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Bifurcations from a center at infinity in 3D piecewise
linear systems with two zones

Abstract

We consider continuous piecewise linear systems in R3 with two zones under
the assumption of having a linear center in the invariant manifold of the point
at infinity. A specific conic projection is introduced, so that it is possible to
analyze in a convenient way the dynamics near such a center at infinity in
two qualitative different situations.

In the semi-homogeneous case, such a center is associated to the exis-
tence of a continuum of invariant semi-cones sharing the vertex at the origin;
perturbing the configuration it is possible to detect the bifurcation of a limit
cycle at infinity leading to the bifurcation of isolated invariant semi-cones.

For the non-homogeneous case, the cycles at infinity does not imply in-
variant semi-cones. However, the non-generic case when the center at infinity
is associated to the existence of invariant cylinders for one of the involved
vector fields, becomes rather interesting. It is possible then, by perturbing
the other vector field, to get the bifurcation of a big limit cycle from infinity
without destroying the center.
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1. Introduction and setting of the problem

The class of piecewise linear systems has a distinguished, long pedigree.
To give a couple of examples, we can quote the seminal book of Andronov
et al. [3], where there appears a plenty of mechanical, electrical and control
applications whose nonlinearities are adequately modeled as piecewise linear
functions. As another remarkable milestone, the work by Levinson [20] on the
forced VanderPol equation with a piecewise constant nonlinearity motivated
Steve Smale to discover the horseshoe paradigm [27].

In fact, piecewise linear systems constitute the natural entry point for the
analysis of piecewise smooth systems, an area of research where more and
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more attention is being payed to the specific case of discontinuous vector
fields or Filippov systems [10], which are required in a growing number of
modern engineering applications, as in power electronics, see [28]. It is clear
however that without a perfect comprehension of the continuous case one
cannot try to capture the subtleties of discontinuous instances.

While for planar, continuous piecewise linear systems the situation is
rather satisfactory [11, 12], this is not the case for three-dimensional con-
tinuous piecewise linear systems. In fact, there is a lack of explicit char-
acterizations even for seemingly elementary problems, as the stability issue
for the equilibrium point at the origin of semi-homogeneous 3D systems, see
[5]. Very few results about bifurcation of limit cycles are available, both in
presence of symmetry [13, 24], and for the non-symmetric case [6, 14].

On the other hand, we want to emphasize that in order to get a dynam-
ical global view of a differential system, it is very important to know the
dynamical properties of the system at the invariant manifold associated to
the point at infinity along with their possible bifurcations at or from infin-
ity. To the best of our knowledge, there are not many works dealing with
bifurcations at infinity for 3D differential systems. A general result on bifur-
cations from infinity under certain hypotheses well suited to control systems
with only one nonlinearity being asymptotically linear at infinity appeared
in [9], see also [18]. For polynomial vector fields under the additional as-
sumption of reversibility, see [4] and [22]. In fact, the interest for the study
of dynamics at infinity has undergone a certain upsurge, see [17], [21], and
[29]. However, the quoted works do not tackle bifurcation phenomena at
infinity; they mainly study bifurcation of limit cycles on the finite phase
space and the existence of algebraic invariant manifolds for selected choices
of parameters, sometimes working on the sphere S2 coming from Poincaré
compactifications. Such Poincaré compactifications do not help adequately
in the analysis of the kind of problems we are interested in, namely 3D piece-
wise linear systems with two zones and no symmetry, so that we need to
develop specific techniques, as shown later.

Thus, we explore here some issues relative to the dynamics at infinity
for a family of continuous three-dimensional piecewise linear systems with
two zones, separated by a plane, focussing our attention on the study of
bifurcations from a center at infinity and their repercussions in the finite
dynamics. Entering already into the setting of our problem, the global vector
field, which is nonlinear, comes from the matching of a left differential system
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of the form
ẋ = (λ+ 2σ)x− y,
ẏ = (2λσ + σ2 + ω2)x− z,
ż = λ(σ2 + ω2)x+ µ,

(1)

for x < 0, and the right system

ẋ = tx− y,
ẏ = mx− z,
ż = dx+ µ,

(2)

for x > 0. Here, we assume for the left system the spectrum

{λ, σ ± iω}, ω > 0,

while for the right system we do not assume any specific eigenvalue configura-
tion: the parameters t, m and d, representing respectively the trace, the sum
of principal minor of order two and the determinant of the right matrix, are
arbitrary. The modal parameter µ ∈ {0, 1} allows to distinguish two different
configurations: the semi-homogeneous case µ = 0 and the non-homogeneous
case µ = 1. Note that we adopt the so-called generalized Liénard form, as it
was done in [6].

Our interest is to determine the possible bifurcations associated to the
existence of a center at infinity, in a similar way to what has been done in
previous works for ordinary centers, see [6, 13, 14]. The approach is rather
different from the case of Hopf bifurcation at infinity with symmetry, see [2].
As shown later, we will need specific techniques, suitable for working near
the point at infinity.

We remark that when µ = 0 system (1)-(2) is semi-homogeneous, having
the property that if (x(τ), y(τ), z(τ)) is any solution then (kx(τ), ky(τ), kz(τ))
is also a solution for every k > 0. Consequently, the existence of a periodic
orbit implies the existence of an invariant semi-cone foliated by periodic or-
bits. Furthermore, if there exists a periodic orbit at infinity then there also
exists an invariant semi-cone, this time not necessarily containing any peri-
odic orbit. Reciprocally, any invariant semi-cone will determine a periodic
orbit at infinity, so that we can establish in this semi-homogeneous case a
correspondence between invariant semi-cones and periodic orbits at infin-
ity. The study of existence of such invariant semi-cones has been tackled
in several papers, see in particular [7] and [8]. Therefore, by assuming a
center at infinity —it suffices the condition λ = σ in (1)— we can conclude
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the existence of a continuum of invariant semi-cones, from which an isolated
semi-cone could bifurcate, being associated to the existence of a limit cycle at
infinity that bifurcates from the outermost periodic orbit of the original cen-
ter. Our study completes the quoted works, by detecting a new bifurcation
of semi-cones which had not been previously characterized.

When µ = 1, no semi-cones are possible, so that limit cycle bifurcations
from the center at infinity have not a counterpart for the global dynamics,
in principle. However, under the stronger assumption λ = σ = 0, leading
this time to the existence of a family of invariant cylinders for system (1),
it turns out that the outermost periodic orbit of the center at infinity has
then a higher degree of non-hyperbolicity. Thus, it is possible the bifurcation
of a ‘big’ limit cycle from infinity without destroying the center. We obtain
a new result in this direction, giving a complete characterization of such a
bifurcation.

