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Clustering Switching Regions for Feedback
Controllers: A Convex Approach

Paula Chanfreut , José Marı́a Maestre , Senior Member, IEEE, Francisco Javier Muros ,
and Eduardo F. Camacho , Fellow, IEEE

Abstract—Coalitional control groups dynamically local con-
trollers into clusters that jointly determine their control actions to
maximize control performance while minimizing the cooperation
burden. This work presents linear matrix inequalities (LMIs)
decision methods to set state-space regions where the switchings
between network topologies satisfy properties of interest. In par-
ticular, convexity guarantees ellipsoidal switching sets with back-
switchings avoided via a dwell time. Also, the convexity property
is exploited to analyze the need for coordination at different
points of the state space, leading to coordination effort zones.
Moreover, by considering invariance, new ellipsoids that confine
the state between topologies transitions are provided. Finally, we
introduce additional conditions to attain submodularity and hence
reduce the effort to find optimal solutions. A numerical example
is given to illustrate the feasibility of the proposed approach.

Index Terms—Distributed control, Distributed feedback gains,
Control by clustering, Coalitional control, Linear control systems,
Network topologies, Control systems design.

I. INTRODUCTION

NON-centralized control strategies have gained attention
due to the growing size and complexity of many sys-

tems [1]. The underlying idea is a division of the global
system into a set of dynamically coupled subsystems so that
the system-wide problem can be split into a set of smaller
subproblems that are assigned to different control entities, the
so-called agents, see [2], [3]. These strategies can broadly be
divided into two groups: distributed approaches, where the set
of agents uses a communication network to share local data so
that the controllers’ decisions are taken with some information
of their neighboring subsystems [4], [5]; and decentralized
approaches, when there is no information exchange between
controllers [6], [7]. In this context, the availability of neighbors
information in distributed control schemes commonly provides
enhanced global performance, while decentralized strategies
avoid any dependence on the communication infrastructure.
In general, strongly coupled subsystems require denser com-
munication to maintain a certain degree of performance,
whereas the benefits of sharing data among weakly interacting
subsystems may be negligible [8].
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As a halfway approach, recent works propose control archi-
tectures where the network that interconnects local controllers
becomes a manipulated variable. In this context, [9] introduces
the so-called coalitional control, where the set of agents is
dynamically divided into disjoint communication components
or coalitions, i.e., clusters of cooperating controllers that
operate in a decentralized manner with respect to the rest of
the system. While other works embrace the same coalitional
formulation [10]–[14], this type of approach also appears in
the literature under different names, e.g., community detec-
tion [15], controller reconfiguration [16], sparsity-promoting
control [17], coupling degree clustering [18], and dynamic
partitioning [19]. These ideas are gaining relevance in the
control of large-scale systems where the coupling conditions
vary remarkably in time. For example, variable controller
structures are proposed for controlling water levels in irriga-
tion canals in [10]; improving oscillation damping in power
systems in [17], [20]; and coordinating distributed energy
resources in [21].

This work extends the control scheme proposed in [9].
Under this framework, the topology of the communication
network is dynamically selected from the set of possible
alternatives. Once a topology is active, the resulting coalitions
are independently governed by a linear feedback controller,
i.e., the coalitional input is computed using exclusively the
state from the merged subsystems. In this regard, a block-
structured global feedback is precomputed offline for each
possible cooperation scenario by solving an optimization prob-
lem subject to linear matrix inequalities (LMIs). Also, [22]–
[25] propose LMI-based controllers with structural constraints
that foster a decentralization of the network and hence min-
imize the amount of data that needs to be transmitted. Our
approach here consists of a decision procedure that preselects
a subset of possible future topologies considering the current
configuration of the network. To this end, a performance index
evaluates the suitability of each topology as a function of the
system state, considering both the expected improvement for
the global behavior and the communication costs involved.
Also, as pointed out in [9], the state space can be partitioned
into subsets where one topology offers the best solution, and
hence dominates the rest of possible alternatives. However, the
resulting regions are non-convex in general, thus complicating
their use for practical control purposes. In [26], a method
to convexify the mentioned dominance sets was introduced
by considering new LMI constraints in the controller design
procedure. In this paper, this result is extended in the following
directions:

https://orcid.org/0000-0003-1366-0799
https://orcid.org/0000-0002-4968-6811
https://orcid.org/0000-0003-3741-9983
https://orcid.org/0000-0002-9636-5666


IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. YY, MAY 2021 2

• First, a dwell-time approach for the controller in [26] is
introduced to avoid switching back to prior communica-
tion topologies.

• Also, the convex dominant sets are refined by different
design methods fulfilling invariance and/or submodular-
ity properties.

• Finally, novelties regarding the partitioning of the state
space in zones of cooperation effort are introduced.

The rest of the paper is organized as follows. Section II
introduces the model of the system, describes the control archi-
tecture and states the control objective. Section III focuses on
the logic for switching between topologies in coalitional con-
trol schemes, detailing the procedure for coalitions formation.
Section IV presents the proposed controller design method,
which assures the abovementioned properties. In Section V, the
state space will be partitioned into coordination effort zones,
to ease the topology selection. Section VI describes the control
scheme and discusses its stability guarantees. Section VII
illustrates the proposed approach by an academic example.
Finally, concluding remarks are given in Section VIII.

II. SYSTEM DESCRIPTION

In this section, we present the models used to describe
the system dynamics and the communication infrastructure.
Additionally, we introduce the control goals pursued by the
coalitional strategy.

A. System Dynamics

Consider a class of linear systems that can be partitioned
into a set N = {1, 2, . . . , N} of coupled subsystems, whose
dynamics are modeled as

xi(k + 1) = Aiixi(k) +Biiui(k) + di(k),

di(k) =
∑
j∈Ni

[Aijxj(k) +Bijuj(k)], (1)

where xi ∈ Rnxi and ui ∈ Rnui are respectively the state
and input vectors of subsystem i ∈ N , and di describes the
coupling among subsystem i and its set of neighbours, defined
as Ni = {j ∈ N \ {i} | (Aij , Bij) 6= 0}. Likewise, Aij ∈
Rnxi

×nxj and Bij ∈ Rnxi
×nuj are, respectively, the state

transition and the input-to-state matrices for all i, j ∈ N .
The global behavior can be modeled by matrices AN =

(Aij)i,j∈N and BN = (Bij)i,j∈N , which aggregate (1) for
the N subsystems as

xN (k + 1) = ANxN (k) +BNuN (k), (2)

where xN = [xi]i∈N ∈ RnxN and uN = [ui]i∈N ∈ RnuN are
the global state and input vectors, respectively.

