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Dpto. Matemática Aplicada II. Escuela Técnica Superior de Ingenieros. Universidad de
Sevilla. Spain

ARTICLE HISTORY

Compiled November 24, 2017

ABSTRACT
A cooperative game for a set of agents establishes a fair allocation of the profit
obtained for their cooperation. In order to obtain this allocation a characteristic
function is known. It establishes the profit of each coalition of agents if this coali-
tion decides to act alone. Originally players are considered symmetric and then the
allocation only depends on the characteristic function, this paper is about cooper-
ative games with an asymmetric set of agents. We introduced cooperative games
with a soft set of agents which explains those parameters determining the asym-
metry among them in the cooperation. Now the characteristic function is defined
not over the coalitions but over the soft coalitions, namely the profit depends not
only on the formed coalition but also on the attributes considered for the players in
the coalition. The best known of the allocation rules for cooperative games is the
Shapley value. We propose a Shapley kind solution for soft games.
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1. Introduction

In a cooperative situation for a finite set of agents (players) with a common utility we
must look for a fair allocation of this profit among them. Nowadays cooperative games
are being used in numerous fields of engineering and artificial intelligence in order to
solve this kind of situations. A cooperative game, see Driessen (1988), is defined by a
characteristic function which establishes the worth of each subset of players (coalition).
Using this information, a payoff vector containing the chosen allocation of the profit is
obtained. A value for cooperative games is a function determining a payoff vector for
each cooperative game. The most known value is the Shapley value (Shapley 1953).
But there are a lot of values more in the literature and, in order to decide which is
the most appropriate for our situation each value is provided with a set of reasonable
conditions (axioms).

Originally, the characteristic function is the only information about the players that
we use to formulate a value, and then players are considered symmetric in their actions
and relations. But in real life cooperative situations are more complex. Any additional
information about the players must change the formulation of the values. So, sev-
eral works in recent year have developed different versions of cooperative games with
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additional information about the players: coalition structures (Aumann and Dreze
1974), a priori unions (Owen 1977), communication structures (Myerson 1977), con-
ference structures (Myerson 1980), permission structures (Gilles et al. 1992), fuzzy
communication structures (Jiménez-Losada et al. 2010), fuzzy authorization struc-
tures (Gallardo et al. 2015), proximity relations (Fernández et al. 2016), fuzzy settings
(Borkotokey and Mesiar 2013) or fuzzy restrictions (Gallardo et al. 2017). Some of
these studies evidenced the importance of the structures of sets in the analysis of the
restrictions or modifications in the game. So several known set systems were used in
this sense: convex geometries (Bilbao and Edelman 2000), antimatroids (Algaba et al.
2004) or matroids (Bilbao et al. 2001). Also, new particular partial ordered sets have
been introduced to describe determined situations: augmenting and decreasing systems
(Ordóñez and Jiménez-Losada 2017) or embedded coalition structures (Alonso-Meijide
et al. 2017).

In this paper we introduce a new model to study asymmetric problems in cooperative
games. Molodtsov (1999) initiated the concept of soft set theory as a new mathematical
tool. He also proposed the application of soft sets to game theory defining soft games
but in normal form. During the last years a lot of papers about soft sets and operations
have been published (Maji et al. 2003; Yang 2008; Ali et al. 2009; Ge and Yang 2011;
Sezgin and Atag 2011; Zhu and Wen 2013). We propose an application of soft sets
to describe coalitions with information about the distribution of the tasks among the
agents. The asymmetry properties among the players in a cooperative game are the
parameters to define a soft set of players. We consider then a characteristic function
over the soft subsets of players, the soft coalitions. The meaning of this worth for a soft
coalition is the profit obtained for the coalition depending on the parameters satisfied
by the players in the coalition.

The next section is dedicated to the preliminaries about cooperative games and soft
sets. In section 3 we introduce soft coalitions and we analyze the structure of a soft
coalition system for a game. Soft cooperative games are defined in section 4. Section
5 shows a version of Shapley value for soft cooperative games. Finally in section 6 we
provide this Shapley solution with an axiomatization.

2. Preliminaries

2.1. Posets

A finite poset (partial ordered set) is a pair (K,<) where K is a finite set and < is a
partial order relation over K. The bottoms of the poset are the minimal elements in
the order and the tops are the maximal ones. Let x, y ∈ K with x < y in the poset
(K,<). The interval [x, y] is

[x, y] = {z ∈ K : x ≤ z ≤ y}. (1)

We say y covers x if x < y and [x, y] = {x, y}. The Hasse diagram of the poset is the
graph whose vertices are the elements in K, whose links are the cover relations (we
have a link between two elements if one of them covers the other one) and if x < y
then y is drawn above x. A (maximal saturated) chain in the poset is a sequence of
elements {x1, . . . , xp} in K such that x1 is a bottom, xp is a top and xk covers xk−1

for all k = 2, . . . , p. Namely, a chain is a line in the Hasse diagram from a bottom to
a top. A poset is named graded if all the chains have the same number of elements.
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The power set of K is the family of subsets of K and it is denoted by 2K . The poset
(2K ,⊂) using the inclusion of sets as order is a boolean algebra.

2.2. Cooperative games

We follow Driessen (1988) for this section. A cooperative game with transferable utility
(game) is a pair (N, v) where N is a finite set and v : 2N → R is a real function over the
power set of N with v (∅) = 0. The empty set is actually a degenerate idea of coalition
and it is included only as a technical instrument. The elements of N = {1, 2, ..., n} are
called players, the subsets S ⊆ N coalitions and v (S) is the worth of S. We suppose
fixed the set of players N in all the paper and then we identify the game (N, v) with
the characteristic function v. The family of games with N as set of players is denoted
as GN . Let v ∈ GN . Game v is superadditive if for two disjoint coalitions S, T ⊆ N ,
S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ). If we interpret the worths in the characteristic
function v as benefits then the above condition implies an incentive to cooperate. The
marginal contribution of player i in v for coalition S not containing i is the number
v(S ∪{i})− v(S). A player i ∈ N is a null player in v if all her marginal contributions
are zero, i.e v(S ∪{i}) = v(S) for all S ( N \ {i}. Two players i, j ∈ N are symmetric
in v if their marginal contributions to coalitions not containing both are equal, i.e
v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.