Our computations take advantage of a conic projection onto an adequate
plane, namely a parallel plane to the left focal plane. This is the subject of
Section 2, where we obtain for system (1)-(2) equivalent vector fields allowing
the analysis of its dynamics near a selected chart at infinity. In Section 3, we
derive a new bifurcation result for piecewise smooth planar systems with a
linear center, see Proposition 2; such a result is crucial for the statement of
Theorem 1 on bifurcation of invariant semi-cones in the semi-homogeneous
case µ = 0, which appears in Section 4. Finally, in Section 5 we deal with the
non-homogeneous case µ = 1, getting the characterization of a bifurcation of
a limit cycle from infinity without symmetry, see Theorem 2. The proof of
Theorem 2, which involves long computations, appears in Section 6.

2. Studying the dynamics near infinity via conic projections

Given a non-null vector a = (a1, a2, a3) ∈ R3, we consider a projection
plane not passing through the origin

Π = {x = (x, y, z) ∈ R
3, a!x = δ},

where δ = ±1, as appropriate. Next, for any point x with a!x #= 0, we
take the straight line that joins the origin and the point x, and we denote
by X = (X, Y, Z) the intersection point of such a line with the plane Π, see
Figure 1. Clearly, we can define a unique value W = W (x) ∈ R satisfying
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Figure 1: The conic projection on the plane Π.

the equalities

X = Wx ⇐⇒ δ = a!X = Wa!x ⇐⇒ W =
δ

a!x
. (3)

Note that W gives, up to a constant factor, the inverse of the distance of
the point x to the plane Π, so that the condition W = 0 corresponds with a
certain chart at infinity, while the points on the plane Π satisfy W = 1. We
will take this value W as a new variable, and after projecting the dynamics
onto the plane Π, we select also as new variables two of the components of
the projection X, discarding for instance the last component Z, since we
have from (3) the relationship a!X = δ.

Let us see how this change behaves when dealing with a non homogeneous
linear system of the form

ẋ = Ax+ b. (4)

We remark that a particular instance of the above projection was introduced
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for a homogeneous case in [7]. We note first that from (3) we have

Ẇ = −
δa!(Ax+ b)

(a!x)2
= −δW 2a!

(
A
X

W
+ b

)
= −δWa!(AX+Wb),

(5)
so that, as expected, the plane W = 0 is invariant. Furthermore, from (3)
and (5), we also have

Ẋ = Ẇ
X

W
+W

(
A
X

W
+ b

)
= −δa!(AX+Wb)X+ AX+Wb. (6)

In principle, the above system is not linear any longer, but when one
focusses on the the dynamics at infinity, that is the dynamics on the plane
W = 0, it is possible to get there a linear system by choosing adequately the
vector a. As shown next, it suffices to take for such vector a left eigenvector
associated to a real eigenvalue of the matrix A.

Proposition 1. If the vector a is a left eigenvector associated to a real eigen-
value λ of the matrix A, then system (6) becomes linear when it is restricted
to the invariant plane W = 0.

Proof. We see that
a!AX = λa!X = λδ,

so that (5) reduces to

Ẇ = −δ2λW − δa!bW 2 = −λW − δa!bW 2, (7)

and system (6) becomes

Ẋ = (A− λI)X− δa!bWX+Wb, (8)

where we have used that δ2 = 1 and I stands for the identity matrix. Note
that system (8) reduces for W = 0 to the linear homogeneous system

Ẋ = (A− λI)X,

with a zero eigenvalue, but after eliminating one of the components of X, say
Z, by using the linear relation a!X = δ, the reduced planar system becomes
also linear but non-homogeneous and without such a zero eigenvalue. The
proof is complete.
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Let us consider the above projection for system (1)-(2). Denoting with
AL, AR, the matrices giving the linear parts in each half-space, we apply
Proposition 1 by taking as director vector of the projection plane the left-
eigenvector a = (λ2,−λ, 1)! of AL, which is associated to its real eigenvalue
λ. We have b = (0, 0, µ)!, so that a!b = µ, and considering first system (1),
from (7) we obtain for X < 0

Ẇ = −λW − δµW 2,

and from (8)

Ẋ =




2σ −1 0

2λσ + σ2 + ω2 −λ −1
λ(σ2 + ω2) 0 −λ



X−




δµXW
δµYW

δµZW − µW



 , (9)

where we must take into account the condition

λ2X − λY + Z = δ, (10)

which defines the projection plane Π. After eliminating Z by substituting
Z = δ − λ2X + λY into the two first components of (9), we get the planar
system

Ẋ = 2σX − Y − δµXW,
Ẏ = −δ + [(λ+ σ)2 + ω2]X − 2λY − δµYW,

(11)

for X < 0. Before proceeding further, we note that at infinity (for W = 0)
this planar system has an equilibrium point at (X, Y ) with Y = 2σX and

X =
δ

(λ− σ)2 + ω2
,

so that this point is a real equilibrium point if δ = −1, and furthermore it
becomes a linear center when λ = σ. Thus, as we know that this last case is
the configuration capable of generating limit cycles by perturbation, we will
assume in the sequel δ = −1.

We need to apply the same projection for points in the half-space x > 0.
From (5) with δ = −1 and (10), we now obtain for X > 0

Ẇ = W
(
λ2,−λ, 1

)



tX − Y
mX − Z
dX + µW



 = [CPR(λ)X − λ]W + µW 2,
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where CPR(λ) = −λ3 + tλ2 −mλ+ d is the characteristic polynomial of the
linear part AR in the region x > 0 evaluated in λ. Also, from (6) we have

Ẋ = (AR − λI)X+ [CPR(λ)X + µW ]X+ µWe3, (12)

and after eliminating Z as before, we get the planar system

Ẋ = (t− λ)X − Y − CPR(λ)X2 + µXW,
Ẏ = 1 + (m+ λ2)X − 2λY − CPR(λ)XY + µYW.

(13)

From expressions (11) and (13), it is possible to study the possible bifur-
cation of limit cycles at infinity, by considering the dynamics on the plane
W = 0. In next section, we derive a bifurcation result for a rather more
general situation, which includes the cases we are interested in.