B. Network Structure

The subsystems in N are individually governed by a set of
local control agents interconnected through a communication
network, whose structure is described by graph (N ,L), where
the nodes represent local agents, and set L contains the
communication links, i.e.,

L ⊆ LN = {{i, j}|i, j ∈ N}. (3)

The state of the links can dynamically be switched between en-
abled and disabled, thus restricting the possibilities for sharing
local data among control agents. Hereon, symbol Λ denotes
in general sets of enabled links or topologies describing a
configuration of the communication network, hence Λ ⊆ L.
Accordingly, Λ(k) represents the network configuration at a
given time instant k. Since the cardinality of L is |L|, we can
derive a set T of 2|L| possible communication topologies, i.e.,

T = {
Λdec︷︸︸︷
Λ0 ,Λ1, . . . ,

Λcen︷ ︸︸ ︷
Λ2|L|−1}, (4)

Each Λi ∈ T arranges the N subsystems into a set N/Λi
of communication components, i.e., the coalitions or clusters.
Therefore, sets N/Λi represent the possible partitions of
N , with cardinality ranging from one, when all agents are
connected (i.e., Λcen = L and N/Λcen = {N}), to N ,
corresponding to a fully decentralized system (i.e., Λdec = ∅
and N/Λdec = {{1}, {2}, ..., {N}}).

Dynamically, any coalition C ∈ N/Λi can be considered as
a single system modeled by

xC(k + 1) = ACCxC(k) +BCCuC(k) + dC(k),

dC(k) =
∑
D∈NC

[ACDxD(k) +BCDuD(k)], (5)

where xC = [xi]i∈C and uC = [ui]i∈C are respectively the
aggregates of the states and inputs of subsystems i ∈ C, and
matrices ACC and BCC map the current coalition states and
inputs to the successor state. Similarly, dC models the effect
of neighboring coalitions D ∈ NC , where matrices ACD, BCD
and set NC are defined analogously to the case of interacting
subsystems. Note that if C = N , then dC = 0, i.e., there are no
disturbances due to coupling because all system information
is accounted for in the overall model as in (2).

C. Coalitional Control Objective

The coalitional control objective is double: optimizing the
system performance and reducing communication costs. In
general, the control problem we aim to solve is the following:

min
[Λ(k),uN (k)]∞k=0

∞∑
k=0

f(Λ(k)) +
∑

C∈N/Λ(k)

`C(k)

,
s.t. (5), ∀C ∈ N/Λ(k),

uN (k) = [uC(k)]C∈N/Λ(k),

Λ(k) ∈ T ,
k ∈ [0, 1, ...,∞).

(6)

The objective function in (6) weights both the stage per-
formance index `C(k) for all coalitions C ∈ N/Λ(k) and
the coordination costs incurred by using Λ(k), i.e., f(Λ(k)),
where f(·) is a suitable weighting function. For simplicity,
we assume that all subsystems should be regulated towards
the origin. Hence, we can define `C : RnxC × RnuC → R as

`C(k) = xT
C (k)QCxC(k) + uT

C (k)RCuC(k), (7)

where QC ≥ 0 and RC > 0 are weighting matrices.
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The optimization of (6) belongs to the class of NP-complete
problems [27], which restricts its applicability for real-time
control to small networks unless some simplifications are
introduced. Note that, at each time instant, global control
action uN (k) depends on the agents partition, and therefore,
on variable Λ(k). This fact leads to a nonconvex mixed
integer optimization problem where, in turn, the number of
possibilities for Λ(k) experiences a combinatorial explosion
with the number of network links. In this work, we make use of
the coalitional control scheme proposed in [9], which provides
a suboptimal solution for (6) based on periodical switchings
between communication topologies.

In what follows, the switching criterion in [9] is modified
to satisfy certain constraints that help us characterize the
dominance regions of each topology, and hence the switch-
ings. In particular, we will consider convexity, invariance and
submodularity as desirable properties. The first two properties
are useful to obtain coalitional convex invariant regions, which
can be relevant in the context of coalitional model predictive
control (MPC) approaches. Also, based on the convexity
property, the state space will be partitioned into coordination
effort zones, which simplifies the selection of the topology.
Finally, submodularity provides us with a different means of
obtaining the most suitable topology by enabling links in a
sequential manner.

III. TOPOLOGY SWITCHING FEATURES

In this section, we first describe the control law implemented
by the clusters; secondly, we introduce the index used to assess
the topologies performance; and finally, we discuss the method
adopted to set the transitions between topologies.

A. Control Law

Consider that at time instant k the communication topology
is given by Λi. Then, every coalition C ∈ N/Λi implements
a linear feedback control law satisfying uC(k) = KC,ΛixC(k),
where KC,Λi

is a constant matrix designed to optimize perfor-
mance and to yield a stable closed-loop system. Globally, the
controller is defined by

uN (k) = KΛi
xN (k), (8)

where KΛi
= (KC,Λi

)C∈N/Λi
aggregates all coalitions feed-

back gains KC,Λi
into a single matrix. Notice that construct-

ing KΛi
as indicated, the communication constraints derived

from Λi are met.

B. Performance

The switchings between topologies intend to find dynam-
ically the most cost-efficient topology Λi ∈ T to maximize
the system performance. In this regard, the criterion used to
estimate the control performance in different communication
scenarios is based on the following assumption:

Assumption 1. Consider a static communication topol-
ogy Λi ∈ T and a stabilizing control law (8). Then, there exists

a symmetric positive definite matrix PΛi = (PC,Λi)C∈N/Λi

such that

xT
N (0)PΛi

xN (0) ≥
∑

C∈N/Λi

∞∑
k=0

`C(k), (9)

where xN (0) is the system initial state.

Remark 1. The ultimate goal of Assumption 1 is to provide
a criterion to guide the switching decisions. In particular,
if matrix PΛi satisfies (9), then it provides an upper-bound
estimate of the cost-to-go and also a Lyapunov function for the
system, i.e., VΛi

(xN (k)) = xT
N (k)PΛi

xN (k). This assumption
was taken in [9], [11], and also in [10] to estimate the best
topology in a coalitional MPC scheme for irrigation canals.
However, other criteria could equally be used as performance
indicator of each Λi ∈ T , e.g., by taking (8), it is possible to
compute the performance costs of each Λi during a finite time
horizon, which, combined with the coordination costs, also
provides an index that can be used to guide the switchings.

