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Abstract. This paper concerns the null controllability of the two-phase 1D Stefan problem
with distributed controls. This is a free-boundary problem that models solidification or melting
processes. In each phase, a parabolic equation, completed with initial and boundary conditions,
must be satisfied; the phases are separated by a phase change interface, where an additional free-
boundary condition is imposed (the so-called Stefan condition). We assume that two localized sources
of heating/cooling controls act on the system (one in each phase). We prove the following local null
controllability result: the temperatures can be steered to zero and, simultaneously, the interface can
be steered to a prescribed location provided the initial data and the interface position are sufficiently
close to the targets. The ingredients of the proofs are a compactness-uniqueness argument (which
gives appropriate observability estimates adapted to constraints) and a fixed-point formulation and
resolution of the controllability problem (which gives the result for the nonlinear system). We also
prove a negative result corresponding to the case where only one control acts on the system and the
interface does not collapse to the boundary.
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1. Introduction. The two-phase Stefan problem is a mathematical model, i.e.,
a coupled system composed of two PDEs and one ODE, used to describe liquid-solid
phase transition. This physical phenomenon is frequently found in many processes
in science and engineering, for example, continuous casting of steel [2], cryosurgical
treatment of cancer [28], analysis of crystal growth [5], and design of lithium-ion bat-
teries [4]. It is also important to highlight that, besides their use in thermodynamics
processes, similar systems can be used to model other phenomena, such as analysis
and computation of the flux of a fluid on a free surface [32, 21, 29], fluid-solid inter-
action [7, 26, 30], gas flow through a porous medium [1, 9, 31], and tumor growth
[19, 18].

Let us recall the mathematical formulation of the two-phase 1D Stefan problem,
and let us formulate the related control problem considered in this paper.
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CONTROL OF TWO-PHASE STEFAN PROBLEMS 3079

Let L > 0, T > 0, and \ell l, \ell 0, \ell r \in (0, L) be given with \ell l < \ell 0 < \ell r. We also
consider two functions, u0 \in H1

0 (0, \ell 0) with u0 \geq 0 and v0 \in H1
0 (\ell 0, L) with v0 \leq 0,

and two open sets, \omega l \subset \subset (0, \ell l) and \omega r \subset \subset (\ell r, L). At each t, the material domain
is separated into two parts: x \in [0, \ell (t)) (the liquid phase) and x \in (\ell (t), L] (the solid
phase). Here, \ell = \ell (t) is the position of the interface between liquid and solid phases;
it satisfies \ell (0) = \ell 0 and \ell (t) \in (\ell l, \ell r) for all t.

The aim of this paper is to study the controllability properties of the following
two-phase Stefan problem:

(1)

\left\{                             

ut  - dluxx = hl1\omega l
in Ql,

vt  - drvxx = hr1\omega r in Qr,

u(0, t) = 0 in (0, T ),

v(L, t) = 0 in (0, T ),

u(\cdot , 0) = u0 in (0, \ell 0),

v(\cdot , 0) = v0 in (\ell 0, L),

u(\ell (t), t) = v(\ell (t), t) = 0 in (0, T ),

 - \ell \prime (t) = dlux(\ell (t), t) - drvx(\ell (t), t) in (0, T ).

Here and in what follows, dl and dr must be viewed as diffusion coefficients, and we
use the notation \left\{         

Q := (0, L)\times (0, T ),

Ql := \{ (x, t) \in Q : t \in (0, T ), x \in (0, \ell (t))\} ,
Qr := \{ (x, t) \in Q : t \in (0, T ), x \in (\ell (t), L)\} ,
\scrO l = \omega l \times (0, T ), and \scrO r = \omega r \times (0, T ).

The main result in this paper is the following.

Theorem 1. Let \ell T \in (\ell l, \ell r). Then there exists \delta > 0 such that, for any u0 \in 
H1

0 (0, \ell 0) with u0 \geq 0, any v0 \in H1
0 (\ell 0, L) with v0 \leq 0, and any \ell 0 \in (\ell l, \ell r) satisfying

\| u0\| H1
0 (0,\ell 0)

+ \| v0\| H1
0 (\ell 0,L) + | \ell 0  - \ell T | \leq \delta ,

there exist controls (hl, hr) \in L2(\scrO l)\times L2(\scrO r) and associated states (u, v, \ell ) with\Biggl\{ 
\ell \in H1(0, T ) \cap C1((0, T ]), \ell (t) \in (\ell l, \ell r) \forall t \in [0, T ],

u, ux, ut, uxx \in L2(Ql) and v, vx, vt, vxx \in L2(Qr),

such that

(2) \ell (T ) = \ell T , u(\cdot , T ) = 0 in (0, \ell T ), and v(\cdot , T ) = 0 in (\ell T , L).

Remark 1. We will see in section 5.1 that the maximum principle for parabolic
equations implies that null controllability cannot hold if one of the controls (for in-
stance, hr) vanishes and the interface satisfies 0 < \ell (T ) < L. However, the possibility
of getting a null control result with only one control when one of the phases is allowed
to collapse to the boundary, that is, \ell (T ) = L or \ell (T ) = 0, is open.

For completeness, let us mention some previous works on the control of (1) and
similar models.
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3080 ARA\'UJO, FERN\'ANDEZ-CARA, L\'IMACO, AND SOUZA

The analysis of the controllability properties for linear and nonlinear parabolic
PDEs defined in cylindrical domains is a classical problem in control theory, and some
of the main contributions are in the references [8, 10, 16, 20, 25]. On the other hand,
the study of the controllability properties of free-boundary problems for PDEs has not
been much explored, although some important results have been obtained in the past
few years, especially for one-phase Stefan problems and variants; see [6, 13, 14, 12].
In [22], the authors study the controllability problem for the free-boundary viscous
Burgers equation with one moving end point.

Regarding the two-phase Stefan problem, the best results to our knowledge con-
cern stabilization. More precisely, it is proved in [23] that, under some assumptions,
there exist Neumann boundary controls and associated states (u, v, \ell ) defined for
all t > 0 such that

lim
t\rightarrow \infty 

\| u(\cdot , t) - \scrT m\| L2(0,\ell (t)) = lim
t\rightarrow \infty 

\| v(\cdot , t) - \scrT m\| L2(0,\ell (t)) = 0 and lim
t\rightarrow \infty 

\ell (t) = \ell T ,

where \scrT m is a melting/solidification temperature.
A natural question is whether or not it is possible to drive both the temperature

and the interface to prescribed targets at a finite time. In this paper we give a
positive partial answer to this question. Recall that, in [7, 15, 26], a similar problem
was considered for a 1D fluid-structure problem, with the following equations on the
interface:

u(\ell (t), t) = v(\ell (t), t) = \ell \prime (t), vx(\ell (t), t) - ux(\ell (t), t) = m\ell \prime \prime (t) for t \in (0, T ).

In contrast to previous works on free-boundary controllability, in this paper we
deal with situations leading to new difficulties. Let us discuss some of these differences:

\bullet Control of two phases. Obviously, the fact that we model a two-phase tran-
sition process greatly complicates the structure and properties of the state
system and requires an appropriate analysis.

\bullet Control of the interface. The aim is to control not only the temperature on
both sides but also the interface between liquid and solid regions. This will
bring an extra difficulty. The main strategy will rely on linearization, then
reformulation as a constrained observability problem, and then resolution of
a fixed-point equation.

The rest of this paper is organized as follows. In section 2.1, we will reformulate
the free-boundary problem as a nonlinear parabolic system in a cylindrical domain.
In section 3, we will present an improved observability inequality, which leads to the
null controllability for a related linearized system subject to a linear constraint. In
section 4, we will give a proof of Theorem 1. To this end, we will apply a fixed-
point argument. Finally, in section 5, we will present some additional comments and
questions.

2. Preliminaries.

2.1. Reformulation of the free-boundary problem. First, let us find a suit-
able diffeomorphism \Phi that transforms the free-boundary problem for the parabolic
system (1) into an equivalent problem for a nonlinear parabolic system in a cylindrical
domain.

To do this, let us fix a function \ell \in H1(0, T ) \cap C1((0, T ]) such that \ell (t) \in (\ell l, \ell r)
for all t \in [0, T ], and let us take \sigma > 0 sufficiently small such that

\ell l + \sigma < \ell (t) - \sigma and \ell (t) + \sigma < \ell r  - \sigma in [0, T ].
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CONTROL OF TWO-PHASE STEFAN PROBLEMS 3081

Then, for any \ell l + 2\sigma < y < \ell r  - 2\sigma , we build a function m(\cdot , y) : \BbbR \rightarrow \BbbR by linear
interpolation of the points (\ell l - \sigma , \ell l - \sigma ), (\ell l+\sigma , \ell l+\sigma ), (y - \sigma , \ell 0 - \sigma ), (y+\sigma , \ell 0+\sigma ),
(\ell r  - \sigma , \ell r  - \sigma ), and (\ell r + \sigma , \ell r + \sigma ) and then extend the extreme segments toward
infinity. Specifically, we have the following definition for m(\cdot , y):

m(x, y) :=

\left\{                 

x if x \leq \ell l + \sigma ,

\ell l + \sigma +
(\ell l  - \ell 0 + 2\sigma )(x - \ell l  - \sigma )

\ell l + 2\sigma  - y
if \ell l + \sigma < x < y  - \sigma ,

x - y + \ell 0 if y  - \sigma < x < y + \sigma ,

\ell 0 + \sigma +
(\ell r  - \ell 0  - 2\sigma )(x - y  - \sigma )

\ell r  - y  - 2\sigma 
if y + \sigma < x < \ell r  - \sigma ,

x if x \geq \ell r  - \sigma .

Let us now consider a function \eta \in C\infty (\BbbR ) such that

supp \eta \subset ( - \sigma , \sigma )
\int \sigma 

 - \sigma 

\eta (x) d x = 1 and \eta (x) = \eta ( - x) \forall x \in \BbbR .

Then, we can define a smooth function G : \BbbR \times (\ell l + 2\sigma , \ell r  - 2\sigma ) \mapsto \rightarrow \BbbR as follows:

G(x, y) := [\eta \ast m(\cdot , y)](x).

A simple computation leads to the equalities

(3) G(x, \ell 0) = x \forall x \in \BbbR , G(y, y) = \ell 0, \partial xG(y, y) = 1,

and
\nabla G(x, y) = ([\eta \prime \ast m(\cdot , y)](x), [\eta \ast \partial ym(\cdot , y)](x)) ,

where

\partial ym(x, y) :=

\left\{                   

0 if x \leq \ell l + \sigma ,
(\ell l  - \ell 0 + 2\sigma )(x - \ell l  - \sigma )

(\ell l + 2\sigma  - y)2
if \ell l + \sigma < x < y  - \sigma ,

 - 1 if y  - \sigma < x < y + \sigma ,
(\ell r  - \ell 0  - 2\sigma )(x - \ell r + \sigma )

(\ell r  - y  - 2\sigma )2
if y + \sigma < x < \ell r  - \sigma ,

0 if x \geq \ell r  - \sigma .

