction, lr is the associated cross modulus, mr and pr

are the shear moduli in planes normal and parallel to the fiber direction, respectively. The material properties of
the composite can be expressed in terms of engineering constants as [38, 39]:

nr =
E11 (1 − ν23)

1 − ν23 − 2ν21ν12
(4)

lr =
ν12E22

1 − ν23 − 2ν21ν12
(5)

mr = G23 (6)

pr = G12 (7)

kr =
E22

2 (1 − ν23 − 2ν21ν12)
(8)

Considering the transverse isotropy of the fillers, the shear modulus in the plane of isotropy G23 can be evalu-
ated as:

G23 =
E22

2 (1 + ν23)
(9)

In this context, a widely used approach to compute the macroscopic elastic moduli of the RVE is the microme-
chanics model of Eshelby-Mori-Tanaka [40]. The Mori-Tanaka method allows to extend the theory of Eshelby
[41, 42], restricted to one single inclusion within a semi-infinite elastic, homogeneous and isotropic medium, to
the case of multiple inhomogeneities embedded in a finite domain. According to Benveniste’s revision [43], the
effective stiffness tensor provided by the Eshelby-Mori-Tanaka model can be written as:

C = Cm + fr⟨(Cr − Cm) : A⟩ : ( fmI + fr⟨A⟩)−1 (10)

4



where fr and fm denote the filler and matrix volume fractions, respectively, I the fourth-order identity tensor, and
Cm the stiffness tensor of the matrix. The tensor A stands for the dilute mechanical strain concentration tensor
defined as:

A =
[
I + S : (Cm)−1 : (Cr − Cm)

]−1
(11)

with S being the Eshelby’s tensor, whose definition is well documented in reference [44]. The terms enclosed
with angle brackets in Eq. (10) represent the average value of the corresponding term over all orientations. In
order to conduct these orientational averages, the orientation of a filler aligned in the local axis 1’ is defined
with respect to the material coordinate system by two Euler angles, α1 and α2, as indicated in Fig. 2. The base
vectors e and e′ of the global {1, 2, 3} and local {1′, 2′, 3′} coordinate systems are related via the transformation
matrix g as e′i = gi je j. Thus, the coordinate transformation of a fourth-order tensor P into the local coordinate
system is explicitly represented in terms of the transformation matrix as P′i jkl = gipg jqgkrglsPpqrs. Due to the
high number of inclusions contained in the RVE, the description of their orientation field is of statistical nature.
The probability of finding a filler in an infinitesimal range of angles [α1, α1 + dα1] × [α2, α2 + dα2] is given by
Ω(α1, α2) sinα1dα1dα2, with Ω(α1, α2) being the so-called Orientation Distribution Function (ODF). Let us note
that, in the case of randomly oriented fillers, the ODF is defined as a constant of value Ω = 1/2π. Hence, the
orientational average of any tensorial function F(α1, α2) is defined through:

⟨F⟩ =
∫ 2π

0

∫ π/2

0
F(α1, α2)Ω(α1, α2) sinα1dα1dα2 (12)

Some inconsistencies in the Eshelby-Mori-Tanaka method have been reported in the literature, including
diagonally asymmetric stiffness tensors for arbitrary filler orientation distributions, as well as violation of the
Hashin-Shtrikman-Walpole bounds for randomly oriented filler configurations [43]. As an alternative, Schjødt-
Thomsen and Pyrz [45] proposed an extended Eshelby-Mori-Tanaka method that averts the inconsistencies men-
tioned above. This approach utilizes a direct orientational average of the Eshelby-Mori-Tanaka stiffness tensor for
the case of perfectly aligned fillers as:

C =
⟨
Cm + fr (Cr − Cm) : A : ( fmI + frA)−1

⟩
(13)

3.2. Composites doped with uniformly distributed wavy CNTs.

It has been extensively reported in the literature that due to their high aspect ratio, as well as a very low
bending stiffness, carbon nanotubes usually exhibit a certain degree of waviness [46–48]. In the present work, the
simulation of the wavy state of CNTs is performed by means of the helical approach proposed by Shi et al. [49].
Fig. 3 schematically represents the parametrization of a helical CNT. This three-dimensional curve is fully defined
by its diameter D, spiral angle θ, and polar angle φ. The length L of the curved CNT is related to these parameters
by:

L =
φD

2 cos θ
(14)
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Figure 3: Helical model of a curved CNT.

