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Exact controllability to the trajectories of the one-phase1

Stefan problem2

Jon Asier Bárcena-Petisco⇤ Enrique Fernández-Cara† Diego A. Souza‡3

Abstract4

This paper deals with the boundary exact controllability to the trajectories of the one-phase Stefan5

problem in one spatial dimension. This is a free-boundary problem that models solidification and melting6

processes. We prove the local exact controllability to (smooth) trajectories. To this purpose, we first7

reformulate the problem as the local null controllability of a coupled PDE-ODE system with distributed8

controls. Then, a new Carleman inequality for the adjoint of the linearized PDE-ODE system, coupled on9

the boundary through nonlocal in space and memory terms, is presented. This leads to the null controllability10

of an appropriate linear system. Finally, the result is obtained via local inversion, by using Liusternik-Graves’11

Theorem. As a byproduct of our approach, we find that some parabolic equations which contains memory12

terms located on the boundary are null-controllable.13

Keywords: Free-boundary problems, one-phase Stefan problem, exact controllability to the trajectories, global14

Carleman inequalities, Inverse Function Theorem.15

Mathematics Subject Classification: 35R35, 80A22, 93B05, 93C2016

1 Introduction17

Melting and soldification phenomena occur in many situations in nature and industry, from freezing of polar18

ice sheets to the continuous casting of steel, see for instance [LSTY83]. The related thermodynamical model19

of liquid-solid phase transition possesses a classical mathematical formulation: the Stefan problem, named after20

the work of the Slovene physicist and mathematician Josef Stefan. The model involves a moving free boundary,21

i.e. the spatial physical domain is time-dependent and the liquid-solid interface is unknown.22

In the Stefan problem, the dynamics of the interface is governed by the heat flux induced by melting or23

solidification. In other words, its time-evolution must be modeled by a nonlinear ODE.24

Among other situations, Stefan problems have also been employed to model the evolution of tumor growth25

processes [FR99] and the di↵usion of information in online social networks [LLW13]. Other applications can be26

found in [Dav01], [Mei11] and [AS18].27

For the sake of completeness, we will give a short description of the mathematical formulation of the Stefan28

problem. A detailed presentation is given for instance in [Gup03].29
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Let T 2 R>0 be given. At each time t 2 [0, T ], the material domain is separated in two parts: the set
(0, `(t)) (the liquid phase domain) and the set (`(t),+1) (the solid phase domain). Here, ` = `(t) indicates the
position of the interface; it must satisfy `(0) = `0 and `(t) 2 (`⇤,+1) at least for all small times, where `0 and
`⇤ are given and `0 > `⇤ > 0. Here and henceforth, for any ` 2 C

0([0, T ];R>0), we set

Q` := {(x, t) : t 2 (0, T ), x 2 (0, `(t))} and H
1,2(Q`) := {u 2 L

2(Q`) : ux, uxx, ut 2 L
2(Q`)}.

This paper deals with the controllability properties of the following one-phase Stefan problem:1

8
>>>>>>><

>>>>>>>:

ut � uxx = 0 in Q`,

u(0, t) = v(t), u(`(t), t) = 0 in (0, T ),

�`t(t) = �ux(`(t), t) in (0, T ),

u(x, 0) = u0(x) in (0, `0),

`(0) = `0.

(1.1)

Here, � is the so called Stefan number (a positive constant) and the initial state u0 2 H
1(0, `0) satisfies2

u0(x) � 0 for all x 2 [0, `0] and u0(`0) = 0. The functions u = u(x, t) and v = v(t) may be respectively viewed3

as the temperature of the liquid phase and the imposed temperature on the left boundary. In (1.1), v is the4

control (devised for heating or freezing the liquid) and (u, `) is the state. See Figure 1 for a solution.5

In this paper, the main goal is to prove the local exact controllability of (1.1) to the (smooth) trajectories at6

time T > 0. By definition, a trajectory of (1.1) is a triplet (ū, ¯̀, v̄) belonging to H
1,2(Q¯̀)⇥H

1(0, T )⇥H
3/4(0, T )7

satisfying8 8
>>>>>>><

>>>>>>>:

ūt � ūxx = 0 in Q¯̀,

ū(0, t) = v̄(t), u(¯̀(t), t) = 0 in (0, T ),

� ¯̀t(t) = �ūx(¯̀(t), t) in (0, T ),

ū(x, 0) = ū0(x) in (0, ¯̀0),

¯̀(0) = ¯̀
0,

(1.2)

where ¯̀
0 > `⇤, ¯̀(t) 2 (`⇤,+1) and v̄(t) > 0 for all t 2 [0, T ], ū0 2 H

1(0, ¯̀0), ū0(x) � 0 for all x 2 [0, `0], with9

ū0(¯̀0) = 0, and the compatibility condition ū0(0) = v̄(0) holds.10

We will denote by T the space of triplets (ū, ¯̀, v̄) 2 H
1,2(Q¯̀)⇥H

1(0, T )⇥H
3/4(0, T ) such that the function11

(y, t) 7! ū(y ¯̀(t), t) belongs to W
1,1(0, T ;H1(0, 1)) and ¯̀2 W

1,1(0, T ).12

The assumption v(t) > 0 has a physical meaning: we assume that, on the left of the fixed boundary, we have13

a liquid phase domain and, accordingly, the temperature is strictly positive. If we started from an uncontrolled14

solution for which v(t) is not � 0, it would become di�cult to identify liquid and solid regions.15

Note that the solutions of (1.2) remain positive when the initial value and the boundary value v̄ are non-16

negative and not identically zero in view of the weak and strong maximum principles for parabolic equations,17

see for instance [Nir53, ?].18

Our main result is the following:19

Theorem 1.1. Let (ū, ¯̀, v̄) be a trajectory of (1.1) with (ū, ¯̀) 2 T and v̄(t) > 0 for all t 2 [0, T ]. Then, there20

exists � > 0 with the following property: for any `0 2 (`⇤,+1) and any u0 2 H
1(0, `0) with u0(`0) = 0 and21

u0(x) � 0 for all x 2 [0, `0] satisfying22

|`0 � ¯̀
0|+ ku0(· `0)� ū0(· ¯̀0)kH1(0,1)  �, (1.3)

there exists a nonnegative control v 2 H
3/4(0, T ) such that the associated state (u, `), with23

v(0) = u0(0), u 2 H
1,2(Q`), ` 2 H

1(0, T ) and `(t) 2 (`⇤,+1) 8t 2 [0, T ],
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Figure 1: A solution to the free-boundary problem. Space (resp. time) goes from left to right (resp. from bottom
to top).

satisfies1

`(T ) = ¯̀(T ) and u(· , T ) = ū(· , T ) in (0, ¯̀(T )). (1.4)

In order to simplify the notation, we will assume form now on that � = 1.2

Remark 1.2. We will see in Section 2 that, in order to reformulate (1.1), (1.4) in a fixed cylindrical parabolic3

domain, it must be ensured that the interfaces x = ¯̀(t) and x = `(t) remain far from the left boundary x = 0.4

This justifies the assumptions in Theorem 1.1 on the initial data, ū0 and ¯̀
0. It is reasonable to expect such a5

behavior of the free boundary provided u0 and `0 are close enough respectively to ū0 and ¯̀
0. ⇤6

Remark 1.3. A careful inspection of the proof shows that Theorem 1.1 also holds if we just assume that v̄ is7

nonnegative and not identical to zero.8

Let us mention some previous works on the control of (1.1) and other similar models.9

The analysis of the controllability properties of linear and nonlinear parabolic PDEs in cylindrical domains10

is nowadays classical in control theory; some relevant contributions are [FR71, LR95, FPZ95, FI96, FCZ00]11

and the references therein. On the other hand, the study of the controllability and stabilizability properties of12

free-boundary problems for PDEs has not been explored too much, although some important results have been13

obtained recently.14

Regarding the one-phase Stefan problem, we can mention [DPRM03], where the trace is controlled using15

power-series method, [FCLdM16], where local null controllability is proved, [FCdS17a], where the result is16

extended to systems with semilinearities involving zero order terms, [KDK18], where controllability is obtained17

by a backstepping technique and [WLL22], where the result is generalized to quasi-linear parabolic equations.18

Regarding two-phase models, still fewer results have been proved. Let us highlight [KK20], where exponential19

stability is obtained with the help of backstepping transformation, [AFCS22], where null controllability is20

obtained and [GM23], where the control is established in the case of a periodic box.21

On the other hand, the local null control of 1D fluid-structure systems has been studied using similar22

techniques: see [DFC05], where we find boundary controls at both sides of the solid and [LTT13], with just one23