Let us introduce the mapping

\Phi : Q \mapsto \rightarrow Q, with \Phi (x, t) := (G(x, \ell (t)), t) .

It can be seen that \Phi is a diffeomorphism in Q; it coincides with the identity in the
regions (0, \ell l + \sigma )\times (0, T ) and (\ell r  - \sigma , L)\times (0, T ), and, moreover, \Phi (\ell (t), t) = (\ell 0, t)
for all t \in [0, T ]. Let us introduce the sets Q0,l := (0, \ell 0) \times (0, T ) and Q0,r :=
(\ell 0, L)\times (0, T ), and let us define p : Q0,l \rightarrow \BbbR and q : Q0,r \rightarrow \BbbR , with

p(\xi , t) := u(x, t) = u(\Phi  - 1(\xi , t)) and q(\xi , t) := v(x, t) = v(\Phi  - 1(\xi , t)),

where (\xi , t) := \Phi (x, t). Then, we have that the pair (p, q) satisfies

(4)

\left\{                   

pt  - d\ell lp\xi \xi + b\ell lp\xi = hl1\omega l
in Q0,l,

qt  - d\ell rq\xi \xi + b\ell rq\xi = hr1\omega r
in Q0,r,

p(0, \cdot ) = q(L, \cdot ) = 0 in (0, T ),
p(\cdot , 0) = p0 in (0, \ell 0),
q(\cdot , 0) = q0 in (\ell 0, L),
p(\ell 0, \cdot ) = q(\ell 0, \cdot ) = 0 in (0, T ),
dlp\xi (\ell 0, t) - drq\xi (\ell 0, t) =  - \ell \prime (t) in (0, T ),
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where p0 := u0 \circ [G(\cdot , \ell 0)] - 1 = u0 \in H1
0 (0, \ell 0), q0 := v0 \circ [G(\cdot , \ell 0)] - 1 = v0 \in H1

0 (\ell 0, L),
and

(5)

d\ell l (\cdot , t) := dl
\bigl( 
Gx

\bigl( 
[G(\cdot , \ell (t))] - 1, \ell (t)

\bigr) \bigr) 2
,

d\ell r(\cdot , t) := dr
\bigl( 
Gx

\bigl( 
[G(\cdot , \ell (t))] - 1, \ell (t)

\bigr) \bigr) 2
,

b\ell l (\cdot , t) := Gy

\bigl( 
[G(\cdot , \ell (t))] - 1, \ell (t)

\bigr) 
\ell \prime (t) + dlGxx

\bigl( 
[G(\cdot , \ell (t))] - 1, \ell (t)

\bigr) 
,

b\ell r(\cdot , t) := Gy

\bigl( 
[G(\cdot , \ell (t))] - 1, \ell (t)

\bigr) 
\ell \prime (t) + drGxx

\bigl( 
[G(\cdot , \ell (t))] - 1, \ell (t)

\bigr) 
.

Remark 2. Since \ell \in H1(0, T ), it is not difficult to deduce that (d\ell l , d
\ell 
r)\in L\infty (Q0,l)\times 

L\infty (Q0,r) and (b\ell l , b
\ell 
r) \in L2(0, T ;L\infty (0, \ell 0))\times L2(0, T ;L\infty (\ell 0, L)). Moreover, there ex-

ist constantsK1,K2 > 0, independent of \ell and T , such that \| (b\ell l , b\ell r)\| L2(L\infty )\times L2(L\infty ) \leq 
K1\| \ell \prime \| L2(0,T ) +K2T .

This way, we have that Theorem 1 is equivalent to proving a local controllability
result for (4). Actually, we will prove the following.

Theorem 2. Let \ell T \in (\ell l, \ell r). Then there exists \delta > 0 such that, for any p0 \in 
H1

0 (0, \ell 0) with p0 \geq 0, any q0 \in H1
0 (\ell 0, L) with q0 \leq 0, and any \ell 0 \in (\ell l, \ell r) satisfying

\| p0\| H1
0 (0,\ell 0)

+ \| q0\| H1
0 (\ell 0,L) + | \ell 0  - \ell T | < \delta ,

there exist controls (hl, hr) \in L2(\scrO l)\times L2(\scrO r) and associated solutions (p, q, \ell ) to (4)
with \Biggl\{ 

\ell \in H1(0, T ) \cap C1((0, T ]), \ell (t) \in (\ell l, \ell r) \forall t \in [0, T ],

p, p\xi , pt, p\xi \xi \in L2(Q0,l) and q, q\xi , qt, q\xi \xi \in L2(Q0,r),

such that

\ell (T ) = \ell T , p(\cdot , T ) = 0 in (0, \ell 0), and q(\cdot , T ) = 0 in (\ell 0, L).

2.2. Well-posedness of the two-phase free-boundary problem. The aim
of this section is to prove the local existence and uniqueness for the two-phase free-
boundary problem (1). More precisely, we have the following result.

Proposition 1. Let L, T > 0 and \ell l < \ell 0 < \ell r be given. Then, the system
(1) is locally well-posed. In other words, for any (hl, hr) \in L2(\scrO l) \times L2(\scrO r) and

(u0, v0) \in H1
0 (0, \ell 0) \times H1

0 (\ell 0, L), there exist a time 0 < \widehat T \leq T and a unique strong

solution to (1) in the time interval (0, \widehat T ) such that\Biggl\{ 
\ell \in H1(0, \widehat T ), \ell (0) = \ell 0, \ell (t) \in (\ell l, \ell r) \forall t \in [0, \widehat T ],
u, ux, ut, uxx \in L2( \widehat Ql) and v, vx, vt, vxx \in L2( \widehat Qr),

where \widehat Ql := \{ (x, t) \in Q : t \in (0, \widehat T ), x \in (0, \ell (t))\} and \widehat Qr := \{ (x, t) \in Q : t \in 
(0, \widehat T ), x \in (\ell (t), L)\} .

Thanks to the diffeomorphism \Phi : Q \mapsto \rightarrow Q, introduced in section 2.1, Proposition 1
is equivalent to the local existence and uniqueness of (4). More precisely, Proposition 1
is an immediate consequence of the following result.

Proposition 2. Let the conditions of Proposition 1 be satisfied. Then, the non-
linear system (4) is locally well-posed; i.e., if (hl, hr) \in L2(\scrO l)\times L2(\scrO r) and (p0, q0) \in 
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H1
0 (0, \ell 0) \times H1

0 (\ell 0, L) are fixed, there exist \widehat T \in (0, T ) and a unique strong solution

in (0, \widehat T ) such that\Biggl\{ 
\ell \in H1(0, \widehat T ), \ell (0) = \ell 0, \ell (t) \in (\ell l, \ell r) \forall t \in [0, \widehat T ],
p, p\xi , pt, p\xi \xi \in L2( \widehat Q0,l) and q, q\xi , qt, q\xi \xi \in L2( \widehat Q0,r),

where \widehat Q0,l := (0, \ell 0)\times (0, \widehat T ) and \widehat Q0,r := (\ell 0, L)\times (0, \widehat T ).
Proof. First, let us introduce the spaces

XT
l :=L2(0,T ;H2(0,\ell 0))\cap H1(0,T ;L2(0,\ell 0)) and

XT
r :=L2(0,T ;H2(\ell 0,L))\cap H1(0,T ;L2(\ell 0,L)).

For each fixed \ell \in H1(0, T ), we can use the Faedo--Galerkin method to get a
unique strong solution (p\ell , q\ell ) \in XT

l \times XT
r to (4)1--(4)6. Moreover, thanks to Re-

mark 2, we find a positive constant C1, independent of p0, q0, hl, hr, \ell , and T , such
that
(6)

\| (p, q)\| 2XT
l \times XT

r
\leq C1

\Bigl( 
1 +K +

\surd 
T
\Bigr) \Bigl[ 

1 +
\Bigl( 
K +

\surd 
T
\Bigr) 
K + T

\Bigr] 
eC1(1+

\surd 
T)(K+

\surd 
T)\Pi 2,

where K := \| \ell \prime \| L2(0,T ) and \Pi := \| (p0, q0)\| H1
0\times H1

0
+ \| (hl, hr)\| L2\times L2 .

Now, let us assume that \ell l < \widehat \ell l < \ell 0 < \widehat \ell r < \ell r and R > 0, and let us introduce
the set

\scrA R,T := \{ \ell \in H1(0, T ) : \widehat \ell l \leq \ell (t) \leq \widehat \ell r \forall t \in [0, T ], \ell (0) = \ell 0, \| \ell \prime \| L2(0,T ) \leq R\} 

and the mapping \Lambda : \scrA R,T \mapsto \rightarrow H1(0, T ), with

\Lambda (\ell ) = \scrL \ell and \scrL \ell (t) := \ell 0  - 
\int t

0

\bigl[ 
dlp

\ell 
\xi (\ell 0, \tau ) - drq

\ell 
\xi (\ell 0, \tau )

\bigr] 
d\tau ,

where (p\ell , q\ell ) \in XT
l \times XT

r is the unique strong solution to (4)1--(4)6. It is not difficult
to see that \scrA R,T is a nonempty, closed, and convex subset of H1(0, T ).

Let us check that, for some 0 < \widehat T \leq T , \Lambda satisfies the following assumptions of
Banach's fixed-point theorem in \scrA R,\widehat T :

\bullet There exists \widetilde T \in (0, T ] such that

(7) \Lambda (\scrA R,\tau ) \subset \scrA R,\tau \forall \tau \in (0, \widetilde T ].
Indeed, \scrL \ell (0) = \ell 0. Let us introduce
(8)

C(T,R) := C1

\Bigl( 
1 +R+

\surd 
T
\Bigr) \Bigl[ 

1 +
\Bigl( 
R+

\surd 
T
\Bigr) 
R+ T

\Bigr] 
eC1(1+

\surd 
T)(R+

\surd 
T).

Then, using the H\"older inequality, (6), and (8), we see that, for some C2 > 0
independent of T , one has

| \scrL \ell (t) - \ell 0| \leq 
\int t

0

| dlp\ell \xi (\ell 0, \tau ) - drq
\ell 
\xi (\ell 0, \tau )| d \tau 

\leq C2
\widetilde T 1/2\| (p\ell \xi (\ell 0, \cdot ), q\ell \xi (\ell 0, \cdot ))\| L2(0,\widetilde T )\times L2(0,\widetilde T )

\leq C2
\widetilde T 1/2\| (p\ell , q\ell )\| XT

l \times XT
r

\leq C2
\widetilde T 1/2C(T,R)1/2 \Pi 
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for all t \in [0, \widetilde T ] and any \widetilde T \in (0, T ].
On the other hand, since the trace operator \Gamma : XT

l \times XT
r \mapsto \rightarrow H1/4(0, T ) \times 

H1/4(0, T ) defined by \Gamma (p, q) := (p\ell \xi (\ell 0, \cdot ), q\ell \xi (\ell 0, \cdot )) is continuous, thanks to

the continuity of the embedding H1/4(0, T ) \lhook \rightarrow L4(0, T ), we find C3 > 0
(independent of T ) such that

\| \scrL \prime 
\ell \| L2(0,\widetilde T ) \leq C3

\widetilde T 1/4C(T,R)1/2 \Pi .

