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ABSTRACT. The existence of a uniform upper bound for the maximum number of limit cycles of planar piecewise linear differ-
ential systems with two zones separated by a straight line has been subject of interest of hundreds of papers. After more than 30
years of investigation since Lum–Chua’s work, it has remained an open question whether this uniform upper bound exists or not.
Here, we give a positive answer for this question by establishing the existence of a natural number L∗ ≤ 8 for which any planar
piecewise linear differential system with two zones separated by a straight line has no more than L∗ limit cycles. The proof is
obtained by combining a newly developed integral characterization of Poincaré half-maps for linear differential systems with an
extension of Khovanskiı̆’s theory for investigating the number of intersection points between smooth curves and a particular kind
of orbits of vector fields.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The second part of the 16th Hilbert’s Problem is one of the most important topics in the qualitative theory of planar
differential systems (see, for instance, [16, 23]). Roughly speaking, given a positive integer n, this problem inquires about
the existence of a uniform upper bound H(n) for the maximum number of limit cycles that planar polynomial differential
systems of degree n can have. Since linear differential systems do not admit limit cycles, we have H(1) = 0. However, it
remains unsolved whether H(n) is finite, even for the simplest case n = 2.

The same problem has been also considered for planar nonsmooth differential systems. The study of limit cycles for
such systems can be traced back to the work of Andronov et. al [2] in 1937. The simplest examples of planar nonsmooth
differential systems are the planar piecewise linear differential systems with two zones separated by a straight line,

(1) ẋ =

 ALx + bL, if x1 ≤ 0,

ARx + bR, if x1 ≥ 0.

Here, x = (x1, x2) ∈ R2, AL,R = (aL,R
ij )2×2, and bL,R = (bL,R

1 , bL,R
2 ) ∈ R2. The Filippov’s convention [9] is assumed for

trajectories of (1). In this context, a limit cycle is defined as an isolated crossing periodic solution.
The search for a uniform upper bound for the maximum number of limit cycles of differential systems of kind (1)

started some decades ago. Indeed, Lum and Chua [24] in 1991, under the continuity hypothesis aL
12 = aR

12, aL
22 = aR

22, and
bL = bR, conjectured that differential system (1) had at most one limit cycle. This conjecture was first proven in 1998 by
Freire et al. [10]. The next natural step was to relax the hypothesis of continuity. In 2010, Han and Zhang [14] proved
the existence of piecewise linear differential systems of kind (1) having two limit cycles. Based on their examples, they
conjectured that such systems could have at most 2 limit cycles. In 2012, using numerical arguments, Huan and Yang [15]
gave a negative answer to this conjecture by showing an example with 3 limit cycles. In the same year, Llibre and Ponce
[22] proved analytically the existence of such numerically observed limit cycles. After that, many other works provided
examples with 3 limit cycles (see, for instance, [3, 4, 12, 13, 20, 27]).

Some partial results can be found in the literature regarding upper bounds for the maximum number of limit cycles
for other non-generic families of piecewise linear differential systems (see, for instance, [11, 18, 19, 21, 25, 26]). However,
up to now, after more than 30 years of investigation since the Lum–Chua’s paper [24] and hundreds of papers on this
matter, it has remained an open question whether there exists or not a uniform upper bound for the maximum number
of limit cycles that differential systems of kind (1) can have.

Recently, Carmona and Fernández-Sánchez [5] obtained an integral characterization for Poincaré half-maps associated
to a straight line of planar linear differential systems. This characterization was used in [7] to provide a new simple proof
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for the Lum–Chua’s conjecture. This last approach has proven to be an effective method to avoid the case-by-case study
performed in the former proof in [10]. The same technique was used in [8] to prove that differential system (1), under
the assumption of nonexistence of a sliding set, has at most one limit cycle.

Here, our main result provides a positive answer for the existence of a uniform upper bound for the maximum number
of limit cycles that differential systems of kind (1) can have.

Theorem 1. There exists a natural number L∗ ≤ 8 such that any planar piecewise linear differential system of kind (1) has no more
than L∗ limit cycles.

Theorem 1 is proven in Section 3 by combining the integral characterization for Poincaré half-maps provided in [5]
with an extension of Khovanskiı̆’s theory for investigating the number of intersection points between smooth curves and
a particular kind of orbits of vector fields. Section 2 is dedicated to present this extension of Khovanskiı̆’s theory.

2. INTERSECTION BETWEEN SMOOTH CURVES WITH SEPARATING SOLUTIONS

Khovanskiı̆, in [17, Chapter II], introduces the concept of separating solutions for vector fields defined on the whole
plane. In his definition, an orbit of a vector field is a separating solution if it either is a cycle or corresponds to a noncom-
pact trajectory that goes to and comes from infinity.