3



boundary control. Similarly, in [GZ21], the authors study the controllability of free-boundary systems for the1

viscous Burgers equation in a domain with one moving endpoint. It is also worth mentioning [CMRT15], where2

the velocity of the fluid is controlled to zero, the position of the particle is controlled to a given target and the3

smallness assumption is removed, at the price of allowing T to be large enough.4

Null controllability problems for fluid-structure systems in multi-dimensional domain have also been consid-5

ered, for example, in [IT07]. Regarding non-parabolic equations, the exact controllability to constant trajectories6

is analyzed in [GKS20]; see also [ABHK18] for a study of the controllability of water waves, governed by the7

Euler equations.8

Finally, in view of the statement of our main result in this paper, it is worth mentioning some recent9

contributions dealing with controllability properties under a positivity constraint. Thus, see [LTZ17] and [PZ18]10

respectively for linear and semilinear heat equations and [MTZ19, BWZ20, LM21] for the control of population11

dynamics of several species, the fractional Laplacian and reaction-di↵usion systems, respectively.12

In this paper, we will be concerned with a somewhat di↵erent situation, which leads to several new di�culties.13

Let us give more details:14

• To our knowledge, our result is the first one concerning the exact control to the trajectories in the context15

of a parabolic system where the spatial domain changes with time. Up to now, the available results have16

dealt with null controllability (or exact controllability to constant trajectories).17

Actually, in the context of Stefan problems, the physical meaning of the solutions found in previous works18

is limited due to the fact that the controlled solutions do not necessarily preserve positivity. Our result is a19

breakthrough in that direction, because our solutions preserve positivity, and thus have a proper physical20

meaning.21

• In fact, we control both components of the state: the final temperature and the final position of the22

liquid-solid interface. Obviously, this brings an additional di�culty to the proof of Theorem 1.1.23

• After a suitable change of variable and some additional arguments, it will be seen that the free-boundary24

control problem is equivalent to the null controllability of a nonlinear parabolic PDE-ODE system, which25

can be viewed as a nonlinear parabolic equation with nonlocal in space and also nonlocal in time (memory-26

like) terms on the boundary.27

To establish this property, we will use two main tools: a new global Carleman inequality (where the28

weights are chosen to deal satisfactorily with the boundary terms) and Lyusternik–Graves’ Inverse Func-29

tion Theorem.30

Hence, we are able to establish a Carleman inequality for a system that has nonlocal terms on the boundary31

condition. To our knowledge, this is a novelty in the literature. It remains to see how much this result32

can be generalized and whether it can be useful to get observability and/or controllability properties for33

other problems.34

Remark 1.4. Whether or not global inversion is also possible (which would provide global in time control) is35

obviously a very interesting open question. However, taking into account the kind of estimates we would need,36

it does not seem an easy task.37

Remark 1.5. The success of this technique opens new possibilities. First, for similar two-phase Stefan and 1D38

fluid-structure problems. But, going beyond, we plan to explore other problems where similar ideas may be39

used. Among them, we have Stefan problems with radial symmetry, on star-shaped sets or even under more40

general conditions. Our Carleman estimate also deserves deep analysis and maybe can give ideas to control41

linear (or semilinear) PDE’s in higher dimensions with “special” memory terms: on the boundary, supported42

in space in a interior compact set, etc. ⇤43
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Remark 1.6. Let us also observe that the method used to prove local exact controllability leads in a natural1

way to several iterative algorithms that can be used to compute numerical approximations. For instance, after2

an appropriate reformulation of the control problem, quasi-Newton methods are in order. This issue will be the3

goal of a forthcoming paper. ⇤4

The rest of this paper is organized as follows.5

In Section 2, we will reformulate the free-boundary problem as a nonlinear parabolic system in a cylindrical6

domain and we will establish some well-posedness results. In Section 3 we prove a new Carleman inequality.7

In Section 4, we will first prove the null controllability of a linearized PDE-ODE system and then we will give8

the proof of Theorem 1.1.9

2 Preliminaries10

2.1 Reformulation of the free-boundary problem in a cylindrical domain11

In order to study the controllability of (1.1), it is useful to present a reformulation as a nonlinear parabolic12

equation in a cylindrical domain.13

More precisely, let us set14

p(y, t) := u (y`(t), t) and q(t) := `(t)2

for (y, t) 2 Q1 := (0, 1) ⇥ (0, T ). After the transformation (u, `) ! (p, q), recalling that we have taken � = 1,15

(1.1) reads16 8
>>>>><

>>>>>:

qpt � pyy + ypy(1, ·)py = 0 in Q1,

p(0, ·) = v, p(1, ·) = 0 in (0, T ),
p(· , 0) = p0 in (0, 1),
qt + 2py(1, ·) = 0 in (0, T ),
q(0) = q0,

(2.1)

where q0 := `
2
0 and p0(y) := u0(y`0) in (0, 1).17

Remark 2.1. By introducing the square of `(t), the Stefan condition on the interface becomes a linear constraint18

on qt and py(1 , ·). Otherwise, we would have19

`t(t) = � 1

`(t)
py(1, t).

Since ` has a strictly positive lower bound `⇤, squaring is a di↵eomorphism. ⇤20

With a similar change of variables, (1.2) is transformed into21

8
>>>>><

>>>>>:

q̄p̄t � p̄yy + yp̄y(1, ·)p̄y = 0 in Q1,

p̄(0, ·) = v̄, p̄(1, ·) = 0 in (0, T ),
p̄(· , 0) = p̄0 in (0, 1),
q̄t + 2p̄y(1, ·) = 0 in (0, T ),
q̄(0) = q̄0,

(2.2)

where p̄0(y) := ū0(y ¯̀0), q̄0 := ¯̀2
0 and p̄(y, t) = ū

�
¯̀(t)y, t

�
and q̄(t) := ¯̀(t)2 for (y, t) 2 Q1. Note that, by22

assumption, q̄(t) 2 (q⇤,+1) for all t 2 [0, T ] with q⇤ = `
2
⇤.23

Thus, to prove that (1.1) is locally exactly controllable to the trajectory (ū, ¯̀) is equivalent to prove that (2.1)24

is locally exactly controllable to (p̄, q̄). Consequently, Theorem 1.1 will be a direct consequence of the following25

result:26

5



Proposition 2.2. Let (p̄, q̄, v̄) 2 [W 1,1(0, T ;H1(0, 1))\H
1,2(Q1)]⇥W

1,1(0, T )⇥H
3/4(0, T ) satisfying (2.2),1

with v̄(t) > 0 for all t 2 [0, T ]. Then, there exists � > 0 with the following property: for any p0 2 H
1(0, 1) with2

p0(1) = 0 and any q0 2 (q⇤,+1) satisfying3

|q0 � q̄0|+ kp0 � p̄0kH1(0,1)  �,

there exists a nonnegative control v 2 H
3/4(0, T ) such that the associated solution (p, q) to (2.1), with4

v(0) = p0(0), p 2 H
1,2(Q1), q 2 H

1(0, T ) and q(t) 2 (q⇤,+1) 8t 2 [0, T ],

satisfies5

q(T ) = q̄(T ) and p(· , T ) = p̄(· , T ) in (0, 1).

2.2 Reformulation as a null controllability problem6

Now, we will reformulate the desired control property as a null controllability requirement.7

To do this, let us introduce the change of variable (z, h) = (p � p̄, (q � q̄)/2). Then, the local exact8

controllability to the trajectories for (2.1) is reduced to the local null controllability of the following system,9

where we have denoted again x the spatial variable:10

8
>>>>><

>>>>>:

q̄zt � zxx + xp̄x(1, ·)zx + xp̄xzx(1 , ·) + 2p̄th+ 2hzt + xzx(1, ·)zx = 0 in Q1,

z(0, ·) = v̂, z(1, ·) = 0 in (0, T ),
z(· , 0) = z0 in (0, 1),
ht + zx(1, ·) = 0 in (0, T ),
h(0) = h0,

(2.3)

where z0 := p0 � p̄0, h0 := (q0 � q̄0)/2, v̂ = v � v̄ and 2h(t) + q̄(t) 2 (q⇤,+1) for all t 2 [0, T ].11

Here, we have used (2.2) to simplify some terms.12

Consequently, Proposition 2.2 is obviously equivalent to the following result:13

Proposition 2.3. Let (p̄, q̄, v̄) 2 [W 1,1(0, T ;H1(0, 1))\H
1,2(Q1)]⇥W

1,1(0, T )⇥H
3/4(0, T ) satisfying (2.2),14

with v̄(t) > 0 for all t 2 [0, T ]. There exists � > 0 with the following property: for any p0 2 H
1(0, 1) with15

p0(1) = 0 and any q0 2 (q⇤,+1) satisfying16

|q0 � q̄0|+ kp0 � p̄0kH1
0 (0,1)

 �,

there exists a nonnegative control v 2 H
3/4(0, T ) such that the associated solution (z, h) to (2.3), where we have17

taken z0 := p0 � p̄0, h0 := (q0 � q̄0)/2 and v̂ = v � v̄, with18

v̂(0) = z0(0), z 2 H
1,2(Q1), h 2 H

1(0, T ) and 2h(t) + q̄(t) 2 (q⇤,+1) 8t 2 [0, T ],

satisfies19

h(T ) = 0 and z(· , T ) = 0 in (0, 1).