It follows easily from the inequalities above that, if \widetilde T is sufficiently small, (7)
holds.

\bullet There exists \widehat T \in (0, T ] such that \Lambda : \scrA R,\widehat T \mapsto \rightarrow \scrA R,\widehat T is a contraction.

It can be proved that there exists D1 = D1(\tau ) such that D1(\tau ) \rightarrow 0 as \tau \rightarrow 0
and
(9)
\| \scrL \ell 1 - \scrL \ell 2\| H1(0,\tau ) \leq D1(\tau )

\bigl( 
\| p\ell 1  - p\ell 2\| X\tau 

l
+ \| q\ell 1  - q\ell 2\| X\tau 

r

\bigr) 
\forall \ell 1, \ell 2 \in \scrA R,\tau .

Furthermore, using standard energy estimates, we get a positive D2 = D2(\tau ),
similar to (8), such that

(10) \| p\ell 1  - p\ell 2\| X\tau 
l
+ \| q\ell 1  - q\ell 2\| X\tau 

r
\leq D2(\tau )\| (F \ell 

l , F
\ell 
r )\| L2( \widetilde Q0,l)\times L2( \widetilde Q0,r)

,

where
(11)
F \ell 
l := (d\ell 1l  - d\ell 2l )p\ell 2\xi \xi  - (b\ell 1l  - b\ell 2l )p\ell 2\xi and F \ell 

r := (d\ell 1r  - d\ell 2r )q\ell 2\xi \xi  - (b\ell 1r  - b\ell 2r )q\ell 2\xi 

and \widetilde Q0,l := (0, \ell 0)\times (0, \tau ) and \widetilde Q0,r := (\ell 0, L)\times (0, \tau ).
Then, using the fact that G and its inverse G - 1 (defined in section 2.1) are
smooth functions, we see that there exists D3 = D3(\tau ) (D3(s) is bounded for
0 \leq s \leq T ) such that

(12) \| (F \ell 
l , F

\ell 
r )\| L2( \widetilde Q0,l)\times L2( \widetilde Q0,r)

\leq D3(\tau )\| (p\ell 2 , q\ell 2)\| X\tau 
l \times X\tau 

r
\| \ell 1  - \ell 2\| H1(0,\tau ).

Combining (9)--(12), we deduce that

(13) \| \Lambda (\ell 1) - \Lambda (\ell 2)\| H1(0,\tau ) \leq E(\tau )\| \ell 1  - \ell 2\| H1(0,\tau ),

where E(\tau ) := D1(\tau )D2(\tau )D3(\tau )\| (p\ell 2 , q\ell 2)\| X\tau 
l \times X\tau 

r
. Since (p\ell 2 , q\ell 2) is uni-

formly bounded in X\tau 
l \times X\tau 

r for all 0 < \tau \leq \widetilde T provided \ell 2 \in \scrA R,\tau , we find
that E(s) \rightarrow 0 as s\rightarrow 0.

As a consequence, there exists \widehat T \in (0, \widetilde T ] such that \Lambda : \scrA R,\widehat T \mapsto \rightarrow \scrA R,\widehat T is a
contraction.

Therefore, \Lambda possesses exactly one fixed-point in \scrA R,\widehat T . This ends the proof.

3. Approximate controllability of a linearized system. In this section, we
are going to complete a first step in the proof of Theorem 2. More precisely, we are
going to prove a controllability result for a suitable (natural) linearization of (4).

To do this, let us fix \ell \in C1([0, T ]) with \ell (0) = \ell 0 and \ell ([0, T ]) \subset (\ell l, \ell r), and let
us consider the system

(14)

\left\{           
M \ell 

l (p) = hl1\omega l
in Q0,l,

M \ell 
r (q) = hr1\omega r in Q0,r,

p(0, \cdot ) = p(\ell 0, \cdot ) = q(\ell 0, \cdot ) = q(L, \cdot ) = 0 in (0, T ),
p(\cdot , 0) = p0 in (0, \ell 0),
q(\cdot , 0) = q0 in (\ell 0, L),
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CONTROL OF TWO-PHASE STEFAN PROBLEMS 3085

where the operators M \ell 
l and M \ell 

r are, respectively, defined by

M \ell 
l (p) := pt  - d\ell lp\xi \xi + b\ell lp\xi and M \ell 

r (q) := qt  - d\ell rq\xi \xi + b\ell rq\xi .

Also, let us introduce the function \scrL : [0, T ] \mapsto \rightarrow \BbbR given by

\scrL (t) := \ell 0  - 
\int t

0

[dlp\xi (\ell 0, \tau ) - drq\xi (\ell 0, \tau )] d\tau .

Remark 3. Using the facts that G and G - 1 are smooth and \ell \in C1([0, T ]), we
can prove that d\ell l and b

\ell 
l belong, respectively, to C

1(Q0,l) and C
0(Q0,l). Furthermore,

the second spatial derivative of d\ell l and the first spatial derivative of b\ell l are functions
in C0(Q0,l). The same can be obtained for the coefficients d\ell r and b\ell r.

The main goal of this section is to obtain a (robust) approximate controllability
result for (14) subject to the linear constraint on the states

(15) \scrL (T ) = \ell T .

In other words, we want to find controls (hl, hr) \in L2(\scrO l) \times L2(\scrO r) such that the
associated solutions to (14) satisfy (15).

Let us first reformulate (15). Thus, consider the auxiliary adjoint system

(16)

\left\{               

(M \ell 
l )

\ast (\psi ) = 0 in Q0,l,
(M \ell 

r )
\ast (\zeta ) = 0 in Q0,r,

\psi (0, \cdot ) = 0, \psi (\ell 0, \cdot ) = 1 in (0, T ),
\zeta (\ell 0, \cdot ) = 1, \zeta (L, \cdot ) = 0 in (0, T ),
\psi (\cdot , T ) = 0 in (0, \ell 0),
\zeta (\cdot , T ) = 0 in (\ell 0, L),

where the operators (M \ell 
l )

\ast and (M \ell 
r )

\ast are, respectively, defined by

(M \ell 
l )

\ast (\psi ) :=  - \psi t  - (d\ell l\psi )\xi \xi  - (b\ell l\psi )\xi and (M \ell 
r )

\ast (\zeta ) :=  - \zeta t  - (d\ell r\zeta )\xi \xi  - (b\ell r\zeta )\xi .

It is not difficult to check that (16) possesses a unique weak solution (\psi \ell , \zeta \ell ), with

\psi \ell \in L2(0, T ;H1(0, \ell 0)) \cap H1(0, T ;H - 1(0, \ell 0)),

\zeta \ell \in L2(0, T ;H1(\ell 0, L)) \cap H1(0, T ;H - 1(\ell 0, L)).

A crucial property of (\psi \ell , \zeta \ell ) is the following.

Proposition 3. Given R > 0, let us consider the set \scrB R := \{ \ell \in C1([0, T ]);
\| \ell \prime \| C0([0,T ]) \leq R\} . Then, there exists a positive constant C0 depending only on \ell 0, \ell l,
\ell r, \omega l, \omega r, T, and R such that, for any \ell \in \scrB R, one has

\| \psi \ell \| L2(\scrO l) + \| \zeta \ell \| L2(\scrO r) \geq C0.

Proof. We argue by contradiction. Thus, if the assertion were false, then there
would exist \ell 1, \ell 2, . . . and associated pairs (\psi 1, \zeta 1), (\psi 2, \zeta 2), . . . (weak solutions to (16)),
such that

(17) \| \ell \prime n\| \infty \leq R and \| \psi n\| L2(\scrO l) + \| \zeta n\| L2(\scrO r) <
1

n
\forall n \geq 1.
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Due to the smoothing effect of parabolic operators and the facts that the (d\ell nl , b
\ell n
l )

are uniformly bounded in C1(Q0,l)\times C0(Q0,l) and the second spatial derivative of d\ell l
and the first spatial derivative of b\ell l are uniformly bounded in C0(Q0,l), there exists
\sigma > 0 such that

\| \psi n\| L2(0,T - \sigma ;H2(0,\ell 0)) + \| \psi n
t \| L2(0,T - \sigma ;L2(0,\ell 0)) \leq C \forall n \geq 1,

with C > 0 depending only on \ell 0, \ell l, \ell r, T, and R. Consequently, after extraction of
a subsequence, we would have\left\{   \ell n \rightarrow \ell strongly in C0([0, T  - \sigma ]),

\ell n \rightarrow \ell weakly in H1(0, T  - \sigma ),
\psi n \rightarrow \psi weakly in L2(0, T  - \sigma ;H2(0, \ell 0)) \cap H1(0, T  - \sigma ;L2(0, \ell 0)),

and we would be able to pass to the limit in the equation and in the boundary
condition satisfied by \psi n to deduce that

(18)

\biggl\{ 
(M \ell 

l )
\ast (\psi ) = 0 in (0, \ell 0)\times (0, T  - \sigma ),

\psi (0, \cdot ) = 0, \psi (\ell 0, \cdot ) = 1 in (0, T  - \sigma ).

But we would also have, by (17), that \psi \equiv 0 in \omega l \times (0, T  - \sigma ), which is impossible in
view of the unique continuation property and (18)2. This ends the proof.

Let us multiply (14)1 by \psi \ell , and let us integrate in Q0,l to obtain\int \int 
\scrO l

hl\psi \ell d\xi dt =  - 
\int \ell 0

0

p0(\xi )\psi \ell (\xi , 0) d\xi  - 
\int T

0

dlp\xi (\ell 0, \tau ) d\tau .(19)

Analogously, multiplying (14)2 by \zeta \ell and integrating in Q0,r we get\int \int 
\scrO r

hr\zeta \ell d\xi dt =  - 
\int L

\ell 0

q0(\xi )\zeta \ell (\xi , 0) d\xi +

\int T

0

drq\xi (\ell 0, \tau ) d\tau .(20)

It follows from (19)--(20) that a pair of controls (hl, hr) \in L2(\scrO l) \times L2(\scrO r) are such
that \scrL (T ) = \ell T if and only if

\int \int 
\scrO l

hl\psi \ell d\xi dt+

\int \int 
\scrO r

hr\zeta \ell d\xi dt = \ell T  - \ell 0  - 
\int \ell 0

0

p0(\xi )\psi \ell (\xi , 0) d\xi  - 
\int L

\ell 0

q0(\xi )\zeta \ell (\xi , 0) d\xi .

(21)

Accordingly, we see that the role of the auxiliary adjoint problem (16) is to allow a
reformulation of the approximate controllability problem for (14) subject to (15) (a
constraint on the state) as a control-constrained approximate controllability problem
for (14).

