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Abstract

Among the boundary equilibrium bifurcations in planar continuous piecewise

linear systems with two zones separated by a straight line, the focus-saddle

bifurcation corresponds with a one-parameter transition from a situation

without equilibria to a configuration with two equilibria, namely a focus

and a saddle point. Depending on the dynamics of the two linear systems

involved, the focus can appear surrounded by a limit cycle, by a saddle-loop

(homoclinic connection) or by nothing else.

After introducing a criticality coefficient whose sign discriminates the

different possible situations, the focus-saddle bifurcation is quantitatively

characterized for the first time. The analysis requires to work in a more

general framework, as is the family of planar refracting linear systems with

two zones, for which a new result about existence and uniqueness of limit

cycles and saddle-loops is also shown.
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The achieved results are applied to the study of oscillations in an elec-

tronic circuit involving a single memristor cell, showing rigorously the appear-

ance of limit cycles via the focus-saddle bifurcation analyzed in the paper.

Keywords: Qualitative Theory of ODEs, Piecewise linear systems, limit

cycles, bifurcations

1. Introduction and statement of main results

In this paper, we consider continuous piecewise linear differential systems

(PWL systems, for short) with two linearity zones separated by a straight

line representing the only non-smoothness manifold in the phase plane. Such

systems are relevant in different application fields and have been studied by5

several authors; see [1, 2] and references therein for a thorough introduction

and a revision of the state of the art in the study of these systems.

Our main goal is to characterize in a precise way the focus-saddle bound-

ary equilibrium bifurcation for such continuous PWL systems, a phenomenon

leading to the creation/annihilation of two equilibrium points (a focus and10

a saddle) along with the possible appearance of a limit cycle or a saddle

connection surrounding the focus, see Chapter 5 of [1] and [3, 4].

We will assume without loss of generality that the linearity regions in the

phase plane are the left and right half-planes,

SL = {(x, y) ∈ R2 : x < 0}, SR = {(x, y) ∈ R2 : x > 0},

separated by the straight line Σ = {(x, y) ∈ R2 : x = 0}.
We proceed by considering a specific family of systems within the more
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general setting of discontinuous systems. Namely, we first study discontinu-15

ous PWL systems for which the two involved linear vector fields share their

normal component to Σ at all the points of such discontinuity manifold.

These systems are known as refracting systems and are characterized by not

having any sliding segment in the discontinuity manifold Σ, see [5]. In other

words, orbits arriving at Σ can be naturally extended by concatenating so-20

lutions from both sides, since all the orbits hit Σ in the so-called sewing or

crossing points, see [6]. In fact, refracting systems belong to the slightly

wider class of sewing systems, characterized by sharing only the sign of the

normal component to the discontinuity manifold Σ, see [7].

To reduce the number of parameters in the analysis, we start by introduc-

ing a canonical form for Σ-refracting PWL systems. A general discontinuous

PWL system can be written as

ẋ =





ARx + bR, if x ∈ SR,

ALx+ bL, if x ∈ SL ∪ Σ,
(1)

where x = (x, y) ∈ R
2 is the vector of state variables, AR = (aRij) and

AL = (aLij) are 2 × 2 constant matrices, bR = (bR1 , b
R
2 )

T , bL = (bL1 , b
L
2 )

T ∈ R2

are constant vectors, and the point denotes derivatives with respect to the

time variable s. Imposing now the refracting condition on these systems, we

require that for all x = (0, y)T ∈ Σ, with y ∈ R,

eT1 (ARx+ bR) = eT1 (ALx+ bL) , (2)

where eT1 stands for the first unitary vector in row form. From (2) and some
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elementary algebra, we must assume aL12 = aR12 and bL1 = bR1 , so that systems

to be studied become

ẋ =



 aL11 a12

aL21 aL22



x +



 b1

bL2



 if x ∈ SL ∪ Σ,

ẋ =



 aR11 a12

aR21 aR22



x +



 b1

bR2



 if x ∈ SR,

(3)

where a12 = aL12 = aR12 and b1 = bL1 = bR1 .25

Remark 1. Note that it is natural to assume a12 6= 0 in (3) if one wants to

cope with non-elementary dynamics. Otherwise, we should have ẋ = b1 for

all the points in Σ, so that all the orbits would cross Σ in the same direction.

Furthermore, the dynamics of the first variable would be decoupled from the

second one in the whole plane, oscillations would be not possible and the30

system could not exhibit a proper two-dimensional dynamics.

As done in Proposition 3.1 of [8], by assuming a12 6= 0 and applying the

homeomorphism x̃ = h(x) given by

x̃ =


 1 0

aL22 −a12


x−


 0

b1


 if x ∈ SL ∪ Σ,

x̃ =


 1 0

aR22 −a12


x−


 0

b1


 if x ∈ SR,

after dropping tildes, we transform systems (3) into the following discontin-
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uous Liénard canonical form for refracting systems

ẋ =



 tL −1

dL 0



x−



 0

µL



 if x ∈ SL ∪ Σ,

ẋ =


 tR −1

dR 0


x−


 0

µR


 if x ∈ SR,

(4)

where µL = a12b
L
2 −aL22b1, µR = a12b

R
2 −aR22b1, and t{L,R} = trA{L,R}, d{L,R} =

detA{L,R} denote the traces and determinants of L- and R-matrices.

Remark 2. It should be noticed that if we start from a continuous PWL

vector field in (1) instead of a refracting system, then the continuity require-35

ment at Σ provides the conditions aL22 = aR22 and bL2 = bR2 . Thus, in such

a case we obtain µL = µR, and the above canonical form turns out to be

continuous.

Regarding the canonical form for refracting systems (4), it is evident that

our systems constitute a specific case of Filippov systems in which, excepting40

the origin, all the points in Σ belong to the so-called crossing or sewing set,

not having a proper sliding set. The origin can be thought as a tangency

point or a singular isolated sliding point, see [6]. When one or both of the two

vector fields vanishes at the origin, such a point is a boundary equilibrium

point; otherwise we can have a pseudo-equilibrium point or even a regular45

point, see [9].