20

2.3 Reformulation as a distributed control problem21

Let us establish a result similar to Proposition 2.3 for a distributed control system.22

6



Thus, let us set

Q := (�1, 1)⇥ (0, T ) and H
1,2
0 (Q) := {z 2 H

1,2(Q) : z(�1, ·) = z(1, ·) = 0 in (0, T )}

and let us consider a non-empty open set ! ⇢⇢ (�1, 0). The following holds:1

Proposition 2.4. Assume that (p̄, q̄) 2 [W 1,1(0, T ;H1(�1, 1))\H
1,2
0 (Q)]⇥W

1,1(0, T ), with q̄(t) 2 (q⇤,+1)2

for all t 2 [0, T ]. There exists � > 0 with the following property: for any z0 2 H
1
0 (�1, 1) and any h0 2 R3

satisfying4

|h0|+ kz0kH1
0 (�1,1)  �,

there exists a control w 2 L
2(! ⇥ (0, T )) such that the associated solutions to the system5

8
>>>>><

>>>>>:

q̄zt � zxx + xp̄x(1, ·)zx + xp̄xzx(1 , ·) + 2p̄th+ 2hzt + xzx(1, ·)zx = w1! in Q,

z(�1, ·) = 0, z(1, ·) = 0 in (0, T ),
z(· , 0) = z0 in (�1, 1),
ht + zx(1, ·) = 0 in (0, T ),
h(0) = h0

(2.4)

with (z, h) 2 H
1,2
0 (Q)⇥H

1(0, T ) and k(z, h)k
H

1,2
0 (Q)⇥H1(0,T )  Ck(z0, h0)kH1

0 (�1,1)⇥R, satisfies6

h(T ) = 0 and z(· , T ) = 0 in (�1, 1),

for some constant C > 0.7

The proof of Proposition 2.4 will be given in Section 4.2. The main reason to consider this extended problem8

is that the boundary controls obtained with the help of Carleman estimates are not su�ciently regular for our9

purposes; in principle, they are just L
2(0, T ), while we need at least H

3/4(0, T ) controls. With distributed10

controls, local parabolic results can be used easily to improve the regularity of the control.11

Obviously, Proposition 2.3 follows from Proposition 2.4 by restricting to Q1 and accepting that the boundary12

control v̂ = v̂(t) is just the trace of z at x = 0. In particular, the control v we are searching for will be the sum13

of the traces of z and p̄. Accordingly, we will have v(0) = u0(0).14

Also, note that we can take � small enough to have 2h(t) + q̄(t) 2 (q⇤,+1) for all t 2 [0, T ]. Since v̄(t) > 015

for all t 2 [0, T ], in view of the bounds for the solution (z, h), by taking � su�ciently small, we can ensure16

that v := v̂ + v̄ > 0.17

2.4 Linearization18

Now, our aim is to linearize (2.4) in a neighborhood of (0, 0) and analyze the null controllability properties of19

the resulting system. Thus, let us consider the non-homogeneous linear system20

8
>>>>><

>>>>>:

q̄zt � zxx + xp̄x(1, ·)zx + xp̄xzx(1 , ·) + 2p̄th = f1 + w1! in Q,

z(�1, ·) = 0, z(1, ·) = 0 in (0, T ),
z(· , 0) = z0 in (�1, 1),
ht + zx(1, ·) = f2 in (0, T ),
h(0) = h0,

(2.5)

where f1 and f2 belong to appropriate spaces of functions that decay exponentially as t ! T
� and will be made21

precise below.22

7



In order to prove the null controllability of (2.5), we are going to follow the Hilbert Uniqueness Method1

(see [Lio88]). Accordingly, we will first deduce an observability inequality for the adjoint of (2.5), which is the2

following:3 8
>>>>>>>>>>><

>>>>>>>>>>>:

�q̄'t � 'xx � xp̄x(1, ·)'x + p̄x(1, ·)' = g1 in Q,

'(�1, ·) = 0, '(1, ·) = � +

Z 1

�1
xp̄x(x, ·)'(x, ·) dx in (0, T ),

'(· , T ) = 'T in (�1, 1),

�t =

Z 1

�1
2p̄t(x, ·)'(x, ·) dx+ g2 in (0, T ),

�(T ) = �T .

(2.6)

It is worth mentioning that, in [GZ21], the authors point out that the exact controllability to the trajectories4

for the free-boundary viscous Burgers equation is an open problem. They also linearize that problem and5

compute its adjoint system (which is similar to (2.6)).6

2.5 Well-posedness of the adjoint system7

Henceforth, we will denote by (· , ·)2 the usual scalar product in L
2(�1, 1) and k ·k2 will stand for the associated8

norm.9

For clarity, we will provisionally change (2.6) by a similar in time system with general coe�cients:10

8
>>>>>>><

>>>>>>>:

�q̄(t)'t � 'xx � a'x � b' = f in Q,

'(�1, ·) = 0, '(1, t) = �(t) + (N(· , t),'(· , t))2 in (0, T ),

'(· , T ) = 'T in (�1, 1),

�
0(t) = (R(· , t),'(· , t))2 + g(t) in (0, T ),

�(T ) = �T .

(2.7)

Note that the boundary condition on ' at x = 1 involves � (that is essentially a primitive in time of a11

spatial integral of ') and an additional spatial integral of '. Thus, in this system, we find nonlocal in space12

and nonlocal in time (that is, memory-like) boundary terms.13

The following result holds:14

Proposition 2.5. Let us assume that R 2 L
2(Q), N 2 H

1(0, T ;L2(�1, 1)), a, b 2 L
2(0, T ;L1(�1, 1)) and15

q̄ 2 C
0([0, T ]) with q̄(t) 2 (q⇤,+1) for all t 2 [0, T ]. Let f 2 L

2(Q), g 2 L
2(0, T ), 'T 2 H

1(�1, 1) and �T 2 R16

be given and assume that17

'T (�1) = 0 and 'T (1) = �T + (N(· , T ),'T )2. (2.8)

Then, there exists a unique strong solution in H
1,2(Q)⇥H

1(0, T ) to (2.7) such that the following estimate holds:18

k'k2
H1,2(Q) + k�k2

H1(0,T )  e
C(1+T )

⇣
kfk2

L2(Q) + kgk2
L2(0,T ) + k'0k2H1(0,1) + |�0|2

⌘
,

where C is a positive constant depending on a, b, R, N and q̄.19

The proof is standard. The main ideas can be sketched as follows:20

• For the existence, we introduce the Hilbert space21

B = H
3/4(0, T ;L2(�1, 1))⇥H

3/4(0, T )
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and the mapping ⇤ : B ⇥ [0, 1] 7! B, given by ⇤(('̂, �̂),�) = (', �) if and only if (', �) is the unique1

solution to2 8
>>>>>>><

>>>>>>>:

�q̄(t)'t � 'xx � a'x � b' = �f in Q,

'(�1, ·) = 0, '(1, t) = � (�̂(t) + (N(· , t), '̂(· , t))2) in (0, T ),

'(T ) = �'T in (�1, 1),

�
0(t) = (R(· , t),'(· , t))2 + �g(t) in (0, T ),

�(T ) = ��T .

(2.9)

We check that ⇤ is well-defined and, also, that (', �) solves (2.7) if and only if ⇤((', �), 1) = (', �). But3

it is not di�cult to see that ⇤ satisfies all the assumptions of the Leray-Schauder’s Fixed-Point Principle4

(see for instance [Zei86]). To this end, it su�ces to take into account the usual energy and boundary5

estimates satisfied by the solution to (2.9). Consequently, (2.7) is solvable.6

• For the uniqueness, we assume that two solutions ('1, �1) and ('2, �2) exist and we consider the system7

satisfied by (�,�) := ('1 � '2, �1 � �2).8

Then, from energy and boundary estimates and Gronwall’s Lemma, we deduce at once that (�,�) = (0, 0).9

Remark 2.6. In order to guarantee that ⇤ satisfies the hypotheses of the Leray-Schauder’s Principle, we need N

in H
1(0, T ;L2(�1, 1)). Indeed, if we multiply the PDE in (2.7) by 't and integrate by parts, we get the

boundary integral Z
T

0
'x(1, t)'t(1, t) dt.