In section 3.2, we will establish the approximate controllability of (14) subject to
the linear constraint (21). Before this, we will need an adequate (improved) observ-
ability inequality.

3.1. An improved observability inequality. To do this, let us first con-
sider open sets \omega 0,l \subset \subset \omega l, \omega 0,r \subset \subset \omega l, and let us introduce the weight functions
\eta 0,l \in C2([0, \ell 0]) and \eta 0,r \in C2([\ell 0, L]) satisfying\biggl\{ 

\eta 0,l > 0 in (0, \ell 0), \eta 0,l(0) = \eta 0,l(\ell 0) = 0, and | \eta \prime 0,l| > 0 in [0, \ell 0]\setminus \omega 0,l,

\eta 0,r > 0 in (\ell 0, L), \eta 0,r(\ell 0) = \eta 0,r(L) = 0, and | \eta \prime 0,r| > 0 in [\ell 0, L]\setminus \omega 0,r.
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Also, for any \lambda > 0, let us set\left\{           
\mu l(\xi , t) :=

e\lambda \eta 0,l(\xi )

t(T  - t)
, \alpha l(\xi , t) :=

e2\lambda \| \eta 0,l\| \infty  - e\lambda \eta 0,l(\xi )

t(T  - t)
,

\mu r(\xi , t) :=
e\lambda \eta 0,r(\xi )

t(T  - t)
, \alpha r(\xi , t) :=

e2\lambda \| \eta 0,r\| \infty  - e\lambda \eta 0,r(\xi )

t(T  - t)
.

Then, by using the regularity of the coefficients of the adjoint operators (M \ell 
l )

\ast and
(M \ell 

r )
\ast (see Remark 3) and following the ideas in [11, 20], we get the following global

Carleman estimates.

Proposition 4. Let R > 0, and assume that \ell \in C1([0, T ]) satisfies \ell (0) = \ell 0,
\ell ([0, T ]) \subset (\ell l, \ell r), and \| \ell \prime \| C0([0,T ]) \leq R. Then, there exist positive constants \lambda 0, s0,
and C (depending on \ell l, \ell r, R, \omega l, \omega r, and T ) such that, for any s \geq s0 and \lambda \geq \lambda 0,
we have\int \int 

Q0,l

e - 2s\alpha l
\bigl[ 
(s\mu l)

 - 1
\bigl( 
| \varphi t| 2 + | \varphi \xi \xi | 2

\bigr) 
+ \lambda 2(s\mu l)| \varphi \xi | 2 + \lambda 4(s\mu l)

3| \varphi | 2
\bigr] 
d\xi dt(22)

\leq C

\Biggl[ \int \int 
Q0,l

e - 2s\alpha l
\bigm| \bigm| (M \ell 

l )
\ast (\varphi )

\bigm| \bigm| 2 d\xi dt+ \int \int 
\scrO l

e - 2s\alpha l\lambda 4(s\mu l)
3| \varphi | 2 d\xi dt

\Biggr] 
and \int \int 

Q0,r

e - 2s\alpha r
\bigl[ 
(s\mu r)

 - 1
\bigl( 
| \phi t| 2 + | \phi \xi \xi | 2

\bigr) 
+ \lambda 2(s\mu r)| \phi \xi | 2 + \lambda 4(s\mu r)

3| \phi | 2
\bigr] 
d\xi dt(23)

\leq C

\Biggl[ \int \int 
Q0,r

e - 2s\alpha r | (M \ell 
r )

\ast (\phi )| 2 d\xi dt+
\int \int 

\scrO r

e - 2s\alpha r\lambda 4(s\mu r)
3| \phi | 2 d\xi dt

\Biggr] 
for any pair (\varphi , \phi ) in the Bochner--Sobolev space

[L2(0, T ;H1
0 (0, \ell 0))\cap H1(0, T ;H - 1(0, \ell 0))]\times [L2(0, T ;H1

0 (\ell 0, L))\cap H1(0, T ;H - 1(\ell 0, L))]

such that
\bigl( 
(M \ell 

l )
\ast (\varphi ), (M \ell 

r )
\ast (\phi )

\bigr) 
belongs to L2(Q0,l)\times L2(Q0,r).

A straightforward argument, based on estimates (22)--(23), leads to the following
observability inequality.

Proposition 5. Let R > 0, and assume that \ell \in C1([0, T ]) satisfies \ell (0) = \ell 0,
\ell ([0, T ]) \subset (\ell l, \ell r), and \| \ell \prime \| C0([0,T ]) \leq R. There exist positive constants \lambda 0, s0, and C,
depending on \ell l, \ell r, R, \omega l, \omega r, and T , such that, for any s \geq s0 and any \lambda \geq \lambda 0, we
have

\| \varphi (\cdot , 0)\| L2(0,\ell 0) \leq C\| \varphi \| L2(\scrO l) and \| \phi (\cdot , 0)\| L2(\ell 0,L) \leq C\| \phi \| L2(\scrO r)(24)

for any pair (\varphi , \phi ) in the Bochner--Sobolev space

[L2(0, T ;H1
0 (0, \ell 0))\cap H1(0, T ;H - 1(0, \ell 0))]\times [L2(0, T ;H1

0 (\ell 0, L))\cap H1(0, T ;H - 1(\ell 0, L))]

such that
\bigl( 
(M \ell 

l )
\ast (\varphi ), (M \ell 

r )
\ast (\phi )

\bigr) 
= (0, 0).

In order to present an improved observability inequality, let us introduce the linear
projectors \BbbP \ell 

l : L
2(Q0,l) \mapsto \rightarrow L2(Q0,l) and \BbbP \ell 

r : L2(Q0,r) \mapsto \rightarrow L2(Q0,r), respectively, given
by

\BbbP \ell 
l\varphi := \beta \ell 

l (\varphi )\psi \ell and \BbbP \ell 
r\phi := \beta \ell 

r(\phi )\zeta \ell ,
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where we have set

\beta \ell 
l (\varphi ) :=

\int \int 
\scrO l

\psi \ell \varphi d\xi dt\int \int 
\scrO l

| \psi \ell | 2 d\xi dt
and \beta \ell 

r(\phi ) :=

\int \int 
\scrO r

\zeta \ell \phi d\xi dt\int \int 
\scrO r

| \zeta \ell | 2 d\xi dt
,

and (\psi \ell , \zeta \ell ) is the unique weak solution to (16).

Remark 4. Note that the ranges of \BbbP \ell 
l and \BbbP \ell 

r are 1D vector spaces. Therefore,
these operators are compact.

For any (\varphi T , \phi T ) \in L2(0, \ell 0)\times L2(\ell 0, L), there exists a unique pair (\varphi , \phi ) satisfying

\varphi \in L2(0, T ;H1
0 (0, \ell 0))\cap H1(0, T ;H - 1(0, \ell 0)),

\phi \in L2(0, T ;H1
0 (\ell 0, L))\cap H1(0, T ;H - 1(\ell 0, L))

(25)

that solves in the weak sense the linear system

(26)

\left\{               

(M \ell 
l )

\ast (\varphi ) = 0 in Q0,l,
(M \ell 

r )
\ast (\phi ) = 0 in Q0,r,

\varphi (0, \cdot ) = \varphi (\ell 0, \cdot ) = 0 in (0, T ),
\phi (\ell 0, \cdot ) = \phi (L, \cdot ) = 0 in (0, T ),
\varphi (\cdot , T ) = \varphi T in (0, \ell 0),
\phi (\cdot , T ) = \phi T in (\ell 0, L).

Accordingly, we can introduce the following functional in L2(0, \ell 0)\times L2(\ell 0, L):

I(\varphi T , \phi T ) :=

\int \int 
\scrO l

| \varphi | 2 d\xi dt+
\int \ell 0

0

| \varphi (\xi , 0)| 2 d\xi + | \beta \ell 
l (\varphi )| 2

+

\int \int 
\scrO r

| \phi | 2 d\xi dt+
\int L

\ell 0

| \phi (\xi , 0)| 2 d\xi + | \beta \ell 
r(\phi )| 2,

where (\varphi , \phi ) satisfies (25)--(26).
We can prove the following result.

Proposition 6. Let R > 0, and let us assume that \ell \in C1([0, T ]) satisfies \ell (0) =
\ell 0, \ell ([0, T ]) \subset (\ell l, \ell r), and \| \ell \prime \| C0([0,T ]) \leq R. Then, there exists a positive constant C,
depending on \ell 0, \ell l, \ell r, R, \omega l, \omega r, and T , such that, for any (\varphi T , \phi T ) \in L2(0, \ell 0) \times 
L2(\ell 0, L), the following holds:

(27) I(\varphi T , \phi T ) \leq C

\biggl[ \int \int 
\scrO l

| \varphi  - \BbbP \ell 
l\varphi | 2 d\xi dt+

\int \int 
\scrO r

| \phi  - \BbbP \ell 
r\phi | 2 d\xi dt

\biggr] 
,

where (\varphi , \phi ) is the solution to (26).

Proof. The proof will be by contradiction. It is inspired by the results in [27].
Let us prove that there exists a constant C1 > 0 (depending on \ell 0, \ell l, \ell r, R, \omega l, \omega r,

and T ) such that, for any pair of functions (\varphi T , \phi T ) \in L2(0, \ell 0)\times L2(\ell 0, L), one has

(28)

\int \int 
\scrO l

| \varphi | 2 d\xi dt+
\int \ell 0

0

| \varphi (\xi , 0)| 2 d\xi +
\int \int 

\scrO r

| \phi | 2 d\xi dt+
\int L

\ell 0

| \phi (\xi , 0)| 2 d\xi 

\leq C1

\biggl[ \int \int 
\scrO l

| \varphi  - \BbbP \ell 
l\varphi | 2 d\xi dt+

\int \int 
\scrO r

| \phi  - \BbbP \ell 
r\phi | 2 d\xi dt

\biggr] 
.

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 1

50
.2

14
.1

82
.2

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROL OF TWO-PHASE STEFAN PROBLEMS 3089

If (28) does not hold, there must exist (\varphi T,1, \phi T,1), (\varphi T,2, \phi T,2), . . . in L2(0, \ell 0) \times 
L2(\ell 0, L) such that
(29)\left\{         
\int \int 

\scrO l

| \varphi n| 2 d\xi dt+
\int \ell 0

0

| \varphi n(\xi , 0)| 2 d\xi +
\int \int 

\scrO r

| \phi n| 2 d\xi dt+
\int L

\ell 0

| \phi n(\xi , 0)| 2 d\xi = 1 and\int \int 
\scrO l

| \varphi n  - \BbbP \ell 
l\varphi n| 2 d\xi dt+

\int \int 
\scrO r

| \phi n  - \BbbP \ell 
r\phi n| 2 d\xi dt \leq 

1

n

for all n \geq 1. Noting that

1

2

\int \int 
\scrO l

| \BbbP \ell 
l\varphi n| 2 d\xi dt+

1

2

\int \int 
\scrO r

| \BbbP \ell 
r\phi n| 2 d\xi dt

\leq 
\int \int 

\scrO l

\bigl[ 
| \varphi n| 2 + | \varphi n  - \BbbP \ell 

l\varphi n| 2
\bigr] 
d\xi d+

\int \int 
\scrO r

\bigl[ 
| \phi n| 2 + | \phi n  - \BbbP \ell 

l\phi n| 2
\bigr] 
d\xi dt,

we easily get from (29) that the (\beta \ell 
l (\varphi n), \beta 

\ell 
r(\phi n)) are uniformly bounded in \BbbR 2. Con-

sequently, there exist a subsequence (again indexed by n) and a pair (\beta \ast 
l , \beta 

\ast 
r ) \in \BbbR 2

such that

(30) (\beta \ell 
l (\varphi n), \beta 

\ell 
r(\phi n)) \rightarrow (\beta \ast 

l , \beta 
\ast 
r ) in \BbbR 2.