A payoff vector for a game v ∈ GN is any x ∈ RN where, for each player i ∈ N ,
number xi represents the payment of i owing to his cooperation possibilities. Given x a
payoff vector and S a coalition, we use the notation x(S) =

∑
i∈S xi. An imputation for

the game v is an efficient payoff vector satisfying the individual rationality principle,
x(N) = v(N) and xi ≥ v({i}) for all player i ∈ N . A value for cooperative games over
N is a function ψ : GN → RN which assigns to each game v ∈ GN a payoff vector
ψ(v) ∈ RN . The element to measure the contribution of a player i in a coalition S
with i /∈ S for a game v is the marginal contribution given by v(S ∪ {i})− v(S). The
Shapley value (Shapley 1953) is for each game v ∈ GN and any player i ∈ N

shi (v) =
∑

{S⊆N :i/∈S}

γNS [v (S ∪ {i})− v (S)] , (2)

where

γNS =
(n− |S| − 1)!(|S|)!

n!
(3)

is the probability of getting the marginal contribution between S and S ∪ {i} in the
boolean algebra 2N , namely the quotient between the number of chains containing
this link and the total number of chains. If v ∈ GN is superadditive then sh(v) is an
imputation. Formula (2) is the most known of the Shapley value in the sense that it
permits to reduce the calculations only to the marginal contributions. This value is
the only one over GN satisfying the following axioms.
(S1) Efficiency. If v ∈ GN it holds

∑
i∈N shi(v) = v(N).

(S2) Additivity. It is an additive function, that is if v1, v2 ∈ GN we have the equality
sh(v1 + v2) = sh(v1) + sh(v2).
(S3) Null player axiom. If i ∈ N is a null player for the game v then shi(v) = 0.
(S4) Equal treatment axiom. If i, j are symmetric for v then shi(v) = shj(v).
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2.3. Soft sets

We follow Maji et al. (2003) for this subsection. Consider two non-empty finite sets,
one of them U of elements and the another one E of parameters to be issued to the
elements in U .

A soft set over U is a pair (F,A) where A ⊆ E, and F : A → 2U . For each e ∈ A
the set F (e) is named the e-approximation of the soft set. Soft sets are defined in
Molodtsov (1999). The support of (F,A) is

AF = {e ∈ A : F (e) 6= ∅}. (4)

If A ⊆ E then we use (∅, A) as the relative null soft set to A namely ∅(e) = ∅ for every
e ∈ A. The relative whole soft set to A is (U,A) where U(e) = U for each e ∈ A.

Now we consider two different soft sets (F,A) and (G,B). The first soft set is a soft
subset of the second one, (F,A) ⊆ (G,B), if A ⊆ B and F (e) ⊆ G(e) for all e ∈ A.
If B ⊆ A then (F,B) is the soft subset of (F,A) given by the restriction of F to B,
called the restriction of (F,A) to B. The (extended) union of both of the soft sets is
defined as (F,A) ∪ (G,B) = (H,A ∪B)) with

H(e) =

 F (e) ∪G(e), if e ∈ A ∩B
F (e), if e ∈ A \B
G(e), if e ∈ B \A.

The (restricted) intersection of both soft sets when A ∩ B 6= ∅ is (F,A) ∩ (G,B) =
(H,A ∩ B) with H(e) = F (e) ∩ G(e) for all e ∈ A ∩ B. There exist another different
concepts for union and also for intersection, the restricted union and the extended
intersection. This paper can be developed doing the same things but using these other
definitions.

Although the definition of soft set (F,A) seems to suppose that A 6= ∅, we also
consider a technical soft set for the situation without parameters denoted as (∅, ∅).
This new soft set is a soft subset of any soft set in U . Moreover, using (∅, ∅) the
intersection can be introduced also for softs sets with disjoint sets of parameters. Let
(F,A), (G,B) be soft sets, we define (F,A) ∩ (G,B) = (∅, ∅) if A ∩B = ∅.

3. Soft coalition systems.

We consider a fixed finite set of playersN in a cooperative situation and also a universal
set of parameters E which define how the players are organized to carry out the
cooperation: issues, actions or tasks aimed at getting a common profit. If we take a
soft set of N , (F0, A0), we are determining the parameters needed for the cooperation,
A0, and which members of N are able to make it, F0. If e /∈ A0 then players have
decided not to take into account parameter e, for instance if e is a determined task
then it is not made. If e ∈ A0 and F (e) = S 6= ∅ then this parameter is associated to
coalition S, so if e is a task we understand that this task is made by the players in
S. Finally if e ∈ A0 but F (e) = ∅ then we suppose that e is associated to an external
element, the task is made by other figures beyond N . The external elements are not
players because they are out of the game in the sense that their payoffs are fixed.

Definition 3.1. A soft set of players is any soft set (F0, A0) over N with parameters
in E such that A0 6= ∅ and there is at least one e ∈ A0 with F0(e) 6= ∅.
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If a soft set of players is formed, players get the profit of the cooperation and
they pay the externalities. Now they have to allocate the rest of the profit among
them. Coalitions are the instruments of the players to bargain their payoffs. But the
externalities defined in the soft set of players are not negotiable. So the idea of coalition
is not exactly any soft subset of the soft set of players as we could expect1, it must be
a soft subset of the soft set of players but also must accept the externalities already
decided.

Definition 3.2. Let (F0, A0) be a soft set of players over N with parameters in E.
The soft set (F,A) is a soft coalition of (F0, A0) if it is a soft subset of (F0, A0) and
A0\(A0)F0

⊆ A\AF . The family of soft coalitions of (F0, A0) is denoted as SC(F0, A0).

