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Abstract

A cooperative game for a set of agents establishes a fair allocation of the profit obtained for their
cooperation. The best known of these allocations is the Shapley value. A communication structure
defines the feasible bilateral communication relationships among the agents in a cooperative situa-
tion. Some solutions incorporating this information have been defined from the Shapley value: the
Myerson value, the position value, etc. Later fuzzy communication structures were introduced. In
a fuzzy communication structure the membership of the players and the relations among them are
leveled. Several ways of defining the Myerson value for games on fuzzy communication structure
were proposed, one of them is the Choquet by graphs (cg) version. Now we study in this work the
cg-position value and its calculation. The cg-position value is defined as a solution for games with
fuzzy communication structure which considers the bilateral communications as players. So, the
Shapley value is applied for a new game (the link game) over the fuzzy sets of links in the fuzzy
communication structure and the profit obtained for each link is allocated between both players
in the link. As we see in our examples and results the cg-position value is more concerned with
the graphical position of the players and their communications than the other cg-values. In this
paper we also introduce a procedure to compute exactly the position value, avoiding to calculate
the characteristic function of the link game for all coalitions. This procedure is used to determine
the cg-position value. Finally we compare the new value with other cg-values in an applied example
about the power of the groups in the European Parliament.

Keywords: game theory, fuzzy graphs, position value, Harsany’s dividends, power indices,
European Parliament

1. Introduction

A cooperative game with transferable utility over a finite set of players is defined as a

function establishing the worth of each coalition (subset of players). The outcome of a game

is a payo↵ vector, namely it is a vector in which each component represents the payment

for each player because of their cooperation possibilities. The Shapley value [1] is the best

known of these outcomes. The payo↵s of the players in a game for the Shapley value are the

expected worths of their marginal contributions to the coalitions containing them, i.e. the

di↵erences between the worth of the coalition and the worth of this coalition without each of
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them (see formula (1) in Section 2). The usual payo↵ vectors, also the Shapley value, suppose

that all the communications are feasible and then all the cooperation possibilities. Moreover,

they use the worths of all the coalitions in their formulations. Therefore, the payo↵ vector

takes into account how the players cooperate among them and how the coalitions are formed.

But usually this fact is not realistic and not all the coalitions are feasible. Several di↵erent

models of games with partial cooperation have been studied: Aumann and Dreze [2], Owen

[3], Myerson [4], etc.

Myerson [4] considered that the communication among the players is not always complete.

He described the communication situation by a graph where the vertices are the players and

the links are the feasible bilateral communications among them. This graph is named the

communication structure of the game. Hence we will use both, graph or communication

structure, alike. A communication value assigns a payo↵ vector to each game with a specific

communication structure. The Myerson model supposes that the feasible coalitions are the

connected sets in the graph and so only the worths of these coalitions should be used to

elaborate outcomes. There exist several communication values defined from the Shapley

value: the Myerson value [4], the position value [5], the average tree value [6], etc. The

position value focuses the allocation of the profits on the links. A new cooperative game

over the communications is defined by calculating the worth of a set of links as the sum

of worths of the connected components in the subgraph generated by them. The Shapley

value of this new game is a payo↵ vector for the links and the payo↵ of each link is allocated

between both of he players in the link. Borm et al. [7] gave a characterization of the

position value only for communication structures without cycles (trees). Later, Slikker [8]

got a characterization for all the situations. Other characterizations or similar solutions can

be found in van den Nouweland and Slikker [9], Ghintran et al. [10] and Ghintran [11].

The position value is directly related to the situation of the players in the graph as we can

see in [7] where the authors proved that if the game only depends on the cardinality of the

coalitions then the payo↵ of a player is proportional to his degree.

The problem of computing the Shapley value is NP-complete although it is P-complete

for several particular cases, for instance the family of weighted majority games (see [12]).

The Myerson value and the Shapley value were provided with several exact algorithms (for

2
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instance [13], [14], [15] and [16]). Particularly these algorithms were used to analyze the

power in the European Union in [17] and [18]. References about computational aspects of

cooperative game theory can be found in [19], but there is no analysis about algorithms to

determine the position value.

Aubin [20] supposed uncertainty about the membership of the players in the coalitions

studying games with fuzzy coalitions. To calculate the worth of a fuzzy coalition in a game it

is necessary to consider a specific partition by levels of this fuzzy set. One of these partitions

was defined by Tsurumi et al. [21] using the Choquet integral. Following this way, the

uncertainty about the existence of the communications among the players can be extended.

Recently, Jiménez-Losada et al. [22] introduced fuzzy graphs to analyze communication

among players. Fuzzy graphs allow leveling the links between being feasible or not, and

they also allow considering membership levels for the players. The idea of partition by levels

was extended to fuzzy communication structures in [23], proposing di↵erent extensions of

the Myerson value for fuzzy situations. In one of them, the Choquet by graphs (cg) option,

players look for the biggest communication structure at the same level at each moment.

Gallego et al. [24] studied the cg-Banzhaf value for fuzzy communication structures and the

complexity of its calculation. In these models the Choquet integral determines the worth of

a coalition with fuzzy links by intervals of levels of communication. The analysis of fuzzy

communication structures can also allow to study games on communication networks with

infinite range scaling by a sigmoid curve (the logistic function, for instance). This tool is

usual in fuzzy networks as the reader can see in [25].

The main goal of this paper is to study the position value for games with fuzzy commu-

nication structure in the Choquet by graphs version. This paper is a logical continuation of

our previous works about the Myerson value. We define the new solution using the Choquet

integral, we get axioms for the cg-position value and we are also concerned with the compu-

tational aspects of the value. The cg-position value is also related with the fuzzy situation

of the players, particularly with the fuzzy degree, as we will see later. The solution and the

proposed algorithm are showed in an applied example, and it is compared to the other simi-

lar solutions. The organization of the paper is the following. Section 2 presents in short the

background about cooperative games and communication structures which allows the reader

3
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to follow the paper. Section 3 is dedicated to games with fuzzy communication structure and

the cg-partition. We define also the cg-position value in this section. We obtain in section 4

an axiomatization of the value. Section 5 analyzes the computation of the cg-position value

and the time complexity of the algorithm. Finally in Section 6 we apply our solution to

determine the power of the political groups in the European Parliament.

2. Preliminaries

2.1. Cooperative games

A cooperative game with transferable utility is a pair (N, v) where N is a finite set and

v : 2N ! R is a function with v (;) = 0. The elements of N = {1, 2, ..., n} are called players,

the subsets S ✓ N coalitions and v (S) is the worth of S. Let (N, v) be a game. A null player

i 2 N satisfies v (S) = v (S \ {i}) for all S ✓ N with i 2 S. The game (N, v) is 0-normalized

if v({i}) = 0 for all i 2 N . The 0-normalization of (N, v) is a new game (N, v0) with

v0(S) = v(S)�
X

i2S

v({i}) (1)

for each S ✓ N . The unanimity game for coalition T ✓ N , T 6= ;, is (N, uT ) with uT (S) = 1

if T ✓ S and uT (S) = 0 otherwise. The characteristic function of every game (N, v) is a

linear combination of unanimity games in N , that is

v =
X

{T✓N :T 6=;}

�v

T
uT , with �v

T
=
X

S✓T

(�1)|T |�|S|
v (S) .

The coe�cients of the above combination, �v

T
for all non-empty coalition T ✓ N , are named

Harsanyi dividends [26] of the game.

