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Abstract 

This paper focuses on designing waste collection routes with a single landfill using eco-efficiency 

as a performance indicator. In this problem there are a limited number of heterogeneous vehicles 

based at a single depot. Empty vehicles leave the depot, collect waste from a set of locations and 

drop off the collected waste at a specific landfill. Then, vehicles leave the landfill and may collect 

more waste from other locations or return empty to the depot. Traditional performance indicators 

in Vehicle Routing Problems are mainly focused on economic objectives, not explicitly 

considering environmental issues. In this paper, a mathematical model is presented with an eco-

efficient objective function that takes into account external costs (climate change and air 

pollution). The COPERT model is used for estimating fuel consumption, and carbon dioxide and 
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pollutant emissions. The problem is first heuristically solved using a semi-parallel construction 

algorithm. Then, solutions are improved by a variable neighborhood tabu search algorithm 

developed for this problem. The algorithm is validated for a real problem in the municipality of 

Alcalá de Guadaíra, within the metropolitan area of Seville (Spain). Results obtained on a set of 

case studies improve the solution that is currently implemented in the municipality, in terms of 

total distance traveled, carbon dioxide emissions and pollutant emissions. 
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1. Introduction 

Air pollution is a general problem for all countries in the world. The rapid urban and industrial 

growth has resulted in the emission of considerable quantities of potentially harmful gases into the 

atmosphere which have affected the health and well-being of citizens, especially those living in 

urban and industrial areas. Although air pollutants have decreased substantially over the past 

decades, air pollutant concentrations are still regarded as too high and air quality problems persist, 

especially in cities where pollutants, such as nitrogen oxides (NOx) or particulate matter (PM), 

pose serious health risks (EEA, 2012). 

Relating to the transport sector, emissions from fuel consumption are composed of many types 

of pollutants such as carbon dioxide (CO2), NOx, non-methane volatile organic compounds 

(NMVOC) and PM among others, which are a source of serious human health problems including 

respiratory infections, heart disease, and cancer (Eguia et al., 2013).  

From the economic point of view, these emissions have had a great influence on the gross 

domestic product (GDP) of the European Union (EU), representing a total of over 500 billion 

euros, about 4% of GDP in 2008 (CE Delft et al., 2011). Consequently, in the last decade, projects 

to reduce pollution from mobile sources have been implemented in the EU. They include: (1) the 

introduction of more energy efficient engines to reduce pollutant emissions of new vehicles (Euro 

standards), (2) transport mode shifts, (3) increased fuel efficiency by the use of hybrid vehicles, 

(4) conversion to cleaner fuels (ultra-low sulphur diesel, bioethanol, biodiesel), (5) car-free zone 

establishments, (6) electric vehicles and (7) the adoption of the Eurovignette Directive (European 

Commission, 2011), a pricing strategy where tolls are imposed for heavy goods vehicles, including 
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an external cost charge which reflects air pollution costs. Another input for reducing pollutant 

emissions in urban areas is to incorporate environmental objectives in the decision-making 

process, especially in planning, optimizing and controlling transport activities. This is of special 

importance for the reduction of both operating costs and vehicle emissions. 

This paper is focused on the daily solid waste collection problem performed by public or private 

companies in urban environments. The urban solid waste collection is a waste management activity 

that typically needs to collect wastes from many collection points (CPs) in order to send them to a 

landfill or disposal facility. This is a reverse logistics problem that is defined as a Waste Collection 

Vehicle Routing Problem (WCVRP), which can be treated as a vehicle routing problem (VRP) 

(Beliën et al., 2012). The WCVRP typically consists in routing a fleet of vehicles located at the 

depot to collect waste from a set of CPs with known demands. Vehicles must travel to a landfill to 

drop off the waste before returning empty to the depot.  

In the literature, waste collection is divided into three categories: residential, commercial and 

skip waste collection (Benjamin and Beasley, 2013). Residential waste, which is usually located 

along the streets, is collected by vehicles and taken to open dumps for disposal. This WCVRP is 

often formulated as an arc routing problem (ARP) where streets are traveled completely by the 

collection vehicles and the exact location of every CP in the street is not needed. For surveys on 

ARPs we refer to the papers by Dror (2012) and Golden & Wong (1981). On the other hand, the 

commercial and the skip collection problems are typically formulated as node routing problems 

(NRPs). As considering each CP separately provides a more detailed model for the calculation of 

pollutant emissions, an NRP approach is adopted in this work. Moreover, this formulation takes 

into account traffic regulations (e.g. streets with unidirectional traffic). 
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Although there are several versions of the WCVRP, the problem often does not describe a 

realistic approach and does not include all the constraints and requirements of real companies.  

This paper introduces the Eco-efficient WCVRP (Eco-WCVRP); it extends the WCVRP by 

including several realistic considerations. First, potential cost savings can be obtained by 

considering multiple disposal trips by collection vehicles, because companies could reduce the 

number of vehicles and staff needed. In this problem collection vehicles may continue to collect 

waste from other CPs after being emptied at a disposal facility. To the best of our knowledge, there 

are relatively few studies considering multiple disposal trips in the scientific literature. In most of 

them, each vehicle is assumed to depart from the depot, serve (pick-up or delivery) only one route 

consisting of multiple stops, and return to the depot (Kim et al., 2006). Second, the fleet of 

collection vehicles in a company is usually heterogeneous in real-life as the company incorporates 

vehicles of different characteristics over time (Hoff et al., 2010) and restrictions on the vehicle 

size and weight may be required in order to access urban areas (Semet, 1995). Finally, as the major 

objective of WCVRPs is to minimize the number of vehicles and total traveling time, this work 

also incorporates environmental issues in the objective function for the minimization of pollutant 

emissions, which have received relatively little attention in the scientific literature. Specifically, 

the total external costs of the collection routes derived from CO2, NOx, NMVOC and PM emissions 

are considered to be minimized. External costs are obtained based on the European study (INFRAS 

et al, 2008); by selecting this objective function, both operating costs (fuel consumption) and 

pollutant emissions can be reduced.  

As the Eco-WCVRP belongs to the set of NP-Hard problems, the use of heuristics and 

metaheuristics approaches is justified. In this paper, we focus on a solution approach consisting of 
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a semi-parallel insertion heuristic and a Variable Neighborhood Tabu Search (VNTS) 

metaheuristic. 

This paper makes two main scientific contributions. First, the definition of the Eco-WCVRP, 

which combines a set of realistic constraints for real-life studies regarding pollutant emissions. It 

is important to note that the Eco-WCVRP not only considers CO2 emissions as transport 

externalities, but also takes into account NOx, NMVOC and PM emissions, which are of special 

importance in urban areas. To the best of our knowledge, there does not exist in the scientific 

literature any practical WCVRP application which considers these types of pollutant. The paper 

also introduces a mixed-integer linear programming model that considers the minimization of the 

external costs of transport in which pollutant emissions are estimated by the COPERT 

methodology (Ntziachristos and Samaras, 2012), which considers the principal influencing factors 

for a more accurate estimation of pollutant emissions. Such factors comprise the different vehicle 

speeds along the route, the load carried, the vehicle category and the engine technology. The 

second contribution is a VNTS algorithm which aims to efficiently solve this WCVRP. The 

algorithm is applied in a case study with real data, and a comparison between the performance of 

the current planning method and the solution obtained by the algorithm is made. 

This paper is organized as follows: Section 2 presents the literature review of the research. 

Section 3 provides a formal description of the Eco-WCVRP. The mathematical formulation of the 

problem is introduced in Section 4. Section 5 explains the proposed solution methodology 

including the algorithmic details to solve the problem. The experimental results of the case studies 

are given in section 6 and finally, the conclusions are presented in the last section. 
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2. Literature Review 

In the last decade interest in environment preservation has increased and environmental aspects 

play an important role in strategic and operational policies, especially in urban areas where waste 

generation is increasing with population growth. Thus, Green Logistics have arisen, extending the 

traditional definition of logistics by explicitly considering external factors associated mainly with 

climate change and air pollution. WCVRPs are clearly part of Green Logistics as they reduce the 

environmental impact by optimizing the energy usage in reverse logistics activities and by 

reducing waste and managing its treatment (Sbihi & Eglese, 2007). Therefore, they belong to the 

well-known Green Vehicle Routing Problems (GVRPs), which are characterized by the objective 

of harmonizing the environmental and economic costs by implementing effective routes to meet 

the environmental concerns and financial indexes (Lin et al., 2014). For further information on 

GVRPs we refer to the survey papers by Lin et al. (2014), Sbihi & Eglese (2007) and Demir et al. 

(2014a). 

Since the transportation of waste materials (solid waste and recyclables) from the CPs to the 

landfill involves a high level of operational costs, a high number of works have been published 

with different solutions and methods for solving the WCVRP (see e.g. Angelelli and Speranza 

(2002), Teixeira et al. (2004), Nuortio et al. (2006), Karadimas et al. (2007), Bautista et al. (2008)). 