Hence, a soft coalition of a soft set of players (F0, A0) is a soft subset of (F0, A0)
assuming the externalities of (F0, A0). The simplification of the soft cooperation to a
crisp one is done in the following sense. The crisp coalition of (F,A) ∈ SC(F0, A0) is

SA
F =

⋃
e∈A

F (e). (5)

We take particularly S∅∅ = ∅. Observe that we always suppose SA0

F0
6= ∅. The concept

of soft subset of (F,A) assumes that for any parameter e ∈ A \ AF the restriction
(F,A\{e}) is a soft subset. But in our situation we think that they are not comparable.
So we introduce a particular partial order relation among the soft coalitions.

Definition 3.3. Let (F0, A0) be a soft set of players. A soft coalition (F,A) ∈
SC(F0, A0) is smaller than another (G,B) ∈ SC(F0, A0) if (F,A) ∈ SC(G,B). This
relation is denoted as (F,A) v (G,B).

The family of coalitions with the inclusion relation is a boolean algebra in the
classical situation but not in our version. Suppose N = {1, 2, 3} and E = {e1, e2, e3}.
We consider the soft set of players (F0, A0) given by A0 = E and F0(e1) = {1, 2},
F0(e2) = {2, 3}, F0(e3) = ∅. So parameter e3 is satisfied by an externality (for instance
(∅, ∅) is not a soft coalition in this case). The Hasse diagram of the poset of soft
coalitions SC(F0, A0) with the relation in Definition 3.3 is shown in Figure 1. Each
triple in the picture represents a soft coalition (F,A) with the image of the parameters
by F ordered. We use a star to indicate that the parameter is not considered. For
instance (∗, {2, 3}, ∅) represents (F, {e2, e3}) with F (e2) = {2, 3} and F (e3) = ∅. The
reader can see on the picture that if we do not modify the concept of soft subset to soft
coalition, it will be impossible to calculate some marginal contributions. For instance,
({2}, {3}, ∅) only covers one soft subset without player 3, ({2}, ∅, ∅), but there are two
soft coalitions covered by it, ({2}, ∅, ∅) and ({2}, ∗, ∅). Using the concept of soft subset
we cannot calculate the marginal contribution of player 3 in front of ({2}, ∗, ∅). Now
player 3 can measure his contribution to ({2}, {3}, ∅) taking into account both of the
options for player 2 into the soft coalition, or parameter e1 is not assigned or it is
assigned to an externality, ({2}, ∅, ∅) and ({2}, ∗, ∅).

1In the classical cooperative game theory all the subsets of the set of players are coalitions.
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{1,2},{2,3},Ø 

{2},{2,3},Ø {1},{2,3},Ø {1,2},{3},Ø {1,2},{2},Ø 

Ø,{2,3},Ø ★,{2,3},Ø {2},{3},Ø {2},{2},Ø {1,2},Ø,Ø {1,2},★,Ø {1},{2},Ø {1},{3},Ø 

Ø,★,Ø Ø,Ø,Ø ★,★,Ø ★,Ø,Ø 

Ø,{2},Ø ★,{2},Ø {2},Ø,Ø {2},★,Ø Ø,{3},Ø ★,{3},Ø {1},Ø,Ø {1},★,Ø 

Figure 1. Soft coalition system.

If (F0.A0) is a soft set of players over N with parameters E then its assignment set
is

M(F0, A0) = {(i, e) : e ∈ A0, i ∈ F0(e)}. (6)

Associated to a given subset of assignments K ⊆ M(F0, A0) we define a particular
soft set (FK , BK) with

BK = {e ∈ E : ∃i ∈ N with (i, e) ∈ K} and, (7)

FK(e) = {i ∈ N : (i, e) ∈ K} ∀e ∈ BK . (8)

Proposition 3.4. Let (F0, A0) be a soft set of players. The poset (SC(F0, A0),@)
satisfies the following properties.

(a) The top is (F0, A0) and the set of bottoms is

Φ(F0, A0) = {(∅, A) : A0 \ (A0)F0
⊆ A ⊆ A0}.

(b) For each (∅, A) ∈ Φ(F0, A0) the interval [(∅, A), (F0, A0)] is equivalent to the
boolean algebra 2M(F0,A0).

(c) If K ⊆ M(F0, A0) then (FK , BK) ∪ (∅, A) ∈ [(∅, A), (F0, A0)] with (∅, A) ∈
Φ(F0, A0) is the only one in the interval identified with K.

(d) It is a (
∑

e∈A0
|F0(e)|)-graded poset and its number of chains is

2|(A0)F0
| (∑

e∈A0
|F0(e)|

)
!.

(e) For any (F,A) ∈ SC(F0, A0), the number of chains2 from the bottom to (F,A)

2The number of chains in the subposet SC(F,A).
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is 2|AF |
(∑

e∈A |F (e)|
)
! and the number of chains3 from (F,A) to the top is∑
e∈A
|F0(e) \ F (e)|+

∑
e∈A0\A

|F0(e)|

!.

Proof. All the statements can be proved jointly. It is evident since definition of soft
coalition that (F0, A0) is the top of the structure. Let (∅, A) ∈ Φ(F0, A0). Suppose
(G,B) ∈ SC(F0, A0) with (G,B) v (∅, A). We have (G,B) ∈ SC(∅, A). As (G,B) ⊆
(∅, A) then B ⊆ A and G(e) = ∅ for all e ∈ B. As also A ⊆ B then (G,B) = (∅, A).