The CNT waviness is governed by the spiral angle, θ. For example, θ = π/2 corresponds to a straight CNT,
while θ = 0 represents a circular CNT. In this context, the direct application of the MT fails to accurately reproduce
the microstructure of composites doped with wavy fillers. As discussed in reference [49], the MT estimates for
random filler arrangements are insensitive to waviness. For this reason, the ad hoc Eshelby’s tensor proposed by
Yanase et al. [50] is adopted in this work to account for waviness effects. According to this model, the effective
stiffness of wavy CNT-reinforced composites at a dilute regime is evaluated by the following integral:

C =
1
δ

∫ δ

0
C∗(θ, s)ds (15)

with C∗ being the solution of the Eshelby’s equivalent problem as:

C∗ = Cm + fr
(
C f − Cm

)
: A (16)

In order to reproduce Eq. (15) with the Eshelby’s equivalent inclusion method, an ad hoc Eshelby’s tensor, S,
was proposed by Yanase and co-authors as follows:

S = lim
fr→0

[
fr
(
(Cm)−1 : C − I

)−1 −
(
C f − Cm

)−1
: Cm

]
(17)

where the limit is taken to exclude the far-field interaction. Now, the effective stiffness of fully aligned wavy
CNT-reinforced composites at non-dilute regimes can be computed by the Eshelby-Mori-Tanaka method as:

C = Cm + fr (Cr − Cm) : A∗ : ( fmI + frA∗)−1 (18)

where

A∗ =
[
I + S : C−1

m :
(
C f − Cm

)]−1
(19)

Here, the extended Eshelby-Mori-Tanaka approach proposed by Schjødt-Thomsen and Pyrz [45] in Eq. (13)
can be readily applied to Eq. (18) in order to account for randomly oriented wavy filler arrangements.

3.3. Composites doped with heterogeneous dispersions of CNTs.
Another important phenomenon to be taken into account in the simulation of CNT-based composites is the

appearance of non-uniform spatial distributions of nanoinclusions. Although there exists a variety of techniques
to improve the dispersion of fillers, including the use of dispersants or sonication, uniform dispersions of CNTs
at moderate filler contents is still an intricate task. The tendency of nanotubes to form agglomerates is ascribed to
the electronic configuration of the tube walls and their high specific surface, what favors the appearance of large
van der Waals (vdW) attraction forces among nanotubes [51–53]. It has been reported in the literature that CNT
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agglomerates act as defects in the microstructure, exhibiting considerable weakening effects on the macroscopic
mechanical properties [54]. In order to incorporate agglomeration effects in the numerical simulations, the two-
parameter agglomeration model introduced by Shi et al. [49] is adopted in this work. This approach distinguishes
two different regions, one with high filler concentration, corresponding to clusters, and another with low filler
concentration, that is to say, the surrounding composite. Hence, the total volume of CNTs, Vr, dispersed in V , can
be divided into the following two parts:

Vr = Vbundles
r + Vm

r (20)

where Vbundles
r and Vm

r denote the volumes of CNTs dispersed within the bundles and in the surrounding matrix,
respectively. In order to characterize the agglomeration degree, two parameters, ξ and ζ, are introduced as follows:

ξ =
Vbundles

V
, ζ =

Vbundles
r

Vr
(21)

where Vbundles is the volume occupied by the bundles in the RVE. The agglomeration parameter ξ represents the
volume ratio of bundles with respect to the total volume of the RVE. On the other hand, ζ stands for the volume
ratio of CNTs within the bundles with respect to the total volume of fillers. After some manipulations, the CNT
volume fractions in the bundles and the surrounding composite, c1 and c2, respectively, can be expressed as:

c1 = fr
ζ

ξ
, c2 = fr

1 − ζ
1 − ξ (22)

It is extracted from Eq. (22) that ζ ≥ ξ must be fulfilled in order to impose a higher filler concentration in the
bundles. The limit case ζ = ξ represents an uniform distribution of fillers (c1=c2), whilst the heterogeneity degree
grows (c1 ≥ c2) for larger values of ζ up to ζ = min (1, ξ/ fr). Hence, the homogenization process is conducted
through two separate steps as outlined in Fig. 4. Firstly, the overall constitutive tensors of the bundles, Cin, and the
surrounding composite, Cout, are obtained with polymer and CNTs as matrix and reinforcing phases, considering
filler volume fractions of c1 and c2, respectively. To this aim, the previously overviewed homogenization approach
(Eq. (13) or Eq. (18)) can be applied by considering fr=ci, i=1,2. Secondly, the overall constitutive tensor of the
composite, C∗, is computed considering the surrounding composite as matrix and bundles as ellipsoidal inclusions
( fr=ξ).

ξ=0.2;  ζ=0.8 ξ=0.5;  ζ=0.8

ξ=0.2;  ζ=0.6 ξ=0.2;  ζ=0.9

Cout

Cin

fr
   c

1
=

fr
   c

2
=

C*

a
1a

2

a
3

Figure 4: Schematic illustration of the variation of the parameters ξ and ζ of the two-parameter agglomeration model.