A payo↵ vector for the game (N, v) is any x 2 RN where, for each player i 2 N , the

number xi represents the payment of i owing to his cooperation possibilities. A value for

cooperative games assigns to each game (N, v) a payo↵ vector in RN . The Shapley value [1]

of a game (N, v) is defined for any player i 2 N as

�
i
(N, v) =

X

{S✓N :i2S}

(n� |S|)!(|S|� 1)!

n!
[v (S)� v (S \ {i})] =

X

{S✓N :i2S}

�v

S

|S|
. (2)

4
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This value satisfies the following axioms.

(S1) It is a linear function with respect to the characteristic function of the game, that is

if a1, a2 2 R then for all games (N, v1), (N, v2) we have �(N, a1v1 + a2v2) = a1�(N, v1) +

a2�(N, v2).

(S2) It satisfies the null player axiom, that is if i 2 N is a null player for the game (N, v)

then �
i
(N, v) = 0.

2.2. Communication structures

Let (N, v) be a cooperative game. Myerson [4] considered that the bilateral commu-

nications among players can modify the solution of a game. He represented the players’

communications by a graph. An undirected graph g = (S,A) is defined by a finite set S

and a set A of unordered pairs of di↵erent members of S. The elements of S are named

vertices and the elements of A are called links. Let L = {ij : i 6= j; i, j 2 N} denote the

set of bilateral relations among the players in our game. Myerson defined a communica-

tion structure over N as a graph g = (S,A) where S ✓ N is the subset of players who

are genuinely active in the game (originally he only considered spanning graphs for the set

of players, that is S = N) and A ✓ L is the set of feasible communications among them.

Therefore we will use throughout the paper graph or communication structure alike. The set

of all the communication structures over N is denoted by CS
N . Particularly gN = (N,L) is

the complete graph representing the total cooperation among all the players, and ; = (;, ;)

represents the total block situation where no player is active. If i 2 N then the degree of i

is di(g) = |{ij 2 A}|.

Let g = (S,A) 2 CS
N be a communication structure for the players of our game. A

subgraph g
0 = (S 0

, A
0) of g is another graph which satisfies that S

0
✓ S and A

0
✓ A. If

T ✓ N is a coalition then we denote gT as the subgraph of g using only the vertices in

T \ S and the links in A among them. If B ✓ L then gB is the subgraph of g using only

the links in B \A with the vertices joined by them. A path in g is defined by a sequence of

vertices (ik)
k=m

k=1 satisfying that {ik, ik+1} 2 A is a di↵erent link in g for each k = 1, ...,m� 1.

The graph g is connected if for every pair of vertices there is a path in g containing them.

Coalition T is feasible for g i↵ T ✓ S and gT is connected. The family of all the feasible

coalitions in g is denoted as Fg. The connected components of g are the maximal subgraphs of

5
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g which are connected. Hence the connected components of the graph determine a partition

of the set of active players S in maximal feasible coalitions, and this partition is denoted as

N/g = {H ✓ S : gH is a connected component of g}. A vertex i is isolated in the graph g

i↵ {i} 2 N/g. For each link ij 2 A in g we will use the following graph g�ij = (S,A \ ij).

A communication value  assigns to every game (N, v) a function  (N, v) determining

a payo↵ vector for each communication structure g 2 CS
N over the players,  (N, v)(g) 2

RN . In order to define communication values, Myerson [4] proposed to get a new game

incorporating the information of every communication structure to the studied game. He

introduced the following measure of the total profit for communication structures over the

players of a game (N, v),

r
(N,v)(g) =

X

H2N/g

v(H), (3)

and r
(N,v)(;) = 0. Two communication values have been obtained from this measure using

the Shapley value. Let (N, v) be a game. The vertex game for g 2 CS
N , see [4], is the

cooperative game (N, v
Ng) with v

Ng (T ) = r
(N,v)(gT ) for all T ✓ N . So, the Myerson value

is a communication value defined as µ(N, v)(g) = �(N, v
Ng). In [24] a recurrence formula to

obtain the dividends of the vertex game is provided,

�v
Ng

T
= v

Ng (T )�
X

{R2Fg :R⇢T}

�v
Ng

R
(4)

for each T 2 F
g, and �v

Ng

T
= 0 if T /2 F

g. Particularly if T 2 F
g then v

Ng (T ) = v(T ).

On the other hand, the link game, see [7], is a game (L, vLg) defined over the links where

for each graph g 2 CS
N

v
Lg (B) = r

(N,v)(gB) 8B ✓ L. (5)

Observe that the link game does not use the isolated vertices and therefore it loses informa-

tion compared to the previous situation (the worths of the individual coalitions of the active

isolated players). That is why they proposed the link game only for 0-normalized games.

Hence v
Lg represents the link game of the 0-normalization of v from now on. Following

[8] the position value is a communication value defined for a game (N, v) and any graph

6
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g = (S,A) 2 CS
N as

⇡i(N, v)(g) = v({i}) +
1

2

X

j2N\i

�
ij
(L, vLg) 8i 2 S, (6)

and ⇡i(N, v)(g) = 0 otherwise.

2.3. Fuzzy sets and the Choquet integral

In this paper we use the operators ^,_ as the minimum and the maximum respectively.

Let K be a finite set. A fuzzy set [27] in K is a function ⌧ : K ! [0, 1]. The family of

fuzzy sets in K is denoted as [0, 1]K . Each subset Q ✓ K is associated to the fuzzy set

e
Q
2 [0, 1]K with e

Q (i) = 1 if i 2 Q and e
Q (i) = 0 otherwise. Specifically, we denote e; = 0.

Let ⌧ 2 [0, 1]K . The support of ⌧ is supp (⌧) = {i 2 K : ⌧ (i) 6= 0} and the image of ⌧ is the

set im(⌧) = {� 2 R : 9i 2 K with ⌧(i) = �}. If t 2 [0, 1] then the t-cut of ⌧ is [⌧ ]t = {i 2

K : ⌧(i) � t}. Another fuzzy set ⌧ 0 is comonotone with ⌧ if [⌧(i) � ⌧(j)][⌧ 0(i) � ⌧ 0(j)] � 0

for all i, j 2 K. The distance between ⌧ and another ⌧ 0 2 [0, 1]K is

D(⌧ , ⌧ 0) =
_

i2K

|⌧(i)� ⌧ 0(i)|.

The Choquet integral [30] of a fuzzy set ⌧ in K with respect to a set function over K,

f : 2K ! R, is defined as

Z
⌧ df =

mX

k=1

(�k � �k�1)f([⌧ ]�k
),

with im(⌧) = {�1 < · · · < �m} and �0 = 0. First it was introduced only for non-negative

functions (capacities) and later (see [31]) for all of them. Four interesting properties of the

Choquet integral are the following:

(C1)
R
⌧ d(af + a

0
f) = a

R
⌧ f + a

0 R
⌧ f , with a, a

0
2 R.

(C2) If ⌧ , ⌧ 0 are comonotone and ⌧(i) + ⌧
0(i)  1 for every i 2 K then

R
(⌧ + ⌧

0) df =
R
⌧ df +

R
⌧
0
df .

(C3) If t 2 [0, 1] then
R
t⌧ df = t

R
⌧ df.

(C4) For each set function the Choquet integral is a continuous operator with respect to the

7
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fuzzy set using the distance D.

3. Fuzzy communication structures and the cg-position value

Jiménez-Losada et al. [22] introduced fuzzy communication structures for games as fuzzy

graphs. Let (N, v) be a cooperative game and L the set of all the bilateral communications

among the players in N .

Definition 1. A fuzzy communication structure over N is an undirected fuzzy graph over

N , namely a pair � = (⌧ , ⇢) with ⌧ 2 [0, 1]N the fuzzy set of vertices and ⇢ 2 [0, 1]L the fuzzy

set of links satisfying ⇢ (ij)  ⌧ (i) ^ ⌧ (j) for all ij 2 L. The set of fuzzy communication

structures over N is denoted by FCS
N
.