For further information we refer to the survey paper by Han & Ponce-Cueto (2015). Nevertheless, 

to the best knowledge of the authors, there is little research that focuses on combining economic 

and environmental objectives in a WCVRP. Sonneson (2000) presents a mathematical model to 

predict fuel consumption and time for collecting waste in different areas. In this work, the fuel 
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consumption and consequently pollutant emissions in a collection route largely depend on the total 

driving distance and number of stops. Apaydin & Gonullu (2008) used a shortest path model in 

order to decrease the emissions in the solid waste collection process in Trabzon city (Turkey). 

They used a Geographic Information System (GIS) to obtain real data and to compare the 

optimized rote with the present one. They obtained important reductions in exhaust gas emissions. 

They considered constant emission factors based on travel distance for the calculation of pollutant 

emissions, whereas in this research, pollutant emissions are estimated depending on the vehicle 

speed, the engine and vehicle characteristics and the load carried by the collection vehicle. Tavares 

et al. (2009) propose the use of a GIS 3D route modeling software for minimizing fuel consumption 

in a WCVRP. The model is applied to a collection scheme in the city of Praia (Cape Verde) and 

considers the effects of road inclination and vehicle weight. Results show savings of 8%, compared 

to the approach of calculating the route of shorter distances. Zsigraiova et al. (2013) present a 

methodology for the reduction of operation costs and pollutant emissions. They combine vehicle 

routing optimization in the GIS environment and waste collection scheduling with historical data 

of the filling rate of trash bins. The methodology is applied to a collection system in the city of 

Barreiro (Portugal), obtaining beneficial impacts of the optimization on both the operation costs 

and pollutant emissions. Bing et al. (2014) propose a mathematical model and heuristics for 

redesigning the collection routes of plastic waste by adopting an eco-efficiency metric which is 

measured by transportation, labor and emission costs.  

All these studies considered that the collection vehicle performs only one trip to the disposal 

facility, whereas our study considers a real-life situation, where multiple disposal trips are allowed 

in order to reduce the company costs. Following this consideration, Boskovic et al. (2013) 
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presented a methodology for vehicle route optimization using GIS, which is applied to the waste 

collection and transport system in the city of Kragujevac (Serbia). They presented a WCVRP with 

multiple disposal trips, called circuits, which are divided into four different stages in which vehicle 

speeds differ. This observation is also taken into account in our study, in order to calculate more 

precisely pollutant emissions. In their study, pollutant emissions are calculated for the optimized 

route and savings compared to the current situation are shown; results indicate great reductions in 

pollutant emissions. 

In the area of GVRPs, a large number of papers have been published in the scientific literature. 

Some papers deal with minimizing fuel consumption, (see Kara et al. (2007), Kuo (2010), Xiao et 

al. (2012) and Kopfer et al. (2014)), whereas Maden et al. (2010) and Jabali et al. (2012) take into 

account time-dependent travel times and vehicle speeds to calculate fuel consumptions and CO2 

emissions. 

Bektaş & Laporte (2011) defined the Pollution Routing Problem (PRP) as an extension of the 

classical VRP by using a more comprehensive objective function that accounts not just for the 

travel distance, but also for the amount of greenhouse gases (GHGs) emissions, fuel, travel times 

and their costs. They presented results of computational experiments on realistic instances that 

showed the trade-off between minimizing distances, minimizing the distance-load product and the 

minimization of energy. Extending this research, many authors considered different variants of 

these problems (see e.g. Franceschetti et al. (2013), Demir et al. (2014b) and Koç et al. (2014)). 

Other authors have presented different approaches for the PRP or its extensions (Demir et al. 

(2012), Tajik et al. (2014), Kramer et al. (2015a, 2015b)). 

https://www.sciencedirect.com/science/article/pii/S095741741300609X#b0385
https://www.sciencedirect.com/science/article/pii/S095741741300609X#b0385
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Another problem of GVRPs deals with the recharging or refueling of the vehicles, particularly, 

the alternative-fuel powered vehicle (AFV). Erdoğan & Miller-Hooks (2012) introduced the 

problem called Green VRP, under the constraints of the limited vehicle driving range in 

conjunction with a limited refueling infrastructure. In this problem alternative fuel vehicles may 

need to visit alternative fueling stations in order to continue their route. They formulated a mixed 

integer linear programming model and two heuristics for solving the problem. Montoya et al. 

(2016) proposed a two phase-heuristic for solving the problem whereas Koç & Karaoglan (2016) 

and Leggieri & Haouari (2017) presented mathematical formulations and branch-and-cut 

algorithms to solve this problem to optimality in a reasonable computation time for medium size 

instances. Schneider et al. (2014) introduced the Electric Vehicle Routing Problem with Time 

Windows and Recharging Stations (E-VRPTW), which incorporates electric vehicles that may 

take a significant amount of time in the recharging operation, especially when compared to the 

short refueling times of alternative fuels. In addition to the Green VRP and to the E-VRPTW, 

different variants of these problems were published (see e.g. Felipe et al. (2014), Ene et al. (2016) 

or Xiao & Konak. (2016)). 

Oberscheider et al. (2013) implemented the minimization of GHGs emissions in timber 

transport. The authors used the European Environment Agency (EEA) speed-dependent formulas 

(EEA, 2012), based on the COPERT model, for calculating vehicle fuel consumption and therefore 

CO2 emissions. Our research not only considers these formulas for the calculation of CO2 

emissions but also incorporates NOx, NMVOC and PM emissions calculations. The Eco-WCVRP 

combines the minimization of those pollutant emissions through the consideration of the external 

costs of transport which are based on the European study (INFRAS et al., 2008).  
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3. Problem definition 

In this section the Eco-WCVRP is presented. The description of the problem is introduced in 

Section 3.1 while external costs and emissions calculations are explained in Sections 3.2 and 3.3 

respectively. 

3.1 Formal description of the problem 

The activities concerned with the collection of solid wastes at specific locations in the Eco-

WCVRP can be divided into four different activity stages, which are shown in Figure 1. The 

activity stages are similar to those described in Boskovic et al. (2013). 

 

Figure.-1 Different stages in the Eco-WCVRP process 

Stage I starts in the company depot from where the vehicle starts the journey travelling to the 

collection area. Next, Stage II starts by entering to the area. The vehicle stops at the first collection 

point (CP), picks up the waste and then continues to the next CP. This operation is repeated until 

all the CPs along a predetermined route are loaded. A CP may be composed of more than one trash 
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bin. Stage III starts by leaving the collection area and moving to the landfill where the collected 

waste is dumped. At this point a circuit is finished, so the vehicle leaves the landfill and may drive 

to another collection area (Stage I) to collect more waste from other locations, completing a new 

circuit. Finally, Stage IV consists in returning the vehicle empty to the depot at the end of the 

workday. 

This classification is motivated by the assumption that the driving conditions (speed and loading 

level) during the waste collection in urban areas vary across the different stages. Therefore, the 

calculation of fuel consumption, CO2 and pollutant emissions must be done taking into account the 

different driving conditions for each stage. Thus, in Stages I and IV the vehicle is empty, unlike 

stages II and III where the vehicle is being loaded. On the other hand, in stages I, III and IV the 

vehicle drives along highways or through the major city streets, while stage II covers the waste 

collection in local streets at lower speeds. Based on these assumptions, different average vehicle 

speeds are assigned to each activity stage in a route. 

3.2 External costs 

In this work, we focus our attention on external costs associated with GHG emissions and 

atmospheric pollutant emissions, such as NOx, NMVOC and PM. The evaluation of each 

component of the external costs applied to the Spanish transport setting is based on the European 

study (INFRAS et al., 2008).  

Climate change or the global warming impacts of transport are mainly caused by emissions of 

GHGs: CO2, nitrous oxide (N2O) and methane (CH4). The main cost drivers for the marginal 

climate cost of transport are the fuel consumption and carbon content of the fuel. For 
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internalization purposes the estimated external costs related to global warming can be quantified 

by multiplying the total tons of CO2 equivalent GHG by an external cost factor expressed in euros 

per ton of CO2 emitted. The recommended value for the external costs of climate change obtained 

in INFRAS et al. (2008), expressed as a central estimate is 25€/ton.CO2. 

Air pollution costs are caused by the emission of air pollutants such as NOx, NMVOC and PM. 

Emissions of a road vehicle depend on vehicle speed, the load factor, fuel type and the related 

combustion technology, vehicle size, the driving pattern and the geographical location of the road. 

For internalization purposes, the estimated external costs of each type of pollutant emissions can 

be obtained by multiplying the total tons of the pollutant emitted by an external cost expressed in 

euros per ton of pollutant emitted. The recommended air pollution costs for each pollutant in Spain 

(€/ton of pollutant) based on INFRAS et al. (2008) are: NOx=3600; NMVOC=800; PM2.5=114000; 

PM10=45600, using PM in urban areas. 