This can be bounded by di↵erentiating in time the identity '(1, t) = �(t) + (N(· , t),'(· , t))2, which is possible10

if N is as above. Whether this result may be true under weaker regularity assumption is an open question.11

2.6 Well-posedness of the linearized system12

The aim of this section is to prove the existence and uniqueness of a global solution to (2.5).13

For convenience, we will establish the result for a similar system, where (again) we have introduced general14

coe�cients.15

More precisely, the following result holds:16

Proposition 2.7. Assume that (a,R,N) belongs to the space L2(0, T ;L1(�1, 1))⇥L
2(Q)⇥L

1(0, T ;L2(�1, 1))17

and q 2 W
1,1(0, T ), with q(t) 2 (q⇤,+1) for all t 2 [0, T ]. Let F 2 L

2(Q), G 2 L
2(0, T ), z0 2 H

1
0 (�1, 1) and18

h0 2 R be given. There exists a unique strong solution in H
1,2
0 (Q)⇥H

1(0, T ) to the system19

8
>>>>><

>>>>>:

q̄(t)zt � zxx + azx +Rh+Nzx(1, ·) = F in Q,

z(�1, ·) = 0, z(1, ·) = 0 in (0, T ),
z(· , 0) = z0 in (�1, 1),
ht + zx(1, ·) = G in (0, T ),
h(0) = h0,

(2.10)

such that the following inequality holds:20

kzk2
H

1,2
0 (Q)

+ khk2
H1(0,T )  e

C(1+T )
⇣
kFk2

L2(Q) + kGk2
L2(0,T ) + kz0k2H1

0 (�1,1) + |h0|2
⌘
, (2.11)

where C is a positive constant depending on a, R, N and q.21

9



Again, the proof is standard and we will only give a brief sketch.1

For the existence, we can follow the Faedo-Galerkin strategy.2

Thus, for instance with the help of the “special” basis of H1
0 (�1, 1) formed by the eigenfunctions of the3

Dirichlet Laplacian operator, we can easily introduce a sequence of Galerkin approximations (zn, hn) : [0, T ] 7!4

H
1
0 (�1, 1)⇥R. Then, from the usual energy estimates and Gronwall’s Lemma, it is not di�cult to see that the5

(zn, hn) are uniformly bounded in the spaces indicated in (2.11). Consequently, convergent subsequences can6

be extracted. Following standard well known arguments, it can be deduced that any associated limit is a strong7

solution to (2.10).8

The uniqueness of the solution is an almost direct consequence of the energy estimates and, once more,9

Gronwall’s Lemma.10

At this point, we will introduce the definition of solution by transposition to (2.10):11

Definition 2.8. It will be said that (z, h) 2 L
2(Q)⇥ L

2(0, T ) is a solution by transposition to (2.10) if12

ZZ

Q

z(x, t)f(x, t) dx dt+

Z
T

0
h(t)g(t) dt = M(f, g) 8(f, g) 2 L

2(Q)⇥ L
2(0, T ), (2.12)

where the linear form M on L
2(Q)⇥ L

2(0, T ) is given by

M(f, g) :=

ZZ

Q

F (x, t)'(x, t) dx dt+ q̄(0)(z0,'(· , 0))2 + h0�(0) +

Z
T

0
G(t)�(t) dt

and (', �) is the unique strong solution to13

8
>>>>>>><

>>>>>>>:

�(q̄')t � 'xx � (a')
x
= f in Q,

'(�1, ·) = 0, '(1, t) = �(t) + (N(· , t),'(· , t))2 in (0, T ),

'(· , T ) = 0 in (�1, 1),

�
0(t) = (R(· , t),'(· , t))2 + g in (0, T ),

�(T ) = 0.

(2.13)

Since the boundary and final conditions in (2.13) satisfy the appropiate compatibility conditions (2.8), Propo-14

sition 2.5 guarantees the existence and uniqueness of a strong solution to (2.13). Consequently, Definition 2.815

makes sense.16

Proposition 2.9. Let the assumptions in Proposition 2.7 be satisfied. Suppose that a 2 L
2(0, T ;W 1,1(�1, 1))17

and N 2 H
1(0, T ;L2(�1, 1)). Then, there exists a unique solution by transposition to (2.10).18

Proof. Note that M is a continuous linear form on L
2(Q)⇥ L

2(0, T ) in view of Proposition 2.5. Therefore, we19

deduce from Riesz Representation Theorem that there exists exactly one solution by transposition to (2.10).20

Note that strong solutions to (2.10) are solutions by transposition.21

3 A new Carleman estimate22

With the purpose of studying the observability of (2.6), we will establish a new Carleman estimate. First, let23

us recall the definitions of several classical weights, frequently used in this framework, see [FI96].24
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Let !0 be a non-empty open set, with !0 ⇢⇢ ! and let be a function ⌘ in C
2([�1, 1]) satisfying1

⌘ > 0 in [�1, 1], min
x2[�1,1]\!0

|⌘x(x)| > 0, ⌘(�1) = ⌘(1) = min
x2[�1,1]

⌘(x). (3.1)

We associate to ⌘ the following weights:2

↵(x, t) :=
e
2�mk⌘k1 � e

�(mk⌘k1+⌘(x))

t(T � t)
8(x, t) 2 Q,

⇠(x, t) :=
e
�(mk⌘k1+⌘(x))

t(T � t)
8(x, t) 2 Q,

↵̂(t) := max
x2[�1,1]

↵(x, t) = ↵(1, t) = ↵(�1, t) 8t 2 (0, T ),

⇠̂(t) := min
x2[�1,1]

⇠(x, t) = ⇠(1, t) = ⇠(�1, t) 8t 2 (0, T ),

where m > 1 and � is a su�ciently large positive constant (to be chosen later).3

We will present and prove a global Carleman inequality that holds for the solutions to a simplified version4

of (2.7). It will be later extended to the solutions to (2.7) and, consequently, to the adjoint states in (2.6).5

Theorem 3.1. Let us assume that R 2 L
1(0, T ;L2(�1, 1)), N 2 W

1,1(0, T ;L2(�1, 1)) and d 2 C
1([0, T ])6

with d(t) > d⇤ > 0 for all t 2 [0, T ]. There exist constants �0 � 1, s0 � 1 and C0 > 0 such that, for any � � �0,7

any s � s0(T + T
2), any ( T , �T ) 2 H

1(�1, 1) ⇥ R satisfying (2.8) and any source terms f 2 L
2(Q) and8

g 2 L
2(0, T ), the strong solution to9

8
>>>>>>><

>>>>>>>:

 t + d(t) xx = f in Q,

 (�1, ·) = 0,  (1, t) = �(t) + (N(· , t), (· , t))2 in (0, T ),

 (· , T ) =  T in (�1, 1)

�t(t)� (R(· , t), (· , t))2 = g in (0, T ),

�(T ) = �T

(3.2)

satisfies10 ZZ

Q

⇥
(s⇠)�1(| xx|2 + | t|2) + �

2(s⇠)| x|2 + �
4(s⇠)3| 2

⇤
e
�2s↵

dx dt

+

Z
T

0

h
�
3(s⇠̂)3| (1, t)|2 + �(s⇠̂)(| x(�1, t)|2 + | x(1, t)|2)

i
e
�2s↵̂

dt

 C0

 
s
3
�
4

Z
T

0

Z

!

⇠
3| |2e�2s↵

dx dt+

ZZ

Q

|f |2e�2s↵
dx dt+

Z
T

0
|g|2e�2s↵̂

dt

!
.

(3.3)

Proof. As already mentioned, this Carleman inequality is new. It is one of the main contributions in the paper.11

The main di�culty to overcome is that we have to deal with nonlocal terms on the boundary, both in the12

space and time variables. In order to deal with them, we will use that time derivatives do not exhibit nonlocal13

behavior in time and, then, that the nonlocal in space terms are written on the boundary, at x = 1, just where14

�↵ and ⇠ attain their minima.15

For brevity, the Lebesgue integration elements dx and dt will be omitted. On the other hand, (· , ·) and k · k16

will stand for the usual scalar product and norm in L
2(Q).17

We start by noting that18

↵x = ��⇠⌘x, ↵xx = ��2⇠⌘2
x
� �⇠⌘xx,

↵t = �⇠2
h
e
�2�⌘ � e

��(mk⌘k1+⌘)
i
(T � 2t), ↵xt = �⇠

2
⌘xe

��(mk⌘k1+⌘)(T � 2t),

↵tt = 2⇠2
h
e
�2�⌘ � e

��(mk⌘k1+⌘)
i
+ 2(T � 2t)2⇠3

h
e
��(mk⌘k1+3⌘) � e

�2�(mk⌘k1+⌘)
i
.