Hence we will use fuzzy graph or fuzzy communication structure alike. We denote as

� = 0 the null fuzzy graph where ⌧ = 0 and ⇢ = 0. Every communication structure

g = (S,A) 2 CS
N is identified with the fuzzy graph g = (⌧ , ⇢) where ⌧ = e

S and ⇢ = e
A.

Let � = (⌧ , ⇢) 2 FCS
N be a fuzzy communication structure. The number ⌧ (i) is interpreted

as the real level of involvement of player i 2 N in the game v and the number ⇢ (ij)

represents the maximal level at which the link ij can be used. The set of vertices in �

is V (�) = supp (⌧) and the set of links is L (�) = supp (⇢). So, the crisp version of � is the

graph g
� = (V (�) , L (�)) . We use the notation N/� = N/g

� and F
� = F

g
�
. The minimal

level in � is

^� =

0

@
^

i2V (�)

⌧ (i)

1

A ^

0

@
^

ij2L(�)

⇢ (ij)

1

A . (7)

A player i is isolated in � if he is isolated in g
�. The fuzzy degree of a vertex i 2 N in � is

�i(�) =
X

j2N\i

⇢(ij). (8)

The fuzzy degree can be seen as a ranking method of the di↵erent fuzzy graphs for each

vertex (see [28] and [29] for more information about ranking methods). Another fuzzy graph

�
0 = (⌧ 0, ⇢0) over N is a subgraph of � i↵ ⌧ 0  ⌧ and ⇢0  ⇢. We use in that case �0  �. We

defined three binary operations for fuzzy graphs in [22]. Let � = (⌧ , ⇢) , �0 = (⌧ 0, ⇢0) 2 FCS
N

be two fuzzy graphs over N :

8
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1) If ⌧ (i) + ⌧
0 (i)  1 for all i 2 N then � + �

0 = (⌧ + ⌧
0
, ⇢+ ⇢

0).

2) If �0  � and ⇢ (ij) � ⇢
0 (ij)  [⌧ (i)� ⌧ 0 (i)] ^ [⌧ (j)� ⌧ 0 (j)] for all i, j 2 N then

� � �
0 = (⌧ � ⌧ 0, ⇢� ⇢0).

3) If t 2 [0, 1] then t� = (t⌧ , t⇢).

The reader can see that the subtraction of fuzzy graphs is not always feasible as the opposite

operation of the sum, because we need to impose a new condition to obtain a new fuzzy

graph (or changing the definition, see [22]). More information about fuzzy graphs in [32].

Aubin [20] introduced partitions by levels to determine the worth of a fuzzy coalition in a

given cooperative game. Jiménez-Losada et al. [23], following Aubin and the Myerson model,

defined a way to get the total profit in a fuzzy communication structure for a game. They

introduced the concept of partition by levels of a fuzzy graph as a finite sequence (gk, sk)mk=1

of pairs (graph+level) which uses up the information of the fuzzy communication structure.

In this paper we focus on one of these partitions based in the Choquet integral [30]. This

partition for each fuzzy graph can be obtained by applying the following algorithm. Let

� = (⌧ , ⇢) 2 FCS
N be a fuzzy communication structure.

Algorithm 1. cg-partition(�)

k  0, cg  ;

while � 6= 0 do

k  k + 1

sk  ^�

gk  g
�

cg  cg [ {(gk, sk)}

�  � � skgk

end

Definition 2. Let � 2 FCS
N
. The Choquet by graphs (cg) partition by levels of � is the

family cg = (gk, sk)
m

k=1 obtained by the above algorithm, where gk 2 CS
N

and sk 2 (0, 1] for

all k. It is denoted as cg (�) .

The cg-partition implies that players try to get first the biggest graph and second the

top level to connect it.

9
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Example 1. We consider the fuzzy graph (also used in [24]) � = (⌧ , ⇢) over the set N =

{1, 2, 3, 4} with ⇢ (1, 3) = ⇢ (2, 4) = 0.4, ⌧ (1) = ⌧ (4) = ⇢ (1, 2) = ⇢ (1, 4) = 0.5, ⌧ (2) =

⇢ (2, 3) = 0.7, ⌧ (3) = 1 and ⇢ (3, 4) = 0. Figure 1 represents this fuzzy graph and its crisp

version.

Figure 1. Fuzzy graph and crisp version.

The minimal level is ^� = 0.4 and, for instance, �2(�) = 1.6. We can see in Figure 2 the

cg-partition by levels of the above fuzzy graph.

Figure 2. cg-partition.

We see several properties of the cg-partition that we will use later.

Proposition 1. Let � = (⌧ , ⇢) 2 FCS
N
be a fuzzy communication structure. Algorithm 1 is

well defined and the partition cg(�) = (gk, sk)
m

k=1 obtained satisfies the following properties.

1) � =
P

m

k=1 skgk.

10
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2)
P

{k:i2V (gk)} sk = ⌧ (i) for all i 2 N .

3)
P

ij2L(�)
P

{k2{1,...,m}:ij2L(gk)} sk = �i(�) for all i 2 N .

Proof. We show that the algorithm works well even though the result of a di↵erence of fuzzy

graphs is not always a new fuzzy graph. In the first step we take s1 = ^� and g1 = g
� then

s1g1  � and for all ij 2 L(�)

⇢(ij)� s1  [⌧(i)� s1] ^ [⌧(j)� s1]

because � is a fuzzy graph. Obviously if ij /2 L(�) then the inequality is true because

⇢(ij) = 0 and also the level of the link in s1g1. Hence ��s1g1 is a new fuzzy graph. Suppose

now following the algorithm that � = ��
P

k�1
l=1 slgl is a new subgraph of � before the step k.

We repeat the reasoning with sk and the new �. As we can continue applying the algorithm

at any time we must finish with 1)

� =
mX

k=1

skgk.

Condition 2) follows directly from the last equality. Also for each i 2 N we have 3) as

�i(�) =
X

j2N\i

⇢(ij) =
X

ij2L(�)

X

{k2{1,...,m}:ij2L(gk)}

sk. 2

Definition 3. Given a game (N, v), the cg-measure of the total profit in a fuzzy graph � is

✏
(N,v)
cg

(�) =
mX

k=1

skr
(N,v) (gk)

where cg (�) = (gk, sk)
m

k=1.

Now we introduce the cg-position value for games with fuzzy communication structure.

Definition 4. A fuzzy communication value F assigns to each cooperative game (N, v) a

payo↵ vector F (N, v)(�) 2 RN
for each fuzzy communication structure � 2 FCS

N
over its

players.

11
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In [23] and [24] the cg-Myerson value and the cg-Banzhaf value for games with fuzzy

communication structure were studied using the cg-partition. Now we define a fuzzy version

of the link game (4) following Definition 3 in order to introduce the cg-position value. Let

(N, v) be a cooperative game and � = (⌧ , ⇢) 2 FCS
N . If A ✓ L then �

A
= (⌧A, ⇢A) 2 FCS

N

is a new fuzzy graph given by

⌧A (i) =

8
<

:
⌧ (i) , if 9j with ij 2 A

0, otherwise
and ⇢

A
(ij) =

8
<

:
⇢ (ij) , if ij 2 A

0, otherwise.

Definition 5. Let (N, v) be a game. For each fuzzy graph � 2 FCS
N

the cg-link game

�
L, v

L�

cg

�
is defined taking the links as players, for any A ✓ L

v
L�

cg
(A) = ✏

(N,v)
cg

(�
A
).

where cg (�) = (gk, sk)
m

k=1.