3.3 Emissions calculations 

The COPERT model (Ntziachristos and Samaras, 2012) is a methodology that calculates for 

different types and technologies of vehicles (1) the fuel consumption and consequently the CO2 

emissions, (2) NOx emissions, (3) NMVOC emissions and (4) PM emissions. Driving conditions 

such as the vehicle load and road gradient are also considered in the calculations. COPERT does 

not include parameters related to vehicle acceleration, which may have an impact on fuel 

consumption and pollutant emissions. However, the effect of considering variable operation 

conditions with different average vehicle speeds on each activity stage of a route should result in 

a more accurate estimation of the vehicle emissions. 
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In COPERT methodology there are three methods to estimate emissions from road transport 

(Ntziachristos and Samaras, 2012). These methods differ in the amount of information required 

for the calculation of emissions. Tier 1 methodology uses fuel as the activity indicator in 

combination with average fuel-specific emission factors. Tier 2 introduces different vehicle 

categories and considers the fuel used and their emission standards. In Tier 3 exhaust emissions 

are obtained using a more detailed methodology in which the total vehicle kilometers and 

travelling speeds per vehicle technology are available. In this paper, we focused on the Tier 3 

method where speed dependent equations are available to calculate fuel consumption and pollutant 

emissions for different types and technologies of vehicles (Euro I to Euro V). The formulas are 

expressed in grams per kilometer (gr/Km) and are given for three levels of load factors (0, 50, 

100%). The emission factors use up to five parameters (a, b, c, d, and e) to be calculated. These 

parameters are derived from statistical analyses, see Ntziachristos and Samaras (2012) annex 3. It 

is important to note that the fuel consumption and emission factors for a heavy-duty vehicle (HDV) 

are valid within the range of speed from 6 to 86 kilometers per hour.  

In the Eco- WCVRP the vehicle engine operates under different loads in a route as the waste is 

collected at any CP and loaded into the vehicle. As road gradients are not considered in this work, 

the approach is only applicable to flat cities. As mentioned above, COPERT provides three 

different non-linear equations for the calculation of fuel consumption and emission factors at 

different levels of load factor (0, 50, 100%) for a specific type of vehicle. Thus, the calculation of 

the fuel consumption and pollutant emissions is performed by a piecewise function, where the 

approximation curves are determined by linear approximation between breakpoints (three different 

levels of load factor). Equations (1) and (2) show the calculation of the total pollutant emissions 
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in a route R for a vehicle k, where Ek
p is the total emissions of pollutant p (gr) for vehicle k, εp

i,j,k  

is the emission factor of the pollutant p in the arc (i,j) in (gr/Km) for vehicle k, dij is the traveled 

distance between nodes i and j, vi,j is the average speed in the arc (i,j), zi,j,k is the fraction of load 

carried for the vehicle k between nodes i and j and λLijkv are non-negative variables needed to 

approximate each non-linear term, defined by the different levels of load factor L∈ (1 (0%), 2 

(50%), 3(100%)) by a piecewise-linear curve. 
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In this work, the authors assume that all carbon burned as fuel is emitted as CO2 by a standard 

linear proportion This parameter is called the emission factor and is shown in Table 1 in kilograms 

per unit of fuel. The calculations of fuel consumption and CO2 emissions are shown in Equations 

(3) and (4) respectively where FCk is the total fuel consumption of a vehicle k, ρ is the mean 

density of the fuel and efk is the CO2 emission factor of the type of fuel of vehicle k. 
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Table 1 Calculation of CO2 emissions for different types of fuel 

Calculation of CO2 emissions Diesel Gasoline CNG 

Units Liters (l) Liters (l) Cubic meters (m3) 

Density (ρ) 832.5 g/l 748 g/l 778  g/m3 

Kg CO2/Kg fuel 3.20 3.18 1.988 

ef  (Kg CO2/units) 2.67 2.38 1.55 

4. Problem formulation 

Although mathematical models are not appropriate when solving medium to large-size VRP 

instances, the mathematical model introduced in this section for the Eco-WCVRP is useful to 

describe and to understand all constraints and it can also be used as a basis for formulating a 

problem with additional characteristics. 

The Eco-WCVRP is defined on a graph G={N, A} with N={0,1,…,N,N+1} as a set of nodes, 

where node 0 represents the depot, node N+1 the landfill and the remaining nodes {1,…,N} 

represent the CPs and A is a set of arcs defined between each pair of nodes. A set of K 

heterogeneous vehicles, with carrying capacity of QVk, is represented by Z={1,…K} and is 

available from the depot. The problem introduces a maximum number of circuits of each vehicle 

to the landfill which is represented by V={1,…V}. The objective of the Eco-WCVRP is to find a 

set of routes for the vehicles, minimizing the total external costs in which all CPs are visited exactly 

once and vehicles are not overloaded (the total waste in each visited node does not exceed the 

capacity of the collection vehicle). The notation adopted is the following: i,j for node indices; k 

for vehicle indices; v for circuit indices; s for speed indices; p for pollutant indices; QDi is the 

amount of waste to be collected at node i (kg); QVk is the capacity of vehicle k (kg); TDij represents 
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the distance from node i to node j (i ≠ j); Ψi,j
s is equal to 1 if arc (i,j) is traveled at speed s. The 

problem uses the following decision variables: 

 Xijkv : binary variable, equal to 1 if vehicle k ∈ {1,…,K} travels from nodes i to j (i ≠j) on 

the circuit v ∈ {1,…,V}. 

 Zijkv : fraction of load carried by the vehicle k ∈ {1,…,K} from nodes i to j (i ≠j) on the 

circuit v ∈ {1,…,V}. 

 λL ijkv : non-negative variables needed to approximate each non-linear term, defined by the 

different levels of load factor L∈ (1 (0%), 2 (50%), 3(100%)), by a piecewise-linear curve. 

 γS ijkv : binary variables, equal to 1 if  Zijkv corresponds to the segment S ∈ (1 (0-50%), 2 

(50-100%)). 

According to the established assumptions, the constraints of the mathematical model are as 

follows: 
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Constraints (5) ensure that each CP is visited exactly once. Constraints (6) state that each vehicle 

departs from the depot once in the first circuit. Similarly, Constraints (7) guarantee that each 

vehicle departs from the landfill once in any circuit. Constraints (8) ensure if a vehicle leaves the 

landfill, it has had to arrive there before. Constraints (9) and (10) are the flow conservation on each 

node. Constraints (11) ensure that if the landfill is not visited by vehicle k in the first circuit, then 

the vehicle cannot leave the depot. Similarly, Constraints (12) guarantee that if a vehicle leaves 

the landfill to collect more waste from other locations, then the vehicle has to return to the landfill. 

Constraints (13) ensure that no vehicle can be overloaded. Balance of flow is described through 

constraints (14). Constraints (15) are used to restrict the total load a vehicle carries. Constraints 
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(16) are introduced to avoid sub-tours. Constraints (17) and (18) express the fraction of load carried 

as a weighted combination of the different levels of load factor (L). Constraints (19) - (22) impose 

that two consecutive variables λijkv are different from zero. Constraints (23) and (24) are introduced 

in the model to take into account the fuel consumption and pollutant emissions when the vehicle 

travels empty. Constraints (25) impose the values of some fixed variables. 

The goal of the problem is to build several routes minimizing the external costs which are 

composed of climate change costs and air pollution costs (Equation 26). 
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5. Problem-solving methodology 

Due to the intrinsic difficulty of this type of routing problem, solution approaches in the 

literature are heuristic and metaheuristic algorithms. In this section a two-phase approach for 

solving the problem tackled in this paper is presented. In order to achieve diversification, in the 

first phase our methodology produces several initial solutions using a semi-parallel construction 

heuristic for only selecting a subset F of them based on their objective function value. Then, in a 

second phase, the selected initial solutions are optimized using a VNTS algorithm. Thus, the 

algorithm starts with an initial solution and the VNTS algorithm is repeated for all the initial 

solutions of the set F, re-starting from a new initial solution once the optimization process is 
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finished. The proposed solution methodology is terminated when either all selected initial 

solutions have been examined by the VNTS algorithm or a time limit gamma (γ) is reached. The 

methodology is an adaptation of the solution approach presented in Paraskevopoulos et al. (2008) 

but introducing some differences. First, in the Eco-WCVRP scheme, TWs restrictions are not 

considered and consequently, vehicle capacity restrictions are only taken into account for detecting 

infeasible routes. Secondly, the problem introduces multiple circuits per vehicle. This issue 

incorporates several differences when building vehicle routes by the semi-parallel construction 

heuristic; such as vehicle routes may be assigned more than one circuit, which finishes at the 

landfill. Finally, the objective function of the Eco-WCVRP considers the minimization of the 

external costs. 

Section 5.1 describes the steps of the semi-parallel insertion heuristic for the construction of 

initial solutions while Section 5.2 presents a general overview of the VNTS. 

5.1 Construction of initial solutions 

In this section we present a semi-parallel insertion heuristic based on the insertion framework 

described in Paraskevopoulos et al. (2008) which extended the algorithms previously proposed in 

Ioannou et al. (2001) and Solomon (1987). 

