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Abstract Colored graphs have been used in many areas of technological re-
search such as computer science, multiprocessor systems, network topology,
etc .... Normally, the term colored graph is used in a graph where its nodes
have been colored. However, we work with edge colored graphs, where the ones
that have been colored are the edges.

The main aim of this paper is to determine a way based on cooperative
game theory to measure the importance of the nodes in a network using edge
colored graphs.

Keywords Edge colored graphs · Game theory · Myerson value.

1 Introduction

The theory of graphs had its beginning in the problem of the bridges of Königsberg

which was solved by Leonard Euler in 1736. Later, Gustav Kirchho↵ used it
to analyze the electrical networks and that he published in his famous laws in
1874. Other applications have been found in later years in fields like topology,
chemistry, etc.

Graph coloring are born as the tool used by F. Guthrie for the coloring
of maps. From here it derives the conjecture of the four colors. There are
other problems related to graph coloring as the problem of chromatic number
or allocation of records in compilers. They are also used, among many other
applications, to manage the resources used by computer programs, for the
design and management of databases and for network topology.

We deal with edge colored graphs where each color expresses the nature of
the relations. Our aim in this paper is to introduce a new problem that consists
in measuring the importance of a node in an edge colored graph according to
the position that he has on the graph. We apply the concepts of cooperative
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game theory to construct a value (function) to measure this importance. Then
we apply this measure, as an application, to an example of multiprocessor
tasks. However, there are other examples that could be studied as the following.

1. Aircraft Scheduling. Suppose that we have m planes, and we have to assign
them to m flights, where the k-th flight is during the time interval Ik. Here
two nodes will be connected if the time intervals overlap. The idea is to
create an interval graph that is colored in a polynomial time and decide
which flight is most important at that time. [?,?,?]

2. Map Coloring and GSM Mobile Phone Networks. Consider a mobile phone
network that operates with p frequencies. This network is divided into
hexagonal zones where each zone has a communications tower. In turn,
mobile phones connect to the areas in its environment to communicate.
The colors are assigned by zones, a color per emission frequency, where two
zones are communicated if they emit in the same frequency. It is intended
to know which area is more important, at the communications level, at
any given time. [?,?,?,?,?]. Can we give an order of importance to these
cellular regions?

3. Art Gallery Problem. Imagine that we went into an art gallery. If we observe
it well we see that its walls, full of important pictures, are monitored by a
camera systems. These systems may be parallel or alternate circuits. That
is, several camera systems that operate simultaneously in case one or more
of the circuits fails. Our goal is to try to give a measure of the importance
to the positions where the cameras are placed depending on the ability
to monitor the frames when any of the systems fail and their surveillance
range. To achieve what was said before we will model the problem. We can
see an art gallery as a closed polygon in two dimensions. The nodes of the
polygon will be the points where the cameras will be placed that will also
be the intersection of two walls of the gallery. We say that a camera covers
a wall if all the points of the wall are reachable by the camera through
straight segments. Next we will give colors to each type of camera. We will
say that a wall has a color if there is a camera of that color that covers it.
As the walls of the gallery are represented by the links of the polygon it is
clear then, that the polygon contains colored graphs, as many as types of
colors or there are cameras.

Section 2 contains necessary preliminaries about cooperative games and
communication structures. In section 3 we present an example as motivation
of the kind of problems to solve. Section 4 introduces the value which allow us
to quantify the importance of the nodes, and it is axiomatized in last section.

2 Preliminaries

2.1 Cooperative games.

A cooperative game with transferable utility, game since now, is a pair (N, v)
where N is a finite set of elements and v : 2N ! R is an application such that
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A value for games on colored communication structures. 3

v(;) = 0. The elements of N are named players, the subsets of players are
said coalitions and the application v the characteristic function of the game.
If (N, v) is a game and S ✓ N then (S, vS) is a new game where vS is the
restriction of the characteristic function to 2S . We call �N the set of all games
on N.