For the same reason of the crisp version, the cg-link game loses information from the

worths of the individual coalitions and therefore it is only useful for 0-normalized games,

thus we take vL�
cg

as the link game of the 0-normalization of v. So, the position value for the

cg-partition is defined following (5).

Definition 6. The cg-position value is the fuzzy communication value defined for each game

(N, v) with fuzzy communication structure � = (⌧ , ⇢) 2 FCS
N

and every player i 2 N

Pi(N, v)(�) = ⌧(i)v({i}) +
1

2

X

j2N\i

�
ij

�
L, v

L�

cg

�
.

4. Axioms for the cg-position value

First we relate the cg-position value with the position value (4). Next lemma provides a

formula in Choquet form to calculate our value by a linear combination of position values.

Lemma 2. Let (N, v) be a game and � 2 FCS
N

a fuzzy communication structure. If the

cg-partition of � is cg (�) = (gk, sk)
m

k=1 then

1) v
L�

cg
=
P

m

k=1 skv
Lgk ,

12
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2) P (N, v)(�) =
P

m

k=1 sk⇡(N, v)(gk).

Proof. 1) Algorithm 1 determines cg (�) = (gk, sk)
m

k=1 for a given fuzzy graph � 2 FCS
N .

Let A ✓ L be a set of links. It is possible to get the cg-partition of �
A
from cg (�).

If cg (�
A
) =

�
g
0
p
, s

0
p

�q
p=1

then there are indices (kp)
q

p=1 with
�
gkp+1

�
A
6=
�
gkp

�
A
(kq = m if

(gm)A 6= 0) such that

g
0
p
= (gk)A for all kp  k < kp+1 and s

0
p
=

kp+1�1X

k=kp

sk.

So, we obtain for the game (N, v), from Definition 5 and Definition 3

v
L�

cg
(A) = ✏

(N,v)
cg

(�
A
) =

qX

p=1

s
0
p
v
Lg

0
p (A) =

qX

p=1

kp+1�1X

k=kp

skv
Lgk (A) =

kqX

k=1

skv
Lgk (A) .

Observe that for all k > kq it holds A \ L ((gk)A) = ; and then v
Lgk(A) = 0, thus

v
L�

cg
=

mX

k=1

skv
Lgk .

2) Since the linearity (S1) of the Shapley value and 1) we get for v,

�
�
N, v

L�

cg

�
=

mX

k=1

sk�
�
N, v

Lgk
�
.

We calculate the cg-position value for a player i 2 N . We denote ki the last level in the

algorithm such that i 2 V (gki). If k > ki then for each j 2 N \ i the link ij is a null player

for the link game v
Lgk and using Proposition 1(2) and (S2),

Pi(N, v)(�) = ⌧(i)v({i}) +
1

2

X

j2N

�
ij

�
L, v

L�

cg

�

=
kiX

k=1

skv({i}) +
1

2

X

j2N\i

kiX

k=1

sk�ij

�
L, v

Lgk
�

=
kiX

k=1

sk

2

4v({i}) + 1

2

X

j2N\i

�
ij

�
L, v

Lgk
�
3

5 .

13
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We obtain from Definition 6, Pi(N, v)(�) =
P

m

k=1 sk⇡i(N, v)(gk). 2

Now we look for an axiomatization of the cg-position value following [8]. Consider the

following axioms for a given fuzzy communication value F . Let (N, v) be a cooperative game

and � 2 FCS
N be a fuzzy communication structure over N . The payo↵s obtained by the

players are e�cient for each connected component with respect to the measure of the fuzzy

graph with this model. If S ✓ N is a coalition then �
S
= (⌧S, ⇢S) 2 FCS

N is the subgraph

of � defined as

⌧S (i) =

8
<

:
⌧ (i) , if i 2 S

0, otherwise
and ⇢

S
(i, j) =

8
<

:
⇢ (i, j) , if i, j 2 S

0, otherwise.

Fuzzy e�ciency by components. For all S 2 N/� it holds

X

i2S

Fi(N, v)(�) = ✏
(N,v)
cg

(�
S
).

The above axiom implies the e�ciency for all the players from Definition 3, that is

X

i2N

Fi(N, v)(�) = ✏
(N,v)
cg

(�).

The subgraph �
t

�ij
= (⌧ t�ij

, ⇢
t

�ij
) represents the fuzzy graph � modified by reducing to

t 2 [0, ⇢ (ij)] the capacity of ij 2 L (�), that is, ⌧ t�ij
= ⌧ and ⇢t�ij

= ⇢ except for ⇢t�ij
(ij) = t.

We denote as ^i� = ^ik2L(�)⇢(ik) the lowest level of communication for a non isolated player

i 2 N , i.e. the minimal degree of the player. For two non isolated players in the fuzzy

communication structure we consider the notation ^ij� = (^i�) ^ (^j�) > 0, that is the

minimal common degree of the players.

Balanced total fuzzy threats. Let i, j 2 N be two di↵erent non isolated players and

t 2 [0,^ij�]. Then

X

ih2L(�)

⇥
Fj (N, v, �)� Fj

�
N, v, �

t

�ih

�⇤
=

X

jh2L(�)

⇥
Fi (N, v, �)� Fi

�
N, v, �

t

�jh

�⇤
.

This axiom means that the total loss for a player because of the drop of the communica-

14
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tions of another player is balanced, and then anyone can threaten another in these terms.

First we prove that the cg-position value satisfies these axioms.

Theorem 3. The cg-position value satisfies fuzzy e�ciency by components and balanced

total fuzzy threats.

Proof. Let (N, v) be a game. We take � 2 FCS
N with cg-partition cg(�) = (gk, sk)

m

k=1.

Fuzzy e�ciency by components. Borm et al. [7] proved that ⇡ is e�cient by components, that

is for all g 2 CS
N and for all S 2 N/g we get

P
i2S ⇡i(N, v)(g) = v(S). Let S 2 N/� be a

connected component of �. Let S ✓ N be a coalition. It is possible to get the cg-partition of

�
S
from cg (�). If cg (�

S
) =

�
g
0
p
, s

0
p

�q
p=1

then there are indices (kp)
q

p=1 with
�
gkp+1

�
S
6=
�
gkp

�
S

(kq = m if (gm)S 6= 0) such that

g
0
p
= (gk)S for all kp  k < kp+1 and s

0
p
=

kp+1�1X

k=kp

sk.

It holds that T 2 N/(gk)S i↵ T 2 N/gk with T ✓ S. We have by the above lemma

X

i2S

Pi(N, v)(�) =
X

i2S

mX

k=1

sk⇡i(N, v)(gk) =
mX

k=1

X

i2S

sk⇡i(N, v)(gk)

=
mX

k=1

sk

X

T2N/(gk)S

X

i2T

⇡i(N, v)(gk) =
qX

p=1

kp+1�1X

k=kp

sk

X

T2N/(gk)S

v(T )

=
qX

p=1

kp+1�1X

k=kp

skr
(N,v)((gk)S) =

qX

p=1

s
0
p
r
(N,v)(g0

p
) = ✏

(N,v)
cg

(�
S
).

Balanced total fuzzy threats. Slikker [8] proved that ⇡ satisfies balanced total threats, that

is for all pairs of players i, j 2 N and g 2 CS
N it holds

X

ih2L(g)

[⇡j(N, v)(g)� ⇡j(N, v)(g�ih)] =
X

jh2L(g)

[⇡i(N, v)(g)� ⇡i(N, v)(g�jh)] .

Let i, j 2 N and t 2 [0,^ij�]. There exists kt 2 {1, ...,m} such that 0  t�
P

kt�1
k=0 sk < skt

supposing s0 = 0. We consider the following partition by levels for � equivalent to cg(�) (if

15
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we set the pairs with the same gk then we obtain the cg-partition),

(
(gk, sk)

kt�1
k=1 ,

 
gkt , t�

kt�1X

k=1

sk

!
, (gkt , skt � t) , (gk, sk)

kih
k=kt+1 , (gk, sk)

m

k=kih+1

)
.