Remark 3. The Liénard canonical form for refracting systems (4) is invari-
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ant under the following transformations:

Π1 : (s, x, y, tL, tR, µL, µR, dL, dR) 7−→ (−s,−x, y,−tR,−tL,−µR,−µL, dR, dL)

Π2 : (s, x, y, tL, tR, µL, µR, dL, dR) 7−→ (−s, x,−y,−tL,−tR, µL, µR, dL, dR)

Π3 : (s, x, y, tL, tR, µL, µR, dL, dR) 7−→ (s,−x,−y, tR, tL,−µR,−µL, dR, dL)

Note that as a result of transformation Π1, we should obtain the symmetrical

version of the system with respect to the y-axis along with a reversal of time

that maintains the rotation sense of orbits around the origin. Similarly, the

transformation Π2 returns the symmetrical version of the system with respect50

to the x-axis, while Π3 = Π1 ◦ Π2 = Π2 ◦ Π1 gets the mirror image of the

system respect to the origin of coordinates.

In canonical form (4), the parameter pair (µL, µR) controls the number

and position of the equilibrium points. From (4) and assuming dLdR 6= 0, the

candidates to be equilibrium points in the left and right zones are respectively

x̄L =

(
µL

dL
, tL

µL

dL

)
and x̄R =

(
µR

dR
, tR

µR

dR

)
.

Obviously, apart from the boundary cases, x̄L is a real equilibrium only if

µLdL < 0, and so is x̄R if µRdR > 0. Otherwise, one can speak of virtual

equilibrium points, since they would not be in the corresponding zone.55

Boundary equilibrium bifurcations in the case of determinants with equal

sign were studied in [10]. Here, we consider the case of determinants with

different sign, and for definiteness we will pay attention to the configuration

dL > 0, dR < 0, and either µLµR > 0 or µL = µR = 0, (5)
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which has obvious dual cases that could be analyzed via Remark 3. In this

situation, regarding equilibria of systems (4), we have the following general

result. The proof is direct and is omitted.

Proposition 1 For refracting systems (4) fulfilling hypotheses (5) the fol-

lowing statements hold.60

a) If µL = µR = 0, then the origin is the single equilibrium point.

b) If µLµR > 0, then the following cases arise.

(i) If µL < 0 or equivalently µR < 0, then the system has two equilib-

rium points, a saddle point in the right zone and an anti-saddle

point (to be a node or a focus) in the left zone.65

(ii) If µL > 0 or equivalently µR > 0, then the system has no equilib-

rium points.

It is easy to rule out the existence of periodic orbits in all the cases where

there are no equilibrium points of focus type, that is, when the two dynamics

involved are of type node and saddle. Therefore, from the dynamical point70

of view, the most interesting case under hypotheses (5) is the focus-saddle

configuration, the case to be considered in what follows. When the left

dynamics is of focus type, having then a saddle dynamics in the right half

plane, it is also clear that in the cases of statement (a) and (b.ii) there cannot

be limit cycles. Effectively, every limit cycle must use the two half planes,75

and then it is not possible to define any return map on the y-axis by using

the orbits in the right part.

Regarding the possible existence of a saddle connection or limit cycles

in the focus case of statement (b.i) of Proposition 1, a first useful result is
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the following. From Proposition 3.7 in [8], which is a direct consequence of80

Bendixson’s criterion, we know that the inequality tLtR < 0 is a necessary

condition for that; for definiteness, we take tL > 0 and tR < 0.

Proposition 2 Considering refracting systems (4) under hypotheses 4dL −
t2L > 0 and dR < 0 with tL > 0, tR < 0, µL < 0, µR < 0, if there exists a

periodic orbit then it is a unique stable limit cycle and there are no homoclinic85

connections. Furthermore, if there exists a homoclinic connection then it is

stable as seen from its interior and there are no periodic orbits.

Proposition 2 will be shown in Section 3. Note that, within the realm

of sewing planar piecewise linear systems, Proposition 2 gives a uniqueness

statement both for limit cycles and saddle-loops in the focus-saddle case90

that cannot be obtained from the recent analysis made in [7]. Effectively,

the condition µL < 0 implies that we have a real focus and so a visible

tangency for orbits approaching the origin from the left. Therefore, the origin

is not a Σ-monodromic singularity in the terminology of the quoted paper.

Thus, Proposition 2 represents a new uniqueness result that was lacking for a95

complete analysis of sewing linear systems in the focus-saddle configuration.

Next result characterizes completely the existence of closed orbits in sys-

tems (4) in the focus-saddle configuration. The main ideas behind the tech-

niques are similar to the ones needed to show Theorem 2.b.3 in [11], but

here we must extend them to cope with the family of refracting systems.100

Furthermore, the discontinuous character of such a family required specific

new uniqueness results for closed orbits, as given in Proposition 2 above. We

introduce some auxiliary parameters to be crucial in the rest of the paper,
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namely

ωL =

√
4dL − t2L

2
, γL =

tL
2ωL

, ωR =

√
t2R − 4dR

2
, γR =

tR
2ωR

, (6)

and

ρ =
µR

µL

· ωL(1 + γ2
L)

ωR(1− γ2
R)

, (7)

along with the angles

θ± = ±2 arctan

(√
1 + [γL + ρ(γR ± 1)]2 ∓ [γL + ρ(γR ± 1)]

)
. (8)

Note that from the condition dR < 0 we have γR ∈ (−1, 1) and so ρ > 0105

when µL < 0, µR < 0. We can state the following result.

Theorem 1 Consider refracting systems (4) under hypotheses 4dL − t2L > 0

and dR < 0 with tL > 0, tR < 0, µL < 0, µR < 0, and γL, γR, ρ, and θ± as

defined in (6)-(8). If we define the values

V± = ±eγLθ±

√
1 + [γL + ρ(γR ± 1)]2, (9)

then the following statements hold.

a) If eπγLV+ +V− < 0, then the unstable focus is surrounded by one stable

limit cycle.

b) If eπγLV+ + V− = 0, then the unstable focus is surrounded by an homo-110

clinic orbit and there are no limit cycles.

c) If eπγLV+ + V− > 0, then the system does not have either limit cycles
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or homoclinic connections.

Theorem 1 is shown in Section 3.