Two lists containing the collection vehicles (Vk) and the unassigned CPs (Cs) are needed to be 

implemented in the algorithm. The proposed heuristic builds a circuit for every available vehicle 

at each iteration. Thus, the algorithm starts from an empty circuit and CPs are iteratively inserted 

until none can be inserted in the circuit due to capacity restrictions. At each iteration, the CPs of 

Cs are candidates for insertion to all vehicle circuits, not only once but multiple times. Next, only 
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one vehicle circuit is selected and added to the partially final solution. Thus, the visited CPs from 

the selected circuit are removed from Cs and the number of circuits performed by the selected 

vehicle k (vk) is increased by one unit. If the selected vehicle has reached the maximum number of 

circuits (V), the vehicle is removed from Vk. The overall procedure is repeated until all CPs are 

assigned to a vehicle circuit. According to the characteristics of the problem, the first circuit for 

each vehicle is built starting in the depot and finishing in the landfill. However, when a circuit is 

selected, the vehicle is considered to be placed in the landfill for the following circuit 

constructions. Finally, the route for every vehicle will be composed by the assigned circuits. In 

addition, the depot node will be inserted at the end of every vehicle route for considering the return 

trip. The semi-parallel construction heuristic is shown in Algorithm 1. 

Algorithm 1.- Semi-Parallel Construction Heuristic 

 
1    Initialize available vehicle list Vk, k=1,2,…,K 

2    Initialize collection points list Cs, s=1,2,…,N 

3    Initialize number of vehicle circuits vk=0,  k=1,2,…,K. 

4    S ← InitialSolution() ,  

5    While (Cs 0) do: 

6      For all vehicle k of Vk do: 

7       If (Vk  0): 

8            seed←FindSeedCP(Cs ,k) 

9            rvk ← InitializeCircuit(vk ,k),  rvk←InsertSeedCP(seed), 

10         done←true 

11           While (done=true) 

12             done←false 

13              For all CPs u of  Cs-{seed}do: 

14                   For all insertion positions i,j of  rvk do: 

15                       ɸi,j,u,k ←GreedyFunction(i,j,u,k,α1,α2), ɸ←StoreBest(ɸi,j,u,k), 

16                       done←true 

17                   EndFor 

18              EndFor   

19             rvk←InsertCP_At(ij ɸ), 

20          EndWhile 

21      EndIf     

22    EndFor 

23    For all vehicle circuits rvk do: 
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24          ACUTvk ← AvCostPerUnitTransfer(rvk), x←StoreBest(ACUTvk) 

25    EndFor 

26     S ← InsertCircuit(rvx),  vx ← IncrementNumberofCircuits(),  Cs ← RemoveCPs(rvx); 

27     If (vx = V): 

28     Vx ← Remove(x) 

29  EndWhile 

5.1.1 Circuit construction 

Following the insertion scheme of Solomon (1987), circuits are initialized by a “seed” criterion 

based on the furthest CP (max(TD0i,TDi0)). If the vehicle has not been assigned any circuit yet, the 

distance to the depot will be taken into account. Otherwise, the distance to the landfill will be 

considered as the vehicle will be placed there. Then, every CP from Cs is evaluated in all possible 

positions between two adjacent CPs in the partially constructed circuit using a “greedy” function. 

As TWs restrictions are not considered,  the greedy function that measures the cost of inserting a 

CP u between i and j in a circuit performed by vehicle k is shown in (27), where the α weights 

define the relative contribution of each individual metric to the overall selection (α1+ α2=1). When 

a CP u is inserted between two consecutive CPs (i,j) in a circuit, a driving time increase is produced 

and is given by the first metric (28). Similarly, metric (29) gives priority to the insertion of CPs 

with large demands on the circuit and maximizes the utilization of the vehicle capacity. 
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Next, the CP with a smaller value of the greedy function is assigned to the partially constructed 

circuit in the best feasible insertion position and the procedure is repeated until no CP can be 

inserted in the circuit.  
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5.1.2 Circuit selection 

At the end of the previous procedure, a circuit is selected and added to the partially final solution. 

For this purpose, an effective criterion for selecting the best circuit is based on minimizing the 

average cost per unit transferred (ACUT) (Paraskevopoulos et al., 2008), since it achieves a more 

efficient vehicle capacity utilization. As the Eco-WCVRP considers external costs in the objective 

function, the idea is to measure the amount of external costs that are involved for each unit of 

transported waste in a circuit performed by a specific type of vehicle. The metric is defined in 

equation (30). 
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5.2 The Variable Neighborhood Tabu Search Algorithm 

In this study, the VNTS algorithm is introduced to efficiently reduce the pollutant emissions in 

an Eco-WCVRP. The basic VNS algorithm is upgraded by the use of TS for the local search 

procedure. VNS was originally proposed by Mladenović and Hansen (1997) and is a metaheuristic 

for solving optimization problems. VNS is a technique that tries to systematically escape from 

local optima by changing the neighborhood structure during the search. Thus, neighborhoods of a 

solution are explored during the search by jumping from one solution to another if an improvement 

occurs. The advantage of using several neighborhood structures is based on the fact that a local 

optimum for a given type of move (neighborhood structure) is not necessarily so for another, so 

the search must continue until a local minimum solution with respect to all neighborhood structures 

is reached (Hansen et al., 2010). The choice of a VNTS algorithm is motivated by the high 
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complexity of the WCVRP, which requires an algorithm with substantial diversification 

possibilities as the VNS scheme. Furthermore, the use of TS for the local search is useful to 

indicate promising regions not yet explored and has shown that it may provide excellent results 

[see, e.g., Pérez et al., 2003; Repoussis et al., 2006; Paraskevopoulos et al., 2008; Molina et al. 

2016]. 

The VNTS algorithm starts by defining a set of neighborhood structures Nq (q = 1… qmax), 

which are defined by local search operators that transform one solution to another. The process is 

based on the fact that a local minimum with respect to one neighborhood structure is not 

necessarily so for another. The VNTS main cycle is composed of three phases: shaking, local 

search and move. Therefore, the iterative process starts from an initial solution s. Then, a shaking 

mechanism is applied to escape from a basin of attraction. The shake procedure is a diversification 

mechanism that consists in perturbing a solution by applying a feasible move, to provide a new 

starting point (s´) for the local search. The objective of the shake procedure is to obtain a new 

starting point belonging to basin of attraction of a different local minimum than the current one. 

Thus, if the perturbation is too weak, the local search might bring us back to the previous solution. 

On the other hand, if it is too strong the new starting point could lose good features of the solution 

and the algorithm would degenerate into a simple random multi-start (Blum & Roli, 2003). For 

this reason, the selection of the neighbor in the shaking phase is determined by a random move 

defined in the neighborhood Nq that is being explored, as it maintains some good features of the 

current solution. Next, a local search based on TS is performed to determine a new solution s´´ in 

Nq. If f(s´´) is better than the best solution f(s), then s is replaced by s´´, and the search returns to 

N1, otherwise the search explores the next neighborhood Nq+1. This is repeated until all 
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neighborhood structures are examined (q = qmax). When the solution space from an initial solution 

is completely explored, the algorithm starts from a new initial solution from the set F. The 

pseudocode of the algorithm is illustrated in Algorithm 2. 

Algorithm 2-Variable Neighborhood Tabu Search algorithm 

 
1    F ← Semi-parallel_Insertion_Heuristic; 

2    Define a set of neighborhood structures Nq, l=1, 2,…,qmax; 

3    For all solutions s of set F do: 

4        While (CPU time consumed ≤ γ) do: 

5            Set q ← 1; 

6            While (q ≤ qmax) do: 

7      s´← Shaking (Nq)   s´´← TabuSearch (s´, Nq);   

8      If  f (s´´) improves f (s) then 

9         s ← s´´; q ← 1; 

10      Else 

11             If  q< qmax then 

12             q ← q+1; 

13          EndIf 

14          EndWhile 

15          UpdateBestSolution (s); 

16        EndWhile 

17    EndFor 

 

5.2.1 Tabu search 

The TS is a widely used metaheuristic that carries out the exploration of the solution space by 

moving successively, in each iteration, from one solution s to the best or first improving solution 

of its neighborhood Nq(s), even if it may cause a deterioration in the objective function. Thus, in 

contrast to other descent methods, the TS allows non-improving moves to avoid getting trapped in 

local optima.  

The central mechanism in the TS is a short-term memory known as the tabu list (TL) which 

stores the solutions explored throughout the search or, more commonly, some relevant attributes 

of these solutions. In this problem, the TL consists in storing the exchanged nodes and their initial 
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positions in the routes before moving to other solutions. To prevent the search from returning to 

recently visited solutions and to drive the search towards regions of the solution space not yet 

explored, these selected attributes are declared as tabu and remain in the TL for a specific number 

of iterations (tabu tenure (TT)) unless the aspiration criterion is satisfied. The latter is applied when 

a move declared as tabu builds a solution that overcomes the best solution found so far. In this 

case, the mechanism dismisses the TL and the move is accepted.  