In the following result, Khovanskiı̆ bounds the number of isolated intersection points between a given smooth curve
and any orbit of a vector field that is a separating solution by means of the number of contact points between the curve
and the vector field (that is, points of the curve in which the vector field is tangent to the curve at these points). Here, a
smooth curve means a 1-dimensional C1 submanifold of the plane (without boundary and possibly nonconnected).

Theorem 2 ([17, Corollary of Section 2.1]). Consider a smooth vector field X : R2 → R2. Let a smooth curve γ ⊂ R2 have at
most N noncompact (and any number of compact) connected components and have at most k contact points with X. Then, there are
at most N + k isolated intersection points between γ and any orbit of X that is a separating solution.

In the present paper, we will apply an extension of this result for vector fields defined on open simply connected
subsets of the plane, which is based on the fact that such subsets are diffeomorphic to the whole plane (as an application
of the Riemann Mapping Theorem [1] together with the fact that the unit disc is diffeomorphic to the plane). Accordingly,
the definition above for an orbit to be a separating solution can be immediately extended for vector fields defined on
simply connected open subsets of R2 as follows.

Definition 3. Consider a smooth vector field X : U → R2 defined on an open simply connected subset U ⊂ R2. An orbit O of the
vector field X is called a separating solution if it is either a cycle or a noncompact trajectory satisfying (O \ O) ⊂ ∂U. Here, as
usual, O and ∂U denote, respectively, the closure of O and the boundary of U with respect to the R2 topology.

Let us provide some clarification on Definition 3. Denote by φ : U → R2 a diffeomorphism between U and R2. When
O is a cycle, φ(O) is also a cycle of the transformed vector field φ∗X : R2 → R2 and Definition 3 agrees with the definition
given by Khovanskiı̆. When O is noncompact, it is the image in U of an open interval by an injective function and, thus,
the condition (O \ O) ⊂ ∂U implies that φ(O) is an orbit of the transformed vector field φ∗X that goes to and comes
from infinity, i.e. a separating solution of φ∗X in the Khovanskiı̆ sense.

The next result extends Theorem 2 to orbits that are separating solutions of vector fields defined on open simply
connected subset of the plane. Its proof, as mentioned before, follows immediately by transforming U into the whole
plane via a diffeomorphism and, then, applying Theorem 2.

Theorem 4. Consider a smooth vector field X : U → R2 defined on an open simply connected subset U ⊂ R2. Let a smooth curve
γ ⊂ R2 have at most N noncompact (and any number of compact) connected components and have at most k contact points with X.
Then, there are at most N + k isolated intersection points between γ and any orbit of X that is a separating solution.

3. PROOF OF THE MAIN RESULT

This section is completely dedicated to the proof of Theorem 1. We start by establishing a technical lemma ensuring
that a uniform upper bound for the number of simple zeros of a 1-parameter family of analytic functions, under a suitable
monotonicity condition on the parameter, also bounds the number of isolated zeros of functions in this family.

Lemma 5. Let I, J ⊂ R be open intervals and consider a smooth function δ : I × J → R. Assume that
i. for each b ∈ J, the function δ(·, b) is analytic;
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ii. there exists a natural number N such that, for each b ∈ J, the number of simple zeros of the function δ(·, b) does not exceed
N; and

iii.
∂δ

∂b
(u, b) > 0, for every (u, b) ∈ I × J.

Then, for each b ∈ J, the function δ(·, b) has at most N isolated zeros.

Proof. For a fixed b ∈ J, let u ∈ I be an isolated zero of δ(·, b). In this case, since δ(·, b) is analytic, there exist a 6= 0, a
positive integer k, and an analytic function R such that δ(u, b) = a(u− u)k + (u− u)k+1R(u).

We start this proof by describing the unfolding of the isolated zero u in three distinct scenarios, namely: (O) when k
is odd; (E+) when k is even and a > 0; and (E−) when k is even and a < 0. Taking into account condition (iii), we get the
following unfolding in each scenario:

• If u satisfies O (that is, k is odd), then there exists ε > 0 sufficiently small such that the map δ(·, b) has a continuous
branch of zeros, u0 : (b− ε, b + ε) ⊂ J → R, which are simple for b 6= b and u0(b) = u;
• If u satisfies E+ (that is, k is even and a > 0), then there exists ε > 0 sufficiently small such that the map δ(·, b) has

two continuous branches of zeros, u1, u2 : (b− ε, b] ⊂ J → R, which are simple for b 6= b and u1(b) = u2(b) = u;
• If u satisfies E− (that is, k is even and a < 0), then there exists ε > 0 sufficiently small such that the map δ(·, b) has

two continuous branches of zeros, u1, u2 : (b, b + ε] ⊂ J → R, which are simple for b 6= b and u1(b) = u2(b) = u.
Now, assume by absurd that there exists b∗ ∈ J such that the map δ(·, b∗) has more than N isolated zeros. Consider an

amount of N + 1 of these zeros and let o, e+, and e− be the number of such zeros satisfying O, E+, and E−, respectively.
Clearly, o + e+ + e− = N + 1. Let us assume, without loss of generality, that e+ ≥ e−. Thus, from the unfolding scenarios
above we can choose a minimum ε > 0 such that, for each b ∈ (b∗− ε, b∗) ⊂ J, the map δ(·, b) has at least o + 2e+ ≥ N + 1
simple zeros, which contradicts assumption (i). It concludes this proof. �

Now, before proving Theorem 1, we must set forth some preliminary concepts and results. Under the assumption
aL

12aR
12 > 0 (which is necessary for the existence of limit cycles), Freire et. al in [11, Proposition 3.1] provided that the

differential system (1) is transformed, by a homeomorphism preserving the separation line Σ = {(x, y) ∈ R2 : x = 0},
into the following Liénard canonical form

(2)

 ẋ = TLx− y

ẏ = DLx− aL

for x < 0,

 ẋ = TRx− y + b

ẏ = DRx− aR

for x > 0,

where aL = aL
12bL

2 − aL
22bL

1 , aR = aR
12bR

2 − aR
22bR

1 , b = aL
12bR

1 /aR
12 − bL

1 , and TL, TR and DL, DR are, respectively, the traces
and determinants of the matrices AL and AR.

The periodic behavior of differential system (2) can be analyzed by means of two Poincaré Half-Maps associated to
Σ, namely, the Forward Poincaré Half-Map yL : IL ⊂ [0,+∞) −→ (−∞, 0] and the Backward Poincaré Half-Map yb

R : Ib
R ⊂

[b,+∞) → (−∞, b]. The forward one maps a point (0, y0), with y0 ≥ 0, to a point (0, yL(y0)) by following the flow in
the positive direction. Analogously, the backward one maps a point (0, y0), with y0 ≥ b, to (0, yb

R(y0)) by following the
flow in the negative direction. Notice that the left differential system defines yL and the right differential system defines
yb

R. The map yL is characterized by an integral relationship provided by Theorem 19, Corollary 21, and Remark 24 of
[5]. The map yb

R can also be characterized via such results just by considering a change of variables and parameters. It is
worthwhile to mention that yb

R(y0) = y0
R(y0− b) + b and Ib

R = I0
R + b, where y0

R : I0
R ⊂ [0,+∞)→ (−∞, 0] is the Backward

Poincaré Half-Map of (2) for b = 0. For the sake of simplicity, let us denote y0
R and I0

R just by yR and IR, respectively.
Important properties, described in [5], of the maps yL and yR are obtained from the following polynomials

(3) WL(y) = DLy2 − aLTLy + a2
L and WR(y) = DRy2 − aRTRy + a2

R.

Indeed, the graphs of yL and yR, oriented according to increasing y0, are, respectively, the portions included in the fourth
quadrant of particular orbits of the cubic vector fields

(4) XL(y0, y1) = −
(
y1WL(y0), y0WL(y1)

)
and XR(y0, y1) = −

(
y1WR(y0), y0WR(y1)

)
.

In addition, the curves yL(y0) and yR(y0) are, respectively, solutions of the differential equations

(5)
dy1

dy0
=

y0WL(y1)

y1WL(y0)
and

dy1

dy0
=

y0WR(y1)

y1WR(y0)
.
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Remark 1. The polynomials given in (3) also provide information regarding the intervals IL and IR of definition of yL and yR,
respectively. The smallest positive root of WL, if any, is the right endpoint of IL. Analogously, the greatest negative root of WL, if
any, is the left endpoint of yL(IL). When 4DL − T2

L > 0, since the polynomial WL has no roots, the intervals IL and yL(IL) are
unbounded with yL(y0) tending to −∞ as y0 → +∞. The polynomial WL is strictly positive in [yL(y0), 0) ∪ (0, y0], for y0 ∈ IL.
The same conclusions are valid for yR.

Another property which will be important in this proof concerns about the relative position between the graph of the
forward Poincaré half-map and the bisector of the fourth quadrant (see [6] for a proof). A similar result can be given for
the backward Poincaré half-map.