For each ih 2 L(�) (or jh) there is kih 2 {kt, ...,m} with

kihX

k=1

sk = ⇢(ih).

We take for �t�ih
the partition

(
(gk, sk)

kt�1
k=1 ,

 
gkt , t�

kt�1X

k=1

sk

!
, ((gkt)�ih, skt � t) , ((gk)�ih, sk)

kih
k=kt+1 , (gk, sk)

m

k=kih+1

)
.

Observe that these partitions are equivalent to the cg-partitions of the corresponding fuzzy

graphs. Hence using Lemma 2,

X

ih2L(�)

⇥
Pj(N, v)(�)� Pj(N, v)(�t�ih

)
⇤

= (skt � t)
X

ih2L(�)

[⇡j(N, v)(gkt)� ⇡j(N, v)((gkt)�ih)]

+
X

ih2L(�)

kihX

k=kt+1

sk[⇡j(N, v)(gk)� ⇡j(N, v)((gk)�ih)]

= (skt � t)
X

ih2L(�)

[⇡j(N, v)(gkt)� ⇡j(N, v)((gkt)�ih)]

+
mX

k=kt+1

sk

X

ih2L(gk)

[⇡j(N, v)(gk)� ⇡j(N, v)((gk)�ih)]

= (skt � t)
X

jh2L(�)

[⇡i(N, v)(gkt)� ⇡i(N, v)((gkt)�jh)]

+
mX

k=kt+1

sk

X

jh2L(gk)

[⇡i(N, v)(gk)� ⇡i(N, v)((gk)�jh)]

=
X

jh2L(�)

⇥
Pi(N, v)(�)� Pi(N, v)(�t�jh

)
⇤
. 2

Next theorem says that our fuzzy communication value is the only one satisfying these

two axioms.

16
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Theorem 4. There is only one fuzzy communication value satisfying fuzzy e�ciency by

components and balanced total fuzzy threats.

Proof. As our fuzzy communication value P satisfies both of the axioms then it is only

necessary to prove the uniqueness. Consider F another fuzzy communication value satisfying

these axioms. The proof of the uniqueness is by recurrence in K� = |L(�)|. If K� =

0 then all the players are isolated in � and the fuzzy e�ciency by components implies

Fi(N, v)(�) = ⌧(i)v({i}) for all i 2 N . We suppose true the uniqueness, namely F = P ,

for all � 2 FCS
N with K� < p. Now, let � 2 FCS

N with K� = p. We will find a unique

feasible payo↵ for the players in each connected component. If S 2 N/� with S = {i}

then by fuzzy e�ciency by components we get Pi(N, v)(�) = ⌧(i)v({i}). Suppose |S| > 1.

We take i 2 S and the other players in the component S \ i = {j1, ..., jq}. We look for

Fi(N, v)(�), Fj1(N, v)(�), ..., Fjq(N, v)(�). Applying the balanced total fuzzy threats axiom

with t = 0 to every pair of players i, jk with k = 1, ..., q we obtain

X

ih2L(�)

⇥
Fj1(N, v)(�)� Fj1(N, v)(�0�ih

)
⇤

=
X

j1h2L(�)

⇥
Fi(N, v)(�)� Fi(N, v)(�0�j1h

)
⇤

...

...
X

ih2L(�)

⇥
Fjq(N, v)(�)� Fjq(N, v)(�0�ih

)
⇤

=
X

jqh2L(�)

h
Fi(N, v)(�)� Fi(N, v)(�0�jqh

)
i
.

We denote Qi = |{ih 2 L(�)}| and Qjk
in the same way. These numbers Qi, Qjk

6= 0 because

these vertices are in the same connected component. Each link jkh (or ih) verifies that

K�
0
�jkh

< p, thus F = P over them. Adding the equations for S by the fuzzy e�ciency by

17
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components we get the following linear system,

QiFj1(N, v)(�)�Qj1Fi(N, v)(�) =
X

ih2L(�)

Pj1(N, v)(�0�ih
)�

X

j1h2L(�)

Pi(N, v)(�0�j1h
)

...

...

QiFjq(N, v)(�)�QjqFi(N, v)(�) =
X

ih2L(�)

Pjq(N, v)(�0�ih
)�

X

jqh2L(�)

Pi(N, v)(�0�jqh
)

Fj1(N, v)(�) + · · ·+ Fjq(N, v)(�) + Fi(N, v)(�) = ✏
(N.v)
cg

(�
S
).

This is a determined compatible system and then F = P . 2

Borm et al. [7] showed that the position value is proportional to the centrality measure

of the players, the degree of the vertex in this case, if the link game only depends on the

number of links. Our version too.

Theorem 5. Let (N, v) be a 0-normalized game and let � be a fuzzy communication structure

such that v
Lg(A) = |L(gA)| for all g 2 CS

N
with g  g

�
. It holds that there exists K > 0

with Pi(N, v)(�0) = K�i(�0) for all �
0
 �.

Proof. Suppose a game (N, v) and a fuzzy graph � satisfying the condition of the statement.

Let �0  �. Following [7] there is K > 0 with ⇡i(N, v)(g) = Kdi(g) for all g 2 CS
N with

g  g
�
0
. By Lemma 2 and Proposition 1 considering the cg-partition of �0

Pi(N, v)(�0) =
mX

k=1

sk⇡i(N, v)(gk) =
mX

k=1

skKdi(gk)

= K

X

ij2L(�)

X

{k2{1,...,m}:ij2L(gk)}

sk = K�i(�). 2

We study now properties of our fuzzy communication value derived from its Choquet

form. For all A ✓ L we denote gA = (N,A) 2 CS
N . Given a game (N, v) we define for every

i 2 N the set function over L,

f
v

i
(A) =

1

2

X

ij2L

�
ij
(L, vLg

A
) 8A ✓ L.
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Lemma 6. Let (N, v) be a game. For all � = (⌧ , ⇢) 2 FCS
N

and i 2 N ,

Pi(N, v)(�) = ⌧(i)v({i}) +

Z
⇢ df

v

i
.

Proof. Let � = (⌧ , ⇢) 2 FCS
N . From Definition 6 it is enough to see that

R
⇢ df

v

i
=

1

2

P
ij2L �ij

(L, vL�
cg
). So, if im(⇢) = {�1 < · · · < �m} and �0 = 0 then

Z
⇢ df

v

i
=

qX

p=1

(�p � �p�1)f
v

i
([⇢]�p) =

1

2

X

ij2L

qX

p=1

(�p � �p�1)�ij
(L, vLg

⇢�p
).

For each k observe that vLg
⇢�k = v

Lg⇢�k . Suppose now {t1 < · · · < tm} = im(⌧) [ im(⇢) and

t0 = 0. If cg(�) = (sk, gk)mk=1 then Algorithm 1 implies that sk = tk � tk�1. But for all tk

such that tk /2 im(⇢) it holds vLgk = v
Lgk�1 . Thus we get

sk�1�ij
(L, vLgk�1) + sk�ij

(L, vLgk) = (tk � tk�2)�ij
(L, vLgk).

Going on this reasoning we can use only the numbers in im(⇢) and we have for each link ij,

qX

p=1

(�p � �p�1)�ij
(L, v

Lg⇢�p ) =
mX

k=1

sk�ij
(L, vLgk). 2

Next theorem shows interesting properties of the cg-position value. Let � = (⌧ , ⇢), �0 =

(⌧ 0, ⇢0) 2 FCS
N two fuzzy graphs. We say that they are link-comonotone if ⇢, ⇢0 are comono-

tone as fuzzy sets over L. The link-distance between � and �0 is defined asD(�, �0) = D(⇢, ⇢0).