(a) (b)

Figure 5: Schematic representation of agglomeration configurations: (a) randomly oriented and (b) uniaxially aligned CNTs.
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In this work, two different agglomeration configurations are investigated, including randomly oriented and
fully aligned fillers as sketched in Fig. 5. In the case of randomly oriented fillers (Fig. 5 (a)), both the clusters and
the surrounding matrix are isotropic and, therefore, the resulting composite exhibits isotropic elastic properties
[55–57]. Conversely, in the case of fully aligned filler arrangements (Fig. 5 (b)), both the clusters and the sur-
rounding matrix are transversely isotropic. Therefore, it is necessary to use Eshelby’s tensors according to such
configurations. Lin and Mura [58] gave expressions for the elastic fields of spheroidal inclusions (a2=a3 , a1) in
a transversely isotropic matrix with symmetry plane 2′-3′. The bundle aspect ratio a1/a3 is denoted by ρ. For a
transversely isotropic matrix (in the case of Fig. 5 (b), the surrounding matrix), the elastic moduli are denoted by:

d = Cout
11 , e =

1
2

(Cout
11 −Cout

12 ), f = Cout
44 ,

g = Cout
13 +Cout

44 , h = Cout
33

(23)

where Cout
i j are the components in Voigt notation of the surrounding matrix. The Eshelby’s tensor S is calculated

as [58]:

S i jmn =
1

8π
Cout

pqmn

(
Gip jq +G jpiq

)
(24)

The non-zero components of Gi jkl are given by:

G1111 =G2222 =
π

2

∫ 1

0
∆(1 − x2)

{[
f (1 − x2) + hρ2x2

]
[
(3e + d)(1 − x2) + 4 fρ2x2

]
− g2ρ2x2(1 − x2)

}
dx,

(25)

G3333 =4π
∫ 1

0
∆ρ2x2

[
d(1 − x2) + fρ2x2

] [
e(1 − x2) + fρ2x2

]
dx, (26)

G1212 =G2121 =
π

2

∫ 1

0
∆(1 − x2)

{[
f (1 − x2) + hρ2x2

]
[
(e + 3d)(1 − x2) + 4 fρ2x2

]
− 3g2ρ2x2(1 − x2)

}
dx,

(27)

G1313 =G2323 = 2π
∫ 1

0
∆ρ2x2

{[
(d + e)(1 − x2) + 2 fρ2x2

]
[
f (1 − x2) + hρ2x2

]
− g2ρ2x2(1 − x2)

}
dx,

(28)

G3131 =G3232 = 2π
∫ 1

0
∆(1 − x2)

{[
d(1 − x2) + fρ2x2

]
[
e(1 − x2) + fρ2x2

]}
dx,

(29)

G1122 =
π

2

∫ 1

0
∆(1 − x2)2

{
g2ρ2x2 − (d − e)

[
f (1 − x2)

hρ2x2
]}

dx,
(30)

G1133 =G2233 = −(2π)
∫ 1

0
∆gρ2x2(1 − x2)

[
e(1 − x2) + fρ2x2

]
dx (31)

where:

∆−1 =
[
e(1 − x2) + fρ2x2

] {[
d(1 − x2) + fρ2x2

][
f (1 − x2) + hρ2x2

]
− g2ρ2x2(1 − x2)

} (32)

4. Frictional contact constitutive laws

4.1. Unilateral contact law

The Signorini’s unilateral contact conditions in ∂Ωc can be defined as:

gn ≥ 0, pn ≤ 0, gn pn = 0, (33)

8



where pn = p · nc is the normal contact pressure and gn = (go + un) is the contact gap, go being the initial gap
between the bodies and un = (u2 − u1) · nc being the relative displacements. These normal contact constraints, as
presented in Eq. (33), can be reformulated in a more compact form as:

pn − PR− (p∗n) = 0, (34)

where PR− (•) is the normal projection function (PR− (•) = min(0, •)) and p∗n = pn + rngn is the augmented normal
traction. The parameter rn is the normal dimensional penalization parameter (rn ∈ R+).

4.2. Frictional contact law

According to experimental works in the literature [30, 31], Aligned Carbon NanoTubes (ACNT) reinforced
composites exhibit a frictional response which is clearly affected by the fiber orientation relative to the sliding
direction. Fig. 6 (a) shows an ACNT reinforced composite indicating the longitudinal, transverse and normal
sliding directions, and their corresponding friction coefficients. In this case, the friction law can be accurately
approximated by an orthotropic friction law when the fiber directions are parallel to the contact surface (see Fig. 6
(b) and Fig. 6 (c)). Different works in the literature [59–63] have studied and developed different anisotropic
friction models which define the admissible region for contact tractions and the sliding rules.

The generic form of the orthotropic friction cone can be written as:

f (pt, pn) = ||pt ||µ − |pn| = 0, (35)

where pt = p − pnnc, and || • ||µ denotes the elliptic norm ||pt ||µ =
√(

pe1/µ1
)2
+
(
pe2/µ2

)2, being µ1 and µ2 the
principal friction coefficients in the directions {e1, e2}.
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(a)

(b)

(c)

Figure 6: (a) Schematic diagram of ACNT reinforced composite indicating the longitudinal, transverse and normal sliding directions. (b)
Arbitrary ACNT direction. (c) Elliptic friction law as a function of the CNT orientation.