Considering Assumption 1 for each time instant, we define the
optimal or dominant communication topology Λi ∈ T as the
one that minimizes the bi-criteria objective r(Λi, xN ) : T ×
RxN → R, with

r(Λi, xN (k)) = xT
N (k)PΛi

xN (k) + f(Λi), (10)

where the first term weights the system performance and the
second one penalizes the communication effort. Hereafter we
use fi = f(Λi) and assume fi > fj for any topologies
Λi,Λj ∈ T such that |Λi| > |Λj | and fi = fj if |Λi| = |Λj |.
Topology boundaries: Consider two different topologies Λi
and Λj . Then, matrices PΛj

and PΛi
characterize the subset of

the state space in which topology Λj dominates over Λi [26]

Υ
Λj

Λi
= {xN | xT

N
(
PΛj
− PΛi

)
xN + γji ≤ 0}, (11)

where γji = fj−fi. Hereon, matrices PΛj

Λi
= PΛj

− PΛi
will

be referred to as transition matrices. Note that if PΛj > PΛi

and γji < 0, then set Υ
Λj

Λi
represents an ellipsoid in RnxN .

In this case, it is possible to identify convex regions where a
certain controller structure is the most suitable. Additionally,
notice that sets Υ

Λj

Λi
represent fixed regions of the state space

since PΛj

Λi
and γji are constant parameters.

C. Coalitions Formation

In this work, the formation of clusters follows a sequential
procedure where the communication structure at the moment
prior to the switchings is taken into account to determine the
subsequent transitions [26]. In this regard, we consider the
following relations between topologies.

Definition 1. The set of children topologies of any Λi ∈ T ,
where |Λi| ≥ 1, is defined as

TΛi
= {Λj ∈ T | Λj ⊂ Λi and |Λj | = |Λi| − 1}. (12)

That is, topologies Λj included in set TΛi
are those resulting

from disabling one link of Λi, hence |TΛi | = |Λi|.
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I II

III

IV V

Fig. 1. Parent and children topologies for an example with N = 6 agents and
|L| = 5 links. The nodes with the same color represent clusters of controllers
and the roman numerals are the indices for the links.

Definition 2. Any topology Λj descends from Λi if it can be
derived from Λi by disabling one or more links. Then, the
set of all descending topologies of a given Λi results from
applying recursively Definition 1.

Definition 3. The set of parent topologies of any Λi ∈ T ,
where |Λi| < |L|, is defined as

T Λi = {Λj ∈ T | Λi ⊂ Λj and |Λj | = |Λi|+ 1}. (13)

That is, topologies Λj contained in set T Λi are those resulting
from adding one link to Λi, hence |T Λi | = |L| − |Λi|.

Definition 4. Any topology Λj ascends from Λi if it can be
derived from Λi by enabling one or more additional links.
Then, the set of all ascending topologies of a given Λi results
from applying recursively Definition 3.

Remark 2. For the particular case of the centralized topology,
the set of parent topologies is empty, i.e., T Λcen = ∅. Similarly,
for topology Λdec, set TΛdec

is empty. Also, notice that all
communication topologies descend from the fully connected
case, and ascend from the decentralized system.

On this basis, the procedure used for the topology switching
is governed by the two following assumptions:

Assumption 2. From any topology Λi, the communication
network can switch to any topology that either descends
from Λi, i.e., a lower level of cooperation, or ascends from Λi,
i.e., a higher level of cooperation.

Assumption 3. The transitions are determined by a compara-
tive appraisal to find the topology that minimizes (10) among
the switching possibilities defined by Assumption 2.

Therefore, the communication structure evolution is driven
by movements within walks of a decision graph where the
nodes are the set of topologies and the edges are defined by
the parent-children relations (see Figure 1).

IV. CONTROLLER DESIGN

In this section, we first introduce the main design method
for matrices KΛi

and PΛi
[9]. Subsequently, new constraints

are introduced to guarantee convexity, invariance and submod-
ularity properties of the topologies boundaries.

A. Main Problem

Consider any topology Λi ∈ T and let

QN = (QC)C∈N/Λi
and RN = (RC)C∈N/Λi

, (14)

be the aggregate positive semi-definite and definite weighting
matrices that define the global stage cost according to (7).
Then, the problem for computing matrices KΛi

, which stabi-
lize the overall system, and PΛi

, which provide a bound on
the cost-to-go, is the following:

min
KΛi

,PΛi

tr(PΛi
)

s.t.

PΛi
− (AN +BNKΛi

)
T
PΛi

(AN +BNKΛi
) >

QN +KT
Λi
RNKΛi .

(15a)

a
Λi= b =⇒

{
PΛi,ab = PΛi,ba = 0,

KΛi,ab = KΛi,ba = 0,
(15b)

where
(i) Constraint (15a) implies

xT
N (k)PΛixN (k)− xT

N (k + 1)PΛixN (k + 1) >

xT
N (k)

(
QN +KT

Λi
RNKΛi

)
xN (k), ∀k ≥ 0.

(16)
Therefore, inequality (9) is fulfilled.

(ii) Constraint (15b) entails that if two agents a and b are not
physically connected by Λi, which is denoted by a Λi= b,
the subblocks of matrices PΛi

and KΛi
that link both

agents are null matrices of corresponding dimensions (see
Figure 2).

Inequality (15a), which is bilinear on variables KΛi
and

PΛi
, can be rewritten as an LMI on variables

WΛi = P−1
Λi

and YΛi = KΛiWΛi , (17)

where WΛi
= WT

Λi
since PΛi

is symmetric [9]. In particular,
pre- and post-multiplying (15a) by WΛi

, it is obtained

WΛi −
(
WΛiA

T
N + Y T

Λi
BT
N
)
PΛi (ANWΛi +BNYΛi) >

WΛi
QNWΛi

+ Y T
Λi
RNYΛ,

(18)

which, considering QN = Q
1/2
N Q

1/2
N and RN = R

1/2
N R

1/2
N ,

leads to

WΛi − ST
Λi

 WΛi

I
I

−1

SΛi > 0, (19)

Fig. 2. Structure of feedback gain KΛ for an example with N = 4 agents
and |L| = 3 links.
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where SΛi
= [WΛi

AT
N + Y T

Λi
BT
N WΛi

Q
1/2
N Y T

Λi
R

1/2
N ]T.

Considering the above and applying the Schur comple-
ment [28], problem (15) can be reformulated as

max
YΛi

,WΛi

tr(WΛi
)

s.t.
WΛi

WΛi
AT

N + Y T
Λi
BT

N WΛi
Q

1/2
N Y T

Λi
R

1/2
N

ANWΛi
+BNYΛi

WΛi
0 0

Q
1/2
N WΛi

0 I 0

R
1/2
N YΛi

0 0 I

 > 0,

(20a)

a
Λi= b =⇒

{
WΛi,ab = WΛi,ba = 0,

YΛi,ab = YΛi,ba = 0,
(20b)

where (20a) is the LMI associated with (19), the commu-
nication constraints are considered in (20b), and I is the
identity matrix of suitable dimensions. That is, problem (20)
provides a pair of matrices (YΛi

,WΛi
) such that corresponding

pair (KΛi
, PΛi

) satisfies constraints (15). In this way, for
every communication structure Λi, we obtain a matrix PΛi

satisfying (9), and a feedback gain KΛi that guarantees global
closed-loop stability under the corresponding communication
constraints.