Theorem 7. The cg-position value P satisfies the following properties.

1) P is a linear function for the game.

2) P is a comonotone function by links. Let (N, v) be a game, for all two link-comonotone

fuzzy communication structures �, �
0
2 FCS

N
and t 2 [0, 1] it holds

P (N, v)(t� + (1� t)�0) = tP (N, v)(�) + (1� t)P (N, v)(�0).
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3) P is a continuous function.

Proof. 1) Let (N, v), (N, v
0) be two games, a, a0 two real numbers and � = (⌧ , ⇢) 2 FCS

N a

fuzzy communication structure. Property (C1) and Lemma 6 imply that for every i 2 N

Pi(N, av + a
0
v
0)(�) = ⌧(i)[av({i}) + a

0
v
0({i})] +

Z
⇢ df

av+a
0
v
0

i

= a⌧(i)v({i}) + a

Z
⇢ df

v

i
+ a

0
⌧(i)v0({i}) + a

0
Z
⇢ df

v
0

i

= aPi(N, v)(�) + a
0
Pi(N, v

0)(�).

2) Let � = (⌧ , ⇢), �0 = (⌧ 0, ⇢0) 2 FCS
N be two link-comonotone fuzzy communication

structures. Obviously, for each t 2 [0, 1], the convex combination t�+(1� t)�0 is a new fuzzy

graph because for all i 2 N we have t⌧(i) + (1 � t)⌧ 0(i)  1. Moreover t⇢ and (1 � t)⇢0 are

comonotone fuzzy sets in L. Properties (C2), (C3) and Lemma 6 say that for each i 2 N ,

Pi(N, v)(t� + (1� t)�0) = [t⌧(i) + (1� t)⌧ 0(i)]v({i}) +

Z
(t⇢+ (1� t)⇢0) df v

i

= t⌧(i)v({i}) + t

Z
⇢ df

v

i
+ (1� t)⌧ 0(i)v({i}) + (1� t)

Z
⇢
0
df

v

i

= tPi(N, v)(�) + (1� t)Pi(N, v)(�0).

3) Lemma 6 shows that Pi(N, v) is a sum of a linear operator for ⌧ and a Choquet integral

for ⇢. As both of them are continuous then Pi(N, v) is continuous. 2

Example 2. Suppose the fuzzy communication structure � in Figure 3 for N = {1, 2, 3}

and the game with v(S) = |S|� 1 if S 6= ; and v(;) = 0. It is a 0-normalized game but the

link game does not satisfy the other condition in Theorem 5, vLg(L) = v(N) = 2 6= 3. In

order to obtain the payo↵s of our value we use Theorem 7 (2). We take the decomposition

in Figure 3 of � with �1, �2 in the order of the figure and t = 1/3. Observe that �1 and �2

are link-comonotone.
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Figure 3. Fuzzy graph � and decomposition.

Now we get the value for both of the fuzzy graph in the decomposition. The first one has

only one level 0.9, and then the cg-position value coincides with the position value. The

game and the structure are symmetric and therefore the payo↵s are using v(N) = 2

P (N, v)(�1) = 0.9 · (2/3, 2/3, 2/3) =

✓
3

5
,
3

5
,
3

5

◆
.

The fuzzy graph �2 satisfies both of the conditions in Theorem 5 for our game. Then the

payo↵s are proportional to the fuzzy degrees of the vertices. As ✏(N,v)
cg (�) = 0.75 (the graph

is connected but the e�ciency depends on the levels) and the fuzzy degrees (0.3, 0.75, 0.45)

then

P (N, v)(�2) =

✓
3

20
,
3

8
,
9

40

◆
.

So, the cg-position value is

P (N, v)(�) =
1

3
P (N, v)(�1) +

2

3
P (N, v)(�2) =

✓
3

10
,
9

20
,
7

20

◆
.

We consider now players 2 and 3. We test the balanced total fuzzy threats axiom for them.

The minimal levels are ^2(�) = 0.5,^3(�) = 0.3 and then ^23(�) = 0.3. We take a threat of

t = 0.2 2 [0, 0.3]. Following the same method than before we get

P3(N, v)(�)�P3(N, v)(�0.2�12)+P3(N, v)(�)�P3(N, v)(�0.2�23) =

✓
7

20
�

23

60

◆
+

✓
7

20
�

11

60

◆
=

2

15
.
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Also in the same way,

P2(N, v)(�)�P2(N, v)(�0.2�13)+P2(N, v)(�)�P2(N, v)(�0.2�23) =

✓
9

20
�

17

60

◆
+

✓
9

20
�

29

60

◆
=

2

15
.

Figure 4. Communication reduction.

5. Computing the cg-position value

The goal of this section is to formulate an algorithm which determines the cg-position

value and to study the complexity of it. Let A be an algorithm. The time complexity of A

is measured by a function f : Z+ ! Z+ where f (n) is the maximal number of iterations

in a universal Turing machine (before halting) in relation with the size of the input n. Let

f, g : Z+ ! Z+. Following O⌦⇥-notation, proposed by Knuth [35], we use f = O (g) if there

are c, n0 2 Z+ such that f (n)  cg (n) for all n � n0. In that case we say f is of the order

of g.

Let � = (⌧ , ⇢) 2 FCS
N be a fuzzy communication structure. We store the fuzzy set

of vertices and the fuzzy set of edges in an upper triangular matrix � = [�(i, j)]N⇥N where
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�(i, i) = ⌧(i) for every i 2 N and �(i, j) = ⇢(ij) when i < j. So,

� =

2

6666664

�(1, 1) �(1, 2) · · · �(1, n)

0 �(2, 2) · · · �(2, n)
...

...
. . .

...

0 0 0 �(n, n)

3

7777775

We can also represent the crisp graph g
� corresponding to the graph � by a matrix g

� such

that g�(i, j) = d�(i, j)e for all i, j 2 N.

We suppose a 0-normalized games from now on. In order to compute the cg-position

value we provide the position value with a process to determine it. This procedure is called

PVDL procedure (position value by dividends of the link game). Let (N, v) be a game with

communication structure g = (S,A). The dual graph of g is another graph g
⇤ such that the

links in g are the vertices in g
⇤ and there is a link in g

⇤ between each two adjacent links of

g. Suppose known the family of feasible sets of links Fg
⇤
, we can obtain the dividends of the

link game by a recurrence formula.

Lemma 8. Let (N, v) be a 0-normalized game with communication structure g = (S,A).

The Harsanyi dividend of the link game (L, vLg) for each E 2 F
Lg

is

�v
Lg

E
= v

 
[

ij2E

{i, j}

!
�

X

{B2FLg :B⇢E}

�v
Lg

B
,

and �v
Lg

E
= 0 otherwise.

Proof. We observe that the link game for the graph g coincides with the vertex game for the

dual graph g
⇤. If E 2 F

Lg then

v
Lg(E) = v

 
[

ij2E

{i, j}

!
.

So, we use (3) and (2) to get the equality 2

Using Lemma 1 we apply next algorithm to determine the Shapley value of the link game

(L, vLg). Let g = (S,A), l = |A| and {E
h

k
: h = 1, ..., E(k)} the set of elements in F

Lg of
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cardinality k with k = 1, ..., l.

Algorithm 2 dividends link
�
L, v

Lg
�

�v
Lg

;  0

for k from 1 to l

for h from 1 to E (k)

�v
Lg

E
h
k
 v

 
S

ij2Eh
k

{i, j}

!
�

P

{B2FLg :B⇢E
h
k}

�v
Lg

B

end

end

Next result follows from Theorem 6 in [24].