The Coulomb friction restriction defines the admissible region for tangential contact tractions ( f (pt, pn) ≤ 0 :
||pt ||µ ≤ |pn|) and it can be summarized as:

||pt ||µ < |pn| ⇒ ġt = 0 on ∂Ωc, (36)

||pt ||µ = |pn| ⇒ pt = −|pn|M2ġt/||ġt ||∗µ on ∂Ωc. (37)

As stated in [64] for quasi-static frictional contact problems, the tangential slip velocity ġt defined in the above
expressions can be expressed at time τk as follows: ġt ≈ ∆gt/∆τ, where ∆gt = gt(τk) − gt(τk−1), ∆τ = τk − τk−1,
and gt = (u2 − u1) − unnc, being zero the initial tangential slip. In Eq. (37), the value for the tangential contact
traction was presented in reference [64] assuming an associated sliding rule, the norm || • ||∗µ is dual of || • ||µ(
i.e. ||ġt ||∗µ =

√
(µ1ġe1 )2 + (µ2ġe2 )2

)
, and M is a diagonal matrix: M = diag(µ1, µ2).

However, the ACNT fibers can be oriented with any angle (0 ≤ ϕ ≤ π/2) relative to direction e1, as defined in
Fig. 6 (b). Therefore, the principal friction coefficients in the directions {e1, e2} has to be redefined as:

µ1 = µL + (µN − µL) ϕ̂, (38)

µ2 = µT + (µN − µT ) ϕ̂, (39)

where µL, µT and µN are the friction coefficients in the longitudinal, transverse and normal directions, respectively,
and ϕ̂ = 2ϕ/π is the nondimensional fiber orientation angle (0 ≤ ϕ̂ ≤ 1). The friction coefficients {µL, µT , µN} can
be obtained from experimentation, in consonance with [30, 31].
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According to expressions (38) and (39), the anisotropic friction surface in Eq. (35) becomes also a function
of the fiber orientation angle (ϕ̂): f (pt, pn, ϕ̂) = ||pt ||µ(ϕ̂) − |pn| = 0. Consequently, the frictional response of the
CNTRC depends on the sliding direction (ψ) and the CNT orientation (ϕ̂). Hence, an orthotropic friction law,
whose principal friction coefficients are µ1 = µL and µ2 = µT , is obtained when the fibers are parallel to the sliding
plane (ϕ̂ = 0). An isotropic friction law (i.e. µ1 = µ2 = µN) is obtained when the fibers are normal to the sliding
plane (ϕ̂ = 1).

Finally, proceeding in the same way as in the normal contact law, the frictional contact constraints Eqs. (36–37)
can be also rewritten in a more compact form as:

pt − PEρ(p
∗
t ) = 0, (40)

where p∗t = pt − rtM2ġt (rt ∈ R+) is the augmented tangential traction and PEρ(•) : R2 −→ R2 is the tangential
projection function defined in [64] as:

PEρ(p
∗
t ) =
{

p∗t if ||p∗t ||µ < ρ,
ρ p∗t /||p∗t ||µ if ||p∗t ||µ ≥ ρ,

(41)

with ρ being the module of the projected augmented normal contact traction: ρ = |PR− (p∗n)|.

5. Numerical considerations

Each solid Ωl (l = 1, 2) have been discretized using the bounary element method [25, 26] which makes it
possible to compute the elastic influence coefficients of the surface points involved in the contact [64, 65]. After
a collocation procedure on each boundary ∂Ωl, the integral equations can be written as Hd = Gp, where d
and p contains the values of all nodal displacements and tractions, respectively. Finally, that expression can be
rearranged according to the boundary conditions as:

Ax = F, (42)

passing all the unknowns to vector x on the left-hand side.
The interface discretization on ∂Ωc is performed such that node to node contact is considered. Consequently,

each node on ∂Ω1
c forms a contact pair I with one almost coincident node on ∂Ω2

c . So, equation (42) can be written
for solid Ωl (l = 1, 2) as: Al

xxl + Al
ppl

c = Fl, where (xl)T = [(xl
e)T (dl

c)T ] is the nodal unknowns vector that
collects the contact nodal displacements (dl

c) and the external unknowns (xl
e). Al

x is constructed with the columns
of matrices Hl and Gl, and Al

p with the columns of Gl belonging to the contact nodal unknowns. Therefore, the
discrete equilibrium equations can be formulated as:

A1
xx1 + A1

p C̃1λ = F1, (43)

A2
xx2 − A2

p C̃2λ = F2. (44)

In Eqs. (43) and (44), the vector λ contains the normal and tangential contact tractions of every contact pair
I, which are related to the boundary element nodal tractions vector through the matrix C̃l (i.e. p1

c = C̃1λ and
p2

c = −C̃2λ) as described in reference [65].
The discrete gap for every contact pair I is approximated as:

g = Cgn go + (C2)T x2 − (C1)T x1, (45)

where g contains the normal and tangential gap of every contact pair I and go contains the initial gap. Cgn is an
assembling matrix defined in [65].