When we consider the case µL = µR = µ in systems (4), we are dealing

with a continuous system, namely

ẋ =



 tL −1

dL 0



x−



 0

µ



 if x ∈ SL ∪ Σ,

ẋ =


 tR −1

dR 0


x−


 0

µ


 if x ∈ SR,

(10)

where we take the parameter µ as the only bifurcation parameter.115

From Proposition 1 and assuming hypotheses (5) with µ = µR = µL, we

first note that for µ < 0 we have a situation with two equilibrium points (a

focus or a node plus a saddle); these two points collide in a single equilibrium

point for µ = 0 and disappear, both becoming virtual equilibrium points for

µ > 0. In this last case µ > 0, it is easy to see that the system dynamics120

excludes equilibrium points and periodic orbits, see Fig. 1. For µ < 0 we can

also rule out the existence of periodic orbits and saddle-loops (homoclinic

connections) in the node-saddle case; from Theorem (1) both types of closed

orbits are possible however in the focus-saddle case, see also [12, 13].

In the previous work [10], boundary equilibrium bifurcations were consid-125

ered for such PWL systems in the so called persistence scenario, characterized

by the condition dLdR > 0. Under this condition, by moving the parameter

µ from negative to positive values or vice versa, a transition of the unique

equilibrium point through the boundary manifold between linearity zones is
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Figure 1: The case µ > 0 and the critical situation µ = 0.

guaranteed, being possible the simultaneous generation of limit cycles.130

Here, we deal instead with boundary equilibrium bifurcations in the non-

smooth fold scenario, since by moving the parameter µ two different branches

of equilibria collide in the boundary to disappear in the other side of the

bifurcation. We study now the focus-saddle boundary equilibrium bifurcation

for PWL systems (10), regarding the simultaneous generation of a limit cycle,135

a saddle loop or nothing else, depending on the dynamics properties of the

two involved vector fields. It is our main goal to characterize quantitatively

which one of the above three alternatives actually appears: a problem that,

up to the best of our knowledge had not been solved before and turns out

to be a necessary first step to study the same bifurcation in more general140

non-PWL frameworks, as done in [14] for the Andronov-Hopf bifurcation.

Our second main contribution comes to fill a gap in the bifurcation theory

of continuous PWL systems. Indeed, the focus-saddle bifurcation already

appeared in the celebrated book [1], but there was a lack of quantitative

characterization, see Theorem 5.2.2.b.ii in the quoted work. We use again the

auxiliary parameters introduced in (6)-(8), but note that here the parameter
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Figure 2: From left to right, the three possibilities when µ < 0 for the focus-saddle
bifurcation: δ > 0, δ = 0, and δ < 0.

ρ reduces to

ρ =
ωL(1 + γ2

L)

ωR(1− γ2
R)

. (11)

Theorem 2 Consider continuous PWL systems (10) with tL > 0, tR < 0,

under the hypotheses of left focus dynamics 4dL − t2L > 0, and right saddle

dynamics dR < 0, so that γL, γR are given in (6), ρ as in (11) and θ± as in

(8). Define the criticality coefficient δ as follows,145

δ = e2γL(π+θ+−θ−) − 1 + [γL + ρ(γR − 1)]2

1 + [γL + ρ(γR + 1)]2
. (12)

Regarding µ as the only bifurcation parameter, the system undergoes a

saddle-focus boundary equilibrium bifurcation for µ = 0; that is, we pass

from a situation without equilibria for µ > 0 to a single boundary equilibrium

at µ = 0, and to a configuration with an unstable focus and a saddle for

µ < 0. Furthermore, the following statements hold.150

a) If δ < 0 the boundary equilibrium bifurcation leads also for µ < 0 to

one stable limit cycle surrounding the unstable focus and no homoclinic

connections. The size of the limit cycle evolves linearly with |µ|.
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b) If δ = 0 the boundary equilibrium bifurcation leads also for µ < 0 to a

homoclinic connection (saddle-loop) surrounding the unstable focus and155

no limit cycles. The size of the saddle-loop evolves linearly with |µ|.

c) If δ > 0 then the boundary equilibrium bifurcation arising for µ = 0

does not involve any limit cycle or homoclinic connection.

The proof of Theorem 2 is given in Section 3. See Fig. 1 and 2 for the

different configurations mentioned in above statements.160

Example 1. To illustrate the above result, we consider a concrete model in

the form (10), namely

ẋ =


 1/2 −1

5 0


x−


 0

µ


 if x ∈ SL ∪ Σ,

ẋ =


 −1 −1

−1 0


x−


 0

µ


 if x ∈ SR,

which is equivalent to Example 5.5 in p. 228–229 of [1], but note that our

parameter µ is the opposite to the one appearing in the quoted book.

From (6), computations give ωL =
√
79/4, γL = 1/

√
79, ωR =

√
5/2,

γR = −
√
5/2, while from (11) we get ρ = 10

√
5/
√
79. Then, from (8) we

obtain θ± = ±2 arctan
((

(2
√

165∓ 45
√
5± 9− 10

√
5
)
/
√
79
)
. After some

simplifications, we finally obtain

δ = exp



2π + 4 arctan

(
6
√
19−17√
395

)

√
79


− 1

38

(
83 + 33

√
5
)
≈ −1.66363,
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so that Theorem 2 assures that for µ < 0 we have a stable limit cycle sur-

rounding the unstable focus. Thus, the qualitative statement given in Theo-

rem 5.2.2.b.ii of [1] is substituted by a rigorous quantitative assertion, coming165

from Theorem 2.

It is worth to emphasize the rather involved expression for the criticality

coefficient δ. This feature arises because of the lack of smoothness in PWL

systems, which precludes any local analysis; in fact, the semi-homogeneity

property of systems (10) with respect to the parameter µ, explains why it is170

possible to characterize the bifurcation only after a global analysis.

The applicability of Theorem 2 is greater than it seems. In fact, we could

state evident dual versions of this theorem for other three different cases: (i)

tL < 0, tR > 0 keeping 4dL − t2L > 0 and dR < 0; (ii) tL > 0, tR < 0 but

assuming dL < 0 and 4dR − t2R > 0; and (iii) tL < 0, tR > 0 with dL < 0 and175

4dR− t2R > 0; all these cases can be dealt with by resorting to Remark 3 and

will not be explicitly listed.