Consider a soft coalition in the bottom, (∅, A) ∈ Φ(F0, A0). If (G,B) ∈
[(∅, A), (F0, A0)] then K(G,B) = {(i, e) : e ∈ B, i ∈ G(e)} ⊆ M(F0, A0). Moreover,
if (G′, B′) 6= (G,B) satisfies K(G,B) = K(G′,B′) then there exists e ∈ B \ B′ (or
e ∈ B′ \B) such that G(e) = ∅ (or G′(e) = ∅). But as (∅, A) ⊆ (G′, B′) then e /∈ A and
as (∅, A) v (G,B) then e ∈ A. Now we take K ⊆M . We can define the soft coalition
(FK , BK) ∪ (∅, A) ∈ [(∅, A), (F0, A0)] where BK = {e ∈ E : ∃i ∈ N with (i, e) ∈ K}
and for every e ∈ BK , FK(e) = {i ∈ N : (i, e) ∈ K}. So 2M(F0,A0) is identified one to
one with the interval [(∅, A), (F0, A0)] for all (∅, A) ∈ Φ(F0, A0). The other statements
follow from the above identification. We have the cardinalities |Φ(F0, A0)| = 2|(A0)F0 |

and |M(F0, A0)| =
∑

e∈A0
|F0(e)|. As each chain ends in only one bottom then the

number of chains is

|M(F0, A0)|! |Φ(F0, A0)| =
(∑

e∈A0

|F0(e)|
)

! 2|(A0)F0
|.

Obviously if we consider the subposet from the bottom to (F,A) then we get SC(F,A)
and the number of chains follows from the before reasoning using that

Φ(F,A) = {(∅, B) : A \AF ⊆ B ⊆ A}.

Finally, observe that we can identify the interval [(F,A), (F0, A0)] with the boolean
algebra 2M where

M = {(i, e) : e ∈ A, i ∈ F0(e) \ F (e)} ∪ {(i, e) : e ∈ A0 \A, i ∈ F0(e)}.

4. Soft games.

We introduce in this section the concept of cooperative soft game.

Definition 4.1. A soft game over N is a triple (F0, A0, v) where (F0, A0) is a soft set
of players and v : SC(F0, A0) → R with v(∅, A) = 0 if (∅, A) ∈ Φ(F0, A0). The set of
soft games over N is denoted as SGN .

The worth of a soft coalition (F,A) in a soft game is understood as the profit
obtained by the involved players SA

F taking into account that parameters in A are

3The number of chains in the subposet [(F,A), (F0, A0)].
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satisfied and after paying the externalities. Therefore it is logical to take v = 0 in
Φ(F0, A0).

A soft game over N fixes first the soft set of players formed and also the coalition
into N (its crisp coalition) decided by the players. This coalition has a determined
configuration with regard to the parameters in order to get a determined profit, in-
cluding if they consider to satisfy several parameters by external actions. And second,
the game establishes a characteristic function over the soft coalitions of this soft set
of players. So, the problem in a soft game is how to allocate the worth of the soft set
of players, and the worths of other soft coalitions are only the instrument to get the
allocation vector.

Usually games are considered superadditive, then we introduce this concept for soft
games.

Definition 4.2. Let (F0, A0, v) ∈ SGN be a soft game. The game is superadditive if
for all (F,A), (G,B) ∈ SC(F0, A0) with (F,A) ∩ (G,B) ∈ Φ(F0, A0) it holds

v(F,A) + v(G,B) ≤ v ((F,A) ∪ (G,B)) .

A game (F0, A0, v) ∈ SGN determines a worth for each soft coalition (F,A) including
those with parameters out of the support (with A \AF 6= ∅). In some situations these
distinctions between not being in the support or being empty cannot be interesting.
We introduce the following concept.

Definition 4.3. Let (F0, A0) be a soft set of players. A soft coalition (F,A) is full if
A = AF∪(A0\(A0)F0

). SCfull(F0, A0) represents the family of full soft coalitions. A soft
game (F0, A0, v) is full if v(F,A) = v(F,AF ∪(A0\(A0)F0

)) for all (F,A) ∈ SC(F0, A0).
The family of full games is denoted as FSGN .

If the soft game is full4 then the only interesting soft coalitions are the full ones.
Hence, we can consider the game restricted to the full coalitions. The concept of full
can be extended to soft sets in general, a soft set (F,A) is full if AF = A. Observe
that full soft set coincides with the concept of soft set studied in Zhu and Wen (2013).

Finally we can see classical cooperative games as a special family of soft games.

Definition 4.4. A soft game (F0, A0, v) ∈ SGN is crisp if v(F,A) = v(G,B) for all
pair of soft coalitions (F,A), (G,B) ∈ SC(F0, A0) with SA

F = SB
G .

Each crisp soft game (F0, A0, v) ∈ SGN is identified with the classical game

w(F0,A0,v) ∈ GS
A0
F0 defined as w(F0,A0,v)(S) = v(F,A) for any (F,A) ∈ SC(F0, A0)

with SA
F = S (we can always find one). Hence we can consider the family of crisp soft

games as the set of all the classical games defined over coalitions in N , we use

GN∗ =
⋃

{S⊆N :S 6=∅}

GS . (9)

Of course GN∗ ⊆ FSGN .
Let i ∈ N be a player. We define the i-soft set relative to A ⊆ E as (Fi, A) with

4Full soft sets and therefore full soft games can be introduced in another equivalence way. Let (F0, A0) be

a soft set of players. A soft coalition (F,A) is spanning if A = A0. A soft game (F0, A0, v) is spanning if
v(F,A) = v((F,A) ∪ (∅, A0)) for all (F,A) ∈ SC(F0, A0). It is easy to test that (F0, A0, v) is full if and only if

it is spanning.
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Fi(e) = {i} for all e ∈ A. Observe that if (Fi, A) ∈ SC(F0, A0) for any soft set of
players (F0, A0) then it must be A ⊆ A0 and i ∈ F0(e) for all e ∈ A.

First we introduce the concept of payoff vector for a soft game.

