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We propose a theoretical framework that captures the geometric vector potential emerging from the nonadiabatic
spin dynamics of itinerant carriers subject to arbitrary magnetic textures. Our approach results in a series
of constraints on the geometric potential and the nonadiabatic geometric phase associated with it. These
constraints play a decisive role when studying, e.g., the geometric spin phase gathered by conducting electrons
in ring interferometers under the action of in-plane magnetic textures, allowing a simple characterization of the
topological transition recently reported by Saarikoski et al. [H. Saarikoski, J. E. Vázquez-Lozano, J. P. Baltanás,
F. Nagasawa, J. Nitta, and D. Frustaglia, Phys. Rev. B 91, 241406(R) (2015)].
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I. INTRODUCTION

The role of geometric phases in diverse areas of physics
and chemistry has been the subject of intense research
efforts since Berry’s seminal paper [1] when nontrivial phases
of geometrical origin emerged as a widespread feature of
quantum mechanics. In particular, molecular physics is an
important setting where geometric phases play a crucial role
[2]. A paradigmatic case occurs when the Born-Oppenheimer
approximation [3] is invoked. There, the nuclear coordinates
are considered to be slow when compared to the electronic
degrees of freedom, so that a treatment in which the electronic
wave function depends parametrically on the nuclear coordi-
nates is appropriate. Mead and Truhlar [4] showed that when
the nuclear coordinates encircle a closed path in the parameter
space, the correct treatment of the problem involves a term
resembling a vector potential in the effective Hamiltonian of
the nuclear dynamics, which results in a phase affecting the
eigenfunctions. This phase, which in general depends on the
path described by the slow nuclear coordinates, was eventually
interpreted as an adiabatic geometric phase or Berry phase.

Inspired by these results, Aharonov et al. [5] considered a
spin in the presence of a strong magnetic field in a particular
setup allowing for the Born-Oppenheimer approximation.
Rather than focusing their interest in the separation between
fast and slow variables, they treated the kinetic term as an
energy perturbation to the spin Hamiltonian. As a consequence
of this purely algebraic approach, and without resorting to
the intrinsic geometry of the problem, they found that the
spin contribution was integrated into the kinetic terms in the
form of a vector potential, just as expected within the Born-
Oppenheimer approximation when an effective decoupling of
charge and spin degrees of freedom is assumed. Later, Stern
[6] used this technique to study the effect of Berry phases
in the conductance of spin carriers in one-dimensional (1D)
rings subject to magnetic textures (external magnetic fields of
varying direction in space).
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Here, we extend these ideas to the case of nonadiabatic
spin dynamics where there is no clear separation between
fast and slow degrees of freedom. We develop our theory by
relaxing the adiabatic condition away from the perturbative
regime considered by Aharonov et al. [5]. As a result
we find expressions for nonadiabatic vector potentials and
geometric phases, known as Aharonov-Anandan (AA) phases
[7], satisfying a series of constraints. For illustration, we apply
these findings to the problem of spin carriers confined in
1D conducting rings subject to in-plane field textures. This
is partly motivated by our recent work [8] on topological
transitions in spin interferometers, where nonadiabatic spin
dynamics was proved to play a crucial role near the transition
point. The theory introduced here describes the reported
topological transition in terms of an effective (adiabatic-like)
Berry phase emerging from the actual nonadiabatic dynamics.

The paper is organized as follows. In Sec. II we develop
our general theory capturing geometric vector potentials and
geometric phases in the case of nonadiabatic spin dynamics
together with a series of constraints. In Sec. III, we apply this
theory to the case of 1D rings subject to the action of in-plane
topological field textures, where the constraints prove useful to
identify topological features without the need to solve the full
problem. We end with some concluding remarks summarizing
the main results.