A value on �N is a function  which determines for each (N, v) 2 �N a
vector  (N, v) 2 R

N . The vector assigned to each game is usually interpreted
as the payo↵ vector, that is, the allocation of the cooperation profit among all
the players. The Shapley value is the most known value. It is defined for all
game (N, v) 2 �N and each player i 2 N as

�i(N, v) =
X

{S⇢N :i2S}

1

s

✓
n

s

◆�1

[v(S)� v(S \ i)]. (1)

2.2 Communication structures.

Let N be a finite set of players and LN = {{i, j} 2 N ⇥N : i 6= j} the set of
unordered pairs of elements in N . For simplicity, we will denote {i, j} by ij. A
communication structure on N is a graph (N,L) where N is the set of nodes
and L ✓ LN is the set of links. Hence we identify a communication structure,
(N,L), for a fixed set N with the set of links L. If L = ; then we obtain the
graph with only isolated nodes (without links).

A coalition S ✓ N which nodes are connected by the links of L is called
connected. The maximal connected coalitions correspond to the sets of nodes
of the connected components of the graph (N,L) and we denote them as N/L.
This family N/L is actually a partition of N .

Let (N, v) 2 �N a game on N. Let (N,L) a communication structure on N.
If S ✓ N is a coalition then LS = {ij 2 L : i, j 2 S} is a new communication
structure over N using only the links from L between players in S. Myerson [?]
defined a game associate to the communication structure L as (N, vL) where
vL(S) =

P
K2S/LS

v(K) for all S ✓ N. Particularly (S, vLS ) represents the
restriction to S of the game v and the communication structure taking also
only the nodes in S. We will use S/L = S/LS . This game is known as the graph-
game. Note that this game incorporates the information of the communication
structure.

A value for games with communication structures is a mapping over this
family of games obtaining a payo↵ vector for each game with communication
structure. The Myerson value is a value for games with communication struc-
ture based on the Shapley value. Given (N, v, L), Myerson [?] defines its value
as

µ(N, v, L) = � (N, vL) . (2)

where � (N, vL) is the Shapley value for this game. The most interesting prop-
erties of the Myerson value, which axiomatize this value, are e�ciency by
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components, X

i2S

µi(N, v, L) = v(S) 8S 2 N/L, (3)

and fairness, for each ij 2 L we have:

µi(N, v, L)� µi(N, v, L \ {ij}) = µj(N, v, L)� µj(N, v, L \ {ij}). (4)

Here, L \ {ij} means that we delete the link ij from L.
The Myerson value is also decomposable in the sense that if i 2 S 2 N/L

then
µi(N, v, L) = µi(S, v, LS). (5)

3 An application to multiprocessor allocation systems.

A distributed computer system consists of a set of processors that work to-
gether to perform a task and communicate through links present in the system.
A distributed program assigns the work to processors using modules. The re-
sults are sent through the links between the processors in order to execute
the program. Each processor can only perform one task at a time. There are
usually several times of execution if a processor has to perform more than one
task.

A failure in the system means that the program does not receive infor-
mation from a processor in any of the times of execution. The program may
work partially if one processor gives information about some tasks and fails on
others. We will illustrate with this example the idea of giving di↵erent levels
of importance to processors (nodes) depending on the level of connection of
these graphs.

Let’s suppose that the system has four processors and three execution
times. In the first time the processors one, two and four communicate results.
At time two processors one, three and four communicate results and the third
time those who communicate are the processors two and three. Once all the
execution times are finished the program checks all the processors that have
worked to gather information. If any processor had not communicated in time
the program does not work at least at full capacity, being able to fail. For
example, if the one and two runtime communications failed, processors one
and four would not have been able to give information to the program and
it would not have been executed. We will name this color graph 1-connected.
That is to say, any communication can be dropped since the other two allow
the access of information by the program to all the processors. In this case the
program would work although it would collect less information of the nodes
but is functioning will be limited.