Definition 4.5. Let (F0, A0, v) ∈ SGN . A soft payoff vector for the game (F0, A0, v)
is x = [xe]e∈(A0)F0

with xe ∈ RF0(e). A soft imputation of the game is a soft payoff
vector x satisfying

• ∑e∈(A0)F0
xe (F0(e)) = v(F0, A0), and

• for each e ∈ A0 and i ∈ F0(A0), it holds xei ≥ v ((Fi, {e}) ∪ (∅, A0 \ (A0)F0
)) .

The first condition means efficiency, an imputation is an allocation of the worth of
the soft set of players. The second one is the individual rationality principle accom-
modated to soft games: the payoff of a player for each one of the parameters assigned
to him is at least the worth of the minimal option of cooperation for this player with
this parameter, namely only this parameter is satisfied by him and keeping the initial
externalities from the soft set of players. Given a soft payoff vector x we obtain a crisp
payoff vector as x ∈ RN with

xi =
∑

{e∈A0:i∈F0(e)}

xei (10)

Hence, if i /∈ SA0

F0
then xi = 0.

We introduce finally soft payoff functions and crisp payoff functions.

Definition 4.6. A soft payoff function for soft games over N is a function Y over SGN
such that for all (F0, A0, v) ∈ SGN the image Y (F0, A0, v) = [Y e(F0, A0, v)]e∈(A0)F0

is
a soft payoff vector. The crisp payoff function associated to Y is defined for each
(F0, A0, v) ∈ SGN as Y (F0, A0, v).

5. The Shapley payoff function for soft games

Next we determine a soft payoff function in the Shapley sense following Bilbao and
Edelman (2000) and Grabisch and Lange (2007). Let (F0, A0, v) ∈ SGN be a soft
game. Let e ∈ (A0)F0

and i ∈ F0(e). If (F,A) ∈ SC(F0, A0) with i /∈ F (e) then the
e-marginal contribution of player i to (F,A) is

Dv
(i,e)(F,A) = v((F,A) ∪ (Fi, {e}))− v(F,A). (11)

We need to determine the probability of obtaining each e-marginal contribution of
player i in our structure of soft coalitions. Figure 2 shows the idea, we look for the
number of chains containing the link (F,A), ((F,A)∪ (Fi, {e}), namely the number of
chains from the bottom to (F,A) multiplied by the number of chains from (F,A) ∪
(Fi, {e}) to (F0, A0). Using Proposition 3.4(e) this number is

2|AF |

(∑
e′∈A
|F (e′)|

)
!

∑
e′∈A
|F0(e′) \ F (e′)|+

∑
e′∈A0\A

|F0(e′)| − 1

!,
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and so, the probability is the quotient between this number and the total number of
chains (see Proposition 3.4(d)).

(F0, A0)

�(F0, A0)

(F, A)

(F, A) [ ({i}, {e})

Figure 2. Chains for each marginal contribution.

Definition 5.1. Let (F0, A0, v) ∈ SGN . For each e ∈ A0 and i ∈ F0(e) the Shapley
soft payoff function is defined by

Shei (F0, A0, v) =
∑

{(F,A)∈SC(F0,A0):i/∈F (e)}

Γ
(F0,A0)
(F,A) Dv

(i,e)(F,A),

where

Γ
(F0,A0)
(F,A) =

(∑
e′∈A |F (e′)|

)
!
(∑

e′∈A |F0(e′) \ F (e′)|+∑e′∈A0\A |F0(e′)| − 1
)

!

2|(A0)F0
\AF |

(∑
e′∈A0

|F0(e′)|
)
!

.

The Shapley crisp payoff vector is

Shi(F0, A0, v) =
∑

{e∈A0:i∈F0(e)}

Shei (F0, A0, v).

Example 1. Let N = {1, 2, 3} and E = {e1, e2, e3}. Consider the soft game (F0, A0, v) ∈
SGN with A0 = E and F0(e1) = {1, 2}, F0(e2) = {2, 3} and F0(e3) = ∅. Parameter e3

is not negotiable because players have decided to use for it an externality. The poset
of soft coalitions is in Figure 1. Next table shows the characteristic function v of the
game (following the special notation of the soft sets explained for Figure 1).

{1, 2}, {2, 3}, ∅ {2}, {2, 3}, ∅ {1}, {2, 3}, ∅ {1, 2}, {3}, ∅ {1, 2}, {2}, ∅ ∅, {2, 3}, ∅
100 50 50 60 60 30

∗, {2, 3}, ∅ {2}, {3}, ∅ {2}, {2}, ∅ {1}, {2}, ∅ {1}, {3}, ∅ {1, 2}, ∅, ∅
0 20 20 20 20 30

{1, 2}, ∗, ∅ ∅, {2}, ∅ ∗, {2}, ∅ ∅, {3}, ∅ ∗, {3}, ∅ {2}, ∅, ∅
20 0 0 10 0 10

{2}, ∗, ∅ {1}, ∅, ∅ {1}, ∗, ∅
10 0 10

10



Table 1. Worths of the characteristic function v.

Obviously v(F,A) = 0 if (F,A) ∈ Φ(F0, A0). The reader can test that this game is
superadditive. Observe that, in this game, parameter e1 is crucial, namely if parameter
e1 is not satisfied then there is not any profit. But it can be satisfied by an externality.
Sometimes satisfying a parameter by an externality is better than not satisfying it
(for instance ({1, 2}, ∅, ∅) is better than ({1, 2}, ∗, ∅)), but sometimes in the opposite
way (for instance ({1}, ∅, ∅) is worse than ({1}, ∗, ∅)). The goal of the problem is to
allocate the worth

v({1, 2}, {2, 3}, ∅) = 100.

Following the above definition,

She11 (F0, A0, v) = 27.5, She12 (F0, A0, v) = 29.1666,

She22 (F0, A0, v) = 20.8333, She23 (F0, A0, v) = 22.5.

Finally, Sh(F0, A0, v) = (27.5, 50, 22.5).