Finally, the contact restrictions (34) and (40) are applied to every contact pair I:

(λn)I − PR− ( (λn)I + rn(gn)I ) = 0, (46)

(λt)I − PEρ ( (λt)I − rtM2(gt)I ) = 0, (47)

where λn and λt contain the normal and tangential contact tractions of every contact pair I, respectively.
The quasi-static contact problem defined by equations (43-47) can be solved using different solution schemes

according to [66] and [67]. In this work, the nonlinear system (43-47) is solved using an iterative method, namely
Uzawa’s method as presented in [64].
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6. Results and discussion

The previously overviewed contact formulation offers a suitable framework to predict the indentation response
of CNTRCs. In order to understand the influence of the main micromechanical properties of CNTs on the tribo-
logical behavior of polymer-CNT composites, as well as to extract valuable conclusions for assisting their design,
detailed parametric analyses are presented in the following sections. Specifically, the numerical results focus
on the analysis of the influence of the filler content, waviness, orientation distribution and agglomeration on the
tribological response of polymer-CNT composites.

An adequate selection of the elastic moduli of CNTs is essential for the accuracy of the numerical simulations.
The stiffening efficiency of CNTs is attributed to the load transfer mechanism from matrix to fillers through
weakly non-bonded van der Waals (vdW) forces. In order to account for this atomic interaction, numerous recent
publications have been conducted by the Extended Rule of Mixtures (EROM) [68, 69]. The EROM is based
upon a modification of the classical Voigt and Reuss bounds by the so-termed efficiency parameters [70]. A more
convenient alternative that allows the use of the previously outlined micromechanics approaches is based on the
concept of equivalent fiber [71]. In this way, a portion of matrix material and an embedded CNT is replaced
by an equivalent solid fiber which is apt to be used in a conventional mean-field homogenization approach. In
this work, the elastic moduli of the equivalent fiber for epoxy doped with (10,10) SWCNTs are taken from the
atomistic-based FEM simulations conducted by Shokrieh and Rafiee [71]. The Young’s modulus and Poisson’s
ratio of the matrix are Em = 10 GPa, νm = 0.3, and the elastic properties of the equivalent fiber are collected in
Table 1. It should be noted that the values in this table corresponds to a CNT volume fraction of 7.5%. Therefore,
the inclusion volume fraction must be defined in terms of equivalent fibers (see Fig. 7) as follows:

fr = v f
(Dc + tc)2

4tcDc (48)

where v f stands for the volume fraction of CNTs, fr the volume fraction of equivalent fibers, Dc the diameter of
the CNT, and tc the thickness of the interphase. Assuming G23 = G12, the Hill’s moduli in Eq. (3) can be extracted
from Eqs. (4) to (8).

t
c

D
c D

c
+t
c

Equivalent fiber

CNTInterphase

Figure 7: Schematic representation of CNT equivalent filler

Table 1: Material properties of the equivalent fiber for epoxy doped with a (10,10) SWCNT computed by atomistic-based FEM simulation
[71].

Longitudinal Young’s modulus (E11) 649.37 GPa
Transverse Young’s modulus (E22) 11.27 GPa
Longitudinal shear modulus (G12) 5.13 GPa
Poisson’s ratio (ν12) 0.284
CNT tube thickness (tc) 0.34 nm
CNT diameter (Dc) 2.034 nm

In order to thoroughly investigate the influence of the different micromechanical variables on the tribological
behavior of CNT/polymer composites, the numerical tests have been divided into five subsections: Subsection 6.1
assesses the influence of the CNT volume fraction and orientation. Subsection 6.2 investigates the tangential load
response of ACNT reinforced composites. Subsection 6.3 studies the effects of filler agglomeration. Subsec-
tion 6.4 studies the effects of filler curviness and, finally, Subsection 6.4 investigates the tribological behavior of
composites with simultaneous effects of filler waviness and agglomeration.
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6.1. Influence of CNT volume fraction and orientation

A steel sphere of radius R = 100 × 10−3 m is indented on a CNTRC Half-Space (HS) domain (see Fig. 8 (a)).
For that purpose, the half-space region is modeled by a square boundary area whose dimensions are 2L1 × 2L1,
being L1 = 50× 10−3 m. It is discretized by linear quadrilateral boundary elements, using 16× 16 elements on the
Lo×Lo potential contact zone (Lo = 5×10−3 m), as shown in Fig. 8 (b). The influence of the filler volume fraction
on the indentation response of randomly distributed CNTs (RCNT) and aligned distribution of CNTs (ACNT) is
studied in this section, where different ACNTs orientations ϕ are also considered (see Fig. 9). In this example,
the spherical indenter is subjected to a normal displacement go,x3 = −8 × 10−5 m and the indentation force P is
computed by integration of the normal contact pressures.

(a)

(b)

Figure 8: (a) Spherical indenter over a CNTRC half-space (HS). (b) Boundary element mesh details for the HS configuration.
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Figure 9: Two kind of CNTs distributions are considered on Ω1: random distribution of CNTs (RCNT) or aligned distribution of CNTs
(ACNT).