Theorem 1. The set of LMIs resulting from (15) to calculate
all KΛi

, PΛi
with Λi ∈ T , has a solution iff the decentralized

topology has a solution.

Proof. We first demonstrate that the existence of a so-
lution for the decentralized case is a sufficient condition.
Let (YΛdec

,WΛdec
) be a solution of problem (20) for topol-

ogy Λdec = ∅. Then, corresponding matrices KΛdec
, PΛdec

satisfy (15) for all Λi ∈ T due to

(i) Constraint (15a) is equal for all Λi ∈ T .
(ii) The decentralized communication constraints entail (15b)

for all other Λi ∈ T .

In particular, constraint (15b) becomes less restrictive for
topologies with a greater number of enabled links. As a
consequence, the existence of a feasible solution for the rest
of topologies is guaranteed. Finally, the condition is also nec-
essary because a feasible solution for the decentralized case,
as for every topology managed by the coalitional controller,
is also required. �

Remark 3. Based on the above, if topology Λi has a solution,
i.e., KΛi

and PΛi
, then the existence of a feasible solution for

any of its ascending topologies is guaranteed.

In the following subsections, problem (15) is extended to
consider additional constraints providing properties of interest
for the topology switchings. However, it must be noted that
adding further restrictions to (15) may reduce the space of
feasible solutions, and hence the optimality of matrices KΛi

and PΛi
. In order to assess the impact of the latter, we use

the following index [11]:

η =

∑
Λi∈T tr(PΛi)

2|L|tr(PLQR)
, (21)

where PLQR stems from the discrete-time Riccati equation as-
sociated with the centralized linear-quadratic regulator (LQR)
controller, which satisfies (9) with an equality.

B. Convexity Constraints

Consider that the following inequalities are added to the set
of constraints in problem (15):

PΛj
> PΛi

, ∀Λj ∈ TΛi
, Λi ∈ T . (22)

Then, the boundaries between any parent and children topolo-
gies become ellipsoidal surfaces, and thus, sets Υ

Λj

Λi
become

ellipsoidal regions [26]. Since (22) can be rewritten as

WΛj
> WΛi

, ∀Λj ∈ T Λi , Λi ∈ T , (23)

then, the convexity constraint can be directly integrated into
problem (20). In particular, we propose two alternatives for
computing set of matrices (YΛi , WΛi ) for all Λi ∈ T : on
the one hand, it can be proceeded sequentially as described in
Algorithm 1, i.e., starting from Λcen, for which (23) is omitted,
and computing descending topologies pairs (YΛi

, WΛi
); on

the other hand, all matrices (YΛi
,WΛi

) may be introduced as
optimization variables in a single LMI to calculate all Λi ∈ T
at once, i.e.,

max
[YΛi

,WΛi
]Λi∈T

∑
Λi∈T

tr(WΛi
)

s.t. (20a), (20b) and (23), ∀Λi ∈ T .
(24)

Subsequently, using (17), all (YΛi ,WΛi) can be transformed
into (KΛi

, PΛi
).

Algorithm 1 Sequential procedure for convexity
Let Γ = {Λcen, . . . ,Λdec} be a sorted set arranging all Λi ∈
T in decreasing order according to their cardinality. Also,
let Γt denote the t-th topology in Γ, hence, Γ1 = Λcen

and Γ2|L| = Λdec.
1: Compute matrices (WΛcen

, YΛcen
) by solving (20).

2: for t = 2 to t = 2|L| do
3: Set Λi = Γt.
4: Fix matrices WΛj

of topologies Λj ∈ T Λi as constants.
5: Compute matrices (WΛi

, YΛi
) by solving

max
YΛi

,WΛi

tr(WΛi
)

s.t. (20a), (20b) and (23).
(25)

6: end for

It is also possible to identify convex sets characterizing the
relative dominance between different controller structures, i.e.,
where a certain topology is more suitable than others. For
example:

RΛj = {xN | r(Λj , xN ) ≤ r(Λi, xN ), ∀Λi ∈ T Λj}, (26)

is the ellipsoidal set where topology Λj dominates all of
its parent topologies. Additionally, notice that the convexity
property of sets Υ

Λj

Λi
applies equally for any pair Λi and Λj ,

with Λj descending from Λi.



IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. YY, MAY 2021 6

Remark 4. Condition (22) can be satisfied by adjusting the
bound on the performance costs provided by matrices PΛi for
all Λi ∈ T . For this reason, this constraint does not endanger
the feasibility of the proposed set of LMIs.

Dwell time to avoid back-switchings: Consider any switching
from Λi to a descending topology Λj at any instant k′. Without
further LMI constraints, we can assure that the global system
state will evolve within ellipsoid Υ

Λj

Λi
from instant k′ + TDij

if topology Λj remains unchanged. Hence, after TDij
time

steps, it is guaranteed that there are no back-switchings in
the network, that is, the system will not switch back to
the previous topology since Λj will always dominate Λi,
i.e., r(Λj , xN (k)) ≤ r(Λi, xN (k)) for all k ≥ k′ + TDij

.
By using the largest absolute value of the eigenvalues in
(AN + BNKΛj

), say λj < 1, an upper bound on this time
interval can be found as(

λj
)TDij R

Υ
Λj
Λi

≤ r
Υ

Λj
Λi

, (27)

where TDij
is defined as the dwell time, and R

Υ
Λj
Λi

and r
Υ

Λj
Λi

are respectively the lengths of the semi-major and semi-minor
axis of Υ

Λj

Λi
. Note that the worst scenario is the one where the

system enters into set Υ
Λj

Λi
through its furthest point from the

origin and thus the reason for using R
Υ

Λj
Λi

and r
Υ

Λj
Λi

.