It is clear from (22), (23), and (29)1 that, at least for a new subsequence, one has

\varphi n \rightarrow \varphi weakly in L2(\sigma , T  - \sigma ;H2(0, \ell 0) \cap H1
0 (0, \ell 0)),

\varphi n,t \rightarrow \varphi t weakly in L2(\sigma , T  - \sigma ;H - 1(0, \ell 0)),

\zeta n \rightarrow \zeta weakly in L2(\sigma , T  - \sigma ;H2(\ell 0, L) \cap H1
0 (\ell 0, L)),

\zeta n,t \rightarrow \zeta t weakly in L2(\sigma , T  - \sigma ;H - 1(\ell 0, L))

for all \sigma > 0 small enough. Obviously, we have

(31)

\left\{       
(M \ell 

l )
\ast (\varphi ) = 0 in Q0,l,

(M \ell 
r )

\ast (\phi ) = 0 in Q0,r,
\varphi (0, \cdot ) = \varphi (\ell 0, \cdot ) = 0 in (0, T ),
\phi (\ell 0, \cdot ) = \phi (L, \cdot ) = 0 in (0, T ).

Moreover, since (\varphi n, \phi n) = (\varphi n  - \BbbP \ell 
l\varphi n, \phi n  - \BbbP \ell 

r\phi n) + (\BbbP \ell 
l\varphi n,\BbbP \ell 

r\phi n) in \scrO l \times \scrO r, us-
ing (29)2 and (30), it is also true that

(\varphi n, \phi n) \rightarrow (\BbbP \ast 
l \varphi ,\BbbP \ast 

r\phi ) strongly in L2(\scrO l)\times L2(\scrO r),

where (\BbbP \ast 
l \varphi ,\BbbP \ast 

r\phi ) = (\beta \ast 
l \psi \ell , \beta 

\ast 
r \zeta \ell ).

We have from (16) and (31) that ((M \ell 
l )

\ast (\varphi  - \BbbP \ast 
l \varphi ), (M

\ell 
r )

\ast (\phi  - \BbbP \ast 
r\phi )) = (0, 0) in

Q0,l \times Q0,r and also that, in view of (29) and (30), (\varphi  - \BbbP \ast 
l \varphi , \phi  - \BbbP \ast 

l \phi ) = (0, 0) in
\scrO l \times \scrO r. Then, by applying a classical unique continuation argument, we conclude
that (\varphi , \phi ) = (\BbbP \ast 

l \varphi ,\BbbP \ast 
r\phi ) in Q0,l \times Q0,r. However, this implies (\varphi , \phi ) = (0, 0) in

Q0,l \times Q0,r, since

(0, 0) = (\varphi (\ell 0, \cdot ), \phi (\ell 0, \cdot )) = (\beta \ast 
l \psi \ell (\ell 0, \cdot ), \beta \ast 

r \zeta \ell (\ell 0, \cdot )) = (\beta \ast 
l , \beta 

\ast 
r ).

In other words,
(\varphi n, \phi n) \rightarrow (0, 0) in L2(\scrO l)\times L2(\scrO r).

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 1

50
.2

14
.1

82
.2

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3090 ARA\'UJO, FERN\'ANDEZ-CARA, L\'IMACO, AND SOUZA

Then, taking into account (24) and (29), we see that\int \int 
\scrO l

| \varphi n| 2 d\xi dt+
\int \ell 0

0

| \varphi n(\xi , 0)| 2 d\xi +
\int \int 

\scrO r

| \phi n| 2 d\xi dt+
\int L

\ell 0

| \phi n(\xi , 0)| 2 d\xi \rightarrow 0,

which is obviously absurd.
This proves (28). The remaining terms in I(\varphi T , \phi T ) can also be bounded by the

right-hand side of (27) as an immediate consequence of Proposition 3.

3.2. Approximate controllability problem with linear constraint. In this
section, we prove the approximate controllability of (14) subject to the linear con-
straint (21). More precisely, the following holds.

Proposition 7. Assume that R > 0, \ell 0 \in (\ell l, \ell r), and \ell \in C1([0, T ]) satisfy
\ell l < \ell (t) < \ell r for all t \in [0, T ], \ell (0) = \ell 0, and \| \ell \prime \| C0([0,T ]) \leq R. Then, for any \varepsilon > 0,
any data p0 \in H1

0 (0, \ell 0) and q0 \in H1
0 (\ell 0, L), and any \ell T \in (\ell l, \ell r), there exist controls

(h\ell l,\varepsilon , h
\ell 
r,\varepsilon ) \in L2(\scrO l)\times L2(\scrO r) and associated solutions to (14), with\Biggl\{ 

p \in L2(0, T ;H2(0, \ell 0)) \cap H1(0, T ;L2(0, \ell 0)),

q \in L2(0, T ;H2(\ell 0, L)) \cap H1(0, T ;L2(\ell 0, L)),

satisfying the approximate controllability condition

(32) \| (p(\cdot , T ), q(\cdot , T ))\| L2(0,\ell 0)\times L2(\ell 0,L) \leq \varepsilon 

and the linear constraint (21). Furthermore, the controls can be chosen to satisfy

(33) \| ((h\ell l,\varepsilon 1\omega l
), (h\ell r,\varepsilon 1\omega l

))\| L2(Q0,l)\times L2(Q0,r) \leq C (\| (p0, q0)\| L2\times L2 + | \ell 0  - \ell T | ) ,

where the constant C > 0 depends only on \ell l, \ell r, \omega l, \omega r, T, and R.

Proof. Let us first introduce the notation

M\ell := \ell T  - \ell 0  - 
\int \ell 0

0

p0(\xi )\psi \ell (\xi , 0) d\xi  - 
\int L

\ell 0

q0(\xi )\zeta \ell (\xi , 0) d\xi ,

where the pair (\psi \ell , \zeta \ell ) is the unique solution to (16).
Now, for any given \varepsilon > 0, let us introduce the functional J\ell ,\varepsilon : L2(0, \ell 0)\times 

L2(\ell 0, L) \mapsto \rightarrow \BbbR , defined as follows: given (\varphi T , \phi T ) \in L2(0, \ell 0)\times L2(\ell 0, L), we have
(34)

J\ell ,\varepsilon (\varphi T , \phi T ) :=

\int \int 
\scrO l

| \varphi  - \BbbP \ell 
l\varphi | 2 d\xi dt+

\int \int 
\scrO r

| \phi  - \BbbP \ell 
r\phi | 2 d\xi dt+

\varepsilon 

2
\| (\varphi T , \phi T )\| L2\times L2

 - 
\int \ell 0

0

p0(\xi )\varphi (\xi , 0) d\xi  - 
\int L

\ell 0

q0(\xi )\phi (\xi , 0) d\xi  - 
\bigl[ 
\beta \ell 
l (\varphi ) + \beta \ell 

r(\phi )
\bigr] M\ell 

2
,

where the pair (\varphi , \phi ) satisfies (25)--(26).
Using H\"older and Young inequalities, it is not difficult to check that J\ell ,\varepsilon is a

continuous, coercive, and strictly convex functional. Therefore, J\ell ,\varepsilon possesses a unique
minimizer (\varphi \varepsilon 

T , \phi 
\varepsilon 
T ) \in L2(0, \ell 0) \times L2(\ell 0, L). The corresponding solution to (26) will

be denoted by (\varphi \varepsilon , \phi \varepsilon ). Then

J \prime 
\ell ,\varepsilon (\varphi 

\varepsilon 
T , \phi 

\varepsilon 
T )(\varphi T , \phi T ) = 0 \forall (\varphi T , \phi T ) \in L2(0, \ell 0)\times L2(\ell 0, L),(35)
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where

J \prime 
\ell ,\varepsilon (\varphi T,\varepsilon , \phi T,\varepsilon )(\varphi T , \phi T ) =

\int \int 
\scrO l

[\varphi \varepsilon  - \BbbP \ell 
l (\varphi \varepsilon )]\varphi d\xi dt+

\int \int 
\scrO r

[\phi \varepsilon  - \BbbP \ell 
r(\phi \varepsilon )]\phi d\xi dt

+
\varepsilon 

2\| \varphi \varepsilon 
T \| L2

\int \ell 0

0

\varphi \varepsilon 
T (\xi )\varphi T (\xi ) d\xi +

\varepsilon 

2\| \phi \varepsilon T \| L2

\int L

\ell 0

\phi \varepsilon T (\xi )\phi T (\xi ) d\xi 

 - 
\int \ell 0

0

p0(\xi )\varphi (\xi , 0) d\xi  - 
\int L

\ell 0

q0(\xi )\phi (\xi , 0) d\xi  - 
\bigl[ 
\beta \ell 
l (\varphi ) + \beta \ell 

r(\phi )
\bigr] M\ell 

2
.

Here, we have used the facts that \langle \varphi \varepsilon  - \BbbP \ell 
l (\varphi \varepsilon ),\BbbP \ell 

l (\varphi )\rangle L2(\scrO l) = 0 and \langle \phi \varepsilon  - \BbbP \ell 
r(\phi \varepsilon ),

\BbbP \ell 
r(\phi )\rangle L2(\scrO r) = 0.

Let us introduce
(36)

h\ell l,\varepsilon :=
\bigl[ 
\BbbP \ell 
l (\varphi \varepsilon ) - \varphi \varepsilon 

\bigr] 
+
M\ell 

2

\psi \ell 

\| \psi \ell \| 2L2(\scrO l)

and h\ell r,\varepsilon :=
\bigl[ 
\BbbP \ell 
r(\phi \varepsilon ) - \phi \varepsilon 

\bigr] 
+
M\ell 

2

\zeta \ell 
\| \zeta \ell \| 2L2(\scrO r)

.

Let (\varphi T , \phi T ) \in L2(0, \ell 0) \times L2(\ell 0, L) be given, and let (p, q) be the solution to
(14) associated to the control pair (h\ell l,\varepsilon , h

\ell 
r,\varepsilon ). Then, multiplying (14) by the solution

(\varphi , \phi ) to (26) and integrating in Q0,l and Q0,r, we obtain

(37)

\int \int 
\scrO l

h\ell l,\varepsilon \varphi d\xi dt+

\int \int 
\scrO r

h\ell r,\varepsilon \phi d\xi dt =

\int \ell 0

0

[p(\xi , T )\varphi (\xi , T ) - p0(\xi )\varphi (\xi , 0)] d\xi 

+

\int L

\ell 0

[q(\xi , T )\phi (\xi , T ) - q0(\xi )\phi (\xi , 0)] d\xi .