The TL is reinitialized every time a local search process is started. Therefore, if the random 

move defined in the previous shaking phase belongs to the basin of attraction of the current local 

minimum, the search will return to the previous solution and it will be incorporated into the TL. 

Otherwise, the local search will have a different trajectory. 

This work proposes a scheme for the TT that provides a balance between diversification and 

intensification search strategies by using a particular mechanism described in Paraskevopoulos et 

al. (2008). Initially, the TT is set equal to a lower value TTmin. A diversification mechanism is 

provided by incrementing at each iteration the TT in one unit up to an upper bound TTmax while 

no improvement is observed. Therefore, at each iteration, the best solution of Nq(s), which is not 

included in the TL or satisfies the aspiration criterion, is chosen as the new current solution. Then, 

this solution is added to the TL, the TT is incremented in one unit (only if TT< TTmax) and the 

oldest solution already included in the TL is removed (only if TT=TTmax). In contrast, the 

intensification mechanism is performed when an improvement in the objective function is 

achieved. For this purpose the TT is reinitialized to TTmin removing the oldest solutions from the 

TL. The termination condition used in TS is the maximum number of iterations (MaxIters) without 
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observing improvement in the objective function. The pseudocode of the Tabu Search algorithm 

is presented in Algorithm 3. 

Algorithm 3.-Tabu_Search algorithm 
 

1    Initialize TL of TTmin size; 

2     fitness ← s, counter=0, TTsize ← TTmin; 

3        While (counter ≤ MaxIters) do: 

4            Find s’ ∈ Nq(s) | s’ subject to tabu & aspiration conditions 

5            AllowedSet(s) ← s’; 

6     s ← ChooseFirstImproving(AllowedSet(s));  

7                Update_TL(); 

8     If  f (s) improves f (fitness) then 

9          fitness ← s; counter =0, TTsize ← TTmin,; 

10     Else 

11         counter =counter + 1; 

12                   If  (TTsize < TTmax)  then  

13                        TTsize = TTsize  + 1; 

14                   EndIf 

15              EndIf 

16      EndWhile 

17   Return (fitness) 

5.2.2 Neighborhood structures 

The process of changing neighborhoods in case of no improvements corresponds to a 

diversification of the search. The effectiveness of this dynamic neighborhood strategy can be 

explained by the fact that a solution that is locally optimal with respect to a neighborhood is 

probably not locally optimal with respect to another neighborhood (Blum & Roli, 2003). 

The scheme implemented in this paper oscillates between eight neighborhood structures 

(qmax=8) which are defined as a blend of well-known local search move operators that transform 

one solution into another. The order of the neighborhoods was selected after some experiments 

considering the impact in the final solution and their cardinality, and are applied in the following 

order: Relocate (inter-route) (Savelsbergh, 1992), Exchange (inter-route) (Kindervater and 

Savelsbergh, 1998), GENI (Gendreau et al., 1998), 2-Opt (Croes, 1958), Relocate (intra-route), 
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Exchange (intra-route), Double insertion (Brandão, 2011) and CROSS-exchange (Taillard et al., 

1997). 

 Relocate: This neighborhood structure is applied on pairs of circuits (inter-route) and on 

single circuits (intra-route). The Relocate operator aims to generate a solution by removing 

a CP from a circuit and inserting it into another circuit (Relocate-2) or into another position 

within the circuit (Relocate-1). 

 Exchange: This neighborhood structure is applied on pairs of circuits (inter-route) and on 

single circuits (intra-route). The Exchange operator aims to generate a solution by 

swapping a pair of CPs from two different circuits (Exchange-2) or from the same circuit 

(Exchange-1). 

 GENI: This neighborhood structure is applied only on pairs of circuits and is only 

composed of the Generalized Insertion (GENI) operator. It basically consists in removing 

a CP from a circuit and inserting it into any two CPs of another circuit. The insertion of a 

CP in a circuit does not necessarily take place between two CPs which are consecutive in 

a circuit. For this purpose, two possible orientations of the tour for each possible insertion 

are considered. For a more detailed description see Gendreau et al. (1998). 

 2-Opt: This neighborhood structure is applied only on single circuits (intra-route) and it 

aims to generate feasible solutions by examining all possible moves defined by removing 

two non-adjacent arcs and constructing two new arcs in a circuit. The main idea is to build 

a new circuit by crossing over itself and reordering it, maintaining the tour structure. 
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 Double insertion: In a double insertion move, the operation is similar to a single insertion 

(Relocate-2) except for removing a segment length of two consecutive CPs respectively in 

a circuit. 

 CROSS-Exchange: This neighborhood structure is also applied only on pairs of circuits 

and swaps segments of CPs between two circuits. The different segments may contain an 

arbitrary number of CPs but due to the typically vast number of neighbors that would result, 

the segment length is limited to three CPs. Thus, sets of 1-2, 2-2, 1-3, 2-3 and 3-3 swaps 

are defined and executed in the listed order. Furthermore, these moves usually increase the 

chances of finding high quality solutions and avoid getting trapped in a local minimum. 

6. Computational results 

This section describes the computational experiments carried out to validate the effectiveness 

of the algorithm developed to solve the Eco-WCVRP. Moreover, a real WCVRP in the 

municipality of Alcalá de Guadaíra (Seville) is presented to analyze and improve the current 

solution in terms of total distance traveled, CO2 and pollutant emissions. The algorithm was 

developed in C++ and run on a 3.30 GHz Intel® Core(TM) i5-2400 CPU.  First, the parameters 

used within the algorithm are adjusted. Then, a comparative analysis with the best results from the 

literature corresponding to closely related VRP instances is performed to validate the effectiveness 

of the proposed algorithm. Next, the quality and performance of the neighborhood structures are 

evaluated within a computational study, where local search operators are combined in different 

configurations in the algorithm. Then, the VNTS algorithm is compared with VNS and TS 

approaches. Finally, a real WCVRP is presented and four case studies are solved to evaluate the 
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reduction of pollutant emissions in the route planning when different vehicle types are taken into 

consideration. 

6.1  Parameter settings 

This section reports the best values selected for the parameters of the VNTS algorithm proposed 

in this work. The parameter setting has been done in order to show whether two control parameters 

(TTmax and MaxIters) play a significant role in finding improved solutions. As the Eco-WCVRP 

can be considered as a VRP with a fixed heterogeneous fleet (HVRP), with a special depot 

behavior (depot and landfill) and a piece-wise linear objective function, the benchmark data sets 

of Taillard (1999) have been used to do the parameter setting. They consist of eight problems, 

numbered from 13 to 20 with a fixed fleet and 50-100 nodes. Vehicles are characterized by 

different capacities and variable costs, which depend on the distance traveled. Services times on 

nodes are not considered. 

Both control parameters are expressed as a fractional size of the number of nodes (N). The TTmax 

is a control parameter that restricts the length of the TL while MaxIters represents the number of 

iterations without improvement in the local search. We set TTmax and MaxIters to different values 

ranging from 20% to 40% and from 20% to 50% respectively and run the proposed methodology 

with the selected problems. Each problem is solved 20 times for each combination of control 

parameters. 

Table 2 presents the results obtained from the parameter setting. It shows the percentage 

deviation between the average solution obtained by the VNTS and the best-known solution (BKS) 

value, averaged over the eight instances.  
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Table 2. Average percentage deviations of the results obtained by the VNTS from the best 

known solutions with varying TTmax and MaxIters 

TTmax 

fraction 

MaxIters fraction  

20% N 30% N 40% N 50% N 

20% N 0.96 0.75 0.71 0.70 

30% N 0.82 0.79 0.66 0.66 

40% N 1.12 0.81 0.75 0.71 

 

The experiments showed that both parameters have an impact on the solution quality, obtaining 

the best results when the TTmax =30%*N and MaxIters ranged between (40%-50%)*N. The 

obtained value for TTmax is in accordance with the work of Paraskevopoulos et al. (2008), who 

performed experiments to generate robust and satisfactory parameter values for the VNTS on 

closely related HVRP and TWs (HVRPTW) instances with 100 customer nodes. On the other 

hand, these authors suggested a value of 30% for MaxIters, but our experiments resulted in a more 

appropriate value of 40% (see Table 3). 

Finally, as the production of 100 initial solutions using the semi-parallel construction heuristic 

commonly takes less than 5 seconds, the values of α1 and α2 ranged between 0-100 via increments 

of 1. The selected parameters are shown in Table 3, where N represents the number of nodes of 

the problem.  

Table 3. Parameter settings 

 VNTS parameters 

 F MaxIters TTmin-TTmax γ (sec) 

Parask et al. (2008) 20 30 (0.3*N) 10-30 (0.1-0.3)*N 1200 

This work 20 40 (0.4*N) 10-30 (0.1-0.3)*N 1200 
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6.2  Comparisons with VRP instances 

In order to evaluate the proposed solution method, various experiments were carried out and 

comparisons over benchmark data sets from the scientific literature are presented. They are taken 

from Taillard (1999) and from Paraskevopoulos et al. (2008).  