Lemma 9. Let (N, v) be a 0-normalized game with communication structure g = (S,A). The

time complexity of computing the dividends of the link game (L, vLg), when F
g
is known, is

O
�
3l
�
where l = |A| .

So, PVDL procedure works in three steps.

PVDL procedure PV DL(N, v, g)

1. We obtain the dual graph g
⇤ of g and its set of feasible coalitions of links, Fg

⇤
.

2. We compute the Shapley value of the link game using Algorithm 2.

3. We calculate the position value ⇡(N, v)(g) by (5).

Theorem 10. Let (N, v) be a 0-normalized game with communication structure g = (S,A).

The time complexity of computing the position value using the PVDL procedure is O
�
3l
�

where l = |A| .

Proof. We follow the three steps of the PVDL procedure. For the graph g we determine

the dual graph g
⇤. The edges of g are the vertices of g⇤. There are at most l players in

the maximal coalition induced by g
⇤
. To obtain the edges of g⇤, we need at most l(l � 1)

comparisons between the edges since two vertices in g
⇤ are connected if and only if the

intersection between the corresponding edges in g is not empty. Therefore we need O(l2)

time to determine the dual graph g
⇤. In order to calculate the set Fg

⇤
of feasible coalitions
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induced by g
⇤, we have to look at the subsets of vertices of g⇤ which generate a connected

subgraph in g
⇤. In the worst case g

⇤ is a complete graph, there are l vertices and l(l � 1)

edges. It is known that we can determine if a graph is connected or not by a Depth First

Search (DFS) which needs O(|vertices| + |links|) time; in this case O(l + l(l � 1)) = O(l2).

Therefore to obtain F
g
⇤
we need O(l22l) time. Now, Lemma 9 says that we obtain the

dividends of the link game in O(3l). Finally, we obtain the position value for each player

i 2 N ,

⇡i(N, v)(g) =
1

2

X

j2N\i

0

@
X

{B2FLg :ij2B}

�v
Lg

B

|B|

1

A .

After storing the dividends of game (L, vLg), for each link player ij 2 L, it is required in

the worst case O
�
2l
�
time to compute the Shapley value �

ij
(L, vLg). The link player ij has

degree l�1 at most, therefore to compute the position value for player i it is required O
�
l2l
�

time. Then, for all players it is required O
�
nl2l

�
time. We consider then max{l22l, 3l, nl2l}

and so the PVDL procedure needs O
�
3l
�
time. ⇤

The procedure to determine the cg-position value is the following.

cg-position procedure

1. Using Algorithm 1 we construct the partition cg(�) = (gk, sk)mk=1.

2. We calculate PV DL(N, v, gk) for each k.

3. Using Lemma 2 we obtain the cg-position value.

Next result also follows from Theorem 6 in [24].

Lemma 11. Let (N, v) be a 0-normalized game with fuzzy communication structure � =

(⌧ , ⇢). The time complexity of computing its cg-partition cg(�) by Algorithm 1 is O (c(a+ b))

where a = |im(⌧)| , b = |im(⇢)| and c = |im(⌧) [ im(⇢)| .

Theorem 12. Let (N, v) be a 0-normalized game with fuzzy communication structure � =

(⌧ , ⇢) and cg(�) = (sk, gk)mk=1. The time complexity of computing the cg-position value using

the cg-position procedure is O
�
l3l
�
, where l = |L(�)| .

Proof. Using Lemma 11 we obtain the cg-partition in O (c(a+ b)) where a = |im(⌧)| , b =
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|im(⇢)| and c = |im(⌧) [ im(⇢)|. Now, using Lemma 2

P (N, v)(�) =
mX

k=1

sk⇡(N, v)(gk).

Hence it is necessary to execute m times the PVDL procedure to obtain ⇡(N, v)(gk), k 2

{1, ...,m}, but there are no links in Lgk
, for all k 2 {m � l, ..., l}, since ⇢(i, j)  ⌧(i) ^ ⌧(j)

in �. Therefore, the only significative iterations are the first l, so it is necessary O
�
l3l
�
time

from Theorem 10. ⇤
Example 3. Suppose the game (N, v) be given by N = {1, 2, 3, 4, 5}, and

v(S) =

8
<

:
1, if S = {2, 3, 4, 5} or if both |S| � 2 and 1 2 S

0, otherwise,

with the fuzzy communication structure � represented in Figure 5. The crisp graph g
� and

the dual graph (g�)⇤ can be seen in Figure 6 and 7.

Figure 5: Fuzzy graph �

� =

2

6666666664

0.9 0.4 0.5 0 0.5

0 0.9 0.4 0 0.5

0 0 0.8 0.2 0

0 0 0 0.8 0.5

0 0 0 0 1

3

7777777775
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Figure 6: Graph g
� Figure 7: Dual graph (g�)⇤

In the dual graph (g�)⇤ the vertices are the links in the graph g
�, we rename these vertices

in sequential order, {1, 2, 3, 4, 5, 6, 7}. Table 1 includes the matrices �
k
corresponding to the
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algorithm cg-partition cg(�) = (gk, sk)
k=6
k=1.

�1 =

2

6666666664

0.9 0.4 0.5 0 0.5

0 0.9 0.4 0 0.5

0 0 0.8 0.2 0

0 0 0 0.8 0.5

0 0 0 0 1

3

7777777775

s1 = 0.2

�2 =

2

6666666664

0.7 0.2 0.3 0 0.3

0 0.7 0.2 0 0.3

0 0 0.6 0 0

0 0 0 0.6 0.3

0 0 0 0 0.8

3

7777777775

s2 = 0.2

�3 =

2

6666666664

0.5 0 0.1 0 0.1

0 0.5 0 0 0.1

0 0 0.4 0 0

0 0 0 0.4 0.1

0 0 0 0 0.6

3

7777777775

s3 = 0.1

�4 =

2

6666666664

0.4 0 0 0 0

0 0.4 0 0 0

0 0 0.3 0 0

0 0 0 0.3 0

0 0 0 0 0.5

3

7777777775

s4 = 0.3

�5 =

2

6666666664

0.1 0 0 0 0

0 0.1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.2

3

7777777775

s5 = 0.1

�6 =

2

6666666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.1

3

7777777775

s6 = 0.1

Table 1. The cg-partition of the fuzzy graph �.

We calculate now the cg-position value using the position values of the communication struc-

tures in the cg-partition cg(�) = (gk, sk)
k=6
k=1, Table 2 includes the position values ⇡ (N, v)(gk)
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for k = 1, ..., 6.

⇡(N, v)(g1) ⇡(N, v)(g2) ⇡(N, v)(g3) ⇡(N, v)(g4) ⇡(N, v)(g5) ⇡(N, v)(g6)

1 0.442857 0.475 0.5 0. 0. 0

2 0.17619 0.175 0. 0. 0. 0.

3 0.17619 0.166667 0.25 0. 0. 0.

4 0.0285714 0.008333 0. 0. 0. 0.

5 0.176190 0.175 0.25 0. 0. 0.

Table 2. The position values for all crisp graphs.

Finally, Table 3 compares the classical Shapley value, � (N, v), the cg-Myerson value,M(N, v)(�)

(see [23]) and the cg-position value, P (N, v)(�).

Players � (N, v) M(N, v)(�) P (N, v)(�)

1 0.6 0.286667 0.233571

2 0.1 0.053333 0.0702381

3 0.1 0.07 0.0935714

4 0.1 0.02 0.00738095

5 0.1 0.07 0.0952381

Table 3. Shapley, cg-Myerson and cg-position values.