Taking into account (36) and comparing (35) with (37), we get\int \ell 0

0

p(\xi , T )\varphi T (\xi ) d\xi +

\int L

\ell 0

q(\xi , T )\phi T (\xi ) d\xi 

=
\varepsilon 

2

\Biggl( \int \ell 0

0

\varphi \varepsilon 
T (\xi )

\| \varphi \varepsilon 
T \| L2

\varphi T (\xi ) d\xi +

\int L

\ell 0

\phi \varepsilon T (\xi )

\| \phi \varepsilon T \| L2

\phi T (\xi ) d\xi 

\Biggr) 

for all (\varphi T , \phi T ) \in L2(0, \ell 0) \times L2(\ell 0, L). Therefore, the approximate controllability
condition (32) follows. Since we also have\int \int 

\scrO l

h\ell l,\varepsilon \psi \ell d\xi dt+

\int \int 
\scrO r

h\ell r,\varepsilon \zeta \ell d\xi dt =

\int \int 
\scrO l

\bigl[ 
\BbbP \ell 
l (\varphi \varepsilon ) - \varphi \varepsilon 

\bigr] 
\psi \ell d\xi dt+

M\ell 

2

+

\int \int 
\scrO r

\bigl[ 
\BbbP \ell 
r(\phi \varepsilon ) - \phi \varepsilon 

\bigr] 
\zeta \ell d\xi dt+

M\ell 

2

= M\ell ,

the pair (h\ell l,\varepsilon , h
\ell 
r,\varepsilon ) satisfies (21) and, consequently, \scrL (T ) = \ell T .

Finally, due to the fact that (\varphi T,\varepsilon , \phi T,\varepsilon ) is the minimum of J\ell ,\varepsilon , we have the
inequality J\ell ,\varepsilon (\varphi 

\varepsilon 
T , \phi 

\varepsilon 
T ) \leq J\ell ,\varepsilon (0, 0) = 0. Using this fact and the definition of M\ell 

and (27), we deduce that there exist positive constants C (depending on \ell l, \ell r, R, \omega l, \omega r,
and T ) such that

\| (\varphi \varepsilon  - \BbbP \ell 
l (\varphi \varepsilon ))\| L2(\scrO l) + \| (\phi \varepsilon  - \BbbP \ell 

r(\phi \varepsilon ))\| L2(\scrO r)

\leq C
\bigl( 
\| p0\| L2(0,\ell 0) + \| q0\| L2(\ell 0,L) + | \ell 0  - \ell T | 

\bigr) D
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and

\| h\ell l,\varepsilon \| L2(\scrO l) + \| h\ell l,\varepsilon \| L2(\scrO r) \leq C
\bigl( 
\| (\varphi \varepsilon  - \BbbP \ell 

l (\varphi \varepsilon ))\| L2(\scrO l) + \| (\phi \varepsilon  - \BbbP \ell 
r(\phi \varepsilon ))\| L2(\scrO r) + | M\ell | 

\bigr) 
\leq C

\bigl( 
\| p0\| L2(0,\ell 0) + \| q0\| L2(\ell 0,L) + | \ell 0  - \ell T | 

\bigr) 
.

This ends the proof.

4. Controllability of the two-phase Stefan problem. In this section we
prove Theorem 2. The proof relies on a fixed-point argument. First, it will be conve-
nient to recall some regularity properties for linear parabolic systems.

Due to Propositions 1 and 2, the smoothing effect of (4) implies that we can
assume that (p0, q0) \in W 1,4

0 (0, \ell 0) \times W 1,4
0 (\ell 0, L), and we can consider smallness as-

sumptions of (p0, q0) in this space.

4.1. A regularity property. First, let us assume that (p0, q0)\in W 1,4
0 (0, \ell 0) \times 

W 1,4
0 (\ell 0, L). For any open interval I \subset \BbbR , let us introduce the Banach space

X4(0, T ; I) := L4(0, T ;W 2,4(I)) \cap W 1,4(0, T ;L4(I)).

On the other hand, let us consider the cylinder Gl := (\ell l, \ell 0) \times (0, T ), the H\"older
seminorms

\langle u\rangle \kappa \xi ,Gl
:= sup

(\xi ,t),(\xi \prime ,t)\in Gl
\xi \not =\xi \prime 

| u(\xi , t) - u(\xi \prime , t)| 
| \xi  - \xi \prime | \kappa 

and

\langle u\rangle \kappa t,Gl
:= sup

(\xi ,t),(\xi ,t\prime )\in Gl
t \not =t\prime 

| u(\xi , t) - u(\xi , t\prime )| 
| t - t\prime | \kappa 

,

where 0 < \kappa < 1, and the space C\kappa ,\kappa /2(Gl) formed by the functions u \in C0(Gl) whose

corresponding \langle u\rangle \kappa \xi ,Gl
and \langle u\rangle \kappa /2t,Gl

are finite. It is known that C\kappa ,\kappa /2(Gl) is a Banach
space (see [24]) with the following norm:

\| u\| \kappa ,\kappa /2;Gl
:= \| u\| C0(Gl)

+ \langle u\rangle \kappa \xi ,Gl
+ \langle u\rangle \kappa /2t,Gl

.

Finally, let us introduce the Banach space

C1+\kappa ,(1+\kappa )/2(Gl) := \{ u \in C0(Gl) : u\xi \in C\kappa ,\kappa /2(Gl), \langle u\rangle (1+\kappa )/2
t,Gl

< +\infty \} .

Obviously, we can introduce similar quantities and spaces for functions defined
in Gr := (\ell 0, \ell r)\times (0, T ). The following result holds.

Lemma 1. Let us assume that \ell 0, \ell T \in (\ell l, \ell r) and (p0, q0)\in W 1,4
0 (0, \ell 0)\times W 1,4

0 (\ell 0, L).
Then, the states (p, q), furnished by Proposition 7, satisfy

(p, q) \in C1+\kappa ,(1+\kappa )/2(Gl)\times C1+\kappa ,(1+\kappa )/2(Gr) for \kappa = 1/4.

Furthermore, there exists C > 0, depending on \ell l, \ell r, \omega l, \omega r, T, and R, such that

(38) \| p\| 1+\kappa ,(1+\kappa )/2;Gl
+ \| q\| 1+\kappa ,(1+\kappa )/2;Gr

\leq C
\Bigl( 
\| (p0, q0)\| W 1,4

0 \times W 1,4
0

+ | \ell 0  - \ell T | 
\Bigr) 
.

Proof. Clearly, due to the regularity of p0, there exists a function f\in X4(0, T ; (0, \ell 0))
such that f(0, t) = f(\ell 0, t) = 0, for t \in (0, T ), and f(\xi , 0) = p0(\xi ), for \xi \in (0, \ell 0).
Consequently, the state p, provided by Proposition 7, can be written in the form
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p = y + f , where y \in L2(0, T ;H2(0, \ell 0)) \cap H1(0, T ;L2(0, \ell 0)) is the unique strong
solution of the problem

(39)

\left\{   yt  - d\ell ly\xi \xi + b\ell ly\xi = F in Q0,l,
y(0, \cdot ) = y(\ell 0, \cdot ) = 0 in (0, T ),
y(\cdot , 0) = 0 in (0, \ell 0),

where F = h\ell l,\varepsilon 1\omega l
 - ft + d\ell lf\xi \xi  - b\ell lf\xi .

Now, let \sigma > 0 be such that \omega l \subset \subset (0, \ell l - \sigma ), and, moreover, let G\sigma 
l := (\ell l - \sigma , \ell l+

\sigma )\times (0, T ) \subset Q0,l. We can easily check that F \in L4(0, T ;L4(\ell l - \sigma , \ell l+\sigma )). Therefore,
from local parabolic regularity results, we obtain that y \in X4(0, T ; (\ell l - \sigma /2, \ell l+\sigma /2))
and

\| y\| X4(0,T ;(\ell l - \sigma /2,\ell l+\sigma /2))

\leq C
\bigl( 
\| F\| L4(0,T ;L4(\ell l - \sigma ,\ell l+\sigma )) + \| y\| L2(0,T ;H2(0,\ell 0))\cap H1(0,T ;L2(0,\ell 0))

\bigr) 
,

where C depends only on \| d\ell l\| \infty , \| b\ell l\| \infty , \ell l, \ell 0, and \sigma .
Next, using standard parabolic energy estimates and (33), we get

\| y\| X4(0,T ;(\ell l - \sigma /2,\ell l+\sigma /2)) \leq C
\Bigl( 
\| (p0, q0)\| W 1,4

0 \times W 1,4
0

+ | \ell 0  - \ell T | 
\Bigr) 

for some C > 0 as above. Here, we have used the fact that \| d\ell l\| \infty and \| b\ell l\| \infty are
bounded in terms of R. Finally, using this inequality, the regularity of the trace
y(\ell l, \cdot ), the fact that y is a strong solution to (39), and [33, Propositions 9.2.3 and
9.2.5], we conclude that y \in X4(0, T ; (\ell l, \ell 0)), and, moreover,

(40) \| y\| X4(0,T ;(\ell l,\ell 0)) \leq C
\Bigl( 
\| (p0, q0)\| W 1,4

0 \times W 1,4
0

+ | \ell 0  - \ell T | 
\Bigr) 

for a new C > 0.
In a similar way, we can write q = z + g, where g \in X4(0, T ; (\ell 0, L)) is a shift

function for the initial data q0, and z \in X4(0, T ; (\ell 0, \ell r)) satisfies

(41) \| z\| X4(0,T ;(\ell 0,\ell r)) \leq C
\Bigl( 
\| (p0, q0)\| W 1,4

0 \times W 1,4
0

+ | \ell 0  - \ell T | 
\Bigr) 
.

Then, the estimate in (38) is an immediate consequence of (40)--(41) and the
following embedding from [3, Lemma 2.2]:

X4(0, T ; (\ell l, \ell 0))\times X4(0, T ; (\ell 0, \ell r)) \lhook \rightarrow C1+\kappa ,(1+\kappa )/2(Gl)\times C1+\kappa ,(1+\kappa )/2(Gr),

where \kappa = 1/4.

Let us introduce the function \theta : [0, T ] \mapsto \rightarrow \BbbR , given by

(42) \theta (t) = drq\xi (\ell 0, t) - dlp\xi (\ell 0, t).

Then, as an immediate consequence of (38), we get that \theta \in C1/8([0, T ]), and, more-
over, there exists a positive constant C (depending on \ell l, \ell r, \omega l, \omega r, T, and R) such
that

(43) \| \theta \| C1/8([0,T ]) \leq C
\Bigl( 
\| (p0, q0)\| W 1,4

0 \times W 1,4
0

+ | \ell 0  - \ell T | 
\Bigr) 
.
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4.2. A fixed-point argument. In this section we will achieve the proof of The-
orem 2. It will be a consequence of the following uniform approximate controllability
result.