(3.4)
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It follows that there exists C > 0 such that, for su�ciently large � at any (x, t) 2 Q, one has1

|↵t|  CT ⇠
2
, |↵xt|  T�⇠

2
, |↵tt|  C(⇠2 + T

2
⇠
3)  CT

2
⇠
3
. (3.5)

Let us set w := e
�s↵

 . We observe that w(�1, ·) = 0 and, from the definitions of ↵ and w, we get:

lim
t!0+

t
�2(T � t)�2

w(· , t) = lim
t!T�

t
�2(T � t)�2

w(· , t) = 0 and wx(· , T ) = wx(· , 0) = 0.

Let us introduce the partial di↵erential operator P := @t + d@xx. Then2

e
�s↵

f = e
�s↵

P (es↵w) = Pe w + Pk w,

where Pew := dwxx+(s↵t+ s
2
d↵

2
x
)w and Pkw := wt+2sd↵xwx+ sd↵xxw are the self-adjoint and skew-adjoint3

parts of P . It follows that4

Pew + (Pkw � sd↵xxw) = e
�s↵

f � sd↵xxw (3.6)

and, consequently,5

ke�s↵
f � sd↵xxwk2 = kPewk2 + kPkw � sd↵xxwk2 + 2(Pew,Pkw � sd↵xxw). (3.7)

The rest of the proof is devoted to analyzing the term (Pew,Pkw � sd↵xxw). From the above definition of6

the operators Pe and Pk, it follows that7

2(Pew,Pkw � sd↵xxw) = 2 (dwxx, wt) + 2 (dwxx, 2sd↵xwx)

+ 2
�
s↵tw + s

2
d↵

2
x
w,wt

�
+ 2

�
s↵tw + s

2
d↵

2
x
w, 2sd↵xwx

�

=: I1 + I2 + I3 + I4.

(3.8)

For the first integral term I1, we integrate by parts in space and obtain that8

I1 = � 2

ZZ

Q

dwxwxt + 2

Z
T

0
[dwtwx]

x=1
x=�1

=

ZZ

Q

dtw
2
x
�
Z 1

�1

⇥
dw

2
x

⇤t=T

t=0
+ 2

Z
T

0
[dwtwx]

x=1
x=�1 .

(3.9)

For the second one, we integrate again by parts in space and deduce that9

I2 = � 2s

ZZ

Q

d
2
↵xx|wx|2 + 2s

Z
T

0

⇥
d
2
↵x|wx|2

⇤x=1

x=�1
. (3.10)

For the third term, we integrate by parts in time. The following is found:10

I3 = � s

ZZ

Q

↵tt|w|2 � s
2

ZZ

Q

(d↵2
x
)t|w|2 +

Z 1

�1

⇥
(s↵t + s

2
d↵

2
x
)|w|2

⇤t=T

t=0
. (3.11)

Then, for the fourth term, we see that11

I4 = �
ZZ

Q

d
�
2s2(↵t↵x)x + 6s3d↵2

x
↵xx

�
|w|2 + 2

Z
T

0

⇥
d(s2↵t↵x + s

3
d↵

3
x
)|w|2

⇤x=1

x=�1
. (3.12)
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Hence, from (3.8)-(3.12), we get:1

2(Pew,Pkw � sd↵xxw) =

ZZ

Q

(�2sd2↵xx + dt)|wx|2

+

ZZ

Q

�
�s↵tt � s

2(d↵2
x
)t � 2s2d(↵x↵t)x � 6s3d2↵2

x
↵xx

�
|w|2

+

Z
T

0

⇥
2dwtwx + 2sd2↵x|wx|2 + 2s2d↵x(↵t + sd↵

2
x
)|w|2

⇤x=1

x=�1

�
Z 1

�1

⇥
dw

2
x
�
�
s↵t + s

2
d↵

2
x

�
|w|2

⇤t=T

t=0

= ID1 + ID2 + IBS + IBT ,

where ID1 and ID2 (resp. IBS and IBT ) correspond to distributed (resp. boundary and initial and final) terms.2

Obviously, IBT = 0. Let us estimate the distributed terms. Thanks to (3.4) and from (3.1), we have

ID1 = 2s�2
ZZ

Q

d
2
⌘
2
x
⇠|wx|2 + 2s�

ZZ

Q

d
2
⌘xx⇠|wx|2 +

ZZ

Q

dt|wx|2

� Cs�
2

ZZ

Q

⇠|wx|2 � Cs�
2

Z
T

0

Z

!0

⇠|wx|2 � C

✓
s�

ZZ

Q

⇠|wx|2 +
ZZ

Q

|wx|2
◆
.

Hence, using the fact that (s⇠)�1  1/(4s0) and � � �0 and taking s0 and �0 large enough, we obtain:3

Cs�
2

Z
T

0

Z

!0

⇠|wx|2 + ID1 � Cs�
2

ZZ

Q

⇠|wx|2. (3.13)

In order to estimate for ID2, we use (3.1), (3.4), (3.5) and also that s � s0(T + T
2) and � � �0. This gives:4

Cs
3
�
4

Z
T

0

Z

!0

⇠
3|w|2 + ID2 � Cs

3
�
4

ZZ

Q

⇠
3|w|2. (3.14)

Finally, let us estimate IBS . Recalling that w(�1, ·) = 0 in (0, T ), we deduce that:5

IBS = 2s2
Z

T

0
d↵x(↵t + sd↵

2
x
)|w|2

��
x=1

+ 2s

Z
T

0

⇥
d
2
↵x|wx|2

⇤x=1

x=�1
+ 2

Z
T

0
dwtwx

��
x=1

=: IBS1 + IBS2 + IBS3.

(3.15)

Thanks to (3.4), (3.5) and the fact that s � s0(T + T
2) and wt = �s↵tw + e

�s↵
 t, we see that

IBS1 �� 2s3�3
Z

T

0
d
2
⌘
3
x
⇠̂
3|w|2

��
x=1

� Cs
3
�

Z
T

0
⇠̂
3|w|2

��
x=1

,

IBS2 =� 2s�

Z
T

0

h
d
2
⌘x⇠̂|wx|2

ix=1

x=�1
,

IBS3 � 2

Z
T

0
d twxe

�s↵̂
��
x=1

� Cs
3

Z
T

0
⇠̂
3|w|2

��
x=1

� Cs

Z
T

0
⇠̂|wx|2

��
x=1

.

Using again (3.1), that (s⇠)�1  1/(4s0) and the inequality � � �0, taking s0 and �0 large enough and recalling6

the Cauchy-Schwarz inequality, we find from the previous estimate that7

IBS � C
�1

Z
T

0

⇣
s
3
�
3
⇠̂
3|w|2+s�⇠̂|wx|2

⌘��
x=1

+C
�1

s�

Z
T

0
⇠̂|wx|2

��
x=�1

�C

Z
T

0
(s�⇠̂)�1

e
�2s↵̂| t|2

��
x=1

. (3.16)
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From (3.7), (3.13), (3.14) and (3.16) and the facts that (s⇠)�1  1/(4s0) and � � �0, taking s0 and �0 large1

enough, we conclude that2

kPewk2 + kPkw � sd↵xxwk2

+ s
3
�
4

ZZ

Q

⇠
3|w|2+s�

2

ZZ

Q

⇠|wx|2+
Z

T

0

⇣
s
3
�
3
⇠̂
3|w|2+s�⇠̂|wx|2

⌘ ��
x=1

+s�

Z
T

0
⇠̂|wx|2

��
x=�1

 C

✓
ke�s↵

fk22+s
3
�
4

Z
T

0

Z

!0

⇠
3|w|2+s�

2

Z
T

0

Z

!0

⇠|wx|2+
Z

T

0
(s�⇠̂)�1

e
�2s↵̂| t|2

��
x=1

◆
.

(3.17)

Now, using that Pew = wxx + (s↵t + s
2
↵
2
x
)w, we get:3

s
�1

ZZ

Q

⇠
�1|wxx|2 = s

�1

ZZ

Q

⇠
�1|Pew � (s↵t + s

2
↵
2
x
)w|2

 Cs
�1

ZZ

Q

⇠
�1
�
|Pew|2 + s

2
�
2
⇠
4|w|2 + s

4
�
4
⇠
4|w|2

�

 C

✓
s
�1

ZZ

Q

⇠
�1|Pew|2 +

ZZ

Q

s
3
�
4
⇠
3|w|2

◆
.