Remark 4. It is interesting to note that if we let γL → 0 (which corresponds

to let tL → 0 keeping dL > 0 constant so that ωL →
√
dL) then we have that

the limit value δ∗ for δ is

δ∗ = lim
γL→0

δ = 1− 1 + ρ2∗(γR − 1)2

1 + ρ2∗(γR + 1)2
=

4ρ2∗γR
1 + ρ2∗(γR + 1)2

< 0,

where

ρ∗ = lim
γL→0

ρ =

√
dL

ωR(1− γ2
R)

.

This negative limit value δ∗ indicates that whenever γL > 0 is sufficiently

small, then δ < 0 and the unstable focus is surrounded by one stable limit
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cycle for µ < 0. On the other hand, if γL = 0 and µ < 0 then we have a180

bounded linear center whose outermost closed orbit is tangent to Σ from the

left. Then, if we start from γL = 0, any small increase in γL leads to a limit

cycle bifurcating from the center, a phenomenon that has been qualitatively

and quantitatively studied in [13].

We want to emphasize that the bifurcation characterized in Theorem 2185

has no counterpart within the realm of smooth vector fields. Effectively, we

know that when a smooth system undergoes a bifurcation leading to the

generation of two equilibrium points, the generic configuration corresponds

with a saddle-node bifurcation. Thus, the saddle-focus situation studied here

is specific to the class of piecewise linear systems.190

As a final remark, Theorem 2 could be extended to the more general case

of continuous piecewise smooth systems (not necessarily PWL systems), in

the same spirit of the study made in [14] for the Andronov-Hopf bifurcation.

Such extension should require to take into account the nonlinear terms in

each vector field and is beyond the scope of this paper.195

The rest of the paper is organized as follows. We show an interesting

application of Theorem 2 to nonlinear electronics in Section 2, by considering

a circuit already studied in [15] but allowing non-zero initial conditions, which

is a fact of special relevance to cope with the dynamical richness of these

devices, see [16]. Some auxiliary results and the proofs of main results appear200

in Section 3.
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2. Application to the analysis of memristor oscillators

We consider here an electronic circuit already analyzed in [15] and [11]

under different hypotheses. For the sake of completeness, we include the

derivation of the model, which is very similar to the one appeared in [11],205

but with an important novelty related to the consideration of non-zero initial

conditions.

Following [15] memristors are two-terminal electronic passive devices for

which a nonlinear relationship links charge and flux [17]. They are at the

basis of future generation dynamic memories; as another important feature,210

nanoscale memristors have potential to reproduce the behavior of biological

synapses. Here we apply our previous results to the analysis of an elementary

oscillator endowed with one flux-controlled memristor, see Figure 3 and [18].

Note that in the shown circuit the values of L and C for the impedance

and capacitance are positive constants, while the resistor has a negative value215

−R . We write from Kirchoff’s laws

iR(τ)− iL(τ) = 0, iL(τ)− iC(τ)− iM (τ) = 0,

vC(τ)− vM(τ) = 0, vR(τ) + vL(τ) + vC(τ) = 0,

where v, i stand for the voltage and current, respectively, across the corre-

sponding element of the circuit. Next, we integrate with respect to time the

above equations, and it should be emphasized that we do not assume zero
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initial conditions as in [15], to get220

qR(τ)− qL(τ) = Q1 = qR(0)− qL(0), (13)

qL(τ)− qC(τ)− qM (τ) = Q2 = qL(0)− qC(0)− qM (0), (14)

ϕR(τ) + ϕL(τ) + ϕC(τ) = Φ1 = ϕR(0) + ϕL(0) + ϕC(0), (15)

ϕC(τ)− ϕM(τ) = Φ2 = ϕC(0)− ϕM(0), (16)

where q and ϕ stand respectively for the charge and flux associated to each

element. The flux-charge characteristics of the memristor fM is assumed as

in [18] and [15] to be the symmetric piecewise linear function

fM(x) =






b(x+ 1)− a for x ≤ −1,

ax for −1 ≤ x ≤ 1,

b(x− 1) + a for x ≥ 1,

where it is considered a passive memristor, and in particular 0 < a < b. After

recalling the constitutive equations of the bipoles, namely

ϕR(τ) = −RqR(τ), ϕL(τ) = L
d

dτ
qL(τ),

qC(τ) = C
d

dτ
ϕC(τ), qM(τ) = fM(ϕM(τ)),

we arrive at the equations

d

dτ
ϕC(τ) =

1

C
qC(τ) =

1

C
[qL(τ)− qM(τ)−Q2] ,

d

dτ
qL(τ) =

1

L
ϕL(τ) =

1

L
[−ϕC(τ)− ϕR(τ) + Φ1] .

17



−R

iR

L
iL

C

iC
iM

Figure 3: The simple oscillator with one memristor analyzed in this section. Note that
the negative value −R considered for the resistor makes it the only active element in the
circuit.

We denote the state variables by x1 = ϕC(τ) and x2 = qL(τ), and using

(13) and (16), to write ϕR(τ) = −RqR(τ) = −R(qL(τ) + Q1) along with225

qM(τ) = fM(ϕM(τ)) = fM(ϕC(τ)− Φ2), we have the differential system

dx1

dτ
=

1

C
[−fM(x1 − Φ2) + x2 −Q2] , (17)

dx2

dτ
=

1

L
[−x1 +R(x2 +Q1) + Φ1] . (18)

It turns out more convenient to translate variables by introducing x =

x1 − Φ2, and y = x2 −Q2, and write

dx

dτ
=

1

C
[−fM (x) + y] , (19)

dy

dτ
=

1

L
[−x+Rỹ +RQ1 +RQ2 + Φ1 − Φ2] . (20)

As a consequence of the conservation laws of flux and charge, we can intro-

duce the constant

h = RQ1 +RQ2 + Φ1 − Φ2 = ϕL(0) + ϕM(0)− R(qC(0) + qM(0)),
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and using the parameters α = 1/C, β = R/L, ξ = 1/L, we get the piecewise

linear system230

dx

dτ
= α [−fM(x) + y] , (21)

dy

dτ
= −ξx+ βy + ξh. (22)

We note that until here we have reproduced exactly the model achieved

in [15], but with the additional constant term involving the parameter h,

because here the initial conditions are not assumed to be zero. This fact,

which introduces some lack of symmetry in the model, is of special relevance

in the analysis of the dynamical richness of these oscillators, as remarked in235

[16]. Also, it should be noticed that we are dealing with a PWL system with

three linearity regions, but as long as the interesting dynamics involves only

two adjacent regions, we can take advantage of the results of Section 1.