3. A limit cycle bifurcation from a center in planar PWS systems.

In this section, we obtain an auxiliary result for planar piecewise smooth
systems to be later applied to our study of the dynamics at infinity for 3D
PWL systems with two zones. We study a planar system composed by two
different vector fields: a linear system with focus dynamics in the half-plane
x ≤ 0 and a polynomial system in the half-plane x ≥ 0, with the specific
property of making possible the concatenation of orbits near the origin. More
precisely, at the separation straight line x = 0 and for small |y| > 0 the
dynamics is crossing and the global vector field becomes continuous yet non-
smooth at the origin with a tangency of the orbits there at such a line (visible
from the left and invisible from the right).

Thus, we consider the piecewise smooth system

ẋ = 2γx− y,
ẏ = 1 + (1 + γ2)x,

(14)

for x < 0, and

ẋ = −y + a1x+ b1y2 + a2xy + b2y3 + a3x2 + b3xy2 + c3y4,
ẏ = 1 + A2x+B2y2 + A3xy +B3y3,

(15)

for x > 0. Here, the subscripts of coefficients indicate the order of quasi-
homogeneity of different monomials, see [1]. The quasi-homogeneity comes
from a scaling of variables and time of the form x = ε2X , y = εY , t = ετ ,
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leading to a type (2, 1) with the zero-order vector field being (−y, 1)!, which
is the natural choice for our case of invisible tangency at the origin from the
right. Note that in the second equation of (15) the original term A1y has
been removed by a single linear change of variables, in a similar way to what
is done in Proposition 3.1 of [15].

Clearly, the left system is a linear system with a focus at

(x̄, ȳ) =

(
−

1

1 + γ2
,−

2γ

1 + γ2

)
,

having an orbit with visible tangency to the y-axis at the origin. Note also
that for γ = 0 we have a linear center at the point (−1, 0). Since the eigen-
values of the system matrix are γ ± i, the focus at (x̄, ȳ) is stable for γ < 0,
being unstable for γ > 0. If we consider an orbit starting at the point (0, y0)
with y0 > 0, then from the first equation of (14) we obtain that ẋ < 0, so
that the orbit will enter the half-plane x < 0 to surround the focus; under
certain conditions, we can assume that after a time τL near 2π such an orbit
eventually arrives to a point (0, y1) with y1 < 0, using only the half-plane
x ≤ 0. Then, we must have

eγτL
(

cos τL + γ sin τL − sin τL
(γ2 + 1) sin τL cos τL − γ sin τL

)(
−x̄

y0 − ȳ

)
=

(
−x̄

y1 − ȳ

)
(16)

where we have written explicitly the matrix exponential corresponding to
system (14).

From (16) we obtain the two equations

−y0(1 + γ2) sin τL + cos τL − γ sin τL = e−γτL ,
y1(1 + γ2) sin τL + cos τL + γ sin τL = eγτL ,

(17)

and rescaling the variables y0 and y1 by (1+γ2), that is, taking ỹ0 = y0(1+γ2)
and ỹ1 = y1(1 + γ2), we can write the equations in the more compact form

cos τL − (ỹ0 + γ) sin τL = e−γτL ,
cos τL + (ỹ1 + γ) sin τL = eγτL .

(18)

From these equations, we proceed in what follows by looking for only one
equation relating the three variables ỹ0, ỹ0 and γ, that is, we aim to eliminate
the time τL. Multiplying both equations in (18) we obtain

cos2 τL + (ỹ1 − ỹ0) cos τL sin τL − (ỹ0 + γ)(ỹ1 + γ) sin2 τL = 1,
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and reordering terms we see that

(ỹ1 − ỹ0) cos τL sin τL = [1 + (ỹ1 + γ)(ỹ0 + γ)] sin2 τL,

that is

tan τL =
ỹ1 − ỹ0

1 + (ỹ1 + γ)(ỹ0 + γ)
, (19)

where we have discarded a spurious solution, corresponding to sin τL = 0.
As we want to study the bifurcation at γ = 0, and then τL = 2π, we do the
change τL = 2π + s, and using the trigonometric formula for the tangent of
the sum of two angles, we get the equality

s = arctan(ỹ1 + γ)− arctan(ỹ0 + γ).

Thus, for small values around the point (s, γ, ỹ0, ỹ1) = (0, 0, 0, 0) we obtain
the expansion of s in terms of (γ, ỹ0, ỹ1)

s =
∑

∞

k=0(−1)k
(ỹ1 + γ)2k+1 − (ỹ0 + γ)2k+1

2k + 1
=

= ỹ1 − ỹ0 −
1
3(ỹ

3
1 − ỹ30)− γ(ỹ21 − ỹ20)− γ2(ỹ1 − ỹ0) + · · ·

(20)

Now, subtracting both equations in (18) and replacing τL by 2π + s, it
holds

(ỹ0 + ỹ1 + 2γ) sin s = 2 sinh(γ(2π + s)) (21)

Computing the series expansion of (21) near the point (s, γ, ỹ0, ỹ1) =
(0, 0, 0, 0), and replacing s by expression (20), we obtain an expression de-
pending only on (γ, ỹ0, ỹ1). From such expression, we can deduce the follow-
ing expansion of γ in terms of the original values y0 and y1,

γ =
y21 − y20
4π

−
y41 − y40
8π

−
y51 − y20y

3
1 − y30y

2
1 + y50

12π2
+O(6). (22)

Note that, as it can be deduced from geometrical considerations, the above
expression γ := γ(y0, y1) satisfies the condition γ(−y1,−y0) = −γ(y0, y1),
and also that each term of any fixed degree in (y0, y1) must contain the
factor (y0 + y1). Thus, in the above expansion γ =

∑
cijyi0y

j
1, we must have

cij − cji = 0 for i+ j odd, cij + cji = 0 for i+ j even, and cii = 0.
Now, we compute the expansion for the inverse of the right Poincaré map

PR in terms of y0. To do that, we compute the successive time derivatives
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for the right system (15), to get a sufficiently high order approximation of
(x(τ), y(τ)) such (x(0), y(0)) = (0, y0). Next, by assuming a negative value
for the time τR < 0 and imposing that x(τR) = 0, we get an expansion of the
right flight time τR < 0, in terms of y0. Thus, after substituting such a time
expansion in the expression for y1 = y(τR), we get

y1 = −y0 +
2

3
αy20 −

4

9
α2y30 +

2

135
βy40 −

2

405
δy50 + · · · (23)

where α = a1 + b1,

β = 22a31 + 9a1a2 − 9a1A2 + 18a3 + 9A3 + 66a21b1 + 9a2b1 + 75a1b
2
1+

40b31 + 18a1b2 + 45b1b2 + 9a1B2 + 18b1B2 + 9b3 + 27B3 + 27c3,

and
δ = 52a41 + 208a31b1 + 54a21a2 − 180a21A2 + 366a21b

2
1+

108a21b2 − 126a21B2 + 108a1a2b1 − 252a1A2b1 + 108a1a3+

370a1b
3
1 + 378a1b1b2 − 198a1b1B2 + 54a1b3 + 27a1B3+

162a1c3 + 27a2A2 + 54a2b
2
1 + 81A2

2 − 45A2b
2
1+

81A2b2 + 135A2B2 + 108a3b1 + 27A3b1 + 160b41+

270b21b2 − 72b21B2 + 54b1b3 + 27b1B3 + 162b1c3 + 81B2
2 .