(3.18)

We can do the same for Pkw � sd↵xxw = wt + 2s↵xwx. Then,4

s
�1

ZZ

Q

⇠
�1|wt|2 = s

�1

ZZ

Q

⇠
�1|(Pkw � sd↵xxw)� 2s↵xwx|2

 Cs
�1

ZZ

Q

⇠
�1
�
|Pkw � sd↵xxw|2 + s

2
�
2
⇠
2|wx|2

�

 C

✓
s
�1

ZZ

Q

⇠
�1|Pkw � sd↵xxw|2 +

ZZ

Q

s�
2
⇠|wx|2

◆
.

(3.19)

From (3.17), (3.18) and (3.19), by introducing a cut-o↵ function to estimate the local gradient integral and5

performing the usual integration by parts, the following holds6

ZZ

Q

s
�1
⇠
�1(|wt|2 + |wxx|2) +

ZZ

Q

s�
2
⇠|wx|2 + s

3
�
4

ZZ

Q

⇠
3|w|2

+ s�

Z
T

0
⇠̂|wx|2

��
x=�1

+

Z
T

0

⇣
s
3
�
3
⇠̂
3|w|2 + s�⇠̂|wx|2

⌘ ��
x=1

 C

 
ke�s↵

fk2
L2(Q) + s

3
�
4

Z
T

0

Z

!

⇠
3|w|2 + s

�1
�
�1

Z
T

0
⇠
�1

e
�2s↵| t|2

��
x=1

!
.

(3.20)

Observe that wx

��
x=�1

= e
�s↵̂

 x

��
x=�1

, since  (�1, ·) = 0 and wx

��
x=1

= e
�s↵̂

 x

��
x=1

+ s�⇠̂⌘xw
��
x=1

. Thus,7

we can come back to  and deduce that8

I(s,�, ) :=

ZZ

Q

e
�2s↵

⇥
(s⇠)�1(| t|2 + | xx|2) + s�

2
⇠| x|2 + s

3
�
4
⇠
3| |2

⇤
+ s

3
�
3

Z
T

0
e
�2s↵̂

⇠̂
3| |2

��
x=1

+ s�

Z
T

0
e
�2s↵̂

⇠̂| x|2
��
x=�1

+ s�

Z
T

0
e
�2s↵̂

⇠̂| x|2
��
x=1

 C

 ZZ

Q

e
�2s↵|f |2 + s

3
�
4

Z
T

0

Z

!

e
�2s↵

⇠
3| |2 + s

�1
�
�1

Z
T

0
⇠̂
�1

e
�2s↵̂| t|2

��
x=1

!
.

(3.21)

To conclude the proof, we have to eliminate the last term in (3.21). Using (3.2)3,5, we find that

 t

��
x=1

= (R(· , t) +Nt(· , t), (· , t))2 + (N(· , t), t(· , t))2 + g.

14



Then, since R 2 L
1(0, T ;L2(�1, 1)) and N 2 W

1,1(0, T ;L2(�1, 1)), performing some immediate estimates,1

we obtain:2

Z
T

0
(s�⇠̂)�1

e
�2s↵̂| t|2

��
x=1

 C

ZZ

Q

(s�⇠̂)�1
e
�2s↵̂(| |2 + | t|2) +

Z
T

0
(s�⇠̂)�1

e
�2s↵̂|g|2. (3.22)

Note that ⇠̂(t)�1
e
�2s↵̂(t)  ⇠(x, t)�1

e
�2s↵(x,t) for all (x, t) 2 Q. Accordingly, we have from (3.22) that3

s
�1
�
�1

Z
T

0
⇠̂
�1

e
�2s↵̂| t|2

��
x=1

 Cs
�1
�
�1

ZZ

Q

⇠
�1

e
�2s↵(| |2 + | t|2) + s

�1
�
�1

Z
T

0
⇠̂
�1

e
�2s↵̂|g|2

 C�
�1
0 s

�1

ZZ

Q

⇠
�1

e
�2s↵| t|2 +

C

256 s40�
5
0

s
3
�
4

ZZ

Q

⇠
3
e
�2s↵| |2

+ s
�1
�
�1

Z
T

0
⇠̂
�1

e
�2s↵̂|g|2.

This can be used together with (3.21) for s0 and �0 large enough. As a result, we get (3.3) and the proof is4

done.5

Note that, in view of (3.2)3 and (3.2)5, we can also include weighted integrals of � and �t in the left hand6

side of (3.3).7

Let us now present a suitable Carleman inequality for the solutions to a properly chosen adjoint system.8

This will imply the null controllability of the linearized system (2.5) (see Proposition 4.1 below).9

The following holds:10

Corollary 3.2. Assume that (p̄, q̄) belongs to [W 1,1(0, T ;H1(�1, 1)) \ H
1,2
0 (Q)] ⇥ W

1,1(0, T ), with q(t) 211

(q⇤,+1) for all t 2 [0, T ]. There exist constants �0 � 1, s0 � 1 and C0 > 0 such that, for any � � �0,12

any s � s0(T + T
2), any 'T 2 H

1(�1, 1) any �T 2 R with13

'T (�1) = 0 and 'T (1) = 2�T +

Z 1

�1
p̄x(x, T )x'T (x) dx (3.23)

and any right hand sides g1 2 L
2(Q) and g2 2 L

2(0, T ), the strong solution to (2.6) satisfies:14

ZZ

Q

⇥
(s⇠)�1(|'t|2 + |'xx|2) + �

2(s⇠)|'x|2 + �
4(s⇠)3|'|2

⇤
e
�2s↵

dx dt

+

Z
T

0

h
|�t|2 + �(s⇠̂)

�
|'x(�1, t)|2 + |'x(1, t)|2

�
+ �

3(s⇠̂)3
�
|'(1, t)|2 + |�|2

�i
e
�2s↵̂

dt

 C0

 ZZ

Q

|g1|2e�2s↵
dx dt+

Z
T

0
|g2|2e�2s↵̂

dt+ s
3
�
4

Z
T

0

Z

!

⇠
3|'|2e�2s↵

dx dt

!
.

(3.24)

The proof is easy. Indeed, let us apply Theorem 3.1 with15

d =
1

q̄
, f = �1

q̄
[g1 + p̄x(1, ·)(x'x � ')] , N(x, t) = xp̄x(x, t), R = 2p̄t and g = g2.

Then, one has16

ZZ

Q

⇥
(s⇠)�1(|'t|2 + |'xx|2) + �

2(s⇠)|'x|2 + �
4(s⇠)3|'|2

⇤
e
�2s↵

dx dt

+

Z
T

0

h
|�t|2 + �(s⇠̂)

�
|'x(�1, t)|2 + |'x(1, t)|2

�
+ �

3(s⇠̂)3
�
|�|2 + |'(1, t)|2

�i
e
�2s↵̂

dt

 C0

 
s
3
�
4

Z
T

0

Z

!

⇠
3|'|2e�2s↵

dx dt+

ZZ

Q

|f |2e�2s↵
dx dt+

Z
T

0
|g|2e�2s↵̂

dt

!
.

15



But it is clear that the lower order terms in f can be absorbed and this yields (3.24).1

2

We will also need a second Carleman inequality for the solution to (2.6) with weights that do not vanish at3

t = 0. More precisely, let the function r = r(t) be given by r(t) = T
2
/4 in [0, T/2] and r(t) = t(T � t) in [T/2, T ]4

and set D1 := (�1, 1)⇥ (0, T/2), D2 := (�1, 1)⇥ (T/2, T ),5

⇣(x, t) :=
e
2�mk⌘k1 � e

�(mk⌘k1+⌘(x))

r(t)
and µ(x, t) :=

e
�(mk⌘k1+⌘(x))

r(t)
8(x, t) 2 Q, (3.25)

where ⌘ is given in (3.1) and m > 1. Let us also introduce the functions

⇣̂(t) := max
x2[�1,1]

⇣(x, t), µ̂(t) := min
x2[�1,1]

µ(x, t), ⇣⇤(t) := min
x2[�1,1]

⇣(x, t), µ
⇤(t) := max

x2[�1,1]
µ(x, t) 8t 2 (0, T )

and

⇢0(t) := e
s⇣

⇤(t)
, ⇢1(t) := e

s⇣̂(t)
, ⇢2(t) := µ

⇤(t)�3/2
e
s⇣

⇤(t)
, ⇢3(t) := e

s⇣̂(t)
µ̂(t)�3/2 and ⇢4(t) := ⇢3(t)

1/2
.