Table 4 illustrates a summary of the performance of the proposed solution method, abbreviated 

as VNTS, on Taillard (1999) benchmark data sets. The first two columns of the table show the 

instance number and the number of customers to be served. Then, the BKS among most best 

published works are provided. They include Taillard (1999), Li et al. (2007), Brandão (2011), 

Subramanian et al. (2012) and Penna et al. (2013). The last row indicates the percentage deviation 

(% Dev) of the results obtained by the VNTS with respect to the BKS. For each problem, a bold 

face refers to the match with current BKS. 

The results in Table 4 show that the VNTS approach used in this research is able to generate 

competitive solutions for the HVRP. In addition, the algorithm obtained the best-known solution 

for four out of eight problem instances with an average deviation of 0.68% and a worst case 

performance of 2.41%. 

The second benchmark data sets used in this work for the evaluation of the VNTS were proposed 

by Paraskevopoulos et al. (2008). These data sets are derived from Liu and Shen´s (1999) 

benchmark data sets, originally proposed for solving the Heterogeneous VRP with unlimited fleet 

and TWs, known as the Fleet Size and Mix VRPTW (FSMVRPTW). They extended a fixed fleet 

for each problem with the best known solutions of these authors. They proposed 24 benchmark 

instances grouped into six types of data sets (R1, C1, RC1, R2, C2, RC2). Customers are randomly 

distributed in instances of type R, clustered in type C and semi-clustered in instances of type RC. 
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Problem sets shown by R1, C1 and RC1 have a short scheduling horizon and small vehicle 

capacities, contrary to R2, C2 and RC2. The total cost of a route is obtained by the sum of the 

fixed vehicle cost and of the total en route time which includes travelling and waiting times. 

Table 4. Comparison between different approaches for Taillard (1999) instances 

Instance Nodes 
Taillard 
(1999) 

Li et al 
(2007) 

Brandão 
(2011) 

Subramanian 
et al.(2012) 

Penna et al. 
(2013) 

VNTS BKS % Dev. 

13 50 1518.05 1517.84 1517.84 1517.84 1517.84 1517.84 1517.84 0.00 

14 50 615.64 607.53 607.53 607.53 607.53 607.53 607.53 0.00 

15 50 1016.86 1015.29 1015.29 1015.29 1015.29 1015.29 1015.29 0.00 

16 50 1154.05 1144.94 1144.94 1144.94 1144.94 1144.94 1144.94 0.00 

17 75 1071.79 1061.96 1061.96 1061.96 1061.96 1066.40 1061.96 0.42 

18 75 1870.16 1823.58 1823.58 1823.58 1823.58 1843.26 1823.58 1.08 

19 100 1117.51 1120.34 1120.33 1120.34 1120.34 1144.47 1117.51 2.41 

20 100 1559.77 1534.17 1534.17 1534.17 1534.17 1557.15 1534.17 1.50 

Avg.  1240.48 1228.18 1228.21 1228.21 1230.73 1237.11  0.68 

 

Table 5 presents the results obtained by VNTS compared to the current state-of-the-art solution 

approaches for the HVRPTW. The first line of the table lists the authors using the following 

abbreviations: PRSK for Paraskevopoulos et al. (2008) and KOC for Koç et al. (2015).  

The first column of the table shows the instance category. Then, the total costs obtained by each 

method are shown. Next, for each problem instance the BKS with respect to Paraskevopoulos et 

al. (2008) and Koç et al. (2015) are provided. Finally, the last column indicates the percentage 

deviation (% Dev) of the results obtained by the VNTS with respect to the BKS. As in Table 4, a 

bold face refers to the match with the current BKS, whereas a bold face with a ‘*’ indicates a new 

BKS. 

Table 5. Comparison between different approaches for Paraskevopoulos (2008) instances 
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Instance PRSK KOC VNTS BKS % Dev. Instance PRSK KOC VNTS BKS % Dev. 

R101 4583,99 4588.76 4654,72 4583,99 1,54 R201 3779,12 3782.49 3823,44 3779,12 1,17 

R102 4420,68 4376.54 4449,05 4376,54 1,66 R202 3578,91 3583.92 3616,66 3578,91 1,05 

R103 4195,05 4201.71 4198,80 4195,05 0,09 R203 3582,51 3553.92 3590,10 3553,92 1,02 

R104 4065,52 4027.69 4016,17* 4027,69 -0,29* R204 3143,68 3081.80 3092,29 3081,80 0,34 

C101 8828,93 8828.93 8828,93 8828,93 0,00 C201 6140,64 6140.64 6140,64 6140,64 0,00 

C102 7137,79 7153.13 7119,35* 7137,79 -0,26* C202 7752,88 7623.96 7623,96 7623,96 0,00 

C103 7143,88 7122.57 7105,39* 7122,57 -0,24* C203 7303,37 7303.37 7303,70 7303,37 0,00 

C104 7104,96 7083.74 7081,51* 7083,74 -0,03* C204 5721,09 5680.46 5680,46 5680,46 0,00 

RC101 5279,92 5266.36 5257,67* 5266,36 -0,16* RC201 5523,15 5534.59 5550,88 5523,15 0,50 

RC102 5149,95 5099.55 5083,08* 5099,55 -0,32* RC202 5132,08 5150.23 5192,38 5132,08 1,17 

RC103 5002,41 4991.29 4990,94* 4991,29 -0,01* RC203 4508,27 4471.92 4473,13 4471,92 0,03 

RC104 5024,25 5016.97 5006,16* 5016,97 -0,22* RC204 4252,87 4241.83 4240,35* 4241,83 -0,03* 

 

Note that the proposed solution method is not supposed to be the most competitive over these 

instances, since they present TW constraints that have had to be incorporated into the VNTS 

algorithm. Therefore, in order to obtain feasible solutions, the algorithm checks, in every 

movement of the shaking and local search phases, if the new solution is compatible with TW 

constraints. In the same way, the TW compatibility is also checked in the semi-parallel 

construction heuristic; specifically when a CP is inserted in a circuit in the construction phase. The 

VNTS algorithm provides solutions that overcome the best known results for nine instances (R104, 

C102, C103, C104, RC101, RC102, RC103, RC104, RC204) and obtain the same value of BKS 

on four problems (C101, C201, C202, C204). The VNTS algorithm provides reasonably good 

solutions with an average percentage deviation of 0.29% with respect to the BKS, with cost 

reductions from -0.32% and a worst case performance of 1.66%. Moreover, the comparison of the 

results with respect to the BKS shows that the VNTS algorithm is competitive in the case of C1, 

C2 and RC1 instances, but not for random problems (R1 and R2 instances). 
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6.3 Computational studies 

In the remainder of this section, the performance of the proposed neighborhood structures is 

compared within a computational study. Then, additional experiments are introduced to evaluate 

and compare the effectiveness of the VNTS, VNS and TS algorithms. 

6.3.1 Local search with different sets of neighborhoods 

This experiment is motivated by the observation that the defined neighborhood structures may 

be inefficient or they may provide minimal improvements. Therefore, in order to choose the best 

strategies, computational experiments are performed to analyze the results obtained by testing 

different sets of neighborhoods on the Taillard (1999) benchmark problems. As the possible 

combinations that can be made with the neighborhood operators become too large for a complete 

study, a selection has been made by the authors, where only a specific neighborhood operator is 

removed in order to measure its contribution to the final solution. Thus, considering the list of 

operators described in Section 5.2.2, eight different sets of neighborhood structures are defined in 

which the order of the operators is maintained. Then, for every set of neighborhood structures and 

every problem instance, the VNTS is run with the same parameter values, which are shown in 

Table 3, and a solution is obtained. In order to evaluate the solution quality achieved by a specific 

set of neighborhood structures, we measure, for every instance, the percentage deviation with 

respect to the solution obtained by the VNTS when all neighborhood operators are included. 

Table 6 shows the results obtained by the application of different sets of neighborhood structures 

to the VNTS algorithm. The first line of the table shows the set of neighborhood structures, 

designated by the removed operator, while the first column of the table shows the instance 
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category. Then, the values of the VNTS, when all neighborhood operators are included, are 

presented. Next, for each set of neighborhood structures, the best found solution (BFS) and the 

percentage deviation (% Dev.) are provided. Finally, the last row indicates the average obtained 

values.  