Fig. 10 shows the variation of the normal contact compliance with the CNT volume fraction. Different CNT
contents v f have been considered, namely 0%, 1%, 2%, 3%, 4% and 5%, as well as ACNT orientations ϕ ranging
from 0 to 90◦. It can be observed in both cases (RCNT and ACNT) that the normal contact compliance increases
with the fiber volume fraction. In addition, it is noted that for an orientation angles ϕ greater than 45◦, the ACNTs
lead to greater increments.

Indentation forces as a function of the ACNT orientation ϕ and different volume fractions v f = {1%, 3%, 5%}
are presented in Fig. 11. It is noted in this figure that the normal contact compliance increases with the CNT
volume fraction. Nevertheless, for fiber orientations below 45◦, the normal contact compliance experiences very
limited changes. It is also interesting to note that, in this range of orientations, higher fiber orientations do not
lead to significant increments in the normal contact compliance. Conversely, fiber orientations within the interval
[45◦, 90◦] do lead to increasing normal contact forces, reaching maximum values at ϕ=90◦ (i.e. vertical ACNTs).
Larger increments are also found in this range of orientations for higher filler volume fractions. In this figure, the
RCNT compliances are also presented for the same volume fractions: v f = {1%, 3%, 5%}. It can be observed that
for orientation values greater than 60◦, the ACNT presents a higher response than RCNT for the volume fractions
considered.

Figure 10: Indentation forces as a function of the volume fraction of CNT and CNT distributions, i.e., random distribution of CNT (RCNT)
and aligned distribution of CNT (ACNT).
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Figure 11: Indentation forces as a function of the ACNT orientation ϕ and different volume fractions: v f = {1%, 3%, 5%}.

Same behavior is observed in Fig. 12 for the normal contact pressure distributions. They are presented as a
function of the CNTs volume fractions v f = {0%, 1%, 3%, 5%} relative to the pristine polymer hertzian contact
pressure distribution. Fig. 12 (a) shows the RCNT distribution and Fig. 12 (b-d) shows the contact pressures for
ACNT for: ϕ = 0◦, ϕ = 45◦ and ϕ = 90◦, respectively. The CNT distribution and CNT volume fraction have a
tremendous influence on the normal contact pressure and consequently, on the contact response. The maximum
contact pressure for RCNT distributions is highly affected by the volume fraction. However, the maximum contact
pressure for ACNT is only affected significantly when the CNTs orientations are greater than 45◦. In those
orientations, the normal contact compliance for ACNT is much higher than for RCNT, for the same volume
fraction. This phenomenon is interesting to develop high performance contact surfaces or smart coatings. Finally,
it should be noted in Fig. 13 that the shape and dimension of the effective contact zone (a circle of radius a = 2.8
mm) does not depend on the orientation of CNTs.
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(a) (b)

(c) (d)

Figure 12: Normal contact pressure distribution as a function of the CNTs distribution and ACNT orientation: (a) RCNT distribution, (b)
ACNT (ϕ = 0◦), (c) ACNT (ϕ = 45◦) and (d) ACNT (ϕ = 90◦).
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(a) (b) (c)

Figure 13: Contact gap and normal contact pressure distributions for ACNT distribution as a function of the CNTs orientations: (a) ϕ = 0◦,
(b) ϕ = 45◦ and (c) ϕ = 90◦.

6.2. Tangential load response of ACNT reinforced composites

The influence of the fiber orientation (ϕ) on the tangential load response under partial slip and gross slip
conditions is considered in this section. The tangential contact compliance (Q) is analyzed for an ACNT reinforced
HS configuration (see Fig. 9). In this example, the spherical indenter is subjected to a normal displacement
go,x3 = −8 × 10−5 m and a tangential translational displacement of module go,t which forms an angle ψ with axis
x1 (see Fig. 8 (a)).

The friction coefficients for this ACNT reinforced composite are: µL = 0.77, µT = 0.82, µN = 0.67. They
have been considered from reference [31] for a 1% ACNT/epoxy composite. The isotropic friction coefficient
for the epoxy is µ = 0.9. Wan et al. [31] showed that the presence of ACNTs can reduce significantly the
friction coefficients of epoxy composites under gross slip conditions. In this example, the influence of the fiber
orientation (ϕ) for v f = 1% ACNT-RC is studied in Fig. 14, where Q/P is presented for two tangential loads:
go,t = 10 × 10−5 m (i.e. gross slip conditions) and go,t = 4 × 10−5 m (i.e. partial slip conditions). Gross slip
conditions makes it possible to validate the isotropic and anisotropic friction laws considered, i.e., we can see how
the friction coefficients are recovered: 0.9 for the epoxy and µL = 0.77 and µN = 0.67 in the ACNT/epoxy for
ϕ = 0◦ and ϕ = 90◦, respectively. As expected, the friction coefficient of epoxy is reduced by the presence of
ACNT. On the other hand, we can see in Fig. 14 that this reduction is not so severe under partial slip conditions,
i.e., go,t = 4 × 10−5 m, and it appears only for orientation values greater than 45◦.