Proposition 1. The relationship sign (y0 + yL(y0)) = −sign(TL) holds for y0 ∈ IL \ {0}.

Now, we can proceed with the proof of Theorem 1.
As usual, crossing periodic solutions of (2) are studied by means of the displacement function δb, which is defined in

the interval Ib := IL ∩ (IR + b) as follows

δb(y0) = yR(y0 − b) + b− yL(y0).

Indeed, the zeros of δb in int(Ib) are in bijective correspondence with crossing periodic solutions of (2) as well as simple
zeros δb in int(Ib) are in bijective correspondence with hyperbolic limit cycles of (2).

In light of Lemma 5, we will show that, for each b ∈ R, the number of simple zeros of δb does not exceed 8.
Taking into account the derivatives of yL and yR given in (5), one can easily see that, if y∗0 ∈ int(Ib) satisfies δb(y∗0) = 0,

then

δ′b(y
∗
0) =

(y∗0 − y∗1)
y∗1(y

∗
1 − b)WL(y∗0)WR(y∗0 − b)

Fb(y∗0 , y∗1),

where y∗1 = yR(y∗0 − b) + b = yL(y∗0) < min(0, b) and Fb is a polynomial function of degree 4 given by

Fb(y0, y1) = m0 + m1(y0 + y1) + m2y0y1 + m3(y2
0 + y2

1) + m4(y0y2
1 + y2

0y1) + m5y2
0y2

1,

with mi, i = 1, . . . , 5, being polynomial functions on the parameters of differential system (2).
From Remark 1, WL(y∗0)WR(y∗0 − b) > 0 and, since (y∗0 − y∗1)y

∗
1(y
∗
1 − b) > 0, thus sign(δ′b(y

∗
0)) = sign(Fb(y∗0 , y∗1)). This

means that the zero set γb = F−1
b ({0}) separates the attracting hyperbolic crossing limit cycles from the repelling ones.

Consequently, since two consecutive hyperbolic limit cycles of (2) cannot have the same stability, the number of them
and, therefore, the number of simple zeros of δb is bounded by the number of isolated intersection points between γb and
one of the curves y1 = yL(y0) or y1 = yR(y0 − b) + b, y0 ∈ Int(Ib), increased by one.

It is sufficient to focus our attention to the curve Ob = {(y0, yL(y0)) : y0 ∈ Int(Ib)}. From Proposition 1, one of the
following cases holds:

(i) TL = 0, then Ob ⊂ {(y0,−y0) : y0 > 0};
(ii) TL < 0, then Ob ⊂ B+ := {(y0, y1) : −y0 < y1 < 0};

(iii) TL > 0, then Ob ⊂ B− := {(y0, y1) : −y1 > y0 > 0}.
In what follows, we are going to show that the number of isolated intersection points between γb and Ob is at most 7.

First, for TL = 0, since from (i) Ob is a straight segment, by Bezout’s theorem the number of isolated intersection points
between γb and Ob is at most 4. Thus, from now on, we assume that TL 6= 0. In this case, Ob is a separating solution of
the restricted vector field

(6) X̂L = XL
∣∣
U with U = B ∩ Int

(
Ib × (yL(Ib) ∩ yb

R(Ib))
)
,

where XL is given in (4) and, by taking into account cases (ii) and (iii), B is either B+ or B− provided that TL < 0 or
TL > 0, respectively. Notice that, since Ib, yL(Ib), and yb

R(Ib) are intervals, then U is an open simply connected subset of
the quadrant Q := {(y0, y1) : y0 > 0 and y1 < 0}.

In order to use Theorem 4 for bounding the number of isolated intersection points between γb and Ob, we have to
estimate the number of contact points between γb and X̂L, which can be done by means of the inner product

Gb(y0, y1) = 〈∇Fb(y0, y1), XL(y0, y1)〉.
One can see that Gb is a polynomial function of degree 6 given by

Gb(y0, y1) =n1(y0 + y1) + n2y0y1 + n3(y2
0 + y2

1) + n4(y2
0y1 + y0y2

1) + n5(y3
0 + y3

1)

+ n6y2
0y2

1 + n7(y3
0y1 + y0y3

1) + n8(y3
0y2

1 + y2
0y3

1) + n9y3
0y3

1,
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where ni, i = 1, . . . 9, are polynomial functions on the parameters of differential system (2). Accordingly, the number of
contact points between γb and X̂L is bounded by the number of isolated solutions of the polynomial system

(7) Fb(y0, y1) = 0 and Gb(y0, y1) = 0, (y0, y1) ∈ U.