The results show that the neighborhood operators that have minor improvements in the final 

solution are Double Insertion, Exchange-1 and Relocate-1 with average deviations of 0.03, 0.14 

and 0.25% respectively. It is observed that these operators have influence in instances with a long 

scheduling horizon and large vehicle capacities (instances 18, 19 and 20). As the WCVRP is 

characterized by designing vehicles routes with a large number of CPs, the non-consideration of 

these operators would lead to obtaining lower quality solutions. On the other hand, CROSS and 

GENI operators are capable of exploring the solution space in an effective way with average 

deviations of 1.94 and 1.89% respectively. These moves affect the VNTS in different aspects; The 

GENI operator causes more intensification effect since it alters the solution just once, while 

CROSS moves causes more diversification effect since it interchanges two segments of CPs 

between two different circuits. In our opinion, the results show how well these neighborhood 

structures complement each other. When a neighborhood structure transforms one solution to 

another, the optimization process can continue from other regions of the solution space. Thus, if a 

neighborhood structure is dismissed, the optimization process may finish at a local minimum 

obtaining a lower quality solution. For this reason all neighborhood operators have been 

considered in this work. 
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6.3.2 VNTS versus basic VNS or TS 

This section compares the VNTS hybrid algorithm with other metaheuristic approaches, which 

consist of the basic VNS proposed by Mladenović and Hansen (1997) and a TS algorithm. The 

basic VNS follows the same scheme of the VNTS based on the three phases: shaking, local search 

and move. However, a steepest descent procedure (known also as best improvement local search) 

is considered for the local search. The TS algorithm is implemented following the scheme 

described in section 5.2.1 with the described neighborhood structures. Table 7 provides the BFS, 

the percentage deviation in relation to the solutions obtained by VNTS (% Dev.) and the CPU time 

in seconds. The last row of the table indicates the average obtained values. 
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Table 6. Comparison between different sets of neighborhoods for Taillard (1999) instances 1 

 CROSS Double Insertion Exchange-1 Relocate-1 2-OPT GENI Exchange-2 Relocate-2 

Instance VNTS BFS % Dev. BFS % Dev. BFS % Dev. BFS % Dev. BFS % Dev. BFS % Dev. BFS % Dev. BFS % Dev. 

13 1517.84 1549.59 2.09 1517.84 0.00 1517.84 0.00 1517.84 0.00 1517.84 0.00 1548.09 1.99 1517.84 0.00 1517.84 0.00 

14 607.53 607.53 0.00 607.53 0.00 607.53 0.00 607.53 0.00 607.53 0.00 622.05 2.39 618.57 1.82 622.48 2.46 

15 1015.29 1031.07 1.55 1015.29 0.00 1015.29 0.00 1015.29 0.00 1019.55 0.42 1041.38 2.57 1016.86 0.15 1019.55 0.42 

16 1144.94 1163.82 1.65 1144.94 0.00 1144.94 0.00 1144.94 0.00 1144.94 0.00 1148.87 0.34 1144.94 0.00 1146.38 0.13 

17 1066.40 1111.35 4.22 1066.4 0.00 1066.4 0.00 1066.4 0.00 1086.64 1.90 1093.82 2.57 1084.41 1.69 1094.75 2.66 

18 1843.26 1843.42 0.01 1843.26 0.00 1843.26 0.00 1869.09 1.40 1871.00 1.51 1910.52 3.65 1843.26 0.00 1843.26 0.00 

19 1144.47 1185.63 3.60 1144.47 0.00 1157.36 1.13 1144.47 0.00 1157.36 1.13 1151.29 0.60 1144.47 0.00 1144.47 0.00 

20 1557.15 1594.95 2.43 1560.83 0.24 1557.15 0.00 1565.87 0.56 1557.15 0.00 1572.92 1.01 1557.15 0.00 1575.346 1.17 

Avg. 1237.11 1260.92 1.94 1237.57 0.03 1238.72 0.14 1241.43 0.25 1245.25 0.62 1261.12 1.89 1240.94 0.46 1245.51 0.85 

 2 

 3 

 4 

 5 

 6 

 7 
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Table 7. Comparison between different approaches for Taillard (1999) instances 

  VNTS VNS TS 

Instance Nodes BFS Time(s) BFS % Dev. Time(s) BFS % Dev. Time(s) 

13 50 1517.84 112 1559.29 2.73 54 1545.17 1.80 86 

14 50 607.53 108 607.53 0.00 58 612.44 0.81 62 

15 50 1015.29 122 1027.57 1.21 71 1029.41 1.39 95 

16 50 1144.94 188 1158.99 1.23 68 1156.38 1.00 89 

17 75 1066.40 359 1095.32 2.71 199 1094.01 2.59 254 

18 75 1843.26 391 1855.89 0.69 210 1891.19 2.60 229 

19 100 1144.47 545 1178.66 2.99 302 1175.19 2.68 408 

20 100 1557.15 598 1614.04 3.65 326 1586.96 1.91 451 

Avg.  1237.11 302.88 1262.16 1.90 161.00 1261.34 1.85 209.25 

 

The results in Table 7 show that the VNTS efficiently improves the performance of the VNS 

and TS algorithm, obtaining equal or higher quality solutions for all instances. In comparison with 

VNS algorithm, VNTS produces better solutions for seven out of eight instances and matched one, 

with an average percentage deviation of 1.90%. When comparing with TS, the VNTS outperforms 

all the obtained solutions with an average percentage deviation of 1.85%. This may be attributed 

to the combination of the qualities of the two algorithms; a VNS scheme, which can diversify the 

search exploring new solution space, and a TS mechanism that prevents the algorithm from 

trapping in local optimization. However, while the hybrid algorithm improves the obtained 

solutions, it also increases the computation time. It can be observed from Table 7 that the 

computational effort required by VNTS is greater than in the other two algorithms. The average 

computing time taken by VNTS was about 302.88 seconds while VNS and TS spent 161 and 

209.25 seconds respectively. Nevertheless, the increase in computational time experimented by 
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the VNTS when compared with VNS and TS is considered relatively reasonable to obtain 

improvements in the final solutions. 

6.4 Real case study provided by the company 

The municipality of Alcalá de Guadaíra was selected as the case study for the present research. 

Integrated within the Los Alcores district, the municipality belongs to the province of Seville, 

located in the western part of the autonomous community of Andalusia, in the south of Spain. The 

collection of organic waste is this area is daily performed by a public company. The waste is 

collected from trash bins and transported to a landfill which is 30.94 kilometers away from the 

depot. The population of Alcalá de Guadaíra is estimated to be around 72,800 with an average 

amount of waste collected per year of 33,905 tons. Although five vehicle routes are presently 

available for the collection of urban waste in Alcalá de Guadaíra, the routes are not fixed at an 

operational level and may vary according to the distribution of CPs in a daily or weekly scheduling. 

In addition, the waste collection of each CP does not only depend on the capacities of the trash 

bins, but also on the quantity of residues outside the trash bins, usually known by drivers based on 

their experience performing the service. Another very important aspect is the poor general 

condition of the municipal solid waste (MSW) vehicles. The fleet is more than eight years old and 

vehicles often present mechanical problems; both these facts have an influence on the route 

planning, making it difficult to reach good results in terms of energy consumption and pollutant 

emissions. 

A set of four experiments are carried out to show and compare the different solutions obtained 

by the algorithm when different MSW vehicle types are taken into consideration for a vehicle 
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replacement. Clearly, there is a strong dependency between the choice of a vehicle type and the 

routing of the vehicle in the fleet. In order to show the differences in the use of different objective 

functions, each case study has been run three times, by minimizing the total distance traveled (1), 

the total fuel consumption (2) and the total external costs (3). Case study (a) obtains the current 

waste collection route from the company and improves the route with the algorithm proposed. 

Case studies (b) and (c) analyze the situation when the vehicle that currently performs the route is 

replaced by another less polluting vehicle. Particularly, in case study (b) the capacity of the new 

vehicle is not changed while case study (c) considers acquiring a vehicle with a lower capacity. 

Finally, case study (d) introduces a compressed natural gas (CNG) vehicle of the same capacity 

with an enhanced environmentally friendly vehicle (EEV) engine technology. The objective is to 

account for the total external costs when implementing a vehicle replacement and compare the 

amounts of the different types of pollutant emissions obtained in each case study. Moreover the 

routes provided by the VNTS are compared to the current solution to evaluate the reduction of 

pollutant emissions in the waste collection route.  

The vehicle fleet for the cases studies includes four MSW vehicles (A, B, C and D). Vehicle A 

is defined by the vehicle that currently performs the real route. Vehicles B, C and D are the three 

options for the vehicle acquisition. In this study, MSW vehicles are comparable to those of heavy 

duty vehicles of the same weight because the same engines are used for both; their characteristics 

can be found in Table 8.  

The COPERT model (Ntziachristos and Samaras, 2012) is used for the determination of average 

emission factors for diesel-engine vehicles A, B and C. However, the experimentation on CNG 

vehicles is poor. Only emissions and fuel consumption factors are provided for CNG buses. 
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Nevertheless, as a result of the lack of experimental data from CNG fuelled MSW vehicles in the 

scientific literature, the authors decided to use the Tier 2 emission factors based on the COPERT 

model of CNG buses. This decision is based on the observation that buses have weights and driving 

cycles similar to MSW vehicles, are characterized by stop and go traffic situations and low average 

speeds (Pastorello et al., 2011). 

Table 8 Fleet parameters 

Vehicle Vehicle type Capacity 
(Tons) 

Type of 
fuel 

A RT >20-26t (Euro-3) 22.5 Diesel 

B RT >20-26t (Euro-5) 22.5 Diesel 

C RT >14-20t (Euro-5) 18 Diesel 

D RT >20-26t (EEV) 22.5 CNG 

 

The defined route is performed in the north district of Alcalá de Guadaíra and collects waste 

from 81 CPs completing two circuits to the landfill. A constant demand of 0.5 tons on each CP is 

assumed. The characteristics and total emissions of the current route are shown in Tables 9 and 10 

respectively. The application Open Street Maps was used for obtaining the real distances in 

kilometers between each pair of CPs belonging to one existing route for organic waste collection. 