To simplify the analysis, we rescale the time by taking as new time τ̂ = ατ

and introduce the rescaled parameters h̃ = ξh/α, β̃ = β/α = RC/L > 0,240

and ξ̃ = ξ/α = C/L > 0, to get

dx

dτ̂
= −fM(x) + y, (23)

dy

dτ̂
= −ξ̃x+ β̃y + h̃. (24)

In what follows we assume the same dynamical configuration analyzed in

[15], namely saddle dynamics in the external zones and anti-saddle dynamics

in the central zone, what leads to the condition aβ̃ < ξ̃ < bβ̃. Of course, we

also assume the necessary condition for oscillation coming from Bendixson’s245
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criterion, which amounts to have non-constant sign for the divergence of the

vector field, that is, by computing traces, a < β̃ < b.

It is straightforward to determine the number of equilibrium points and

its topological type depending on the value of parameter h̃. Effectively, if we

introduce the modified slope parameters ã = ξ̃− β̃a > 0 and b̃ = ξ̃ − β̃b < 0,

then the conditions for equilibria allow to eliminate the value of y, to get the

equivalent condition h̃ = f̃(x) = ξ̃x− β̃fM(x), where

f̃(x) =





b̃(x+ 1)− ã for x ≤ −1,

ãx for −1 ≤ x ≤ 1,

b̃(x− 1) + ã for x ≥ 1.

The following result is now direct.

Proposition 3 Considering system (23)-(24) under hypotheses 0 < a < b

and aβ̃ < ξ̃ < bβ̃, the following statements hold.250

a) If h̃ < −ã or h̃ > ã, then there exists only one equilibrium point, which

is a saddle located at





x = 1 +
h̃− ã

b̃
> 1,

y = a+ b
h̃− ã

b̃
,





x =
h̃+ ã

b̃
− 1 < −1,

y = b
h̃ + ã

b̃
− a,

respectively.

b) If |h̃| < ã, then there exist three equilibrium points; one in the central

zone located at

x =
h̃

ã
, y =

ah̃

ã
,
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which is of anti-saddle type, while the other two are saddles and located

at the external zones, with the same coordinates given in statement (a).

c) When |h̃| = ã, there appears a boundary equilibrium bifurcation giving

rise to the generation or annihilation of two equilibria, namely a saddle255

and an anti-saddle.

Regarding Proposition 3, if we impose the condition of focus dynamics in

the central zone, then we see that for both h̃ = −ã and h̃ = ã we have the

focus-saddle bifurcation studied in this paper. Such a central focus configu-

ration requires (−a + β̃)2 < 4(ξ̃ − β̃a), which is equivalent to the condition

(a+ β̃)2 < 4ξ̃. (25)

To illustrate here the usefulness of our previous results, let us consider

the focus-saddle bifurcation undergone by system (23)-(24) under condition

(25) and hypotheses of Proposition 3 when h̃ = ã for some specific choice of

parameters. We remark that in such a case, we can neglect the left external260

zone x < −1, since for small values of |h̃− ã| the relevant dynamics involves

only the adjacent zones to the boundary at x = 1. The first preparation

task is to do the translation X = x − 1, Y = y − a, to get a continuous

system in the form (3) with aL11 = −a, aR11 = −b, a12 = 1, aL21 = aR21 = −ξ̃,

aL22 = aR22 = β̃, along with b1 = 0, bL2 = bR2 = h̃ − ξ̃ + β̃a = h̃ − ã. Now a265

change of variables as the one used to obtain system (4) (which turns out

to be homogeneous in this case, since b1 = 0) transforms our system in a

continuous version of such family, with tL = β̃ − a, tR = β̃ − b, dL = ξ̃ − aβ̃,

dR = ξ̃ − bβ̃, and the bifurcation parameter is µ = µL = µR = h̃− ã.
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Let us assume, following [15], the values α = 1.25, β = ξ = 1, a = 0.75270

and b = 1.5. Note that the specific passivity condition 0 < a < b is fulfilled.

Thus, we get β̃ = ξ̃ = 0.8, dL = ã = 0.2 and dR = b̃ = −0.4, so that

tL = 0.05 and tR = −0.7. Apart from the necessary condition for oscillating

behaviour a < β̃ < b, we see that both the external saddle dynamics condition

aβ̃ < ξ̃ < bβ̃ and the focus condition (25) hold. Next, we apply Theorem 2.275

Using (6) and (11), we get ωL ≈ 0.446514, γL ≈ 0.055989, ωR ≈ 0.722842,

γR ≈ −0.4842, and ρ ≈ 0.809427. Now from (8) we obtain θ+ ≈ 1.12858

and θ− ≈ −0.717745. Finally, from (12) we deduce δ ≈ −0.140354 < 0,

and then statement (a) of Theorem 2 assures that for µ < 0, that is, for

h̃ < ã there appears one stable limit cycle surrounding the unstable focus.280

This limit cycle (responsible for the stable oscillation in the circuit) grows

linearly with |h̃− ã| as long as the assumption regarding that the cycle does

not use the zone x < −1 is true. In fact, we could show the existence of

a certain value h̃T > 0, such that the limit cycle becomes tangent to the

line x = −1. Thus, the existence of stable oscillations is guaranteed for all285

h̃T < h̃ < ã. Furthermore, the symmetry of the model allows us to assure

also the existence of stable oscillations for −ã < h̃ < −h̃T . We conjecture

that such oscillations exist indeed for all −ã < h̃ < ã, but the proof of this

conjecture is beyond the scope of this paper.

If we take instead a = 0.74, keeping fixed the rest of parameters, we have290

now tL = 0.06, dL = ã = 0.208, ωL ≈ 0.455082, γL ≈ 0.0659221, and then

we get ρ ≈ 0.825955, θ+ ≈ 1.11361 and θ− ≈ −0.711476. However, now

δ ≈ 0.0363403 > 0 and so the bifurcation does not lead to any limit cycle.