In general, we need information to reach all processors so that they can
work. If a processor does not receive the information, the system does not work.
The graph that joins the processors is actually the sum of a set of graphs that
generate the color graph. This aggregated graph changes if we eliminate any
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A value for games on colored communication structures. 5

color. The important goal in the example is to keep the connection between
the four processors to be sure that all the information reaches them, no matter
the channel (color). In this example, the connection is also maintained when
any color drops. However it does not keep falling down two. That’s why we
say 1-connected. The probability distribution then acts on that no �(0) system
falls or that 1, �(1) falls. These must add one because if the system works only
these situations can appear. In order to explain our idea we will give the same
color to the links that join the processors involved in each time. For example,
red to those of time one, blue to those of time two and green to those of time
three. This can be seen in the figures below.
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6

Now, we will explain the strategy to evaluate the importance of each po-
sition. Suppose that we have a probability distribution, {�(0), �(1)} two no
negative numbers with �(0) + �(1) = 1, which indicates the probability that
in any execution time there are no failures or that there are failures in any one
runtime. We will also assume that we have a characteristic function v : 2N ! R

on the subsets of the positions of the nodes where N = {1, 2, 3, 4}. The worth
v(S) means the quantification of the profit obtained with the information of
the nodes in S without losses of the program. Let M be the set of colored
graphs. In our case M = {r, b, g} and we denote their corresponding graphs as
L = {Lr, Lb, Lg}. We will need to define a an operation of sum of graphs. If
two graphs or more share in a determined link this link is reflected as a multi-
link with as many levels of colors as graphs coincide in it. Once the operation
is applied we get seven new graphs {Lr, Lb, Lg, Lrb, Lrg, Lbg, Lrbg}. In order
to define our measure we consider these graphs as monochrome. The graphs
{Lrb, Lrg, Lbg} are shown in figure below.

We are now able to define the value that we will associate to each processor.
This value can be interpreted as a measure of the importance of the node in
the graph. We define the value as

⌘i(N, v,L, 1,�) =
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A value for games on colored communication structures. 7

�(0)µi(N, v, Lrbg) + �(1)[µi(N, v, Lrb) + µi(N, v, Lrg) + µi(N, v, Lbg)]

�(0)
�3
0

�
+ �(1)

�3
1

�

where µi(N, v, L⇤) is the Myerson value for i on the monochrome graph L⇤

and 1
�(0)(30)+�(1)(31)

is the probability that deleting any set of colors the sum of

the remaining colors is connected.

We define the value in the previous way because the value of Myerson is
a fair and e�cient value on graphs. Thus the processor is taken into account
in all possible situations that can occur regarding the fail or not of a system
weighted by the probability corresponding to that situation. The sum of the
importance of a processor in all situations allows us to give a total measure of
the importance of that processor to keep the program in good working order.

4 Games on colored communication structures

In this section we will approach our problem in a general way. To do this we
will first introduce a series of tools that will be useful to solve it.

A edge colored graph (by links) over N is a finite set L = {L1, ...., Lm} of
graphs over N . we identify each graph Lk with a color, the color k. We will
call M = {1, ...,m} the palette of the edge colored graph.

If A ✓ M we define LA as LA = {Lp}p2A, namely a new egde colored
graph that is built by reducing the general palette M to set A. We denote as

LA =
[

p2A

Lp

the sum of all the graphs painted with colors in A. We can consider it as
another graph with a new color A.

We say that a colored graph L is k-connected if deleting the links of any
k colors of the palette, the sum of the remaining n� k edge colored graphs is
connected, and if we delete k + 1 colors the sum of the remaining n � k � 1
edge colored graphs is not connected. Hence, if L is k-connected then k is
the maximum number of colors that we can delete of the palette so that the
sum of all remaining edge colored graphs remains connected. Particularly L
is 0-connected if LM is connected but LM\{p} is not connected for all p 2 M .
Number k is named connection level of L.