Note that the right Poincaré map in (23) is an involution, which is related
to the invisible character of the tangency at the origin. Replacing (23) in
(22), we obtain the existence of a periodic orbit passing for the point (0, y0)
with small y0 > 0, whenever

γ = −
α

3π
y30 +

ρ

3π
y50 +

α2

3π
y40 +

ν

3π
y60 + · · · (24)

where

ρ = α−
4α3

9
−

β

45
,

and

ν =
2βα

135
−

2α

3π
−

5α2

3
+

4α4

27
+

2δ

135
.

We remark that for α = 0, that is b1 = −a1, we have

β0 := β|α=0 = −9(a31+a1A2−2a3−A3+3a1b2+a1B2−b3−3B3−3c3), (25)
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and

δ0 := δ|α=0 = 27
(
a21A2 − a1A3 + a2A2 + 3A2

2 + 3A2b2 + 5A2B2 + 3B2
2

)
,
(26)

so that

ρ0 := ρ|α=0 = −
β0

45
, ν0 := ν|α=0 =

2δ0
135

. (27)

To determine the number of positive solutions y0 of (24) for (α, γ) in a
neighborhood of (0, 0), we could do the change of variables

γ =
ε

3π
y20, (28)

where the new variable ε is to be introduced instead of γ. Note that sign(ε) =
sign(γ). We would obtain, after dividing by y20, that equation (24) simplifies
to

ε = −αy0 + ρ(α)y30 + α2y20 + ν(α)y40 + · · · , (29)

so that we would recognize the cusp catastrophe scenario for the triplet
(ε,α, y0), restricted to y0 ≥ 0, see [19]. Thus, provided that ρ0 = ρ(0) #= 0,
the equation corresponding to lower order terms in (α, y0), namely

ε+ αy0 − ρ0y
3
0 = 0, (30)

determines the bifurcation behavior. We deduce that in the original parame-
ter plane (α, γ) there must exist, for equation (24), a curve corresponding to
saddle-node bifurcation points. Working directly with equation (24), the fol-
lowing result follows. The assertions concerning the stability of limit cycles
come easily from the local properties of half-Poincaré maps, see Proposition
3 in [16] for a full study of the half-return map PL and expression (23) for
the half-return map P−1

R .

Proposition 2. Consider system (14)-(15) and define the parameters α =
a1 + b1, β0 as in (25), and assume β0 #= 0. The following statements hold.

(a) If γ = 0, then the outermost orbit of the center, which is tangent to
the y-axis, is unstable from outside when β0α > 0, being stable from
outside and surrounded by one unstable limit cycle when β0α < 0.

(b) If α = 0 the system has no periodic orbits if β0γ > 0, having one limit
cycle surrounding the focus for small β0γ < 0.
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Figure 2: The number of positive roots for (24) when β0 > 0 near the origin of the
parameter plane (α, γ).

(c) If β0α > 0, then there are no periodic orbits for small αγ > 0, and one
periodic solution for small αγ < 0.

(d) If β0α < 0, then there is one periodic orbit for small αγ > 0.
(e) When β0α < 0 and αγ < 0 is small, there exists a curve of the form

SN(α, γ) = γ +
2α

5π

(
−
3α

β0

) 3

2

+O(α2) = 0, (31)

whose graph separates, in the plane (α, γ), a region with two limit cycles
from a region with no limit cycles, so determining saddle-node bifur-
cation points for periodic orbits. More precisely, the following cases
arise.
(i) If SN(α, γ)γ < 0, then the focus is surrounded by two limit cycles.
(ii) If SN(α, γ) = 0, then the focus is surrounded by just one semi-

stable limit cycle.
(iii) If SN(α, γ)γ > 0, then the focus is surrounded by no limit cycles.

Obviously, when γ #= 0, its sign determines the stability of the focus, and
the stability of limit cycles, if any, can be deduced accordingly (alternating
stabilities, when needed).

According to Proposition 2, in Figure 2 we show the number of positive
solutions of (24) for different regions of the parameter plane (α, γ) under the
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assumption β0 > 0, so that there appears a small region with two positive
solutions in the second quadrant of such parameter plane. The curve indi-
cating the change between two and none roots can be approximated by using
the expression of SN(α, ε), and corresponds to a saddle-node bifurcation of
periodic orbits.

Remark 1. Proposition 2 greatly extends the focus-center-limit cycle bifur-
cation studied in [26] for the piecewise-linear case.

3.1. Example: the simplest continuous non-piecewise linear example with two
limit cycles

To illustrate the above analysis, it is interesting to consider the simplest
case where system (14)-(15) becomes continuous but not being a purely piece-
wise linear case. It is known that continuous piecewise linear systems with
two zones separated by a straight line can have at most one limit cycle, see
[11, 25]; starting from the piecewise linear case, by adding only one quadratic
term that preserves the continuity of the vector field, we will see that two
limit cycles are possible.

Effectively, if we take the ‘left’ system as in (14) and the ‘right’ system
as follows,

ẋ = −y + a1x+ a3x2,
ẏ = 1,

(32)

we see that all the coefficients in (15) are zero excepting a1 and a3, so that
α = a1 and β0|a1=0 = 18a3. Looking for the sector in the plane (α, γ) with
two limit cycles, we simulated system (14)-(32) for a1 = −1, a3 = 1 and
γ = 0.025, obtaining the two limit cycles of Figure 3.