Now, since we are only interested in solutions of (7) in U, we proceed with the following change of variables

(Y0, Y1) = φ(y0, y1) := (y0 + y1, y0y1) for (y0, y1) ∈ U,

which is a diffeomorphism between the quadrant Q and the half-plane {(Y0, Y1) : Y1 < 0} that transforms the polynomial
system (7) into the following equivalent one

(8) F̃b(Y0, Y1) = 0 and G̃b(Y0, Y1) = 0, (Y0, Y1) ∈ φ(U),

where, now, F̃b and G̃b are polynomial functions of degrees 2 and 3 given, respectively, by

F̃b(Y0, Y1) =m0 + m1Y0 + (m2 − 2m3)Y1 + m3Y2
0 + m4Y0Y1 + m5Y2

1 ,

G̃b(Y0, Y1) =n1Y0 + (n2 − 2n3)Y1 + n3Y2
0 + (n4 − 3n5)Y0Y1 + (n6 − 2n7)Y2

1 + n5Y3
0 + n7Y2

0 Y1 + n8Y0Y2
1 + n9Y3

1 .

We claim that (8) has at most 5 finite isolated solutions. Notice that, by Bezout’s Theorem, polynomial system (8)
has at most 6 isolated solutions (finite or not). For DL = 0, one can see that the polynomial system F̃b(Y0, Y1) =

0 and G̃b(Y0, Y1) = 0 has a solution at the infinity, decreasing the number of possible finite isolated solutions of (8)
at least by 1. Thus, it remains to analyze what happens for DL 6= 0. In this case, one can check that

(Y∗0 , Y∗1 ) =

(
aLTL
DL

,
a2

L
DL

)
is a solution of F̃b(Y0, Y1) = 0 and G̃b(Y0, Y1) = 0. Let us see that (Y∗0 , Y∗1 ) /∈ φ(U). On the one hand, depending
on the sign of TL, the set φ(U) satisfies that: (j) if TL > 0, φ(U) ⊂ {(Y0, Y1) : Y0 < 0, Y1 < 0}; and (jj) if TL < 0,
φ(U) ⊂ {(Y0, Y1) : Y0 > 0, Y1 < 0}. On the other hand, in order to determine the relative position of (Y∗0 , Y∗1 ) with
respect to φ(U) we have to consider some cases. If DL > 0 or aL = 0, then Y∗1 ≥ 0, which implies that (Y∗0 , Y∗1 ) /∈ φ(U). If
DL < 0 and aL < 0, then sign(Y∗0 ) = sign(TL) and, consequently, from cases (j) and (jj) above, (Y∗0 , Y∗1 ) /∈ φ(U). Finally,
if DL < 0 and aL > 0, then the quadratic polynomial WL has two simple roots, y∗1 < 0 < y∗0 . One can easily seen that
(Y∗0 , Y∗1 ) = φ(y∗0 , y∗1). From Remark 1, y∗0 /∈ Int(IL) and y∗1 /∈ Int(yL(IL)), then from the definition of U in (6), (y∗0 , y∗1) /∈ U
and, consequently, (Y∗0 , Y∗1 ) /∈ φ(U).

Finally, since F̃b has degree 2, we have that γ̃b = F̃−1
b ({0}) has at most two noncompact connected components in

φ(U), which implies that γb has at most 2 noncompact connected components in U.
Applying Theorem 4, we conclude that γb and Ob has at most 5 + 2 = 7 intersections. Therefore, differential system

(2) has at most 8 hyperbolic limit cycles and, consequently, the number of simple zeros of the displacement function δb
does not exceed 8.

From here, we wish to apply Lemma 5 to conclude that δb has at most 8 isolated zeros for every b ∈ R. However, it
cannot be directly applied to δb because its domain depends on the parameter b. Thus, we proceed by contradiction as
follows. Assume that, for some b∗ ≥ 0, δb∗ has more than 8 isolated zeros. Take an open interval I ⊂ Int(Ib∗) that contains
all the isolated zeros of δb∗ . Since Ib = I0

R + b, we can consider a small interval J containing b∗ for which I ⊂ Int(Ib) for
every b ∈ J. Since δb|I has at most 8 simple zeros for every b ∈ J and

∂

∂b
δb(y0) = −y′R(y0 − b) + 1 > 0, for y0 ∈ I and b ∈ J,

Lemma 5 implies that δb|I has at most 8 isolated zeros for every b ∈ J, which contradicts the initial assumption that δb∗

has more than 8 isolated zeros. It concludes the proof of Theorem 1.
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