C. Invariance Constraints

The evolution of the system state towards the origin is
expected to progressively reduce the number of enabled links
among control agents according to (10). In this context,
besides the properties obtained from the constraints in (15)
and (22), the invariance properties of the switching sets are of
particular interest. To this end, let us consider

P
Λj

Λi
−
(
AN +BNKΛj

)T
P

Λj

Λi

(
AN +BNKΛj

)
> 0,

∀Λj ∈ TΛi , Λi ∈ T ,
(28)

as a new restriction on the transition matrices. By adding
both (22) and (28) to problem (15), matrices (KΛi

, PΛi
) for

all Λi ∈ T can be designed such that the switching sets are
convex and invariant for any transition towards descending
topologies, i.e., matrix PΛj

Λi
provides an invariant set confining

the system state when imposing topology Λj after Λi. Addi-
tionally, new Lyapunov functions for the system characterizing
the ascending-to-descending topology transitions are obtained,
i.e., VΛj−Λi (xN (k)) = xT

N (k)P
Λj

Λi
xN (k).

Due to the nonlinearities arising when considering all con-
ditions in (15), (22) and (28) at once, and the impossibility
of rewriting all these constraints into LMIs, we propose the
iterative design method described in Algorithm 2. Notice that
at item 1, all feedback gains KΛi

and matrices PΛi
are

designed using main problem (15). On the other hand, item 2
modifies matrices PΛi

to provide the convexity and invariance
properties, which just affects the switching criterion. Since
in this second item gains KΛi are introduced as constant,
problem (30) is formulated directly on variables PΛi

. Sub-
sequently, gains KΛi

are updated at item 3 by minimizing
variable ξ > 0 which weights all matrices PΛi

. In this

Algorithm 2 Iterative design method
Let l be the iteration index and p a counter variable, and
initialize l = 1 and p = 0.

1: For all Λi ∈ T , compute matrices (W p
Λi
, Y pΛi

) by solving
problem (20), and find (Kp

Λi
, P pΛi

) using (17).
2: Fix matrices Kp+1

Λi
= Kp

Λi
as constant matrices and obtain

new P p+1
Λi

by solving

min
[PΛi

]Λi∈T

∑
Λi∈T

tr(PΛi)

s.t. (15a), (15b), (22) and (28), ∀Λi ∈ T .
(30)

3: Define matrices P p+2
Λi

= ξP p+1
Λi

, where P p+1
Λi

is a constant
matrix and ξ is an optimization variable. Then, solve

min
ξ,[KΛi

]Λi∈T
ξ

s.t. (15a), (15b), (29), ∀Λi ∈ T ,
ξ > 0.

(31)

and get new gains Kp+2
Λi

.
4: Set p = p + 2 and l = l + 1 and go to Step 2

until a maximum number of iterations is reached or until
convergence is attained.

regard, notice that constraints (22) and (28) particularized for
matrices P p+2

Λi
= ξP p+1

Λi
simply imply

ξP
Λj

Λi

p+1
> 0 and

ξP
Λj

Λi

p+1
−
(
AN +BNKΛj

)T
ξP

Λj

Λi

p+1 (
AN +BNKΛj

)
> 0,

∀Λj ∈ TΛi , Λi ∈ T ,
(29)

where PΛj

Λi

p+1
= P p+1

Λj
− P p+1

Λi
, with P p+1

Λi
and P p+1

Λj
being

constant matrices satisfying (22) and (28), and ξ and KΛi
are

variables. Following [11], constraints (15a) and (29) can be
transformed into LMIs on variables (ξ,KΛi) for all topolo-
gies Λi ∈ T , hence problem (31) can be formulated as an
optimization problem with LMI constraints.

Note that problem (30) in Algorithm 2 may be implemented
via a single LMI or in a sequential fashion, i.e., starting from
Λi = Λcen, and solving

min
PΛi

tr(PΛi
)

s.t. (15a), (15b), (22) and (28),
(32)

for descending topologies introducing PΛj of all Λj ∈ T Λi as
constant matrices. Similarly, problem (31) can be implemented
sequentially considering independent variables ξΛi

for each
topology Λi ∈ T with ξΛcen

= 1.

D. Submodularity Constraints

The problem of optimizing the system partition translates
into finding a topology Λ∗ such that

Λ∗ = arg min
Λi∈T

r(Λi, xN ). (33)
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Notice that the number of alternatives in T experiences a
combinatorial explosion with the number of communication
links, thus increasing the difficulty of the topology decision
problem. As it is well known, in submodular functions opti-
mization, greedy algorithms yield nearly optimal performance
while notably reducing the space of possible solutions to
evaluate [29]. In general, any set function h : 2f → R is
submodular if the following holds:

h(A ∪ {e})− h(A) ≥ h(B ∪ {e})− h(B).

∀A ⊆ B ⊆ f, e 6∈ B.
(34)

Commonly h represents an utility function, hence (34) implies
that the marginal utility from adding a new element {e} to
a certain input set decreases as the size of the input set
increases. Since r(Λi, xN (k)) does not provide directly the
utility of topology Λi but its cost, function −r(Λi, xN (k))
will be considered. Then, applying (34), we obtain

r(Λj , xN (k))− r(Λj ∪ {e}, xN (k)) ≥
r(Λi, xN (k))− r(Λi ∪ {e}, xN (k)),

∀Λj ⊆ Λi ⊆ Λcen, e /∈ Λi,
(35)

which can be seen as an instance of the law of diminishing
returns regarding the marginal contribution of link e, i.e.,
expression (35) entails that adding a new enabled link e to
topology Λj ∈ TΛi

decreases r(Λi, xN (k)) by at least as much
as adding link e to topology Λi. Introducing definition (10),
inequality (35) can be formulated as

xT
N (k)

(
PΛj − PΛj∪{e} + PΛi∪{e} − PΛi

)
xN (k) ≥

(f(Λi ∪ {e})− f(Λi)− f(Λj ∪ {e}) + f(Λj)),

∀Λj ⊆ Λi, e /∈ Λi.

(36)

Notice that for the particular case of linear coordination costs
f(Λi) = c|Λi| for all Λi ∈ T , where c ∈ R+\{0} is a cost
per enabled link, condition (36) leads to

PΛj
−PΛj∪{e} ≥ PΛi

−PΛi∪{e}, ∀Λj ⊆ Λi, e /∈ Λi, (37)

since f(Λj ∪ {e})− f(Λj) = f(Λi ∪ {e})− f(Λi).

Following similar steps as in Algorithm 2, it is possible to
design the criterion for switching to satisfy the submodularity
condition and hence problem (33) can be solved in a greedy
fashion. In particular, for the linear coordination costs case,
constraints (22) and/or (28) can be replaced by/combined
with (37) in problem (30). Likewise, in problem (31), con-
straint (29) may be omitted since the submodularity condition
will hold for all ξ > 0.