4. Semi-homogeneous piecewise linear systems: bifurcation of limit
cycles at infinity and invariant semi-cones.

In this section, we will study the homogeneous version of system (1)-(2)
corresponding to µ = 0, namely

ẋ = (λ+ 2σ)x− y,
ẏ = (2λσ + σ2 + ω2)x− z,
ż = λ(σ2 + ω2)x,

(33)
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Figure 3: The two limit cycles for system (14)-(32) for α = a1 = −1, a3 = 1 and γ = 0.025.
We show the vertical nullcline with a dashed line. The unstable focus is surrounded by a
stable limit cycle (in blue) and an unstable limit cycle (in red).

for x < 0 with ω > 0, and

ẋ = tx− y,
ẏ = mx− z,
ż = dx,

(34)

for x > 0.
From the analysis in Section 3, we get our first main result. Recall that

CPR(λ) = −λ3 + tλ2 −mλ + d is the characteristic polynomial of the linear
part AR in the region x > 0 evaluated in λ.

Theorem 1. Consider system (33)-(34), assuming that

Γ = CPR(λ)|t=3λ = d−mλ + 2λ3 #= 0, (35)
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and define the bifurcation parameters ε = t−3λ and η = σ−λ. The following
statements hold.

(a) For η = 0 there exists a continuum of invariant semi-cones totally
contained in the region x ≤ 0. The system undergoes for ε = 0 a
bifurcation from the most external semi-cone of the above continuum,
so that for εΓ < 0 and small, there appears one invariant isolated semi-
cone that crosses the plane x = 0, containing the above semi-cones.

(b) For ε = 0 the system undergoes a bifurcation when η = 0, so that when
Γη > 0 and small there are no invariant semi-cones, and when Γη < 0
and small there appears an invariant isolated semi-cone that crosses the
plane x = 0 bifurcating from the continuum of semi-cones that exists
for η = 0.

(c) For small values of Γη > 0 and εη > 0, there are no isolated invariant
semi-cones.

(d) For small Γη < 0, there exists a unique isolated invariant semi-cone.
(e) For small Γη > 0 and εη < 0, there exists a function with the expansion

S(ε) := −
18ε

5π

(
−
3ε

Γ

) 3

2

+O(ε3) (36)

such that
(i) if (η − S(ε))σ < 0, there exists two isolated invariant semi-cones

crossing the plane x = 0.
(ii) if η = S(ε), then there exists an invariant isolated semi-cone that

crosses the plane x = 0.
(iii) if (η − S(ε))σ > 0, there are no invariant isolated crossing semi-

cones.

Proof. As mentioned in the introduction, we can determine the number
of invariant semi-cones in system (33)-(34) by studying their periodic orbits
at infinity. After making the conic projection of Section 2, we obtain the
dynamics at the plane W = 0 that represents the invariant manifold of the
point at infinity, which is ruled by the differential system

Ẋ = 2σX − Y
Ẏ = 1 + [(λ+ σ)2 + ω2]X − 2λY,

(37)
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for X < 0, and

Ẋ = (t− λ)X − Y − CPR(λ)X2,
Ẏ = 1 + (m+ λ2)X − 2λY − CPR(λ)XY.

(38)

for X > 0.
To facilitate the analysis, taking into account the results of Section 3,

we first make a single change of variables to write the left planar systems in
Liénard’s form, namely

u = X,
v = −2λX + Y,

(39)

After this change the system (37)-(38) becomes

u̇ = 2(σ − λ)u− v
v̇ = 1 + [(σ − λ)2 + ω2]u,

(40)

for u < 0, and

u̇ = (t− 3λ)u− v − CPR(λ)u2,
v̇ = 1 + (3λ2 − 2tλ+m)u− CPR(λ)uv,

(41)

for u > 0.
We consider a new change of variables in order to write system (40)-(41)

in the form of the system (14)-(15), namely

x = ω2u, y = ωv, τ̂ = ωτ. (42)

After this change of variables, the system (40)-(41) becomes

ẋ = 2(σ̂ − λ̂)x− y,
ẏ = 1 + [(σ̂ − λ̂)2 + 1]x,

(43)

for x < 0, and

ẋ = (t̂− 3λ̂)x− y − ĈPR(λ̂)x2,

ẏ = 1 + (3λ̂2 − 2t̂λ̂+ m̂)x− ĈPR(λ̂)xy,
(44)

for x > 0, where

λ̂ =
λ

ω
, σ̂ =

σ

ω
, t̂ =

t

ω
, m̂ =

m

ω2
, d̂ =

d

ω3
,
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and ĈPR(λ̂) = −λ̂3 + t̂λ̂2 − m̂λ̂+ d̂. Comparing (43)-(44) with (14)-(15) we
obtain the parameter values

γ = σ̂ − λ̂, a1 = t̂− 3λ̂, A2 = 3λ̂2 − 2t̂λ̂+ m̂, A3 = a3 = −ĈPR(λ̂),

and that the remaining parameters in (15) vanish. Since b1 = 0, the param-
eter α = a1 in (24) , so that

β0 = −27 ĈPR(λ̂)
∣∣∣
t̂=3λ̂

.

Note that ωγ = η, and ωa1 = ε. Also, in (35) we get

Γ = ω3 ĈPR(λ̂)
∣∣∣
t̂=3λ̂

,

so that sign(Γ) = − sign(β0).
To prove the theorem, it suffices now to apply Proposition 2, by identi-

fying the limit cycles there with isolated invariant crossing semi-cones. Nat-
urally, the stability character of such limit cycles is inherited by the cor-
responding semi-cones, regarding the attractiveness of such invariant mani-
folds; we did not give explicitly such stability in the different statements for
brevity.

The study of invariant cones in PWL homogeneous systems began in [7],
where the existence of a saddle-node bifurcation of invariant cones was conjec-
tured. In [8] such a bifurcation is analyzed in a particular situation: they con-
sider the rather degenerate situation when the global system is purely linear
under just one-parameter perturbation within the PWL context. Thus, The-
orem 1 completes the quoted works, by describing the codimension-two bifur-
cation of invariant cones in the general case, which includes a codimension-
one curve of saddle-node bifurcation of invariant cones.

5. Bifurcation of a limit cycle from a center at infinity in PWL
systems with two zones

Here, we deal with the analysis near infinity of the non-homogeneous case
of system (1)-(2), that is µ = 1. We know that at the invariant manifold at
infinity (W = 0) the dynamics is the same as before, so that the previous
results on bifurcation of limit cycles at infinity apply, but now periodic orbits
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at infinity do not translate into invariant semi-cones for the global dynamics.
However, in the special case λ = σ = 0, it is possible to control the bifurcation
of a limit cycle from infinity that appears by moving the parameters of the
right system.