Fig. 15 shows the influence of the fiber orientation (ϕ) and the sliding direction (ψ) in the tangential contact
force relative to the epoxy configuration, under partial slip conditions. The minimum values for the normalized
tangential contact load (Q) occur for a fiber orientation ϕ = 45◦, whereas the maximum values occur for ϕ = 0◦.
The tangential contact force is significantly affected by the CNTs orientation, with differences up to 10 % between
tangential forces observed for ϕ = 0◦ and ϕ = 45◦. In these angles, some discrepancies are observed for the
different sliding directions: ψ = 0◦ and ψ = 90◦}. However, the tangential force is not affected by ψ for ϕ = 90◦.
This is because we recover the isotropic frictional behavior (µ1 = µ2 = µN) when ϕ = 90◦.
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Figure 14: Influence of the fiber orientation on the tangential load response under partial slip and gross slip conditions.

Figure 15: Influence of the fiber orientation (ϕ) and the sliding direction (ψ) in the tangential contact force relative to the epoxy configuration,
under partial slip conditions.

Same differences can be observed in Fig. 16 where the influence of the fiber orientation (ϕ) in the tangential
contact force relative to the epoxy configuration is presented for gross and partial slip conditions. Under gross
slip conditions, the tangential contact force is even more affected by the CNTs orientation, with differences close
to 30 % between tangential forces observed for ϕ = 45◦ and ϕ = 90◦. Finally, Fig. 17 shows the contact traction
distributions at x2 = 0 for: (a) ϕ = 0◦, (b) ϕ = 45◦ and (c) ϕ = 90◦, under partial slip conditions (go,t = 8 × 10−5

m). These figures show how the contact slip and stick zones are affected by the CNT orientation.
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Figure 16: Influence of the fiber orientation (ϕ) in the tangential contact force relative to the epoxy configuration, under partial slip and gross
slip conditions.

(a) (b) (c)

Figure 17: Influence of fiber orientation in the contact tractions at x2 = 0 for: (a) ϕ = 0◦, (b) ϕ = 45◦ and (c) ϕ = 90◦.

6.3. Effect of filler agglomeration on the indentation response

As previously mentioned in Section 3.3, an important phenomenon to be taken into account in the simulation
of CNT-based composites is the appearance of non-uniform spatial distributions of nanoinclusions due to their
tendency to form agglomerates. Fig. 18 presents the indentation response of aligned and randomly distributed
CNT-polymer nanocomposites as a function of the ACNT orientation ϕ and the agglomeration parameters: ξ = 0.2
and ζ = {0.2, 0.4, 0.6, 0.8}, being v f = 5%. It can be observed that when the ζ parameter increases, that is to
say, the volume ratio of CNTs within the bundles with respect to the total volume of fillers, the normal contact
compliance decreases. In general, this phenomenon is more significant in RCNT than in ACNT. However, when
the fiber orientations are greater than 60◦, the effect of filler agglomeration is more severe in ACNT than in RCNT.
This can be clearly observed in Fig. 19. The normal contact compliance of ACNT is almost not affected by the
agglomerations effects for fiber orientations within the interval [0◦, 45◦], whilst it is clearly affected when the
orientation is greater than 45◦. Specially when it is greater than 60◦. The indentation force presents differences
up to 30 % between the CNTRC with uniform filler dispersion (ζ = 0.2) and the CNTRC with a high number of
agglomerates ζ = 0.8.
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Figure 18: Indentation forces for RCNT and ACNT as a function of the ACNT orientation ϕ and the agglomeration parameter: ζ =
{0.2, 0.4, 0.6, 0.8}.

Figure 19: Effect of filler agglomeration on the indentation response of randomly distributed CNT-polymer nanocomposites (RCNT) and
aligned distributed CNT-polymer nanocomposites (ACNT).

6.4. Effect of waviness on the indentation response

Another important aspect to consider is how the indentation force is affected by the CNTs waviness. So,
in this section, the indentation response of wavy CNT-reinforced polymer composites is analyzed. Two CNT
configurations have been considered, namely, RCNT and vertical ACNT (ϕ = 90◦), and different waviness pa-
rameters θ = {90◦, 80◦, 70◦, 60◦} have been studied for v f = 5%. Results in Fig. 20 show that the indentation
force is not significantly affected by the CNTs waviness, although a slight reduction can be observed when the
waviness increases, i.e., θ reduces to 60◦. Fig. 21 shows the same effect of waviness on the contact pressure distri-
bution of randomly distributed CNT-polymer nanocomposites (Fig. 21 (a)) and aligned distributed CNT-polymer
nanocomposites Fig. 21 (b). A reduction in the maximum contact pressure of 10 percent is observed in both CNT
distributions.
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Figure 20: Effect of waviness on the indentation response of RCNT and ACNT.

(a) (b)

Figure 21: Effect of waviness on the contact pressure distribution of: (a) randomly distributed CNT-polymer nanocomposites and (b) vertically
aligned distributed CNT-polymer nanocomposites.