Numerically, one can estimate that the critical value for the appearance of
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the homoclinic orbit in the bifurcation is a ≈ 0.742014.295

3. Auxiliary results and proofs

In order to show the results of Section 1, it is convenient to reduce even

more the number of essential parameters by rescaling time in a different

way on each half-plane along with an appropriate rescaling of variables to

maintain the canonical form. Note that this change of variables preserves300

any closed orbits. Afterwards, we obtain a useful reduced canonical form for

the study of the focus-saddle configuration in refracting systems.

Proposition 4 If 4dL − t2L > 0 and dR < 0 then refracting systems (4) can

be written in the following reduced canonical form

dx

dθL
=



 2γL −1

γ2
L + 1 0



x−



 0

αL



 if x ∈ SL ∪ Σ,

dx

dθR
=


 2γR −1

γ2
R − 1 0


x−


 0

αR


 if x ∈ SR,

(26)

where

ωL =

√
4dL − t2L

2
, γL =

tL
2ωL

, αL =
µL

ωL

, (27)

and

ωR =

√
t2R − 4dR

2
, γR =

tR
2ωR

∈ (−1, 1), αR =
µR

ωR

. (28)

Proof. We know that the eigenvalues of the linear part at SL in (4) are

σL ± iωL. We make first the change X = ωLx, Y = y, θL = ωLs for the
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variables in the half plane SL, without altering variables and time in SR.305

Note that we do not change the coordinate y, so that periodic orbits using

both half planes are preserved. Then, we get

dX

dθL
=

1

ωL

dX

ds
=

dx

ds
=

tL
ωL

X − Y,

dY

dθL
=

1

ωL

dY

ds
=

1

ωL

dy

ds
=

1

ωL

(
dL
ωL

X − µL

)
=

dL
ω2
L

X − µL

ωL

.

Introducing the parameter γL defined in (27), we see that tL = 2γLωL and

dL = (γ2
L + 1)ω2

L, and the left vector field is already in form of (26).

Similarly to what is done in the left zone, we define ωR > 0 such that310

ω2
R = t2R/4 − dR and σR = tR/2, that is, the eigenvalues of the linear part

at SR in (4) are σR ± ωR. In the same way as before, we make the change

X = ωRx, Y = y, θR = ωRs for the variables in the half plane SR, without

altering variables and time in SL. We obtain

dX

dθR
=

1

ωR

dX

ds
=

dx

ds
=

tR
ωR

X − Y,

dY

dθR
=

1

ωR

dY

ds
=

1

ωR

dy

ds
=

1

ωR

(
dR
ωR

X − µR

)
=

dR
ω2
R

X − µR

ωR

.

Now, introducing the parameter γR as in (28), we see that tR = 2γRωR and315

dR = (γ2
R − 1)ω2

R. Finally, using the definitions of αL and αR in (27)-(28),

we get the expressions given in (26).

Note that under hypotheses of Proposition 4, if we assume tL > 0 and

tR < 0 then we have γL > 0 and −1 < γR < 0. In the canonical form (26),
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under hypotheses αL < 0, αR < 0, we have a focus at the point

(
xF , yF

)
=

(
αL

γ2
L + 1

,
2αLγL
γ2
L + 1

)
∈ SL,

and a saddle at
(
xS, yS

)
=

(
αR

γ2
R − 1

,
2αRγR
γ2
R − 1

)
∈ SR.

We can compute the points (0, ỹ±) where the unstable (stable) manifold

of the saddle intersects Σ as follows. The eigenvectors for the saddle can be

selected as (1, γR ∓ 1)T corresponding to the eigenvalues γR ± 1. Thus, the

linear invariant manifolds that emanate from the saddle intersect Σ when,

for a certain value of β, we have


 xS

yS


+ β


 1

γR ∓ 1


 =


 0

ỹ±


 .

Clearly, β = −xS and then we get

ỹ± =
2αRγR
γ2
R − 1

− αR(γR ∓ 1)

γ2
R − 1

=
αR(γR ± 1)

γ2
R − 1

=
αR

γR ∓ 1
.

In the next result, we review some useful properties of the half-return

maps that can be defined by using Σ as a Poincaré section, see Fig. 4.

Generically, these half-return maps cannot be explicitly computed and must320

be obtained in parametric form in terms of the respective flight times θL and

θR. Their properties can be straightforward deduced from the solutions of the

linear vector field involved, see Proposition 6 and 7 of [19] and Proposition

3 of [20].
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Proposition 5 Considering systems (26) with γL > 0, −1 < γR < 0, αL <325

0 and αR < 0, the following statements hold.

a) The right Poincaré half-return map PR is defined only for ỹ− < y <

0, and is always bounded, so that 0 ≤ PR(y) < ỹ+. Its parametric

expressions are

y = αR

e−γRθR − cosh θR + γR sinh θR
(γ2

R − 1) sinh θR
,

PR(y) = −αR

eγRθR − cosh θR − γR sinh θR
(γ2

R − 1) sinh θR
,

where θR ∈ (0,∞). The first derivative satisfies lim
y→ỹ−

P ′
R(y) = 0, and

the second derivative satisfies P ′′
R(y) < 0 for all y < 0. The function

can be analytically extended to the origin by writing PR(0) = 0 and then

P ′
R(0) = −1.330

b) Introducing the auxiliary function ϕγ(θ) = 1 − eγθ(cos θ − γ sin θ), the

left Poincaré half-return map PL is defined for all y ≥ 0, and their

parametric expressions are

y = αL

e−γLθLϕγL(θL)

(γ2
L + 1) sin θL

, PL(y) = −αL

eγLθLϕ−γL(θL)

(γ2
L + 1) sin θL

, (29)

where θL ∈ (π, θ̂), being θ̂ the unique zero in (π, 2π) of ϕγL, that is,

ϕγL(θ̂) = 0.

Furthermore, using that y(θ̂) = 0 in (29), the image of the origin under

the map is the point (0, ŷ) with ŷ = PL(0) = −αLe
γLθ̂ sin θ̂ < 0 (after
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y

ŷ

y∗

ỹ−

ỹ−

ỹ+

ỹ+
PR

P−1
R

PL

AL

PL |αL=0

Figure 4: The graphs of the half-return Poincaré maps when γL > 0, −1 < γR < 0,
αL ≤ 0, αR < 0. The asymptote AL for PL when αL < 0 is parallel to the graph of PL

when αL = 0.

simplification), and we have

PL : [0,∞) −→ (−∞, ŷ].