Thus, we will consider a specific instance of system (1)-(2), namely

ẋ = −y,
ẏ = ω2x− z,
ż = 1,

(45)

for x < 0, and
ẋ = tx− y,
ẏ = mx− z,
ż = dx+ 1,

(46)

for x > 0. A first observation concerns the parameter ω > 0, which is not
relevant, as stated in the following preliminary result. Since the proof is
direct, it is omitted.

Lemma 1. In system (1)-(2) we can assume ω = 1 without loss of general-
ity, since it suffices to make the change of variables

τ̂ = ωτ, x̂ = ω3x, ŷ = ω2y, ẑ = ωz, (47)

and to use then as new parameters

t̂ =
t

ω
m̂ =

m

ω2
, d̂ =

d

ω3
. (48)

In the sequel, we suppose ω = 1, discarding the hats in variables and param-
eters to alleviate notation. However, to come back to the original system, we
must take into account Lemma 1.

It is also remarkable that system (45), when considered in the whole R3,
does not admit invariant semi-cones, but it possesses the first integral

H(x, y) = (x− z)2 + (y + 1)2,

so that the center at infinity is now associated to the family of invariant
cylinders H(x, y) = k for k > 0 arbitrary, which share as their common axis
the straight line x = z, y = −1.

Another observation concerning the existence of periodic orbits for system
(45)-(46) comes from the following straightforward result.
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Lemma 2. If d ≥ 0, then system (45)-(46) has no periodic orbits.

Proof. It suffices to observe that under hypothesis d ≥ 0, the derivative ż
is positive everywhere and so we cannot have closed orbits.

Our final main result, which takes into account the above necessary con-
dition, is the following.

Theorem 2. System (45)-(46) with 0 < m #= ω2 and d < 0 undergoes a
limit cycle bifurcation from a center at infinity for d − ω2t = 0, so that one
limit cycle of great amplitude appears for (m−ω2)(d−ω2t) < 0 and |d−ω2t|
sufficiently small. In particular, if m−ω2 < 0 then one limit cycle bifurcates
for d−ω2t > 0 and it is orbitally asymptotically stable, while when m−ω2 > 0
the limit cycle bifurcates for d− ω2t < 0, being then unstable.

The proof of Theorem 2 appears in Section 6. We remark that, up to the
best of our knowledge, it constitutes the first bifurcation result from infinity
in 3D systems without any symmetry; see [4] and [22] for cases with some
reversibility and [2] for symmetric PWL systems.

We note that Theorem 2, when considering t as the only bifurcation
parameter, leads to the critical value tc1 = d/ω2, where the bifurcation from
infinity takes place. Besides, we know from Theorem 1 in [6] that for the
critical value tc2 = d/m there appears a focus-center-limit cycle bifurcation;
more precisely, the following analogous result applies, see the quoted paper
for a proof.

Proposition 3. System (45)-(46) with 0 < m #= ω2 and d < 0 undergoes a
limit cycle bifurcation from a bounded center at the right zone for d−mt = 0,
so that one limit cycle of finite amplitude appears for (m− ω2)(d−mt) > 0
and |d −mt| sufficiently small. In particular, if m − ω2 < 0 then one limit
cycle bifurcates for d−mt < 0 and it is orbitally asymptotically stable, while
when m−ω2 > 0 the limit cycle bifurcates for d−mt > 0, being then unstable.

Under the common hypotheses of Theorem 2 and Proposition 3, if we
consider for instance the case m− ω2 < 0, then

tc2 =
d

m
<

d

ω2
= tc1 < 0,
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so that there exists ε > 0 such that one stable limit cycle appears for tc2 <
t < tc2 + ε and also for tc1 − ε < t < tc1, this time being of great amplitude.
The situation is the opposite when m− ω2 > 0, for then

tc1 =
d

ω2
<

d

m
= tc2 < 0,

and so, for some ε > 0 one unstable limit cycle of great amplitude appears
for tc1 < t < tc1 + ε and also for tc2 − ε < t < tc2, this time being of finite
amplitude. It is natural to state the following conjecture, which deserves to
be investigated, surely requiring different techniques to the ones developed
in this paper.

Conjecture 3. System (45)-(46) with 0 < m #= ω2 and d < 0 has at least
one limit cycle for all the values of t between tc1 and tc2. In particular,
if m < ω2 then for tc2 < t < tc1 one limit cycle exists and it is orbitally
asymptotically stable, while one unstable limit cycle exists for tc1 < t < tc2
when m > ω2.

Proving or disproving the above conjecture will help to characterize the
appearance of additional limit cycles in the 3D piecewise linear version of the
Hopf-pitchfork bifurcation, see [24]. Such study needs additional research
efforts and should be the scope of a future work.

6. Proof of Theorem 2

After applying Lemma 1, we can assume ω = 1 without loss of generality.
To work near the most interesting chart at infinity, we resort again to the
conic projection of Section 1, taking into account that here

AL =




0 −1 0
1 0 −1
0 0 0



 ,

so that a! = (0, 0, 1), corresponding to a left eigenvector of the zero eigen-
value. Thus, the change of variables reduces to

x =
X

W
, y =

Y

W
, z = −

1

W
, (49)
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(0, Y0,W0)

(0, Y1,W1)

Figure 4: The limit cycle (in red, the part with X < 0, in blue for X > 0) bifurcates from
the persistent center at the plane W = 0, which is located in the region X ≤ 0.

where we assume W > 0. Accordingly, we arrive to the differential system

Ẋ = −Y +XW,
Ẏ = 1 +X + YW,
Ẇ = W 2,

(50)

for X < 0, and
Ẋ = tX − Y + dX2 +XW,
Ẏ = 1 +mX + dXY + YW,
Ẇ = dXW +W 2,

(51)

for X > 0. In the invariant plane W = 0 corresponding to the manifold at
infinity, it is easy to see now that for system (50) we have indeed a linear
center at (X, Y,W ) = (−1, 0, 0), which is responsible for a period annulus
tangent to the straight-line X = W = 0 at the origin. This center is clearly
a consequence of the invariant cylinders of system (45), see Figure 4.

To study the possible limit cycle bifurcation from the center at infin-
ity, let us recall the closing equations technique for periodic orbits starting
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with system (50)-(51). Assume that after integrating the orbit starting at
(X, Y,W ) = (0, Y0,W0) with Y0 > 0 and using the left vector field, we come
back to the plane X = 0 at a certain point (X, Y,W ) = (0, Y1,W1) with
Y1 < 0. Thus, we can define the left return map (Y1,W1) = PL(Y0,W0).
Clearly, if we integrate the orbit starting at the point (0, Y1,W1) using now
the right vector field, then, in order to get a periodic orbit, we must return
to the plane X = 0 exactly at the point (X, Y,W ) = (0, Y0,W0).