The Shapley soft payoff function can be formulated as a sum of usual Shapley values.
This new formula will be the main tool for the proofs of the next results.

Lemma 5.2. Let (F0, A0, v) ∈ SGN , e ∈ A0 and i ∈ F0(e). The Shapley soft payoff
function satisfies

Shei (F0, A0, v) =
1

2|(A0)F0
|

∑
A0\(A0)F0

⊆A⊆A0

sh(i,e)(w
A
(F0,A0,v)),

where wA
(F0,A0,v) ∈ GM(F0,A0) is defined for each K ⊆M(F0, A0) by

wA
(F0,A0,v)(K) = v ((FK , BK) ∪ (∅, A)) .

Proof. Let (F,A) ∈ SC(F0, A0) be a soft coalition with i /∈ F (e). Following Proposi-
tion 3.4 we identify it with K ⊆ M(F0, A0) satisfying (i, e) /∈ K. There are 2|AF | sets
of parameters A0 \ (A0)F0

⊆ A′ ⊆ A0 such that (FK , BK) ∪ (∅, A′) = (F,A), one for
each bottom contained in (F,A). So,

Shei (F0, A0, v) =
1

2|(A0)F0
|

∑
A0\(A0)F0

⊆A′⊆A0

∑
{K⊆M(F0,A0):(i,e)/∈K}

γ
M(F0,A0)
K ·

·
[
wA′

(F0,A0,v)(K ∪ {(i, e)})− wA′

(F0,A0,v)(K)
]
,

because since (3) and Proposition 3.4

γ
M(F0,A0)
K =

|K|!(|M(F0, A0)| − |K| − 1)!

|M(F0, A0)|!

=

(∑
e′∈A |F (e′)|

)
!
(∑

e′∈A |F0(e′) \ F (e′)|+∑e′∈A0\A |F0(e′)| − 1
)

!(∑
e′∈A0

|F0(e′)|
)
!

.
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The proof finishes using (2)

Example 2. Consider the soft game in Example 1. In our example M(F0, A0) =
{(1, e1), (2, e1), (2, e2), (3, e2)}, and (A0)F0

= {e1, e2}. There are four games in the
formula of Lemma 5.2, one for each {e3} ⊆ A ⊆ E. For instance, if we take A = {e3}
then game

(
M(F0, A0), wA

(F0,A0,v)

)
is obtained in Table 2.

{a} {b} {c} {d} {a, b} {a, c} {a, d} {b, c}
10 10 0 0 20 20 20 20

{b, d} {c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {abcd}
20 20 60 60 50 50 100

Table 2. Game w
{e3}
(F0,A0,v) taking a = (1, e1), b = (2, e1), c = (2, e2), d = (3, e2).

Similar to the classical theory the soft superadditivity implies that the soft Shapley
payoff vector is a soft imputation.

Proposition 5.3. If (F0, A0, v) ∈ SGN is soft superadditive then Sh(F0, A0, v) is a
soft imputation.

Proof. Suppose (F0, A0, v) ∈ SGN soft superadditive. The Shapley soft payoff is effi-
cient. Let e ∈ A0 and i ∈ F0(e). We prove that for all A0 \ (A0)F0

⊆ A ⊆ A0 the game
wA

(F0,A0,v) is superadditive. Let K,K ′ ⊆M(F0, A0) be coalitions with K ∩K ′ = ∅. We

have BK∪K′ = BK ∪BK′ and FK∪K′(e′) = FK(e′) ∪ FK′(e′) for all e′ ∈ BK∪K′ , thus

(FK∪K′ , BK∪K′) ∪ (∅, A) = [(FK , BK) ∪ (∅, A)] ∪ [(FK′ , BK′) ∪ (∅, A)],

with [(FK , BK)∪ (∅, A)]∩ [(FK′ , BK′)∪ (∅, A)] ∈ Φ(F0, A0). As (F0, A0, v) is superad-
ditive then

wA
(F0,A0,v)(K ∪K ′) = v((FK∪K′ , BK∪K′) ∪ (∅, A))

≥ v((FK , AK) ∪ (∅, A)) + v((FK′ , AK′) ∪ (∅, A))

= wA
(F0,A0,v)(K) + wA

(F0,A0,v)(K
′).

So, the Shapley value of each of these games is an imputation and we get

sh(i,e)

(
wA

(F0,A0,v)

)
≥ wA

(F0,A0,v)(i, e).

Lemma 5.2 implies that

Shei (F0, A0, v) ≥ 1

2|(A0)F0
|

∑
A0\(A0)F0

⊆A⊆A0

v((Fi, {e}) ∪ (∅, A)).

Finally, we apply again soft superadditivity, so

v((Fi, {e}) ∪ (∅, A)) ≥ v((Fi, {e}) ∪ (∅, A0 \ (A0)F0
)) + v(∅, A \ (A0 \ (A0)F0

))

= v((Fi, {e}) ∪ (∅, A0 \ (A0)F0
)).
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Next we see what happens if we take a particular kind of soft game, full or crisp. In
the full case we obtain a more simple formula using only the full soft coalitions. For
the crisp games we observe that our value coincides with the classical Shapley value
of the associate crisp game.

Proposition 5.4. Let (F0, A0, v) ∈ SGN be a soft game.

(a) If the game is full then

Shei (F0, A0, v) =
∑

{(F,A)∈SCfull(F0,A0):i/∈F (e)}

Γ
(F0,A0)
(F,A) Dv

(i,e)(F,A),

where

Γ
(F0,A0)
(F,A) =

(∑
e∈A |F (e)|

)
!
(∑

e∈A |F0(e) \ F (e)| − 1
)
!(∑

e∈A0
|F0(e)|

)
!

.

(b) If the game is crisp then

Shi(F0, A0, v) = shi(w
(F0,A0,v)).