6. Values in the European Parliament: cg-position versus cg-Myerson value

The Treaties of Maastricht (1992) and Lisbon (2009) regulate the functions of the Euro-

pean Parliament in a context of the co-decision procedure with the Council of the European

Union. The European Parliament pretends to be the ideologic representation of the eu-

ropean citizens, but currently the channel of voting is the set of national political parties

in each member state. Hence, the relations among these groups are partial because of the

national interests. The European Parliament is organized in political groups depending on

the ideologic feeling. The di↵erent political parties of the member countries present a list of

candidates in their own countries and later they assume the membership to a specific group
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in the chamber. Therefore, the behavior of a group is not homogeneous because it is made

conditional on the countries relationships. A group needs to verify two conditions: it must

contain at least twenty five seats and it must represent at least one-quarter of the member

countries. Those members of the chamber who do not belong to any political group are

known as non-attached members.

In the seventh legislature there were seven political groups in the European Parliament

plus the non-attached seats. So, we consider in our example the following groups correspond-

ing to 2012, it was already proposed in [24] to compute the cg-Banzhaf value:

1. European People’s Party (Christian Democrats), 265 members.

2. Progressive Alliance of Socialists and Democrats, 183 members.

3. Alliance of Liberals and Democrats for Europe, 84 members.

4. European Conservatives and Reformists, 55 members.

5. Greens/European Free Alliance, 55 members.

6. European United Left - Nordic Green Left, 35 members.

7. Europe of Freedom and Democracy, 29 members.

8. Non-attached Members, 29 members.

Figure 8: EP fuzzy graph �

We consider the game of political representation groups of the European Parliament in

2012 with 735 seats and a quota of 368. The corresponding weighted voting game, called the
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EP-game, is represented by v(S) = 1 if the sum of the number of seats of the groups in S is

greater or equal to 368, and v(S) = 0 otherwise. We can summarize the bilateral relations

among the di↵erent groups, and the degree of cohesion of every group, by a fuzzy graph

� = (⌧ , ⇢) over N = {1, 2, 3, 4, 5, 6, 7, 8} , in this case ⌧ (i) is interpreted as the membership

capacity of the groups the voting day. Number ⇢ (i, j) means the maximal level of agreement

that groups i, j can reach in this voting. This fuzzy graph for the EP-game is represented

in Figure 8. The matrix representation of the EP fuzzy graph � is:

� =

2

6666666666666666664

0.9 0.5 0.7 0.8 0 0 0 0

0 0.9 0.5 0 0.7 0.7 0 0

0 0 0.9 0.7 0.3 0 0.5 0.2

0 0 0 0.8 0 0 0.7 0

0 0 0 0 1 0.7 0 0.2

0 0 0 0 0 1 0 0.1

0 0 0 0 0 0 0.9 0.2

0 0 0 0 0 0 0 0.5

3

7777777777777777775

Next we compare the results. Table 4 shows the Shapley value (�), the position value (⇡) and

the cg-position value (P ). This table allows us to compare the crisp option with the fuzzy

version of the position value. So, we can see clearly how including new information in the

game changes the payo↵s, first considering only the graph and second considering the fuzzy

graph. Table 5 compares the Shapley value, the Myerson value (µ) and the cg-Myerson value

(M) in the same way. Finally, Table 6, Figure 9 and Figure 10 show a comparison among all

the cg-values studied in the literature: the cg-Myerson value, the cg-position value and the

cg-Banzhaf graph value (B and, we applied it to this example and we compared it with the

crisp version in [24]). The sum of the cg-Banzhaf graph payo↵s is di↵erent to the others and

then we have to compare them related to their sums (BN). So, we can see how the position

value increases the power of the groups with more degree (according to their seats). We see

in Figure 8 that ADLE is the vertex with more fuzzy degree and it is the group with the
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best increasing of payo↵ in the cg-position value compared to the cg-Myerson value.

Players Groups votes � (N, v) ⇡(N, v)(g�) P (N, v)(�)

1 PPE 265 0.4214290 0.276504 0.226201

2 S&D 183 0.1785710 0.224578 0.117805

3 ADLE 84 0.1309520 0.225688 0.181412

4 CRE 55 0.0738095 0.0826326 0.11746

5 Greens-ALE 55 0.0738095 0.0651779 0.0193003

6 GUE/NGL 35 0.0404762 0.0329532 0.00810578

7 EDF 29 0.0404762 0.0393828 0.0202077

8 NI 29 0.0404762 0.053083 0.00950702

Table 4 Power indices in the European Parliament (I)

Players Groups Votes �(N, v) µ(N, v)(g) M(N, v)(�)

1 PPE 265 0.4214290 0.370238 0.253095

2 S&D 183 0.1785710 0.232143 0.125476

3 ADLE 84 0.1309520 0.175000 0.159048

4 CRE 55 0.0738095 0.0630952 0.0983333

5 Greens-ALE 55 0.0738095 0.0464286 0.0216667

6 GUE/NGL 35 0.0404762 0.0202381 0.0097619

7 EDF 29 0.0404762 0.0464286 0.0233333

8 NI 29 0.0404762 0.0464286 0.0092857

Table 5. Power indices in the European Parliament. (II)
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Players Groups Votes P (N, v)(�) M(N, v)(�) B(N, v)(�) B(N, v)(�)N

1 PPE 265 0.226201 0.2530950 0.357813 0.256891

2 S&D 183 0.117805 0.1254760 0.192188 0.137981

3 ADLE 84 0.181412 0.1590480 0.201563 0.144712

4 CRE 55 0.11746 0.0983333 0.107813 0.0774038

5 Greens-ALE 55 0.0193003 0.0216667 0.0390625 0.0280449

6 GUE/NGL 35 0.00810578 0.0097619 0.0171875 0.0123397

7 EDF 29 0.0202077 0.0233333 0.0421875 0.0302885

8 NI 29 0.00950702 0.0092857 0.0171875 0.0123397

Table 6. Power indices in the European Parliament. (III)

1 2 3 4 5 6 7 8
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0.15
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1 2 3 4 5 6 7 8
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Figure 9: Comparative graph cg-values in EP game (I).
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Figure 10: Comparative graph cg-values in EP game (II).

7. Conclusions

We have defined a version of the position value for games with fuzzy communication

situations. The position value gives a di↵erent vision to that of the Myerson value or the

graph Banzhaf value for communication structures, conceding greater importance to the

situation of the players in the structure. Fuzzy graphs allow us to study situations in

cooperative games where the communication among the agents should be shared. The cg-

position value can be obtained by using the position values of a partition of the fuzzy graph.

We have provided with an axiomatization of the new value and an algorithm to calculate it.

We have shown an application of the value as a power index to determine the power of the

groups in the European Parliament. We can see that the fuzziness of the cooperation among

the groups implies a drop in powers of all groups.
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[10] A. Ghintran, E. González-Aranguena and C. Manuel. A probabilistic position value. Annals
of Operations Research 201 (2012) 183-196.

[11] A. Ghintran. Weighted position values. Mathematical Social Sciences 65 (2013) 157-163.

[12] X. Deng and C.H. Papadimitriou. On the complexity of cooperative solution concepts. Math-
ematics of Operations Research 19 (1994) 257-266.

[13] G. Owen. Values of graph-restricted games. SIAM J. Algebraic and Discrete Methods 7 (1986)
210-220.

[14] J.R. Fernández. Complexity and algorithms for cooperative games. Ph. D. Thesis (ISBN
8468975311). University of Seville (2000). Spain (in Spanish)

[15] J.M. Bilbao, J.R. Fernández, A. Jiménez-Losada and J.J. López. Generating functions for
computing power indices e�ciently. TOP 8 (2000)191-213.
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