Remark 3.3. Note that es⇣̂ and e
s⇣

⇤
(resp. µ̂ and µ

⇤) blow up exponentially (resp. polynomially) as t ! T
�.⇤6

Remark 3.4. It is not di�cult to deduce the following:7

• Since ⇢�1
4 2 L

1(0, T ), we have that ⇢4⇢
�1
3 = ⇢

�1
4 2 L

1(0, T ).8

• If we take �0 large enough, for instance �0 � (log 2)/[(m�1)k⌘k1] and � � �0, then e
�mk⌘k1 �2e�k⌘k1 +9

e
�⌘(1)

> 0 and, therefore, ⇢4⇢
�1
2 2 L

1(0, T ).10

• Since ⇢4,t := e
s⇣̂/2( s2 µ̂

�3/4
⇣̂t � 3

4 µ̂
�7/4

µ̂t), by taking �0 large enough and � � �0, we also have ⇢4,t⇢
�1
0 211

L
1(0, T ). ⇤12

Corollary 3.5. Let the assumptions in Corollary 3.2 be satisfied. There exist constants �1 � 1, s1 � 1 and13

C1 > 0 such that, for any � � �1, any s � s1(T + T
2), any 'T 2 H

1(�1, 1) any �T 2 R satisfying (3.23) and14

any right hand sides g1 2 L
2(Q) and g2 2 L

2(0, T ), the unique strong solution to (2.6) satisfies:15

Z
T

0

⇥
|�t|2 + µ̂

�
|'x(�1, t)|2 + |'x(1, t)|2

�
+ µ̂

3
�
|�|2 + |'(1, t)|2

�⇤
e
�2s⇣̂

dt

+

ZZ

Q

⇥
µ
�1(|'t|2 + |'xx|2) + µ|'x|2 + µ

3|'|2
⇤
e
�2s⇣

dx dt+ k'(· , 0)k2
H1(�1,1) + |�(0)|2

 C2

 ZZ

Q

|g1|2e�2s⇣⇤
dx dt+

Z
T

0
|g2|2e�2s⇣̂

dt+

Z
T

0

Z

!

(µ⇤)3|'|2e�2s⇣⇤
dx dt

!
.

(3.26)

Proof. It su�ces to start from (3.24) and split the left hand side in two parts, respectively corresponding to the16

restrictions of ' to D1 and D2 and the corresponding restrictions of � to (0, T/2) and (T/2, T ).17

Let us start by proving the following estimate for the solution to (2.6):18

k�k2
H1(0,T/2) + k'k2

L2(0,T/2;H2(�1,1)) + k'tk2L2(D1)

 e
C(1+T )

✓
k(g1, g2)k2L2(0,3T/4;L2(�1,1))⇥L2(0,3T/4)

+
1

T 2
k(', �)k2

L2(T/2,3T/4;L2(�1,1))⇥L2(T/2,3T/4)

◆
.

(3.27)

16



To do that, let us introduce a function  2 C
1([0, T ]) with  ⌘ 1 in [0, T/2],  ⌘ 0 in [3T/4, T ] and |0|  C/T

for some C > 0. Using classical energy estimates for the system satisfied by (',�), we get

k�k2
H1(0,T ) + k'k2

H1,2(Q)  e
C(1+T )

✓
k(g1,g2)k2L2(Q)⇥L2(0,T ) + k(0',0�)k2

L2(Q)⇥L2(0,T )

◆
,

which leads to (3.27).1

Since the weights are bounded from above and from below, using (3.27) we obtain a first estimate in D1:2

Z
T/2

0

⇥
|�t|2 + µ̂

�
|'x(�1, t)|2 + |'x(1, t)|2

�
+ µ̂

3
�
|�|2 + |'(1, t)|2

�⇤
e
�2s⇣̂

dt

ZZ

D1

⇥
µ
�1(|'t|2 + |'xx|2) + µ|'x|2 + µ

3|'|2
⇤
e
�2s⇣

dx dt+ |�(0)|2 + k'(· , 0)k2
H1(�1,1)

 C

"Z 3T/4

0

✓Z 1

�1
|g1|2e�2s⇣

dx+ |g2|2e�2s⇣̂

◆
dt

+

Z 3T/4

T/2

✓Z 1

�1
�
4(sµ)3|'|2e�2s⇣

dx+ �
3(sµ̂)3|�|2e�2s⇣̂

◆
dt

#
,

(3.28)

where C is a positive constant depending on s, � and T .3

On the other hand, since ↵ = ⇣ and ⇠ = µ in D2, thanks to Corollary 3.2 we have:4

ZZ

D2

⇥
(sµ)�1(|'t|2 + |'xx|2) + �

2(sµ)|'x|2 + �
4(sµ)3|'|2

⇤
e
�2s⇣

dx dt

+

Z
T

T/2

⇥
|�t|2 + µ̂

�
|'x(�1, t)|2 + |'x(1, t)|2

�
+ µ̂

3
�
|�|2 + |'(1, t)|2

�⇤
e
�2s⇣̂

dt

 C0

 ZZ

Q

|g1|2e�2s↵ +

Z
T

0
|g2|2e�2s↵̂ + s

3
�
4

Z
T

0

Z

!

⇠
3|'|2e�2s↵

!
.

From the definition of ⇣, µ and ⇣̂, we deduce that the last right hand side can be replaced by5

C(T, s,�)

 ZZ

Q

|g1|2e�2s⇣
dx dt+

Z
T

0
|g2|2e�2s⇣̂

dt+

Z
T

0

Z

!

µ
3|'|2e�2s⇣

dx dt

!
,

and this, in view of (3.28), leads to (3.26).6

4 Exact controllability to the trajectories7

This section is devoted to prove the null controllability of the linear system (2.5) and the local null controllability8

of the nonlinear PDE-ODE system (2.4).9

4.1 Controllability of the linearized problem10

In the sequel, we will take � = �1 and s = s1 (the constants furnished by Corollary 3.5) and we will use the
notation

C
k

⇢
([0, T ];B) := {v : ⇢v 2 C

k([0, T ];B)} and W
r,p

⇢
(0, T ;B) := {v : ⇢v 2 W

k,r(0, T ;B)}.

17



Here, it is assumed that B is a Banach space, ⇢ : [0, T ) 7! R is a positive measurable function, k 2 N, r 2 R�01

and p 2 [1,+1]. Accordingly, we set2

kvkCk
⇢ ([0,T ];B) := k⇢vkCk([0,T ];B) and kvkW r,p

⇢ (0,T ;B) := k⇢vkW r,p(0,T ;B).

In particular, when B = R, we simply write C
k

⇢
([0, T ]) and W

r,p

⇢
(0, T ); when p = 2, we use the notation3

H
r(0, T ;B) := W

r,2(0, T ;B) and H
r(0, T ) := W

r,2(0, T ).4

We will also need the spaces Z(⇢) := H
1,2
⇢

(Q) := {v : ⇢v 2 H
1,2(Q)} and Z0(⇢) := H

1,2
0,⇢(Q) := {v : ⇢v 25

H
1,2
0 (Q)}, endowed with the norm kvkZ(⇢) := k⇢vkH1,2(Q).6

Let us introduce the linear operators7

L1(z, h) := q̄zt � zxx + xp̄x(1, ·)zx + xp̄xzx(1 , ·) + 2p̄th and L2(z, h) := ht + zx(1, ·) (4.1)

and the space E, given by8

E :={(z, h, w) 2 L
2
⇢0
(Q)⇥ L

2
⇢1
(0, T )⇥ L

2
⇢2
(! ⇥ (0, T )) :

L1(z, h)� w1! 2 L
2
⇢3
(Q), L2(z, h) 2 L

2
⇢3
(0, T )

z 2 Z0(⇢4), h 2 H
1
⇢4
(0, T )}.

(4.2)

It is clear that E is a Hilbert space for the norm k · kE , where

k(z, h, w)k2
E
:= k(z, h, w1!)k2L2

⇢0
(Q)⇥L2

⇢1
(0,T )⇥L2

⇢2
(Q)

+ kL1(z, h)� w1!k2L2
⇢3

(Q)

+ kL2(z, h)k2L2
⇢3

(0,T ) + khk2
H1

⇢4
(0,T ) + kzk2

Z(⇢4)
.

The null controllability of the linearized system is guaranteed by the following result:9

Proposition 4.1. Assume that (f1, f2) 2 L
2
⇢3
(Q)⇥ L

2
⇢3
(0, T ) and (z0, h0) 2 H

1
0 (�1, 1)⇥R. Then, there exists10

a solution to (2.5) satisfying (z, h) 2 E.11

Since the weights in the definition of E grow exponentially as t ! T , any triplet (z, h, w) 2 E satis-12

fies z(· , T ) = 0, h(T ) = 0 and w(· , T ) = 0. In particular, thanks to Proposition 4.1, one easily deduces13

that (2.5) is null-controllable.14

Proof. Let us consider the following subspace of H1,2(Q)⇥H
1(0, T ):15

P0 :={(', �)2H
1,2(Q)⇥H

1(0, T ) : '(· ,�1)= 0, '(1, ·)� � �
Z 1

�1
p̄x(x, ·)x'(x, ·) dx = 0 in (0, T )}.