Proof. Suppose first that (F0, A0, v) is full. For each bottom we have the same struc-
ture (Proposition 3.4) and also for full soft games we have the same marginal contri-
butions. So, following Lemma 5.2 all the classical crisp games over M(F0, A0) are the
same, namely for all A0 \ (A0)F0

⊆ A ⊆ A0 we get then wA
(F0,A0,v) = wA0

(F0,A0,v).

Take now (F0, A0, v) crisp. If (F0, A0, v) is crisp then it is also full, then for all
i ∈ SA0

F0
we have

Shi(F0, A0, v) =
∑

{e∈A0:i∈F0(e)}

Shei (F0, A0, v) =
∑

{e∈A0:i∈F0(e)}

sh(i,e)(w
A0

(F0,A0,v)).

But in each chain into the interval [(∅, A0), (F0, A0)] only the first pair (i, e) obtains a
non-zero contribution from the definition of crisp game. For this game we can identify

each chain in the interval with a chain in 2S
A0
F0 . Moreover, as the interval is a boolean

algebra there is the same quantity of chains in the interval defining the same order for
the players. Thus, adding all the parameters for player i we get his non-null marginal
contribution in all the chains, so∑

{e∈A0:i∈F0(e)}

sh(i,e)(w
A0

(F0,A0,v)) = shi

(
w(F0,A0,v)

)
.

6. Axioms for the Shapley soft payoff function

Next we introduce axioms in the Shapley way for our payoff function over N . Let Y
be a soft payoff function. We suppose that we look for efficient soft payoff vectors.

13



Soft efficiency. For all (F0, A0, v) ∈ SGN it holds∑
e∈(A0)F0

∑
i∈F0(e)

Y e
i (F0, A0, v) = v(F0, A0).

Let (F0, A0, v) ∈ SGN . A player i ∈ SA0

F0
is e-null for the soft game with e ∈ A0

such that i ∈ F (e) if v((F,A) ∪ (Fi, {e})) = v(F,A) for all (F,A) ∈ SC(F0, A0).

Soft null player axiom. If i ∈ N is an e-null player for all (F0, A0, v) ∈ SGN then
Y e
i (F0, A0, v) = 0.

Let (F0, A0, v) ∈ SGN . Player i in e, with i ∈ F0(e), is replaceable by player j in e′,
with j ∈ F0(e′), for the soft game if for all (F,A) ∈ SC(F0, A0), with i /∈ F (e) and
j /∈ F (e′) we have v((F,A)∪ (Fi, {e})) = v((F,A)∪ (Fj , {e′})). Agent i making task e
instead of agent j making task e′ gets the same profit for any organization.

Soft equal treatment axiom. If i in e is replaceable by j in e′ for the soft game
(F0, A0, v) then Y e

i (F0, A0, v) = Y e′
j (F0, A0, v).

Observe that players i, j can be the same in the above axioms, in that case we are
talking about player i changing tasks.

Finally we consider additivity as in the classical theory of the Shapley value.

Additivity. If (F0, A0, v1), (F0, A0, v2) are soft games over N with the same soft set
of players then for all e ∈ A0 and i ∈ F0(e)

Y e
i (F0, A0, v1 + v2) = Y e

i (F0, A0, v1) + Y e
i (F0, A0, v2).

Next lemma obtains a formula of the soft Shapley value by a family of classical
games. This formula will be the main tool for the proofs.

Theorem 6.1. The Shapley soft payoff function Sh is the only soft payoff function
satisfying soft efficiency, soft null player axiom, soft equal treatment axiom and addi-
tivity.

Proof. First we prove that the Shapley soft payoff function satisfies the axioms.
Efficiency. Let (F0, A0, v) ∈ SGN . For each (∅, A) ∈ Φ(F0, A0) we have∑

(i,e)∈M(F0,A0)

sh(i,e)(w
A
(F0,A0,v)) = wA

(F0,A0,v)(M(F0, A0)) = v(F0, A0).

But then by Proposition 5.2 and the efficiency of the Shapley value (S1) we get

∑
e∈(A0)F0

∑
i∈F0(e)

Shei (F0, A0, v) =
∑

e∈(A0)F0

∑
i∈F0(e)

1

2|(A0)F0
|

∑
A0\(A0)F0

⊆A⊆A0

sh(i,e)(w
A
(F0,A0,v))

=
1

2|(A0)F0
|

∑
A0\(A0)F0

⊆A⊆A0

∑
(i,e)∈M(F0,A0)

sh(i,e)(w
A
(F0,A0,v))

=
1

2|(A0)F0
|

∑
A0\(A0)F0

⊆A⊆A0

v(F0, A0) = v(F0, A0).
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Soft Null Player Axiom. Suppose i is an e-null player for the soft game (F0, A0, v).
We will prove that for any A0 \ (A0)F0

⊆ A ⊆ A0 the pair (i, e) is a null player for
the game wA

(F0,A0,v). Let K ⊆ M(F0, A0) be a coalition with (i, e) /∈ K. Observe that

(FK∪{(i,e)}, BK∪{(i,e)}) = (FK , BK) ∪ (Fi, {e}) since Proposition 3.4. Hence we get

wA
(F0,A0,v)(K ∪ {(i, e)}) = v

(
(FK∪{(i,e)}, BK∪{(i,e)}) ∪ (∅, A)

)
= v ((FK , BK) ∪ (∅, A) ∪ (Fi, {e})) = v ((FK , BK) ∪ (∅, A))

= wA
(F0,A0,v)(K).

As the Shapley value satisfies the null player axiom (S3) sh(i,e)(w
A
(F0,A0,v)) = 0 for all

every set A0 \ (A0)F0
⊆ A ⊆ A0. Proposition 5.2 implies that Shei (F0, A0, v) = 0.