In order to describe our problem we select a set of nodes N . We have a
game over N with a characteristic function v establishing the worth of each
group of agents. A colored graph L over N represents di↵erent systems of
communication which sum guarantees the connection although certain number
k (the connection level). Finally we have a decreasing probability distribution
� over {0, 1, ..., k}, i.e. with �(0) � �(1) � · · · � �(k) shows the robustness of
the system. Obviously we suppose �(r) = 0 or negligible for all r > k.

Definition 1 A game on a colored communication structure is a quintet
(N, v,L, k,�) where (N, v) is a game, L = {L1, ..., Lm} is a colored graph
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8

such that there exists k 2 {0, ...,m � 1} with L k-connected and � is a de-
creasing probability distribution over {0, ..., k}. We denote as ⌥ the family of
games on a colored communication structure.

We define a Myerson value over ⌥ , following our proposition for the multipro-
cessor allocation system problem. A value for games on a colored communica-
tion structure is a mapping over ⌥ obtaining a payo↵ vector for the agents in
N for each (N, v,L, k,�) 2 ⌥ .

Definition 2 Let (N, v,L, k,�) 2 ⌥ be a game on a colored communication
structure. The colored Myerson value is defined for each player i as

⌘i(N, v,L, k,�) = 1

C(m, k,�)

kX

r=0

�(r)
X

{A⇢M,|A|=r}

µi(N, v, LM\A), (6)

where C(m, k,�) =
Pk

r=0 �(r)
�m
r

�
.

Next, we compute the Myerson colored value of the multiprocessor allocation
system problem exposed in section 3.

Example. We take the game v as

v(S) =

⇢
|S| if |S| > 1
0 if |S| = 1

where |S| is the cardinality of set S. Suppose then that the interest of the
processor only depends on the position. As distribution of probability we take
�(0) = 0.9 and �(1) = 0.1. We will detail the value assigned to processor 1 for
the graph Lrbg. The rest will be placed in the table 1.

�1(N, vLrbg ) =

✓
4

1

◆�1

[vLrgb(1)� vLrgb(;)]+

1

2

✓
4

2

◆�1

[vLrgb(12)� vLrgb(2) + vLrgb(13)� vLrgb(3) + vLrgb(14)� vLrgb(4)]+

1

3

✓
4

3

◆�1

[vLrgb(123)�vLrgb(23)+vLrgb(134)�vLrgb(34)+vLrgb(124)�vLrgb(24)]+

1

4

✓
4

4

◆�1

[vLrgb(1234)� vLrgb(234)] =

1

12
6 +

1

12
3 +

1

4
1 = 1

Now, we can compute the colored Myerson value for all the processors.
First, note that, in this case,

Pk
r=0 �(r)

�m
r

�
= 1.2. Then

⌘1(N, v,L, 1,�) = (0.9 + 0.1[36/12])/1.2 = 1

⌘2(N, v,L, 1,�) = (0.9 + 0.1[5/6 + 19/12 + 11/12])/1.2 = 37/36

⌘3(N, v,L, 1,�) = (0.9 + 0.1[5/6 + 7/12 + 19/12])/1.2 = 1

⌘4(N, v,L, 1,�) = (0.9 + 0.1[7/6 + 7/12 + 11/12])/1.2 = 35/36
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A value for games on colored communication structures. 9

A �(N, vLA ) A �(N, vLA )
{r, b, g} (1, 1, 1, 1) {r, b} (7/6, 5/6, 5/6, 7/6)
{r, g} (11/12, 19/12, 7/12, 11/12) {b, g} (11/12, 11/12, 19/12, 7/12)

Table 1 The Myerson value in the example

5 An axiomatization of the colored Myerson value

In this section we explain several interesting properties satisfied by our value.
We will finish the section showing that these properties allow us to axiomatize
the value. Let ⌅ be any value over ⌥ in all the section.