Remark 5. Each iteration of Algorithm 2 involves two op-
timization problems comprising all topologies variables and
constraints, which may limit the applicability of this design
method. However, consider communication network (N ,L)
(from which set T is derived) and let (N−,L−) ⊂ (N ,L) be a
certain subnetwork. Then, all submodularity constraints (36)
associated with (N−,L−) are contained in the set of con-
straints (36) corresponding to (N ,L). The latter allows us

to define a sequential procedure for finding matrices fulfill-
ing (36), i.e., starting from a subnetwork with two links, it may
be possible to go towards larger subnetworks by setting the
previously computed matrices as constant. Additionally, it is
possible to assess how far is the system for being submodular
by computing factor ε such that

PΛj
− PΛj∪{e} + PΛi∪{e} − PΛi

+ εI ≥
(f(Λi ∪ {e})− f(Λi)− f(Λj ∪ {e}) + f(Λj))I,

∀Λj ⊆ Λi, e /∈ Λi.

(38)

V. COORDINATION EFFORT REGIONS

In this section, we exploit the convexity property provided
by (22) to find ellipsoidal approximations of the state-space
regions where topologies with a given number of enabled links
dominate those involving a higher/lower level of coordination.

Consider ellipsoid S(G, g) = {xN ∈ RnxN : xT
NGxN +

g ≤ 0}, where G ≥ 0 and g ≤ 0, and note that, by (22), there
exist real numbers αij ≥ 0 and βij ≥ 0 satisfying

βijI ≤ PΛj − PΛi ≤ αijI, ∀Λi ∈ T ,Λj ∈ TΛi , (39)

being I the identity matrix of corresponding dimensions.

Remark 6. Taking αij and βij respectively as the maximum
and minimum eigenvalues of PΛj

Λi
, it is possible to obtain the

maximum inscribed ball and the minimum enclosing ball of
dominance set Υij , hence, S(αijI, fij) ⊆ Υij ⊆ S(βijI, fij).

Additionally, let us define set

Γ` = {Λi : Λi ∈ T and |Λi| = `}, ∀` = 0, ..., |L|, (40)

which contains all topologies in T with ` enabled links, and
let ∆f` = f(`)−f(`+1). Finally, consider the following opti-
mization problems in positive definite symmetric variables M`

and N`:

M` = arg min
M

tr(M)

s.t. PΛj
− PΛi

< M, ∀Λj ∈ Γ`, Λi ∈ T Λj ,
(41)

and

N` = arg max
N

tr(N)

s.t. N < PΛj − PΛi , ∀Λj ∈ Γ`, Λi ∈ T Λj ,

N > 0.

(42)

Then, the following conclusions can be drawn:
(i) If xN (k) 6∈ S(N`,∆f`), topologies with ` + 1 links

prevail over those with ` links.
(ii) If xN (k) ∈ S(N`,∆f`) but xN (k) 6∈ S(M`,∆f`), the

system is in a transition zone where either topologies with
` or `+ 1 links may dominate each other.

(iii) If xN (k) ∈ S(M`,∆f`), it is guaranteed that all topolo-
gies with ` links dominate those with `+ 1 links.

In particular, consider any pair of topologies Λi and Λj such
that |Λi| = ` + 1 and |Λj | = `, and assume that state xN
belongs to set S(M`,∆f`). Then,

xT
N (k)M`xN (k) + ∆f` ≤ 0, (43)
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and, since PΛj
− PΛi

< M` and ∆f` = γji, the following
holds:

xT
N (k)

(
PΛj
− PΛi

)
xN (k) + γji

< xT
N (k)M`xN (k) + γji ≤ 0.

(44)

That is, xN (k) is contained in ellipsoid Υ
Λj

Λi
. Similarly, if

state xN (k) /∈ S(N`,∆f`), then, xT
N (k)N`xN (k) + γij > 0.

Therefore,
xT
N (k)

(
PΛj − PΛi

)
xN (k) + γji > 0, (45)

i.e., xN (k) /∈ Υ
Λj

Λi
.

Remark 7. Constraints on the structure of matrices N`
and M` can be added to problems (41) and (42). In particular,
if N` = n`I and M` = m`I , with n`,m` ≥ 0, then
sets S(M`,∆f`) and S(N`,∆f`) represent balls in the state
space satisfying the properties above. In this regard, notice
that problems (41) and (42) are feasible since it is possible
to take n` = maxij αij and m` = minij βij , for all i, j such
that Λj ∈ Γ`,Λi ∈ T Λj .

VI. CONTROL SCHEME

In this section, a description of the proposed coalitional
control scheme is provided. In particular, the control algorithm
is based on a double-sample rate strategy that allows periodical
switchings between a set of predefined topologies according to
Assumption 2. After the formal statement, we briefly discuss
the stability properties of this control scheme.

Control Scheme 1

Let Ttop be a number of time steps denoting the op-
eration period of any communication topology. Consider
also set K = {pTtop | p ∈ N+}. Then, starting from
any communication topology Λi ∈ T , at each sample
time k:

1: if k ∈ K then
2: Set T + of possible future topologies is determined

following Assumption 2.
3: The agents share their state, and cost function (10) is

evaluated for all possibilities in T +.1

4: Topology Λ∗ that results in the minimum cost is se-
lected and new coalitions are formed if necessary, then
Λi ← Λ∗.

5: else
6: Within each communication component, the state of the

grouped subsystems is shared.
7: end if
8: Control action uC(k) = KC,Λi

xC(k) is applied to all
clusters C ∈ N/Λi, where matrices KC,Λi are determined
by one of the two algorithms introduced in Section IV.

1The exchange of the local states should be sufficient to compute (10)
for all topologies in T +. In this sense, it can be considered that all agents
share their state with a top layer that computes all indices r(Λi, xN (k)).
Alternatively, given the structure of matrices PΛ, any coalition C ∈ N/Λ
can compute independently its contribution to (10) if just the agents in C
exchange their state. In the latter case, function (10) may be computed as a
sum of the clusters contributions.

Notice that the network topology switchover is based on an
assessment procedure in which the agents share information to
make a collective choice of the new communication network,
hence all nodes should be accessible. Also, note that the
control scheme is independent of the design method used to
compute matrices KΛi

and PΛi
.

Remark 8. The dwell-time constraint can be easily considered
by modifying the condition at item 1 of Control Scheme 1, i.e.,
if any topology Λi is imposed at instant k, then items 2 to 4
are not implemented again until instant k + TDij

.

Remark 9. Conditions (i) and (iii) in Section V can be
integrated at item 3 of Control Scheme 1 to fasten the topology
decision. For example, if the current topology has ` links
and xN ∈ S(M`,∆f`), then there is no need for evaluating
function (10) for any topology in T`+1. In this regard, notice
that, since it is needed to alter problem (15) to satisfy
the convexity constraints, the cooperation effort zones are
suboptimal. However, if convexity can be guaranteed with just
a minor change in matrices PΛi

, then the difference of (10)
between the selected topology and the optimal one according
to [9] should be small. Note also that matrices M` and N`
can be designed to be block diagonal in order to facilitate a
distributed computation of conditions (i) to (iii).