Theorem 3. Assume that R > 0 is given. Then, there exists \delta > 0 such that,
for any p0 \in W 1,4

0 (0, \ell 0) with p0 \geq 0, any q0 \in W 1,4
0 (\ell 0, L) with q0 \leq 0, any \ell 0, \ell T \in 

(\ell l, \ell r) satisfying

\| p0\| W 1,4
0 (0,\ell 0)

+ \| q0\| W 1,4
0 (\ell 0,L) + | \ell 0  - \ell T | \leq \delta ,

and any \varepsilon > 0, there exist controls (h\varepsilon l , h
\varepsilon 
r) \in L2(\scrO l)\times L2(\scrO r) and associated solutions

to (4), with

(44)

\left\{     
\ell \varepsilon \in C1([0, T ]) and \ell \varepsilon (t) \in (\ell l, \ell r)\forall t \in [0, T ], \| \ell \prime \varepsilon \| C0([0,T ]) \leq R,

p\varepsilon \in L2(0, T ;H2(0, \ell 0)) \cap H1(0, T ;L2(0, \ell 0)),

q\varepsilon \in L2(0, T ;H2(\ell 0, L)) \cap H1(0, T ;L2(\ell 0, L)),

satisfying the exact-approximate controllability condition

(45) \ell \varepsilon (T ) = \ell T and \| (p\varepsilon (\cdot , T ), q\varepsilon (\cdot , T ))\| L2(0,\ell 0)\times L2(\ell 0,L) \leq \varepsilon .

Moreover, the controls can be found satisfying the following uniform estimate with
respect to \varepsilon :

(46) \| (h\varepsilon l 1\omega l
, h\varepsilon r1\omega r

)\| L2(Q0,l)\times L2(Q0,r) \leq C (\| (p0, q0)\| W 1,4\times W 1,4 + | \ell 0  - \ell T | )

for some positive C (depending on \ell l, \ell r, \omega l, \omega r, T, and R).

Proof. Given \ell l < \~\ell l < \~\ell r < \ell r and R > 0, we define the set

\scrA R := \{ \ell \in C1([0, T ]) : \~\ell l \leq \ell (t) \leq \~\ell r \forall t \in [0, T ], \ell (0) = \ell 0, \| \ell \prime \| C0([0,T ]) \leq R\} .

Obviously, \scrA R is a nonempty, closed, and convex subset of C1([0, T ]). Let us also
introduce the mapping \Lambda \varepsilon : \scrA R \mapsto \rightarrow C1([0, T ]), given by

\Lambda \varepsilon (\ell ) = \scrL , with \scrL (t) := \ell 0  - 
\int t

0

[dlp\xi (\ell 0, \tau ) - drq\xi (\ell 0, \tau )] d\tau ,

where (p, q) is the state associated to the control pair (h\ell l,\varepsilon , h
\ell 
r,\varepsilon ) constructed as in the

proof of Proposition 7 (recall Lemma 1) and, therefore, \scrL (T ) = \ell T . Thanks to (42)
and (43), we have that \scrL \in C1([0, T ]).

Let us check that \Lambda \varepsilon satisfies the following conditions of Schauder's fixed-point
theorem:

\bullet \Lambda \varepsilon is continuous. Indeed, let the \ell n(n \geq 1) and \ell belong to \scrA R, and assume
that \ell n \rightarrow \ell in C1([0, T ]). We must prove that \Lambda \varepsilon (\ell n) \rightarrow \Lambda \varepsilon (\ell ) in C

1([0, T ]).
To that end, we will first prove that the corresponding solutions to (16) satisfy

(47) (\psi \ell n , \zeta \ell n) \rightarrow (\psi \ell , \zeta \ell ) strongly in L2(Q0,l)\times L2(Q0,r).

Let f \in L2(0, T ;H2(0, \ell 0))\times H1(0, T ;L2(0, \ell 0)) be such that f(0, \cdot ) = 0 and
f(\ell 0, \cdot ) = 1 on (0, T ), and let us put \psi \ell n = \Psi \ell n + f and \psi \ell = \Psi \ell + f . It is
then clear that y\ell n := \Psi \ell n  - \Psi \ell is the unique weak solution to\left\{   (M \ell n

l )\ast (y\ell n) = F\ell n in Q0,l,
y\ell n(0, \cdot ) = y\ell n(\ell 0, \cdot ) = 0 in (0, T ),
y\ell n(\cdot , 0) = 0 in (0, \ell 0),
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where F\ell n \in L2(0, T ;H - 1(0, \ell 0)) is given by

F\ell n :=(d\ell l,\xi \xi  - d\ell nl,\xi \xi )f + 2(d\ell l,\xi  - d\ell nl,\xi )f\xi + (d\ell l  - d\ell nl )f\xi \xi + (b\ell l,\xi  - b\ell nl,\xi )f

+ (b\ell l  - b\ell nl )f\xi + ((d\ell l  - d\ell nl )\Psi \ell )\xi \xi + ((b\ell l  - b\ell nl )\Psi \ell )\xi .

Then, using the facts that (d\ell nl , b
\ell n
l ) are uniformly bounded in the space

C1(Q0,l) \times C0(Q0,l) and (d\ell nl,\xi \xi , b
\ell n
l,\xi ) are uniformly bounded in C0(Q0,l) \times 

C0(Q0,l), the standard parabolic energy estimates, and the regularity of the
function G (as well as the regularity of its inverse G - 1), we get that y\ell n \rightarrow 0
strongly in L2(Q0,l) which, in turn, implies

\psi \ell n \rightarrow \psi \ell strongly in L2(Q0,l).

Analogously, we can prove that \zeta \ell n \rightarrow \zeta \ell strongly in L2(Q0,r).
Now, we recall that, for each \varepsilon > 0, there exists a unique (\varphi n

T,\varepsilon , \phi 
n
T,\varepsilon ) in

L2(0, \ell 0)\times L2(\ell 0, L) that minimizes the functional J\ell n,\varepsilon , defined in (34). Due
to the facts that J\ell n,\varepsilon (\varphi 

n
T,\varepsilon , \phi 

n
T,\varepsilon ) \leq 0 and the constant appearing in the

right side of (27) does not depend on n, we get that the minimizers are
uniformly bounded with respect to n in the space L2(0, \ell 0) \times L2(\ell 0, L), and
the corresponding (\varphi n

\varepsilon , \phi 
n
\varepsilon ), solutions to (26), are uniformly bounded spaces

given in (25). Therefore, there exist (\varphi T,\varepsilon , \phi T,\varepsilon ) in L
2(0, \ell 0) \times L2(\ell 0, L) and

(\varphi \varepsilon , \phi \varepsilon ) in L
2(Q0,l)\times L2(Q0,r) such that, at least for a subsequence, one has

(48)\left\{           
(\varphi n

T,\varepsilon , \phi 
n
T,\varepsilon ) \rightarrow (\varphi T,\varepsilon , \phi T,\varepsilon ) weakly in L2(0, \ell 0)\times L2(\ell 0, L),

(\varphi n
\varepsilon (\cdot , 0), \phi n\varepsilon (\cdot , 0))\rightarrow (\varphi \varepsilon (\cdot , 0), \phi \varepsilon (\cdot , 0)) weakly in L2(0, \ell 0)\times L2(\ell 0, L), and

(\varphi n
\varepsilon , \phi 

n
\varepsilon ) \rightarrow (\varphi \varepsilon , \phi \varepsilon ) strongly in L2(Q0,l)\times L2(Q0,r).

We will show now that (\varphi T,\varepsilon , \phi T,\varepsilon ) is the unique minimizer of the functional
J\ell ,\varepsilon . Indeed, we first note from the convergences in (47) and (48)3 that

(\BbbP \ell n
l (\varphi n

\varepsilon ),\BbbP \ell n
r (\phi n\varepsilon )) \rightarrow (\BbbP \ell 

l (\varphi \varepsilon ),\BbbP \ell 
r(\phi \varepsilon )) strongly in L2(Q0,l)\times L2(Q0,r).

Then, using this fact and the weak convergences (48)1,2, we easily get

(49) J\ell ,\varepsilon (\varphi T,\varepsilon , \phi T,\varepsilon ) \leq lim inf
n

J\ell n,\varepsilon (\varphi 
n
T,\varepsilon , \phi 

n
T,\varepsilon ).

Now, let (\varphi T , \phi T ) be given in L2(0, \ell 0) \times L2(\ell 0, L), and let the (\varphi n, \phi n) be
the solutions to the system (26), with \ell replaced by \ell n, for n = 1, 2, . . ..
Then, using the same ideas that led to (47), we can ensure that the (\varphi n, \phi n)
converge strongly in L2(Q0,l)\times L2(Q0,r) to the solution (\varphi , \phi ) to (26) and the
(\varphi n(\cdot , 0), \phi n(\cdot , 0)) converge weakly in L2(0, \ell 0)\times L2(\ell 0, L) to (\varphi (\cdot , 0), \phi (\cdot , 0)).
Therefore, from (47) and (49) we deduce that
(50)
J\ell ,\varepsilon (\varphi T,\varepsilon , \phi T,\varepsilon )\leq lim inf

n
J\ell n,\varepsilon (\varphi 

n
T,\varepsilon , \phi 

n
T,\varepsilon )\leq lim inf

n
J\ell n,\varepsilon (\varphi T , \phi T ) = J\ell ,\varepsilon (\varphi T , \phi T ).

Since (\varphi T , \phi T ) \in L2(0, \ell 0)\times L2(\ell 0, L) is arbitrary, we conclude that (\varphi T,\varepsilon , \phi T,\varepsilon )
minimizes J\ell ,\varepsilon .
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Now, let us consider, for each n, the pair (h\ell nl,\varepsilon 1\omega l
, h\ell nr,\varepsilon 1\omega r

) associated by
Proposition 7 to \ell n. It follows easily from (47), (48)3, and (50) that

(51) (h\ell nl,\varepsilon 1\omega l
, h\ell nr,\varepsilon 1\omega r ) \rightarrow (h\ell l,\varepsilon 1\omega l

, h\ell r,\varepsilon 1\omega r ) strongly in L2(\scrO l)\times L2(\scrO r),

where (h\ell l,\varepsilon 1\omega l
, h\ell r,\varepsilon 1\omega r

) is the control corresponding to \ell . Let us denote by

(pn\varepsilon , q
n
\varepsilon ) and (p\varepsilon , q\varepsilon ) the solutions to (14) associated, respectively, to (h\ell nl,\varepsilon 1\omega l

,

h\ell nr,\varepsilon 1\omega r ) and (h\ell l,\varepsilon 1\omega l
, h\ell r,\varepsilon 1\omega r ). Then, if we set (yn, zn) := (pn\varepsilon  - p\varepsilon , q

n
\varepsilon  - q\varepsilon )

and (wn
l 1\omega l

, wn
r 1\omega r

) := (h\ell nl,\varepsilon 1\omega l
 - h\ell l,\varepsilon 1\omega l

, h\ell nr,\varepsilon 1\omega r
 - h\ell r,\varepsilon 1\omega r

), we find that

(52)

\left\{           
ynt  - d\ell nl y

n
\xi \xi + b\ell nl y

n
\xi = wn

l 1\omega l
+ Fn

l in Q0,l,

znt  - d\ell nr z
n
\xi \xi + b\ell nr z

n
\xi = wn

r 1\omega r
+ Fn

r in Q0,r,

yn(0, \cdot ) = yn(\ell 0, \cdot ) = zn(\ell 0, \cdot ) = zn(L, \cdot ) = 0 in (0, T ),
yn(\cdot , 0) = 0 in (0, \ell 0),
zn(\cdot , 0) = 0 in (\ell 0, L),

where

Fn
l := (d\ell nl  - d\ell l )p\varepsilon ,\xi \xi  - (b\ell nl  - b\ell l )p\varepsilon ,\xi and Fn

l := (d\ell nl  - d\ell l )p\varepsilon ,\xi \xi  - (b\ell nl  - b\ell l )p\varepsilon ,\xi .