At least our graph is 0-connected, thus it is connected. We propose then
that the payo↵ vector obtained by ⌅ be an allocation of the worth of the great
coalition.

E�ciency. We say that ⌅ is e�cient if for all game on a colored communi-
cation structure (N, v,L, k,�) 2 ⌥, it holds

X

i2N

⌅i(N, v,L, k,�) = v(N).

Fairness, see section 2, is one of the most important properties of the My-
erson value. In the classical case we have a (N, v, L) game with communication
structure L where L is connected. We can translate this situation to our lan-
guage of k-colors in the following way, L = {L}, k = 0 and �(0) = 1. We
denote the subfamily of this kind of problems as ⌥1.

1-Fairness. For all (N, v, L) 2 ⌥1 it holds that for all ij 2 L,

⌅i(N, v, L)� ⌅i(Si, v, LSi) = ⌅j(N, v, L)� ⌅j(Sj , v, LSj )

where Si, Sj are the connected components in L \ {ij} containing i, j respec-
tively.

These properties are minor modifications that also satisfies the Myerson
value.

Proposition 1 The colored Myerson value satisfied e�ciency and 1-fairness.

Proof First we prove e�ciency. Let (N, v,L, k,�) 2 ⌥ . Suppose L = {L1, ..., Lm}
with M = {1, ...,m} and 0  k  m � 1. Observe that for each A ⇢ M with
|A|  k we have that LM\A is connected, and then, as the Myerson value is
e�cient by components,

X

i2N

µi(N, v, LM\A) = v(N).

We get

X

i2N

⌘i(N, v,L, k,�) =
X

i2N

Pk
r=0 �(r)

hP
{A⇢M,|A|=r} µi(N, v, LM\A)

i

Pk
r=0 �(r)

�m
r

�
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=

Pk
r=0 �(r)

P
{A⇢M,|A|=r}

⇥P
i2N µi(N, v, LM\A)

⇤

Pk
r=0 �(r)

�m
r

�

= v(N)

Pk
r=0 �(r)

�m
r

�
Pk

r=0 �(r)
�m
r

� = v(N)

Note that the cardinality of {A ⇢ M, |A| = r} is exactly the number
�m
r

�
.

If (N, v, L) 2 ⌥1 then by definition ⌅(N, v, L) = µ(N, v, L). Graph L is
connected but L\{ij}may not be. Suppose Si, Sj 2 N/(L\{ij}) the connected
components containing i, j respectively. If L \ {ij} is connected then Si = Sj .
We use fairness and decomposability of the Myerson value, see section 2, to
get

⌘i(N, v, L)� ⌘j(N, v, L) = µi(N, v, L)� µj(N, v, L)

= µi(N, v, L \ {ij})� µj(N, v, L \ {ij})
= µi(Si, v, LSi)� µj(Sj , v, LSj )

= ⌘i(Si, v, LSi)� ⌘j(Sj , v, LSj ).

But we need more properties to characterize the colored Myerson value.
Before stating them we introduce some concepts. Next property is only valid
for a connection level less than m�1. It shows how to establish the importance
of a position with respect to a color. To be able to enunciate it we define before
two sets of graphs from a prefixed color.

Definition 3 Let L = {L1, ..., Lm} be a colored graph and M = {1, ...,m}.
If q 2 M then the contraction of L to q is the colored graph

L+q = {Lrq : r 2 M \ q}.

The deletion of q in L is the colored graph

L�q = LM\q = L \ {Lq}.