A. Stability Properties

In this subsection, stability of Control Scheme 1 is first
established by proving that function (10) goes to zero asymp-
totically. In particular, once we fix a particular topology Λi,
the global system state evolves within the contractive invariant
set

ΩΛi (xN (k)) ={
xN (k′) | xT

N (k′)PΛi
xN (k′) ≤ ρΛi

(xN (k))
}
,

(46)

where k′ ≥ k and ρΛi
(k) = xT

N (k)PΛi
xN (k).

As a consequence, function (10), i.e., r(Λi, xN (k)) =
xT
N (k)PΛixN (k) + fi, decreases in time. With this in mind,

we focus on the dynamical switchings between communication
topologies.

Proposition 1. Index r(·) is a decreasing function over time
regardless the switchings between topologies.

Proof. Let us consider that the system starts from
state xN (k) 6= 0 with topology Λi and that a transition to
topology Λj takes place at time k∗ > k. Hence, it follows that
r(Λi, xN (k∗)) ≤ r(Λi, xN (k)). Additionally, the condition
for switching is

r(Λj , xN (k∗)) < r(Λi, xN (k∗)), (47)

that is, any transition entails an instantaneous decrease of r(·).
Likewise, this index will decrease over time once we im-
pose Λj . The extension of this result for all topology tran-
sitions leads us to conclude that (10) is a decreasing function
in time. Finally, when the system reaches the origin, the term
dependent on the system state becomes zero and r(·) will be
defined by the cost of the enabled links, which will foster
transitions towards the most decentralized topology. �
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Remark 10. Index r(·) can be written as r(Λi, xN (k)) =
VΛi(xN (k)) + fi. Then, a transition from Λi to Λj at in-
stant k takes place iff VΛj (xN (k))− VΛi(xN (k)) ≤ fi − fj .
Additionally, since VΛj

(xN (k + 1)) ≤ VΛj
(xN (k)), we have

that VΛj
(xN (k + 1)) − VΛi

(xN (k)) ≤ fi − fj . That is,
any transition entails a decrease of r(Λi, xN (k)), so that the
increases of VΛi(xN (k)) due to the switchings are bounded.

Also, the following proposition introduces an alternative
approach for proving stability of the proposed coalitional
controller:

Proposition 2. Let Λ(k) be the current topology at time
instant k. If the number of topology switchings along time
is equal to |L|, there are at most |L| bounded increases
in function VΛ(k)(xN (k)), hence this function is bounded.
Additionally, after the last switching event, VΛ(k)(xN (k)) will
go to zero asymptotically.

The proof of the proposition above is straightforward by
considering Assumption 1 and Remark 10.

Finally, note that if the design was successful for all topolo-
gies, then stability between switchings may also be proven if
a common Lyapunov function can be found for all topologies.
In particular, let us fix feedback gains KΛi , then, we need to
find a common matrix P > 0 satisfying the set of LMIs

P − (AN +BNKΛi
)
T
P (AN +BNKΛi

) > 0, (48)

for all Λi ∈ T . If such P exists, then function xT
NPxN is a

common Lyapunov function for all Λi ∈ T . Notice that the
inequalities above constitutes an LMI that can be solved a
posteriori since gains KΛi

are constant matrices.

VII. SIMULATION EXAMPLE

In this section, we apply the coalitional scheme to a modi-
fied version of the system proposed in [30], [31]. In particular,
we consider four trucks, i.e., N = {1, 2, 3, 4}, coupled via
springs and dumpers as shown in Figure 3. The dynamics of
each truck are modeled by

[
ṙi
v̇i

]
= Aii

[
ri
vi

]
+Biiui +

∑
j∈Ni

Aij

[
rj
vj

]
, (49)

𝑚1 𝑚2 𝑚3 𝑚4

𝑟1 𝑟2 𝑟3 𝑟4

𝑢1 𝑢2 𝑢3 𝑢4

𝑘12 𝑘23 𝑘34

ℎ12 ℎ23 ℎ34

1 2 3 4
I II III

Fig. 3. Four-truck system and related simplified network.

with

Aii =

 0 1

− 1

mi

∑
j∈Ni

kij − 1

mi

∑
j∈Ni

hij

,
Aij =

 0 0
1

mi

∑
j∈Ni

kij
1

mi

∑
j∈Ni

hij

,
and Bii =

[
0
50

]
, ∀i ∈ N ,

(50)

where mi, kij and hij represent the masses, spring stiffnesses
and damping factors, respectively. The state xi of each sub-
system is formed by the displacement ri from the equilib-
rium point and by the instantaneous velocity vi. Additionally,
the agents can apply a longitudinal force Fi = 50ui [N],
where ui is the control action. The continuous-time dynamics
are discretized using zero-order hold and a sampling time
of 0.15s. The parameters that characterize the system are given
in Table I, the stage performance function `i is defined by
matrices Qi = I and Ri = 100 for all i ∈ N , and the
initial states are x1 = [−2.6, 1.0]T, x2 = [2.8, −2.0]T,
x3 = [3.0, −1.6]T and x4 = [−4.4, 1.4]T.

The four agents are connected by a network of three
bidirectional links, i.e., L = {I, II, III}, as shown in Figure 3.
Also, we have assumed indirect connections, i.e., any two
agents can communicate if there exists a path of one or
more links connecting them. In Table II, we specify the eight
network topologies that can be imposed, specifying the links
that are enabled in each of them.

Control Scheme 1 has been implemented using Ttop = 5
and an initial centralized topology Λcen = Λ7. For the
controller design, we have used Matlab® LMI Control
Toolbox [32] and, in particular, the solver mincx, in
a 1.8 GHz quad-core Intel® CoreTM i7/8 GB RAM computer.
In what follows, we illustrate graphically the results obtained
when matrices (KΛi , PΛi ) for all Λi ∈ T satisfy, besides
conditions in (15), the constraints in the following scenarios:
(i) (22), i.e., the convexity condition.