Recall that (p0, q0) \in W 1,4
0 (0, \ell 0)\times W 1,4

0 (\ell 0, L). Therefore, arguing as in sec-
tion 4.1 and Lemma 1, we first deduce that (Fn

l , F
n
r ) \in L4((\ell l, \ell 0)\times (0, T ))\times 

L4((\ell 0, \ell r)\times (0, T )) and (yn\xi (\ell 0, \cdot ), zn\xi (\ell 0, \cdot )) \in C1/8([0, T ])\times C1/8([0, T ]), and
also that

\| yn\xi (\ell 0, \cdot )\| C1/8 + \| zn\xi (\ell 0, \cdot )\| C1/8

\leq C
\bigl( 
\| (Fn

l , F
n
r )\| L4(L4)\times L4(L4) + \| (yn, zn)\| L2(H2)\times L2(H2)

\bigr) 
for some C > 0, independent of n.
It is not difficult to check that, in this inequality, the first term in the right-
hand side goes to 0 when n\rightarrow \infty . From standard parabolic estimates applied
to (52) and (51), we also have the convergence to zero of the second term
in the right-hand side. Therefore, we deduce that (pn\varepsilon ,\xi (\ell 0, \cdot ), qn\varepsilon ,\xi (\ell 0, \cdot )) \rightarrow 
(p\varepsilon ,\xi (\ell 0, \cdot ), q\varepsilon ,\xi (\ell 0, \cdot )) in C1/8([0, T ]), which implies the continuity of \Lambda \varepsilon .

\bullet \Lambda \varepsilon is compact. Note that \Lambda \varepsilon (\ell )
\prime (t) = \theta (t) for all \ell \in \scrA R and all t \in [0, T ],

where \theta is the function defined in (42). Thus, we conclude easily from (43)
that \Lambda \varepsilon (\scrA R) is a bounded subset of C1+1/8([0, T ]), which is a compact subset
of C1([0, T ]).

\bullet There exists \delta > 0, such that, whenever (p0, q0) \in W 1,4
0 (0, \ell 0) \times W 1,4

0 (\ell 0, L)
and

\| (p0, q0)\| W 1,4
0 \times W 1,4

0
+ | \ell 0  - \ell T | \leq \delta ,

\Lambda \varepsilon (\scrA R) \subset \scrA R. Indeed, it follows easily from (43) that there exists C > 0
(depending on \ell l, \ell r, \omega l, \omega r, T, and R) such that

| \scrL (t) - \ell 0| \leq CT
\Bigl( 
\| (p0, q0)\| W 1,4

0 \times W 1,4
0

+ | \ell 0  - \ell T | 
\Bigr) 

\forall t \in [0, T ]

and
| \scrL \prime (t)| \leq C

\Bigl( 
\| (p0, q0)\| W 1,4

0 \times W 1,4
0

+ | \ell 0  - \ell T | 
\Bigr) 

\forall t \in [0, T ].

Thus, we get the result by taking

\delta \leq min

\Biggl\{ 
R

C
,
\ell 0  - \~\ell l
CT

,
\~\ell r  - \ell 0
CT

\Biggr\} 
.
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Consequently, for initial data p0, q0, and \ell 0 satisfying the above conditions, Schauder's
fixed-point theorem guarantees that there exists \ell \varepsilon \in \scrA R such that \Lambda \varepsilon (\ell \varepsilon ) = \ell \varepsilon . It is
easy to see that this is sufficient to achieve the proof of the result.

Now, we are in position to prove Theorem 2. Indeed, since the fixed points \ell \varepsilon 
and controls (h\varepsilon l , h

\varepsilon 
r) furnished by Theorem 3 are uniformly bounded, respectively, in

C1+1/8([0, T ]) and L2(\scrO l)\times L2(\scrO r), there exist \ell and (hl, hr) such that, at least for
a subsequence, we have

(53)

\biggl\{ 
\ell \varepsilon \rightarrow \ell strongly in C1([0, T ]) and
(h\varepsilon l , h

\varepsilon 
r) \rightarrow (hl, hr) weakly in L2(\scrO l)\times L2(\scrO r).

Since the coefficients (d\ell \varepsilon l , b
\ell \varepsilon 
l ) and (d\ell \varepsilon r , b

\ell \varepsilon 
r ) are uniformly bounded, respectively, in

L\infty (Q0,l) \times L\infty (Q0,l) and L\infty (Q0,r) \times L\infty (Q0,r), we can conclude from energy esti-
mates and (53) that there exists (p, q) with

(54)

\biggl\{ 
p\varepsilon \rightarrow p weakly in L2(0, T ;H2(0, \ell 0) \cap H1

0 (0, \ell 0)) \cap H1(0, T ;L2(0, \ell 0)),
q\varepsilon \rightharpoonup q weakly in L2(0, T ;H2(0, \ell 0) \cap H1

0 (\ell 0, L)) \cap H1(0, T ;L2(\ell 0, L)),

where the (p\varepsilon , q\varepsilon ) are associated to the (h\varepsilon l , h
\varepsilon 
r). Then, (p, q) is the solution to

(14), associated to (hl, hr). Moreover, from (45), it is clear that \ell (T ) = \ell T and
(p(\cdot , T ), q(\cdot , T )) = (0, 0) on (0, T ).

Furthermore, as a consequence of (54) and the embeddings

H2(0, \ell 0)
c
\lhook \rightarrow C1([0, \ell 0]) \lhook \rightarrow L2(0, \ell 0) and H2(\ell 0, L)

c
\lhook \rightarrow C1([\ell 0, L]) \lhook \rightarrow L2(\ell 0, L),

we find that, for any given t \in [0, T ], the following holds:

\ell (t) = lim
\varepsilon \rightarrow 0

\ell \varepsilon (t) = lim
\varepsilon \rightarrow 0

\biggl( 
\ell 0  - 

\int t

0

[dlp\varepsilon ,\xi (\ell 0, \tau ) - drq\varepsilon ,\xi (\ell 0, \tau )] d\tau 

\biggr) 
= \ell 0  - 

\int t

0

[dlp\xi (\ell 0, \tau ) - drq\xi (\ell 0, \tau )] d\tau .

This implies that the Stefan condition (4)7 is satisfied by (\ell , p, q) and ends the proof
of Theorem 2.

5. Additional comments.

5.1. Lack of controllability with only one control. In the next result it is
proved that, if hl or hr vanishes and the interface does not collapse to the boundary,
then null controllability cannot hold.

Theorem 4. Assume that u0 \in H1
0 (0, \ell 0) with u0 \geq 0, v0 \in H1

0 (\ell 0, L) with
v0 \leq 0, and v0 \not \equiv 0. Then, if (hl, hr) \in L2(\scrO l) \times L2(\scrO r), hr \equiv 0, and the associated
strong solution to (1) satisfies \ell (t) < L for all t \in [0, T ], we necessarily have

v(\cdot , T ) \not \equiv 0 in (\ell (T ), L).

Proof. Let us assume, by contradiction, that (1) is null controllable with hr \equiv 0,
i.e., u(\cdot , T ) \equiv 0 in (0, \ell (T )) and v(\cdot , T ) \equiv 0 in (\ell (T ), L).

Then, considering the diffeomorphism \Phi and the function q = v \circ \Phi  - 1, defined in
section 2.1, we get easily that q is the solution to\left\{   qt  - d\ell rq\xi \xi + b\ell rq\xi = 0 in Q0,r,

q(\ell 0, \cdot ) = q(L, \cdot ) = 0 in (0, T ),
q(\cdot , 0) = q0 in (\ell 0, L),
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where q0 := v0 \circ [G(\cdot , \ell 0)] - 1 \in H1
0 (\ell 0, L) and, obviously, q0 \leq 0 and q0 \not \equiv 0. We also

have

(55) q(\cdot , T ) \equiv 0 in (\ell 0, L).

We can apply the weak maximum principle to q in Q0,r. Obviously, this gives q \leq 0
in Q0,r.

Thus, if (55) holds, we get, from the strong maximum principle and the fact that
q \leq 0 in Q0,r, that q \equiv 0 in Q0,r, which contradicts q0 \not \equiv 0.

Remark 5. Note that the previous argument also shows that the null controlla-
bility for (1) cannot be achieved for solutions which preserve the signs of the initial
conditions in each phase region. In other words, in order to drive the solution to zero
at time T , the liquid and solid states must penetrate each other before T .

5.2. Boundary controllability and other extensions. We can prove local
boundary controllability results similar to Theorem 1. Thus, let us introduce the
system

(56)

\left\{                         

ut  - dluxx = 0 in Ql,

vt  - drvxx = 0 in Qr,

u(0, t) = kl(t), v(L, t) = kr(t) in (0, T ),

u(\cdot , 0) = u0 in (0, \ell 0),

v(\cdot , 0) = v0 in (\ell 0, L),

u(\ell (t), t) = v(\ell (t), t) = 0 in (0, T ),

 - \ell \prime (t) = dlux(\ell (t), t) - drvx(\ell (t), t) in (0, T ),

where (kl, kr) stands for the boundary control pair.
Then, using a domain extension technique and Theorem 1, it is easy to prove

that, if u0 and v0 are sufficiently small, and \ell 0 is sufficiently close to \ell T , there exist
controls (kl, kr) and associated solutions to (56) that satisfy \ell (T ) = \ell T , u(\cdot , T ) = 0 in
(0, \ell T ) and v(\cdot , T ) = 0 in (\ell T , L).

Let us finally mention that the arguments and results in this paper can also be
used to solve other variants of the two-phase Stefan controllability problem. Thus,
we can prove results similar to Theorem 1 when the controls are Neumann data,
and we can assume that the equations contain lower order terms or even appropriate
nonlinearities.
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