Moreover, lim
y→0+

P ′
L(y) = 0, lim

y→∞
P ′
L(y) = −eπγL, P ′′

L(y) < 0 for all

y > 0, and the graph of PL has the asymptote

AL(y) = −eπγLy +
2αLγL
γ2
L + 1

(1 + eπγL) .

Remark 5. The parametric expressions in terms of the flight time θL of

Proposition 5-(b) are no longer valid when the focus is located at Σ, since

then the left return time is equal to π for all the points in the domain. How-335

ever, this exceptional case, corresponding to αL = 0, can be easily managed.
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Effectively, a simple computation shows that then PL(y) = −eπγLy, for all

y > 0, and so its graph is a straight line (the thick, dashed one in Figure 4).

Next, to show the uniqueness of closed orbits in systems (26), we use the

non-generic case αL = 0, when the focus is located at the boundary, as a340

reference case for the more general situation αL < 0.

Proposition 6 Considering refracting systems (26) with γL > 0, −1 <

γR < 0, αL = 0, αR < 0, the following statements hold.

a) If eπγL < (1 − γR)/(1 + γR), then there exists one stable limit cycle

surrounding the unstable boundary focus at the origin and there are no345

homoclinic connections.

b) If eπγL = (1−γR)/(1+γR), then there exists one homoclinic connection

to the saddle and there are no periodic orbits surrounding the boundary

focus.

c) If eπγL > (1− γR)/(1+ γR), then the system has no periodic orbits and350

no homoclinic connections.

Proof. Under our hypotheses, using Remark 5, we know that PL(y) =

−eπγLy. Clearly, the limit cycles of the system are in one-to-one correspon-

dence with the intersection points of the graphs of PL and P−1
R , see for

instance [10] and Fig. 4.355

From Proposition 5, using the concavity of the graph of PR, the maximum

number of intersections is one, and there is one intersection if and only if

−eπγL ≥ ỹ−
ỹ+

=
γR − 1

γR + 1
.
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Figure 5: The open region in the plane (γL, γR) where it is possible the existence of a limit
cycle or a homoclinic connection for systems (26) with γL > 0, −1 < γR < 0, αL < 0 and
αR < 0, according to necessary condition (30).

From this condition, all the statements follow, if we take into account that

the equality above leads to the existence of a homoclinic connection.

After changing the hypothesis αL = 0 to αL < 0, a simple necessary

condition can be obtained.

Corollary 1 Considering refracting systems (26) with γL > 0, −1 < γR < 0,

αL < 0 and αR < 0, a necessary condition for the existence of a limit cycle

or a homoclinic connection is

eπγL <
1− γR
1 + γR

, or equivalently, γR < − tanh
(πγL

2

)
(30)

Corollary 1 follows from the fact that when αL < 0, the graph of PL is360

below the graph of the asymptote AL, which is in turn a straight-line parallel

from below to the graph of PL |αL=0, see Fig. 4.
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In figure 5, it is shown in the plane (γL, γR) the open region where the

necessary condition (30) is fulfilled. Next, under same hypotheses of the

above corollary, we give the proof of the uniqueness result of Proposition 2,365

which is more involved.

Proof of Proposition 2. We start by applying Proposition 4 to get the

corresponding system (26) with αL < 0 and αR < 0. Recall that when αL < 0

the concavity for the graph of PL is the same than for PR. We will denote by

(y∗,−eπγLy∗) the point of intersection of the graph of P−1
R with the parallel

to the asymptote AL passing through the origin, that is, with the graph of

PL if we had taken all the parameters equal but αL = 0, see Fig. 4. Note

that at such a point we must have

(
P−1
R

)′
(y∗) < −eπγL . (31)

Clearly, from Proposition 5, if there is any intersection between the two

graphs, then it should be in a point with y > y∗. Suppose that there are two

intersections points corresponding to y = y1 and y = y2, where y∗ < y1 <

y2 ≤ ỹ+. In other words, we are assuming that

PL(y1) = P−1
R (y1), PL(y2) = P−1

R (y2).

Then by Rolle’s theorem there should be some intermediate point y where

P ′
L(y) =

(
P−1
R

)′
(y)
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but we claim that this is impossible. Effectively, we know that

0 > P ′
L(y) > −eπγL

for all y > 0, and on the other hand, recalling (31)

(
P−1
R

)′
(y) <

(
P−1
R

)′
(y∗) < −e−πγL ,

getting the required contradiction. Note that the stability of the limit cycle

(and for the homoclinic connection, as seen from its interior) comes easily by

using that

P ′
L(y)−

(
P−1
R

)′
(y) > 0

in any intersection of both graphs.

It follows the proof of Theorem 1.

Proof of Theorem 1. We start again by applying Proposition 4 to get

the corresponding system (26) with αL < 0 and αR < 0. For convenience, we

make next the global translation x → x + xF , y → y + yF , to put the focus

at the origin. To alleviate notation, we define the positive constant

v = −xF = − αL

γ2
L + 1

> 0, (32)
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so that (xF , yF ) = (−v,−2vγL). Thus, we work with the equivalent system

ẋ =


 2γL −1

γ2
L + 1 0


x, if x ∈ S̃L ∪ Σ̃,

ẋ =


 2γR −1

γ2
R − 1 0


x−


 2v(γR − γL)

αR + v (γ2
R − 1)


 , if x ∈ S̃R,

(33)

where the linearity regions in the phase plane are now the left and right

half-planes

S̃L = {(x, y) ∈ R2 : x < v}, S̃R = {(x, y) ∈ R2 : x > v},

separated by the straight line Σ̃ = {(x, y) ∈ R2 : x = v}. Furthermore, the

saddle point becomes the point

(x̃S, ỹS) =

(
v +

αR

γ2
R − 1

, 2vγL +
2αRγR
γ2
R − 1

)
,

which after introducing the positive parameter

ρ =
αR

αL

· 1 + γ2
L

1− γ2
R

=
µR

µL

· ωL(1 + γ2
L)

ωR(1− γ2
R)

> 0, (34)

can be written in the more compact expression

(x̃S, ỹS) = v (1 + ρ, 2(γL + ργR)) , (35)
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Y+

Y-

y+

y-

F

S

Figure 6: Sketch of the process to determine the remarkable points (0, Y±). The focus F is
already put at the origin, so that the dashed vertical lines are the discontinuity manifold
Σ̃ at x = v, and the line x = v + xS

R
, where the saddle S is located.

since from (32) we have
αR

γ2
R − 1

= vρ.