Let A : P0 ⇥ P0 7! R be the bilinear form16

A(('̂, �̂), (', �)) :=

Z
T

0

Z

!

⇢
�2
2 '̂' dx dt+

ZZ

Q

⇢
�2
0 L⇤

1('̂, �̂)L⇤
1(', �) dx dt+

Z
T

0
⇢
�2
1 L⇤

2('̂, �̂)L⇤
2(', �) dt

and let F : P0 7! R be the linear form

F(', �) := q(0)

Z 1

0
z0(x) · '(x, 0) dx+ h0�(0) +

ZZ

Q

f1' dx dt+

Z
T

0
f2� dt,

where

L⇤
1(�, �) := �q̄'t � 'xx � xp̄x(1, ·)'x + p̄x(1, ·)' and L⇤

2(�, �) := �t �
Z 1

�1
2p

t
(x, ·)'(x, ·) dx.

18



Note that the observability inequality (3.26) holds for every (�,) 2 P0. Consequently, A(· , ·) is a scalar1

product in P0 and there exists C > 0 such that, for all (', �) 2 P0, the following estimate holds:2

|F(', �)|  C

⇣
kz0kL2(�1,1) + |h0|+ kf1kL2

⇢3
(Q) + kf2kL2

⇢3
(0,T )

⌘p
A((', �), (', �)).

In the sequel, we will denote by P the completion of P0 for the scalar product A. We will still denote by A3

and F the corresponding continuous extensions. Note that P can be identified with the Hilbert space4

{(', �) 2 L
2
loc

(QT )⇥ L
2
loc

(0, T ) : A((', �), (', �)) < +1,

'|{�1}⇥(0,T ) = 0, '(1, ·)� � �
Z 1

�1
p̄x(x, ·)x'(x, ·) dx = 0 in (0, T ),

(', �) satisfies (3.26)}.

From the Lax-Milgram Theorem, there exists a unique ('̂, �̂) satisfying5

A(('̂, �̂), (', �)) = F(', �) 8(', �) 2 P, ('̂, �̂) 2 P. (4.3)

Let us introduce (ẑ, ĥ, ŵ), with6

(ẑ, ĥ) := (⇢�2
0 L⇤

1('̂, �̂), ⇢
�2
1 L⇤

2('̂, �̂)), ŵ = �⇢�2
2 '̂1!.

From (4.3), we get:7

ZZ

Q

⇢
2
0|ẑ|2 dx dt+

Z
T

0
⇢
2
1|ĥ|2 dt+

Z
T

0

Z

!

⇢
2
2|ŵ|2 dx dt = A(('̂, �̂), ('̂, �̂)) = F('̂, �̂).

Therefore, taking into account the continuity of F , we have:8

ZZ

Q

⇢
2
0|ẑ|2 dx dt+

Z
T

0
⇢
2
1|ĥ|2 dt+

Z
T

0

Z

!

⇢
2
2|ŵ|2 dx dt  C

⇣
kz0k2L2(�1,1) + |h0|2 + kf1k2L2

⇢3
(Q) + kf2k2L2

⇢3
(0,T )

⌘
. (4.4)

Note that, in particular, (ẑ, ĥ, ŵ) 2 L
2(Q)⇥L

2(0, T )⇥L
2(!⇥ (0, T )). Then, from (4.3), we see that (ẑ, ĥ) is9

the unique solution by transposition of (2.5) with w = ŵ, see Proposition 2.9. Thanks to the fact that the z0,10

ŵ, f1 and f2 are su�ciently regular, Proposition 2.7 guarantees that (ẑ, ĥ) is indeed the strong solution to (2.5)11

in H
1,2
0 (Q)⇥H

1(0, T ).12

Let us finally prove that (ẑ, ĥ, ŵ) 2 E.13

Using (2.5) and (4.4), we can easily check that ẑ 2 L
2
⇢0
(Q), ĥ 2 L

2
⇢1
(0, T ), ŵ 2 L

2
⇢2
(! ⇥ (0, T )), L1(ẑ, ĥ)�14

ŵ1! 2 L
2
⇢3
(Q) and L2(ẑ, ĥ) 2 L

2
⇢3
(0, T ).15

It remains to check that ĥ 2 H
1
⇢4
(0, T ) and ẑ 2 Z0(⇢4). With that purpose, we define z̃ = ⇢4ẑ and h̃ = ⇢4ĥ.16

Then, (z̃, h̃) is the solution to the system:17

8
>>>>>>><

>>>>>>>:

L1(z̃, h̃) = (⇢4⇢
�1
3 )⇢3f1 + (⇢4⇢

�1
2 )⇢2w1! + (⇢4,t⇢

�1
0 )⇢0ẑ in Q,

z̃(�1, ·) = 0 in (0, T ),
z̃(1, ·) = 0 in (0, T ),
z̃(· , 0) = ⇢4(0)z0 in (�1, 1),

L2(z̃, h̃) = ⇢4f2 + ⇢4,th in (0, T ),

h̃(0) = ⇢4(0)h0.

(4.5)

Consequently, thanks to Remark 3.4 and Proposition 2.7, we obtain the desired estimates and (z, h, w) 2 E,18

as desired.19
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4.2 Controllability of the nonlinear system1

We now prove the controllability of (2.4) by applying a local inversion theorem.2

More precisely, we are going to use the following result, whose proof can be found for instance in [ATF87,3

Chapter 2, p. 107]:4

Theorem 4.2 (Liusternik-Graves’ Theorem). Let B1 and B2 be two Banach spaces. Let b1,0 2 B1 be given,5

let ⇤ : B1 7! B2 be of class C
1 (meaning that it possesses the Fréchet derivative at each point b1 2 B1 and the6

mapping b1 7! ⇤0(b1) is continuous for the uniform topology of bounded operators) in a neighborhood of b1,0 and7

set b2,0 := ⇤(b1,0). Assume that ⇤0(b1,0) : B1 7! B2 is surjective. Then, there exists � > 0 such that, for every8

b2 2 B2 satisfying kb2 � b2,0kB2  �, there exists at least one solution b1 2 B1 to the equation ⇤(b1) = b2.9

Recalling the notations introduced in (4.1) and (4.2), we shall apply this result with B1 = E, B2 = F1 ⇥ F210

and11

⇤(z, h, w) = (L1(z, h)� w1! + 2hzt + xzx(1, ·)zx, L2(z, h), z(· , 0), h(0)) (4.6)

for every (z, h, w) 2 E. Here, we have introduced the Hilbert spaces F1 := L
2
⇢3
(Q) ⇥ L

2
⇢3
(0, T ) for the right12

hand sides and F2 := H
1
0 (�1, 1)⇥ R for the initial conditions.13

Since ⇤ contains linear and bilinear terms, thanks to the definition of E it is not di�cult to check that ⇤ is
continuous. Indeed, we only have to prove that the L

2
⇢3
(Q)-valued bilinear form

((z1, h1, w2), (z2, h2, w2)) 7! 2h1z2,t + xz1,x(1, ·)z2,x

is bounded. This is true because h1 2 H
1
⇢4
(0, T ) and z1, z2 2 Z0(⇢4) and, in particular, we have ⇢4h1 2 H

1(0, T ),14

⇢4z2,t 2 L
2(Q), z1,x(1, ·) 2 L

2(0, T ) and ⇢4z2 2 C
0([0, T ];H1

0 (�1, 1)).15

Therefore, ⇤ 2 C
1(B1;B2).16

On the other hand, note that ⇤0(0, 0, 0) : B1 7! B2 is given by17

⇤0(0, 0, 0)(z, h, v) = (L1(z, h, w),L2(z, h, w), z(· , 0), h(0)) 8(z, h, v) 2 B1.

In view of the null controllability result for (2.5) given in Proposition 4.1, ⇤0(0, 0, 0) is surjective.18

Consequently, we can apply Theorem 4.2 with these data and the proof of Proposition 2.4 is achieved.19

Indeed, as a consequence of Theorem 4.2 we see that, for any su�ciently small (z0, h0) 2 H
1
0 (�1, 1) ⇥ R,20

there exists (z, h, w) 2 E with ⇤(z, h, w) = (0, 0, z0, h0). In view of (4.6), this means that (z, h, w) is a solution21

to (2.3) with z(· , T ) = 0 and h(T ) = 0.22
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