(ii) (22) and (28), i.e., convexity and invariance.
(iii) (22) and (36), i.e., convexity and submodularity.
For the matrices computation, we have followed Algorithm 1
in case (i) and Algorithm 2 in cases (ii) and (iii). The

TABLE I
MASSES, SPRING STIFFNESSES AND DAMPING FACTORS

Masses m1 m2 m3 m4

Value [kg] 2.5 1.0 1.5 2.0

Spring
stiffnesses

Value
[N/m]

Damping
factors

Value
[N/(m·s)]

k12 0.75 h12 0.40
k23 1.50 h23 0.50
k34 1.0 h34 0.45

TABLE II
NETWORK TOPOLOGIES FOR THE FOUR TRUCKS SYSTEM

Topology Links Topology Links
Λdec = Λ0 ∅ Λ4 {I,II}

Λ1 {I} Λ5 {I,III}
Λ2 {II} Λ6 {II,III}
Λ3 {III} Λcen = Λ7 L = {I,II,III}
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(a) Case (i)

(b) Case (ii)

(c) Case (iii)

Fig. 4. Boundaries between topologies in the plane defined by x1 = [0 0]T,
x2 = [0 0]T and x4 = [0 0]T. The circle marked line represents the evolution
of subsystem 3 state components and the dashed lines are level curves of
VΛi

= xT
NPΛi

xN . Notice that according to the properties provided by
constraint (28), the colored ellipsoids in figure (b) are also invariant sets.

TABLE III
PERFORMANCE COSTS AND COMMUNICATION EFFORT

Case (i) Case (ii) Case (iii) Problem (15)
c Perf. Comm. Perf. Comm. Perf. Comm. Perf. Comm.
2.5 280.63 17 280.31 17 280.29 17 280.50 17
1 280.19 32 280.31 17 280.17 22 280.22 27
0.6 280.19 32 280.14 27 280.17 22 280.22 27
0.45 280.19 32 282.14 27 280.13 27 280.22 27
0.15 280.11 47 282.11 37 280.11 32 280.12 42
Λdec 284.47 0 283.28 0 282.38 0 284.24 0
Λcen 280.09 120 280.09 120 280.09 120 280.09 120
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Fig. 5. Network topologies across time for cases (i), (ii) and (iii).
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Fig. 6. Displacement and velocity of the four trucks in case (i), and
corresponding decentralized and LQR results.

stop criterion in Algorithm 2 is |η(l) − η(l − 1)| < 0.001,
being η(l) the value of (21) obtained at iteration l. Since
the system evolves in the eight-dimensional space, a plane
has been selected to allow for a bidimentional illustration of
the boundaries that characterize the topology transitions. In
this regard, Figure 4 shows the plane [r3, v3] for cases (i) to
(iii) when the communication costs are linear, i.e., fi = c|Λi|
in (10) for all Λi ∈ T , with c = 0.6. This figure shows the
ellipsoidal shape of these borders, which enclose dominance
sets where a certain topology improves the value of (10) over
the previously established one on the network (recall (11) and
note that constraint (22) is satisfied in all cases). The network
topologies used over time in these simulations are specified
in Figure 5. In this regard, the topology sequence shown in
scenario (iii) equals the solution obtained in a greedy fashion,
i.e., when Λ∗ is built up from Λdec by incrementally adding
those links providing greater benefits. Also, as example, Fig-
ure 6 illustrates the evolution of the system state obtained in
case (i) and the corresponding decentralized and LQR results.

Table III shows the cumulative performance costs (i.e.,∑
k

∑
C `C(k), where k is the time index) and the commu-

nication effort (calculated as
∑
k |Λ(k)|) for the coalitional

controllers of the proposed scenarios for different values of pa-
rameter c. Also, the costs of the decentralized and centralized
controllers are given, together with the results that would have
been obtained with the original design method [9], i.e., just
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Fig. 7. Sets S(N`,∆f`) in the plane defined by x1 = [0 0]T, x2 =
[0 0]T and x4 = [0 0]T for linear and quadratic costs f(Λ). In this figure,
matrices PΛ were designed according to Design Method 2.

considering problem and constraints (15). In this regard, notice
that adding these new constraints to the controller design do
not significantly impact the overall performance costs. Also,
Table IV compares the value of suboptimality index (21)
obtained for different sets of constraints and design methods.
Note that when η is close to 1, then the sum of the traces of
matrices PΛi is close to the corresponding LQR result.

Additionally, for the case (i), we have computed the dwell
time under the conservative approach proposed in Subsec-
tion IV-B, where the values of all TDij

calculated are specified
in Table V. Note that using a switching period Ttop lower than
the dwell time neither endangers stability nor the convexity
properties of the boundaries.

Finally, sets S(N`,∆f`) for ` = 2, 1, 0 are illustrated
in Figure 7. This figure compares the results when using linear
and quadratic functions for weighting the coordination costs.
Also, matrices PΛi

were designed according to case (ii). Note
that S(N2,∆f2) shows the region where at least one topology
with two links starts dominating the centralized topology.

VIII. CONCLUSIONS

In this paper, we deal with topology switching boundaries in
a coalitional control scheme. In particular, we have considered
a multi-agent network where the communication structure
among the set of control entities changes with time to deal with
the varying interaction between subsystems. In this context,
different communication topologies have been assessed in real
time rewarding improvements of the system performance and
penalizing overuses of communication resources.

Our main contribution are design procedures for coalitional
control that guarantee convexity and invariance of the switch-
ing sets, thus simplifying the selection of the topology. New
conditions to attain submodularity and reduce the effort to
find optimal solutions have also been presented. Likewise,

TABLE IV
SUBOPTIMALITY INDEX η

Constraints η
Algorithm 1 (15), (22) 1.0675

Algorithm 2

(15), (22) 1.0404
(15), (22), (28) 1.0414
(15), (36) 1.0413
(15), (22), (36) 1.0413
(15), (22), (28), (36) 1.0424

TABLE V
DWELL TIME IN THE ALLOWED TRANSITIONS

Transition Dwell
time

Transition Dwell
time

Transition Dwell
time

Λ7 → Λ6 18 Λ6 → Λ2 26 Λ4 → Λ1 20
Λ7 → Λ5 22 Λ5 → Λ3 24 Λ3 → Λ0 19
Λ7 → Λ4 22 Λ5 → Λ1 21 Λ2 → Λ0 20
Λ6 → Λ3 30 Λ4 → Λ2 18 Λ1 → Λ0 21

a dwell-time approach to prevent back-switchings has been
introduced, and the convexity property is exploited to analyze
the need for coordination at different points of the state space.
Two different algorithms have been proposed with the aim
of combining the aforementioned properties at the designer’s
choice. All these strategies allow us to identify convex sets
characterizing regions in the system state space where a certain
controller structure is the most suitable.

The proposed design methods may result of interest in
distributed model predictive control (MPC) schemes as they
provide convex terminal invariant sets identifying regions
where the network topology can be modified, hence paving the
way for novel coalitional MPC applications. For this reason,
future research should extend this study to the MPC framework
and provide results in large-scale systems.
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