Both, contraction and deletion have one color less than the original. Notice
that the connection level of both, contraction and deletion, is one less than
the original colored graph. Suppose now a game with a colored communication
structure (N, v,L, k,�) 2 ⌥ with palette M = {1, ...,m} and k < m � 1. We
modified the structure for the new palette. So, we consider

(N, v,L+q, k � 1,�+q)

where �+q(r) = �(r)
1��(k) for all r 2 {0, ..., k�1}. On the other hand the deletion

has as connection level one less than the original. Associated to the deletion
L�q, we take

(N, v,L�q, k � 1,��q)

where ��q(r) = �(r+1)
1��(0) for r 2 {0, ..., k � 1}. Note that �+q and ��q are

probability distributions.
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A value for games on colored communication structures. 11

Contraction-deletion. We say that ⌅ satisfies contraction-deletion if for all
(N, v,L, k,�) 2 ⌥ with palette M = {1, ...,m} and k < m�1 it holds for each
color q 2 M that

⌘(N, v,L, k,�) = C+q⌘(N, v,L+q, k � 1,�+q) + C�q⌘(N, v,L�q, k � 1,��q).

where C+q = (1� �(k))C(m�1,k�1,�+q)
C(m,k,�) and C�q = (1� �(0))C(m�1,k�1,��q)

C(m,k,�)

Proposition 2 The colored Myerson value satisfies contraction-deletion.

Proof Let (N, v,L, k,�) be a game on a colored communication structure with
L = {L1, ..., Lm} and k < m� 1. Then, fixed a color q 2 M,

⌘i(N, v,L, k,�) =

Pk
r=1 �(r)

hP
{A⇢M,|A|=r,q2A} µi(N, v, LM\A)

i

C(m, k,�)

+

Pk�1
r=0 �(r)

hP
{A⇢M,|A|=r,q /2A} µi(N, v, LM\A)

i

C(m, k,�)
.

We multiply and divide by (1 � �(k)) the first term and by (1 � �(0)) the
second one. Notice that we can identify each A ✓ M \ {q} with the same set

of colors A but in the palette of L+q. Moreover �+q(|A|) = �(|A|)
(1��(k)) for these

sets. Each A ✓ M with q 2 A is identified to A \ {q} subset in the palette of

the contraction. Furthermore ��q(|A| � 1) = �(|A|)
(1��(0)) . Then, we can rewrite

the above expression as

⌘i(N, v,L, k,�) =
k�1X

r=0

�+q(r)(1� �(k))

C(m, k,�)

2

4
X

{A⇢M\{q},|A|=r}

µi(N, v, LM\A [ Lq)

3

5

+
k�1X

r=0

��q(r)(1� �(0))

C(m, k,�)

2

4
X

{A⇢M,|A|=r,q2A}

µi(N, v, LM\A)

3

5 =

We multiply and divide the first term by C(m� 1, k� 1,�+q) and the second
one by C(m� 1, k � 1,��q)

(1 � �(k))C(m � 1, k � 1,�+q)

C(m, k,�)

k�1X

r=0

�+q(r)

C(m � 1, k � 1,�+q)

"
X

{A⇢M\{q},|A|=r}

µi(N, v, LM\A [ Lq)

#
+

(1 � �(0))C(m � 1, k � 1,��q)

C(m, k,�)

k�1X

r=0

��q(r)

C(m � 1, k � 1,��q)

"
X

{A⇢M,|A|=r,q2A}

µi(N, v, LM\A)

#
=

C+q⌘(N, v,L+q, k � 1,�+q) + C�q⌘(N, v,L�q, k � 1,��q)
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The following axiom is related to the case where the degree of connection
is k = m� 1. This case is not included in the previous axiom.

Reduction Let ⌅ be a value on ⌥ Then for all (N, v,L, k,�) 2 ⌥ it holds

C(m,m� 1,�)⌅(N, v,L,m� 1,�) =

= C(m,m�2, �̃)(1��(m�1))⌅(N, v,L,m�2, �̃)+�(m�1)
X

k=1,...,m

⌅(N, v, Lk)

where �̃k = �(k)
1��(m�1) and (N, v, Lk) 2 ⌥1. The reader can test that �̃ is a

probability distribution.

Proposition 3 Our value satisfies the reduction axiom.