The linear invariant manifolds that emanate from the saddle intersect the

line x = v at the points (v, y±) when, for a certain value of β, we have


 x̃S

ỹS


+ β


 1

γR ∓ 1


 =


 v

y±


 .

Taking into account (35), we get β = v − x̃S = v − v(1 + ρ) = −vρ, and so

the invariant manifolds of the saddle intersect the line x = v at the points

(v, y±), where

y± = v [2γL + ρ(γR ± 1)] , (36)

see Fig. 6.

We will follow the orbit with initial point (v, y+) up to determine its
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intersection point (0, Y+) with the new y-axis. Similarly, we can compute the

point (0, Y−) whose orbit eventually arrives at the point (v, y−) by integrating

backwards in time from this latter point. Since the focus is at the origin,

taking (v, y±) as the starting point, to compute now the value of Y±, it suffices

to write the exponential matrix and to solve the equation


 0

Y±


 = eγLθ±


 cos θ± + γL sin θ± − sin θ±

(γ2
L + 1) sin θ± cos θ± − γL sin θ±





 v

y±


 ,

(37)

where the flight times must satisfy 0 < ±θ± < π, since we must integrate370

forward (backward) in time to get Y+ (Y−), see Fig. 6.

From the first component of equality in (37), we get

v cos θ± = (y+ − vγL) sin θ± = v [γL + ρ(γR ± 1)] sin θ±. (38)

Equivalently, we write

tan θ± =
1

γL + ρ(γR ± 1)
,

and we obtain

sin θ± = ± | tan θ±|√
1 + tan2 θ±

= ± 1√
1 + [γL + ρ(γR ± 1)]2

,

and then

cos θ± = ± γL + ρ(γR ± 1)√
1 + [γL + ρ(γR ± 1)]2

.

To ease the angle determination with the arctan function, we use the
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trigonometric identity

tan

(
θ±
2

)
=

sin θ±
1 + cos θ±

= ± 1√
1 + [γL + ρ(γR ± 1)]2 ± [γL + ρ(γR ± 1)]

.

After multiplying numerator and denominator in the argument by the con-

jugate, we get

θ± = ±2 arctan

(√
1 + [γL + ρ(γR ± 1)]2 ∓ [γL + ρ(γR ± 1)]

)
, (39)

as given in (8). Noting that cos θ±−γL sin θ± = ρ(γR±1) sin θ±, we get from

the second component of equality of (37) that

Y± = eγLθ±
[
(γ2

L + 1)v + ρ(γR ± 1)y±
]
sin θ± = ±veγLθ±

√
1 + [γL + ρ(γR ± 1)]2,

where θ± is given in (39) and we have used the above expresions for y± and

sin θ±, leading to

(γ2
L + 1)v + ρ(γR ± 1)y± = v

(
1 + [γL + ρ(γR ± 1)]2

)
.

Therefore, the common expression for both ordinates is Y± = vV±, with

V± as given in (9).

Summarizing, the unstable invariant manifold of the saddle after inter-

secting the vertical x = v at the point (v, y+) passes through the point (0, Y+)375

and will come back again to the new y-axis at the point (0,−eπγLY+). Anal-

ogously, the linear stable invariant manifold of the saddle is reached when

we consider the orbit starting at the point (0, Y−), see Fig. 6.
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Assume first that −eπγLY+ > Y−, which after reordering and removing the

common factor v leads to eπγLV+ + V− < 0. Then we have a trapping region380

containing the unstable focus, so that by Poincaré-Bendixson’s theorem we

must have at least a periodic orbit surrounding the focus. The uniqueness

and stability of the corresponding limit cycle comes from Proposition 2 and

statement (a) follows.

To show statement (b) it suffices to see that if the condition of the385

statement holds, then the two linear invariant manifolds of the saddle are

connected forming a saddle-loop or homoclinic connection. Therefore, from

Proposition 2 there cannot be limit cycles.

In the case of statement (c), since −eπγLY+ < Y−, we conclude that for

the original system (26) we have PL(ỹ+) < ỹ−, see Fig. 4. Then, regarding390

the proof of Proposition 2, if there exists an intersection between the graphs

of PL and P−1
R , then the concavity of both graphs implies the existence of

at least two intersection points below the point y∗. This is impossible, as

shown in Proposition 2, so that we conclude that there are no limit cycles.

The theorem is so completely shown.395

Finally, we give the proof of Theorem 2.

Proof of Theorem 2. All the assertions about the equilibrium points

and their stability come easily from Proposition 1, taking into account the

hypothesis 4dL − t2L > 0.

Applying Proposition 4, we arrive at a system (26) with αL = µ/ωL,400

αR = µ/ωR. Note that even we start from a continuous vector field in (4),

after the transformation involved in the quoted proposition, we pass to a
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refracting system. This is the reason why we needed to consider the more

general framework of discontinuous refracting systems.

Note also that from (34) the parameter ρ becomes

ρ =
ωL(1 + γ2

L)

ωR(1− γ2
R)

> 0,

as given in (11), not depending on µ.405

If µ is negative, then the appearance of a limit cycle, an homoclinic

connection or nothing else, is a direct consequence of Theorem 1, considering

the sign of the expression eπγLV+ + V−. Taking into account that eπγLV+ −
V− > 0, we can write

sign(eπγLV+ + V−) = sign(e2πγLV 2
+ − V 2

−) = sign

(
e2γLπ − V 2

−
V 2
+

)
,

from where the expression of the coefficient δ follows.

To complete the proof, we need to show the linear evolution of the limit

cycle or the saddle-loop with respect to |µ|. It suffices to note that in sys-

tems (10), when µ 6= 0, the system can be rewritten with µ = ±1 by the

homothety change X = |µ|x, Y = |µ|y. Therefore, if µ < 0 and there exists410

a periodic orbit or an homoclinic connection, then there exists also the same

distinguished closed orbit for µ = −1 and both orbits are homothetic. So,

the size of the such orbit evolves linearity with |µ|, and the theorem follows.
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