Solving the differential system (50) by taking as initial condition any point
(0, Y0,W0) in the quadrant of the plane X = 0 with Y0 > 0 and W0 > 0, we
get

X(τ) =
cos τ − (Y0 +W0) sin τ

1− τW0
− 1,

Y (τ) =
sin τ + (Y0 +W0) cos τ −W0

1− τW0
,

W (τ) =
W0

1− τW0
,

(52)

where such expressions are valid for us while X(τ) ≤ 0 and, in particular,
we must require τ < 1/W0. For instance, assume W0 < 1/(2π); if we take
τ = 2π < 1/W0, we see that

X(2π) =
1

1− 2πW0
− 1 > 0,

so that the solution has already become invalid. By continuity, there exists
τL = τL(Y0,W0) < 2π such that X(τ) < 0 for 0 < τ < τL and X(τL) = 0.
Imposing the last equality and defining the deviation time with respect to a
complete tour s = 2π − τL, we solve the first expression in (52) for W0 to
obtain

W0 =
1− cos s− Y0 sin s

2π − s+ sin s
. (53)

Clearly, if we define Y1 = Y (τL) and W1 = w(τL), we see that the orbit with
initial condition (0, Y0,W0) eventually arrives to the point (0, Y1,W1) using
only the half-space X ≤ 0. Substituting the W0 value (53) into the last two
expressions in (52) and using s instead of τL, we get

Y1 =
(2π − s)(Y0 cos s− sin s) + 2(cos s− 1) + Y0 sin s

(2π − s)(cos s+ Y0 sin s) + sin s
, (54)
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and

W1 =
cos s+ Y0 sin s− 1

(2π − s)(cos s+ Y0 sin s) + sin s
, (55)

which give us, along with (53) a parametric representation of the ‘left’ half-
return map in terms of (Y0, s), namely

(Y1,W1) = P̃L(Y0, s) = PL (Y0,W0(Y0, s)) . (56)

Consider now the right system (51). Here, instead of looking for solutions
in closed form, we compute recursively the successive time derivatives for X ,
Y and W , in order to get higher order expansions X(τ), Y (τ) and W (τ)
satisfying the initial conditionsX(0) = 0, Y (0) = Y0 andW (0) = W0. Taking
now the expansion for X(τ) and imposing the return condition X(τ) = 0
backwards in time, we can obtain an expansion of the (negative) flight time
τR in a power series in Y0 with coefficients depending on (t,m, d,W0), namely

τR = −2Y0 +
2

3
(t+ 2W0)Y

2
0 +

2

9
(3m− 2t2 − 5tW0 − 8W 2

0 )Y
3
0 +

+
2

135
(27d− 54mt+ 22t3 − 108mW0 + 78t2W0 + 150tW 2

0 + 200W 3
0 )Y

4
0

+ · · ·

(57)

Such an expression and other similar expansions in the sequel have been
obtained thanks to the software Mathematica [23].

After substituting the expression for τR into the expansions for Y (τ) and
W (τ), we get expansions for the inverse of the right Poincaré map (Y1,W1) =
P−1
R (Y0,W0), in terms of (Y0,W0) with coefficients depending on (t,m, d),

namely

Y1 = −Y0 +
2

3
(t+ 2W0)Y

2
0 −

4

9
(t2 + 4tW0 + 7W 2

0 )Y
3
0 +

+
2

135
(27d− 9mt+ 22t3 − 18mW0 + 123t2W0 + 375tW 2

0 + 560W 3
0 )Y

4
0 +

+ · · · , (58)
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and

W1 = W0 − 2W 2
0 Y0 +

2

3
(tW 2

0 + 8W 3
0 )Y

2
0 −

−
2

9
(3dW0 − 3mW 2

0 + 2t2W 2
0 + 17tW 3

0 + 68W 4
0 )Y

3
0 + · · · .

(59)

Note that the invisible tangency along the W -axis assures here the property
P−1
R (0,W0) = (0,W0), while the invariant character of the plane W = 0

implies that P−1
R (Y0, 0) = (Y1, 0).

Using (53), we can get the parametric representation of P−1
R , namely

(Y1,W1) = P̃−1
R (Y0, s) = P−1

R (Y0,W0(Y0, s)) . (60)

From (56) and (60), we can write the closing equations in terms of Y0 and s,
that is

P̃L(Y0, s) = P̃−1
R (Y0, s); (61)

their solutions with Y0 > 0, s > 0 correspond with periodic orbits of the
whole system.

We start by considering the first equation in (61), and by implicit function
theory it is possible to solve for s, getting the expansion

s = 2Y0−
2t

3
Y 2
0 −

2

9
(3−2t2)Y 3

0 +
2

135
(45t−22t3+9mt−27d)Y 4

0 +O(Y 5
0 ). (62)

Proceeding as prescribed by the Lyapunov-Schmidt procedure, we substitute
such expansion in the second equation of (61), to obtain, after a surprising
cancellation of all the terms up to Y 5

0 , the bifurcation equation

0 = t(d− t)Y 6
0 − 2t(d− t)Y 7

0 +
(d− t)ϕ+ 6d2(1−m)

15
Y 8
0 +O(Y 9

0 ), (63)

with ϕ = 3d + 6md − 30t − 6mt + 43t3. Here, we select the trace t as the
main bifurcation parameter. By direct inspection of the coefficients in (63),
we detect two critical values for t, namely tc = 0, and tc = d. In both cases,
the first two terms vanish and the third one is different from zero, provided
that d #= 0 and m #= 1.

To detect possible bifurcating periodic orbits, we should consider first the
critical value tc = 0. However, in such a case the bifurcating periodic orbit
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belongs to the plane W = 0. We do not consider this bifurcation any more
because the new limit cycle remains at infinity, so that it cannot be observed
in practice.