Proof Notice that, fixed (N, v,L, k,�) 2 ⌥ we can decompose our value as:

1

C(m,m� 1,�)

m�1X

r=0

�(r)
X

{A⇢M,|A|=r}

µi(N, v, LM\A) =

1

C(m,m� 1,�)

m�2X

r=0

�(r)
X

{A⇢M,|A|=r}

µi(N, v, LM\A)+

+
�(m� 1)

C(m,m� 1,�)

X

{A⇢M,|A|=m�1}

µi(N, v, , LM\A) =

=
1

C(m,m� 1,�)

m�2X

r=0

p(r)
X

{A⇢M,|A|=r}

µi(N, v, LM\A)+

+
�(m� 1)

C(m,m� 1,�)

mX

k=1

⌘i(N, v, Lk, 0, 1).

because we have m choices of m� 1 colored graphs and LM\A reduces to only

one color. We define �̃(k) = �(k)
1��(m�1) as a new probability distribution when

the level of connection is m� 2. For this we can write

1

C(m,m� 1,�)

m�1X

r=0

�(r)
X

{A⇢M,|A|=r}

µi(N, v, LM\A) =

(1� �(m� 1))C(m,m� 2, �̃)

C(m,m� 1,�)

Pm�2
r=0 �̃(r)

P
{A⇢M,|A|=r} µi(N, v, LM\A)

C(m,m� 2, �̃)
=

(1� �(m� 1))C(m,m� 2, �̃)

C(m,m� 1,�)
⌘i(N, v,m� 2,L, �̃).

Then, by adding the second term we obtain the result

C(m,m� 1,�)⌘(N, v,L,m� 1,�) =

= C(m,m�2, �̃)(1��(m�1))⌘(N, v,L,m�2, �̃)+�(m�1)
X

k=1,...,m

⌘(N, v,Lk, 0, 1).

This proves the proposition.
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A value for games on colored communication structures. 13

Now, we are ready to prove that our value is the only one satisfying the above
axioms.

Theorem 1 There exists a unique value ⌘ on ⌥ such that satisfies e�ciency,

1-fairness, contraction-delection and reduction axioms.

Proof It remains to prove the uniqueness of the value. Let ⌅ be another value
on ⌥ ), that satisfies the four axioms. First notice that as both values satisfies
e�ciency and 1-fairness then for all (N, v,L, 0, 1) 2 ⌥, where L is a single
color, it holds

⌅(N, v,L, 0, 1) = µ(N, v, L) = ⌘(N, v,L, 0, 1)

because the unique value that satisfies these axioms is the Myerson value.
Suppose the uniqueness on ⌥ for all k  m0 � 1 and m0  m� 1. Let m0 = m,
k = m � 1 and (N, v,L, k,�) 2 ⌥. By the axiom of reduction we can express
the value as

C(m,m� 1,�)⌅(N, v,L,m� 1,�) =

= C(m,m� 2, �̃)(1� �(m� 1))⌅(N, v,L,m� 2, �̃)+

+�(m� 1)
X

k=1,...,m

⌅(N, v,Lk, 0, 1) =

= C(m,m� 2, �̃)(1� �(m� 1))⌅(N, v,L,m� 2, �̃)+

+�(m� 1)
X

k=1,...,m

⌘(N, v,Lk, 0, 1)

by the induction hypothesis.

Now we apply the contraction-delection axiom to

⌅(N, v,L,m� 2, �̃)

because k = m� 2 obtaining

C(m,m� 2, �̃)(1� �(m� 1))⌅(N, v,L,m� 2, �̃) =

= C(m,m� 2, �̃)(1� �(m� 1))[C+q⌅(N, v,L+q, k � 1,�+q)+

C�q⌅(N, v,L�q, k � 1,��q)]

Applying successively the contraction-delection axiom we come to a situa-
tion where m = 1 and k is 0. As both values satisfiy 1-fairness and e�ciency
we obtain the result.
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