6.5. Coupled effect of CNTs waviness and agglomeration

Finally, the coupled effect of CNTs waviness and agglomeration on the indentation response of CNTRC is
considered. Fig. 22 shows the effect of agglomeration in the indentation response of wavy and straight randomly
distributed CNT-polymer nanocomposites and vertically aligned distributed CNT-polymer nanocomposites. It is
noted that the decreases in the indentation force induced by waviness and agglomeration effects add up when both
phenomena act simultaneously. Therefore, it can be concluded that both agglomeration and waviness act as defects
in the microstructure, and the omission of their coupled effect may lead to overestimations of the tribological
behavior of CNTRCs. It is also observed in Fig. 22 that the filler agglomeration presents a higher influence on the
indentation response than the waviness. Moreover, that influence is more severe in vertically aligned distributed
CNT-polymer nanocomposites than in randomly distributed CNT-polymer nanocomposites. Fig. 23 (a) shows a
reduction in the maximum contact pressure of 18 percent, whereas Fig. 23 (b) shows a reduction in the maximum
contact pressure of 30 percent. Therefore, it is clear that the modeling agglomeration effects in CNT-polymer
nanocomposites is a key aspect to accurately predict the indentation behavior of CNT-polymer nanocomposites.
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Figure 22: Coupled effect of CNTs waviness and agglomeration on the indentation response.

(a) (b)

Figure 23: Coupled effect of CNTs waviness and agglomeration on the contact pressure distribution of: (a) randomly distributed CNT-polymer
nanocomposites and (b) aligned distributed CNT-polymer nanocomposites (ACNT).

7. Concluding remarks

The influence of micromechanical properties on the indentation response of CNTRCs has been studied. The
effective constitutive properties of the composites have been predicted by an Eshelby-Mori-Tanaka micromechan-
ical model. This model allows us to consider aligned CNTs distributions or to simulate more realistic features
typically reported for CNT-reinforced polymers, i.e. waviness and agglomeration effects. A 3D boundary element
formulation, which has been proved to be very robust and accurate for this kind of contact simulations, provides
the elastic influence coefficients for the CNT reinforced half-space. Moreover, in order to study uniaxially-aligned
CNT reinforced composites under frictional indentation conditions, an anisotropic friction constitutive law has
been considered. This contact constitutive law allowed us to assess the influence of the fiber orientation (ϕ) on the
friction coefficients. The proposed methodology has been applied to study the indentation response of CNTRC
half-space and the influence of the micromechanical properties on the contact compliances. Results reveal that the
micromechanical aspects of CNTs have to be taken into account on contact simulation. In other case, we could
over- or underestimate contact magnitudes. For instance, fibers orientation has a fundamental effect on normal and
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tangential contact compliances or on contact traction magnitude and distribution. In this way, we may maximize
the effectiveness of the reinforcement and therefore the properties of the CNTRC, by controlling the CNT fiber
alignment, dispersion or volume fraction. Finally, it should be noted that the proposed methodology can be useful
in developing experimental indentation tests to extract the mechanical and tribological properties of ACNT rein-
forced composites and to design new CNT reinforced mechanical systems with better resistance under frictional
contact condition.

The key findings of this work can be summarized as follows:

• In the case of uniaxially-aligned filler configurations, the numerical results have demonstrated that filler
orientations in the range ϕ ∈ [45◦, 90◦] yield the highest normal contact forces, with maximum values at
ϕ = 90◦, that is to say, fillers aligned with the indenter. In addition, while higher filler contents lead to
stiffer responses of the composites for filler orientations in the range ϕ ∈ [45◦, 90◦], only a limited stiffening
efficiency has been found for filler orientations below ϕ = 45◦.

• The numerical results have demonstrated that the indentation force of CNTRCs is higher for uni-axially filler
configurations when ϕ ∈ [60◦, 90◦] compared to random distributions, whilst random filler configurations
yield higher indentation forces than those obtained for ACNTs with ϕ ∈ [0◦, 60◦].

• The analyses on the tangential response of ACNT-reinforced composites have showed that the filler orienta-
tion exhibits a substantial influence on their tribological response. It has been reported that minimum values
of tangential loads are found at filler orientations of ϕ = 45◦, whereas maximum values occur at ϕ = 0◦.
Additionally, it has been shown that the filler orientation has a higher influence on the tangential forces
when gross slip conditions are considered, finding differences up to 30 % between the forces observed for
ϕ = 45◦ and ϕ = 90◦.

• The numerical analyses evidence the detrimental effects of filler waviness and agglomerations which act as
microstructural defects. Additionally, the simultaneous consideration of waviness and agglomeration on the
indentation response of CNTRCs have demonstrated that their weakening effects add up.

Finally, it should be remarked that the present numerical framework is general and does not limit to only
studying the indentation response of the half-space CNT nanocomposite configurations presented in this paper.
The BEM approach implemented herein can be easily extended to analyze for instance smart nanocomposite
coatings involving thin film geometries [72], e.g., a bearing covered by a CNT nanocomposite layer, or any other
high performance contact surfaces configurations.
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