Regarding the possible bifurcation of periodic orbits in the case of the
critical value tc = d, we solve (63) in a neighborhood of such critical value,
obtaining

t = d−
2d(m− 1)

5
Y 2
0 +

d(m− 1)(4πd+ 5)

15π
Y 3
0 −

−
d(m− 1)(175d+ 104πd2 − 138πm)

525π
Y 4
0 −

−
d(m− 1)(490d2 − 525m+ 420dπ + 248d3π − 804dmπ)

1575π
Y 5
0 −

−
d(m− 1)C1(t,m, d)

70875π2
Y 6
0 +O(Y 7

0 ),

(64)

where

C1(t,m, d) = 7875− 7875m+ 42525dπ + 20300d3π − 59850dmπ +

+ 36552d2π2 + 9256d4π2 − 50856d2mπ2 + 14094m2π2.

Substituting this expression in (62) we get

s = 2Y0 −
2d

3
Y 2
0 −

2(3− 2d2)

9
Y 3
0 +

2d(27m− 22d2)

135
Y 4
0 +

+
2(135d− 45md+ 81π + 90πd2 + 52πd4 − 162πmd2)

405π
Y 5
0 −

−
2dC2(t,m, d)

14175π
Y 6
0 +O(Y 7

0 )

(65)

where

C2(t,m, d) = 9450d− 3675md+5828πd2+1500πd4− 8028πmd2 +2025πm2.

Now, if we translate this expression to (53) and (55) we get

W0 = −
d

3π
Y 3
0 +

d2

3π
Y 4
0 +

d(9m− 14d2)

45π
Y 5
0 +

+
d(45− 45m+ 90πd− 216πmd+ 116πd3)

405π2
Y 6
0 +O(Y 7

0 ),

(66)
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and a very similar expression for W1 (in fact, the first different term appears
in the sixth degree coefficient)

W1 = −
d

3π
Y 3
0 +

d2

3π
Y 4
0 +

d(9m− 14d2)

45π
Y 5
0 +

+
d(45− 45m+ 180πd− 216πmd+ 116πd3)

405π2
Y 6
0 +O(Y 7

0 ).

(67)

Thus, recalling that d < 0, these positive values for W0 and W1 indicate
that a periodic orbit, not contained in the plane W = 0, bifurcates at the
critical value tc = d. From (64) we see that the bifurcation takes place when
sign(t− d) = sign(m− 1)

To check the stability of this periodic orbit, we resort to the following
lemma, useful for PWL systems with two zones separated by the plane x = 0.

Lemma 3. Assume that τL, τR denote the flight times for a periodic orbit of
system (1)-(2), with (0, y0, z0) and (0, y1, z1) as their intersection points with
the plane x = 0, so that PL(y0, z0) = (y1, z1) and PR(y1, z1) = (y0, z0). The
following statement holds.

The derivative DP of the return map P = PR ◦ PL, when evaluated at
the fixed point (y0, z0), shares its two eigenvalues with the product of matrix
exponentials B = exp(ALτL) · exp(ARτR), for which the third eigenvalue is
always the unity.

Proof. See Proposition 3 in [6]

To apply the above lemma we first write the expression for τR, after
substituting in (57) the expression (64) for t and (66) for W0, taking into
account that we need to use PR instead of P−1

R (that is, the time τR now
stands for a positive forward time. Thus, we get

τR = 2Y0 −
2d

3
Y 2
0 +

2

9
(2d2 − 3m)Y 3

0 −
2d(45 + 22d2 − 72m)

135
Y 4
0 +

+
2(135d− 45md+ 216πd2 + 52πd4 − 288πmd2 + 81πm2)

405π
Y 5
0 −

− 2d

(
d(18− 7m)

27π
+

20d4

189
+

m(71m− 56)

105
+

8d2(1236− 1511m)

14175

)
Y 6
0 +

+ O(Y 7
0 ).

(68)
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To avoid the eigenvalue computations of Lemma 3, we just determine the
expansions in powers of Y0 for the trace and determinant of the involved
product of matrix exponentials, where τL = 2π − s, with s given in (65) and
τR in (68). We obtain

trace(B) = 3 + 2dY0 +
4d2

3
Y 2
0 +

2d(18 + 10d2 − 33m)

45
Y 3
0 +

+
2d(−45 + 45m+ 9πd+ 8πd3 − 72πdm)

135π
Y 4
0 +

+ 2d

(
d(m+ 1)

9π
+m

313m− 104(2 + d2)

525
+ d2

140d2 − 342

14175

)
Y 5
0 +

+
2dCtrace(B)

14175π
Y 6
0 +O(Y 7

0 ),

(69)

with

Ctrace(B) = −735d2 + 6300m+ 1260d2m− 6300m2 − 5922πd− 384πd3 +

+ 40πd5 + 8964πdm− 776πmd3 + 2178πdm2,

(70)

and

det(B) = 1 + 2dY0 +
4d2

3
Y 2
0 ++

2d(18 + 10d2 − 33m)

45
Y 3
0 +

+
2d(−45 + 45m+ 9πd+ 8πd3 − 72πdm)

135π
Y 4
0 +

+ 2d

(
d(m+ 1)

9π
+m

313m− 104(2 + d2)

525
+ d2

140d2 − 342

14175

)
Y 5
0 +

+
2dCdet(B)

14175π
Y 6
0 +O(Y 7

0 ),

(71)

with

Cdet(B) = −735d2 + 6300m+ 1260d2m− 6300m2 − 3402πd− 384πd3 +

+ 40πd5 + 6444πdm− 776πmd3 + 2178πdm2.

(72)
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Note that all the coeficients in (69) and (71) of degrees one to five coincide,
but

Ctrace(B) − Cdet(B) = 2510πd(m− 1).

The two eigenvalues µ1, µ2 of DP (y0, z0) satisfy the quadratic equation

µ2 − pµ+ q = 0,

where p = µ1 + µ2 = trace(B) − 1 and q = µ1µ2 = det(B). The quadratic
equation has roots within the unit circle of the complex plane if and only if
|q| < 1 and |p| < 1 + q. As d < 0, from (71) we see that the first condition
is fulfilled, and from (69) that p = trace(B) − 1 ∈ (2, 3), for Y0 > 0 and
suffciently small. We conclude that the bifurcating periodic orbit will be
stable if

p− q − 1 < 0.

In our case, we get

p− q − 1 = trace(B)− det(B)− 2 =
16d2(m− 1)

45
Y 6
0 +O(Y 7

0 ), (73)

so that the bifurcating periodic orbit will be stable if m < 1. From (64),
then t− d < 0, and for Y0 > 0 sufficiently small, we see that the stable case
leads to t − d < 0. Otherwise, if m > 1, the unstable bifurcating periodic
orbit appears for t− d > 0.

The theorem is completely shown, by resorting to the change of variables
and parameters of Lemma 1.
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