Soft equal treatment axiom. Consider i in e replaceable by j in e′ for the soft
game (F0, A0, v). It is easy to see that (i, e), (j, e′) are symmetric for wA

(F0,A0,v) because

if K ⊆M(F0, A0) \ {(i, e), (j, e′)} then, following an above reasoning,

wA
(F0,A0,v)(K ∪ {(i, e)}) = v ((FK , AK) ∪ (Fi, {e}) ∪ (∅, A))

= v
(
(FK , AK) ∪ (Fj , {e′}) ∪ (∅, A)

)
= wA

(F0,A0,v)(K ∪ {(j, e′)}),

for all A0 \ (A0)F0
⊆ A ⊆ A0. As the Shapley value satisfies the equal treatment axiom

(S4) we have by Proposition 5.2

Shei (F0, A0, v) =
1

2|(A0)F0 |

∑
A0\(A0)F0

⊆A⊆A0

sh(i,e)(w
A
(F0,A0,v))

=
1

2|(A0)F0 |

∑
A0\(A0)F0

⊆A⊆A0

sh(j,e′)(w
A
(F0,A0,v)) = She

′

j (F0, A0, v).

Additivity. We take wA
(F0,A0,v1), w

A
(F0,A0,v2) for each A0 \ (A0)F0

⊆ A ⊆ A0. Also

we consider wA
(F0,A0,v1+v2). It holds

wA
(F0,A0,v1+v2) = wA

(F0,A0,v1) + wA
(F0,A0,v2),

and then the axiom follows from the additivity of the Shapley value (S2),

Sh(F0, A0, v1) + Sh(F0, A0, v2) =
1

2(A0)F0

∑
A0\(A0)F0

⊆A⊆A0

sh(wA
(F0,A0,v1)) + wA

(F0,A0,v2)

=
1

2(A0)F0

∑
A0\(A0)F0

⊆A⊆A0

sh(wA
(F0,A0,v1+v2))

= Sh(F0, A0, v1 + v2).

Now we suppose Y a soft payoff function satisfying the four axioms. Let (F0, A0) be
a soft set of players. For each (G,B) ∈ SC(F0, A0) we introduce the functions δ(G,B),
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ξ(G,B) as

δ(G,B)(F,A) =

{
1, if (G,B) = (F,A)
0, otherwise,

and ξ(G,B)(F,A) =

{
1, if (G,B) v (F,A)
0, otherwise

for all (F,A) ∈ SC(F0, A0). Of course, we have ξ(G,B) =
∑

(G,B)v(F,A) δ(F,A) and the

Möbius inversion formula (Stanley 1986) applied to the poset SC(F0, A0) implies that
there exist numbers µ((G,B), (F,A)) (and it is possible to calculate them) satisfying

δ(G,B) =
∑

(G,B)v(F,A)

µ((G,B), (F,A))ξ(F,A).

For each (G,B) ∈ SC(F0, A0)\Φ(F0, A0) we can define the soft game (F0, A0, δ(G,B)),

(F0, A0, ξ(G,B)). If (F0, A0, v) ∈ SGN then we find a number r(G,B) for every (G,B) ∈
SC(F0, A0) \ Φ(F0, A0) such that

v =
∑

(G,B)∈SC(F0,A0)\Φ(F0,A0)

v(G,B)δ(G,B) =
∑

(G,B)∈SC(F0,A0)\Φ(F0,A0)

r(G,B)ξ(G,B).

Function Y satisfies additivity then

Y (F0, A0, v) =
∑

(G,B)∈SC(F0,A0)\Φ(F0,A0)

Y (r(G,B)ξ(G,B)).

Observe that if e ∈ A0 and i ∈ F0(e) \ G(e) or e /∈ B then i is e-null player for
r(G,B)ξ(G,B), thus Y e

i (F0, A0, r(G,B)ξ(G,B)) = 0 by the soft null player axiom. If e, e′ ∈ B
and i ∈ G(e), j ∈ G(e′) then player i in e is replaceable by j in e′ for r(G,B)ξ(G,B),

because for each (F,A) ∈ SC(F0, A0) with i /∈ F (e) and j /∈ F (e′)

r(G,B)ξ(G,B)((F,A) ∪ (Fi, {e})) = 0 = r(G,B)ξ(G,B)((F,A) ∪ ({j}, {e′})).

The soft equal treatment axiom implies that

Y e
i (F0, A0, r(G,B)ξ(G,B)) = Y e′

j (F0, A0, r(G,B)ξ(G,B)) = J.

Finally if we apply soft efficiency we obtain∑
e∈A0

∑
i∈F0(e)

Y e
i (F0, A0, r(G,B)ξ(G,B)) =

∑
e∈B

∑
i∈G(e)

Y e
i (F0, A0, r(G,B)ξ(G,B))

= J

(∑
e∈B
|G(e)|

)
= r(G,B)ξ(G,B)(F0, A0) = r(G,B).

Hence there is a unique worth for J .

The above axiomatization implies another one for the Shapley crisp function. Now
we think of a crisp payoff function Y : SGN → RN . Suppose (F0, A0, v) ∈ SGN .
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Efficiency is the same than (S1) of the Shapley value,∑
i∈N

Y i(F0, A0, v) = v(F0, A0).

A player i is a crisp null player in the above soft game if i is an e-null player for all
e ∈ A0 with i ∈ F0(e). Similarly, players i, j ∈ N are crisp symmetric if for all e, e′

with i ∈ F0(e) and j ∈ F0(e) we have that i en e is replaceable by j en e′.

Theorem 6.2. The Shapley crisp payoff function Sh is the only crisp payoff func-
tion satisfying efficiency, crisp null player axiom, crisp equal treatment axiom and
additivity.

7. Conclusions

The paper introduced cooperative games with soft cooperation which permits to study
new situations of asymmetric players in games. An analysis of the soft coalition struc-
ture was done. We also studied a soft Shapley value for these games.

This paper pretends to be only a first introduction of the soft set theory in cooper-
ative games. We think that there is an immense task to accomplish: crisp values, the
core, stability, convexity, other solution concepts...
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