Regarding the external costs parameters, the external costs of climate change, NOx, NMVOC and 

PM were established as 25, 3,600, 800 and 79,800 (€/ton of pollutant) respectively. 

Table 9 Characteristics of the existing route for organic waste collection 

Route  

Name 
Number of 

CPs Vehicle 

Nº 
Circuits 

per 
vehicle 

Stage I 
speed 

(Km/h) 

Stage II 
speed 

(Km/h) 

Stage III 
speed 

(Km/h) 

Stage IV 
speed 

(Km/h) 

Alcalá Norte 81 A 2 50 7 40 50 
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Table 10 Total emissions of the existing route for organic waste collection 

Route 

Name 
Dist 

(Km) 
Fuel 

Cons.(l) 
Ext. 

Costs(€) 
CO2 

Emis.(Kg) 
NOx 

Emis.(g) 
NMVOC 

Emis.(g) 
PM 

Emis.(g) 

Alcalá Norte 127.81 47.60 10.26 127.11 1209.82 85.43 33.40 

 

In order to compare the results obtained by the proposed algorithm for the different cases with 

those currently existing in Alcalá de Guadaíra, the travelled distance, fuel consumption, external 

costs and pollutant emissions amounts were computed for each instance and are shown in Table 

11. The first column of the table indicates the case study. Next, the second and third columns 

indicate the vehicle type and number of circuits respectively. The fourth column shows the 

objective function (O.F.) considered. Then, the total distance traveled (Dist.) the total fuel 

consumption (F. Cons.) and the external costs (Ext. C.) are shown. The value of the O.F. to be 

minimized is represented in bold. Finally, CO2 and pollutant emissions are also indicated.  

Table 11 Comparison of results for the case studies 

Case 

Study 
Veh. Circ. O.F. 

Dist. 

(Km) 
F. Cons Ext. C. (€) 

CO2 

Emis.(Kg) 

NOx 

Emis.(g) 

NMVOC 

Emis.(g) 

PM 

Emis.(g) 

 a A 2 

Dist. 118.47 41.75 l 8.85 111.49 1048.33 71.12 28.07 

F. Cons. 118.47 41.75 l 8.85 111.49 1048.33 71.12 28.07 

Ext. C. 121.57 41.92 l 8.84 111.93 1050.27 70.31 27.74 

b B 2 

Dist. 118.47 39.94 l 4.43 106.65 363.65 3.82 5.75 

F. Cons. 119.24 39.53 l 4.38 105.55 359.41 3.70 5.58 

Ext. C. 119.24 39.53 l 4.38 105.55 359.41 3.70 5.58 

c C 3 

Dist. 164.44 42.03 l 4.64 112.24 381.75 3.87 5.84 

F. Cons. 165.98 41.82 l 4.61 111.67 379.33 3.80 5.73 

Ext. C. 165.98 41.82 l 4.61 111.67 379.33 3.80 5.73 

d D 2 

Dist. 118.47 69.28 m3 3.80 107.17 296.19 5.33 0.59 

F. Cons. 118.47 69.28 m3 3.80 107.17 296.19 5.33 0.59 

Ext. C. 118.47 69.28 m3 3.80 107.17 296.19 5.33 0.59 
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In general, minimizing distances is not the best alternative for reducing pollutant emissions as 

it does not consider load factors, travel speeds and vehicle categories, which are of special 

importance in the specified objective function. As observed in case studies (b) and (c) the solution 

obtained by the algorithm when minimizing the total travel distance, presents higher amounts of 

pollutant emission than minimizing the total fuel consumption or the total external costs. On the 

other hand, minimizing the total fuel consumption leads us to take into account distances, load 

factors, travel speeds and vehicle categories in the problem resolution, but exclusively for the 

reduction of CO2 emissions. The minimization of other pollutant emissions such as NOx, NMVOC 

or PM is not considered in this alternative. Finally, minimizing the total external costs not only 

considers distances, load factors, travel speeds and vehicle categories, but also incorporates 

pollutant emissions factors in the objective function of the problem (see Equation 26). Therefore, 

the solutions obtained by this objective function are very close or equal to the solutions obtained 

by minimizing the total fuel consumption but with lower external costs. Consequently, these 

solutions may present lower amounts of other types of pollutants such as NOx, NMVOC or PM, 

which have a relevant importance in urban areas. This fact can be observed in the solutions 

obtained for all case studies. 

Looking at the results obtained for case study (a), substantial reductions can be obtained just by 

applying the VNTS to redesign the current route performed by the vehicle. Specifically, the 

solution obtained by the algorithm outperforms the current route with significant reductions in the 

CO2 (11.94%), NOx (13.19%), NMVOC (17.71%) and PM (16.95%) emissions (see Tables 10 and 

11). 
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The solution obtained by the VNTS for case study (b) further reduces the current pollutant 

emissions. The effect of replacing the current vehicle A by vehicle B results in reductions of 21.56 

Kg of CO2 (16.96%), 850.41 g of NOx (70.29%), 81.73 g of NMVOC (95.67%) and 27.82 g of 

PM (83.29%) each time the route is performed. 

As can be seen from the results obtained for case study (c), replacing the current vehicle A with 

vehicle C implies the execution of three circuits for the waste collection. Although this fact 

involves an increment in the length of the route of 38.17 kilometers (29.87%) when it is compared 

with the real case, the amounts of the different pollutant emissions are actually reduced. However, 

they do not improve the results obtained in case study (b).  

The solution with the lowest external costs is obtained in case study (d) where the routes are 

performed by a CNG vehicle with an EEV engine technology. The reductions obtained in this case 

study are 19.94 Kg of CO2 (15.69%), 913.63 g of NOx (75.52%), 80.10 g of NMVOC (93.76%) 

and 32.81 g of PM (98.23%). Figure 2 shows the pollutant emissions for the current (vehicle A) 

and optimized routes in case studies (b) and (d) with vehicles B and D respectively.  

 

Figure.-2 Pollutant emissions for current and optimized route in cases studies (b) and (d). 
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Table 12 Emission reductions of pollutants per year for the current route 

Case 

Study 
Veh. 

CO2 Emis. 

(tons) 

NOx Emis. 

(Kg) 

NMVOC 

Emis. (Kg) 

PM 

Emis.(Kg) 

a A 5.54 58.24 5.52 2.07 

b B 7.87 310.40 29.83 10.15 

c C 5.64 303.13 29.80 10.10 

d D 7.28 333.48 29.24 11.98 

 

These results confirm the importance of taking into account external costs in the objective 

function of the problem. Although the differences are relatively small for a given route, it is 

important to note that these reduction percentages must be applied to the total amount of each 

pollutant emitted per year. Table 12 presents the estimated savings in the total amount of each type 

of pollutant emissions emitted per year in the studied route. Moreover, these savings may be even 

greater if the methodology is extended to the other four waste collection routes in the municipality. 

7. Conclusions 

In this paper, the Eco-WCVRP is introduced. The problem is a variant of the well-known 

WCVRP where external costs derived from freight transport (climate change and air pollution) are 

considered in the objective function of the problem to be part of the planning and operational 

process in companies. The problem considers a heterogeneous fleet and allows vehicles 

performing more than one circuit for the waste collection, identifying four activity stages in the 

route which are characterized by different travel speeds for the calculation of the emissions. The 

equations provided by the COPERT methodology are used for estimating CO2 and pollutant 

emissions (NOx, NMVOC and PM); they depend on the vehicle category, the vehicle assigned 
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speeds and the total load carried. To our knowledge, this is the first paper that considers pollutant 

emissions in a WCVRP with a heterogeneous fleet. 

The Eco-WCVRP is modeled with linear programming techniques. In order to obtain high 

quality solutions, an algorithm based on a semi-parallel insertion heuristic and a VNTS post-

processing method is implemented. The algorithm is validated for a real problem in the 

municipality of Alcalá de Guadaíra, within the metropolitan area of Seville (Spain) where 

experimental results are obtained on a set of case studies. Solutions show that the effect of 

replacing the current vehicle with another of the same capacity and low-emission vehicle 

technology results in significant reductions on the emissions of CO2 (15.69%), NOx (75.52%), 

NMVOC (93.76%) and PM (98.23%). 

In summary, the proposed methodology can not only optimize the current route in terms of 

distance traveled or fuel consumption but also reduce other transport-associated impacts such as 

pollutant emissions, which are of special importance in urban areas. The consideration of the 

external costs into the objective function provides ecological solutions very close to those that 

minimize fuel consumption but with lower amounts of pollutant emissions. The designed tool 

efficiently analyzes the differences between scenarios and can provide decision making support 

for cities when designing their waste collection routes by taking into account environmental issues. 
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