II. NONADIABATIC SPIN DYNAMICS IN MAGNETIC
TEXTURES: GENERAL APPROACH

In his original paper [1] Berry considered a spin interacting
with a magnetic field as an appropriate model to reveal the
presence of (adiabatic) geometric phases: a spin state which
adiabatically follows an external magnetic field describing a
closed trajectory in space accumulates a geometric phase factor
proportional to the solid angle subtended by the field. Let us
recall this system by considering the electronic Hamiltonian

H = 1

2m
�2 + V (r) + μB(r) · σ , (1)

where � = p + (e/c)Am(r), with Am(r) the magnetic vector
potential at position r, V (r) an electrostatic potential confining
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the electron motion, σ is the Pauli matrix vector, and
B(r) = B(r)n̂(r) is a magnetic field of varying magnitude
and orientation, with n̂(r) a unit vector defining its local
direction. The field B(r) may contain components from an
external source [given by ∇ × Am(r)] together with effective
components of dynamical origin as, e.g., an effective Rashba
field arising from the spin-orbit coupling in the presence of an
electric field [9]. This particular case will be considered more
explicitly in Sec. III.

For an arbitrary B(r), the eigenstates of the Hamiltonian H
defined in Eq. (1) are unknown. The approach followed by the
authors of Ref. [5] (see also Ref. [10]) starts by finding the
local spin eigenstates of the Zeeman term in Eq. (1):

|↑〉 =
(

cos α
2 e−iη

sin α
2

)
, |↓〉 =

(− sin α
2 e−iη

cos α
2

)
, (2)

which are locally (anti)aligned with the magnetic field’s axis

n̂(r) = [sin α(r) cos η(r), sin α(r) sin η(r), cos α(r)]. (3)

The states (2) coincide with the spin eigenstates of the full H
only in the limit of adiabatic spin dynamics where the local
Larmor frequency of spin precession ωs = 2μB(r)/h̄ is much
larger than the frequency of orbital motion ω0 = vF/L, with
vF the Fermi velocity and L a representative length over which
B(r) changes direction [11]. The Hamiltonian can be written as
the sum of a diagonal and a nondiagonal projection onto the ba-
sis defined by the adiabatic spin eigenstates H = Had + Hnad,
respectively. The adiabatic limit is achieved by taking Hnad →
0, leavingH ≈ Had. This procedure results in the identification
of a geometric vector potential leading to Berry phases
associated with the adiabatic nature of the spin dynamics.

The adiabatic condition is guaranteed in Ref. [5] by
treating the kinetic term as a perturbation to the Zeeman one
in Eq. (1). However, we notice that this is only a sufficient
condition and not a necessary one: Indeed, the adiabatic
regime can be achieved also in the opposite regime where the
Zeeman energy is a perturbation to the kinetic one. The reason
for this, as shown in Ref. [10], is that the orbital frequency ω0

is proportional only to the square root of the kinetic energy
while the Larmor frequency ωs is proportional to the Zeeman
energy, instead.

We extend the algebraic approach of Aharonov et al. [5] by
considering the more general nonadiabatic case. According to
the above discussion, this means that the kinetic energy must be
at least of the same order of the Zeeman one. The nonadiabatic
spin eigenstates of H can be rather complex, pointing along
directions generally different from the one defined by the
local magnetic field n̂(r). In this situation, nonadiabatic AA
geometric phases eventually emerge as a result of the intricate
paths described by the spin eigenstates in the Bloch sphere. As
a starting point, let us rewrite H = Hd + Hnd as the sum of
diagonal (d) and nondiagonal (nd) projections onto the basis
defined by the nonadiabatic spin eigenstates

|+〉 =
(

cos θ
2 e−iδ

sin θ
2

)
, |−〉 =

(
− sin θ

2 e−iδ

cos θ
2

)
, (4)

locally quantized along the unit vector

l̂(r) = [sin θ (r) cos δ(r), sin θ (r) sin δ(r), cos θ (r)]. (5)

To this aim, we define projection operators on the correspond-
ing subspaces given by

P± = 1 ± l̂(r) · σ

2
, (6)

We stress that l̂(r) generally differs from n̂(r) in the nonadia-
batic regime. We further notice that, by the sole definition of
eigenstates, it holds

Hd = P+HP+ + P−HP− ≡ H, (7)

Hnd = H − Hd = P+HP− + P−HP+ ≡ 0. (8)

It requires some further elaboration to make the best of
the formal expressions (7) and (8). Notice that � does not
commute with P± (due to the presence of p = −ih̄∇), and
therefore mixes the spin subspaces. By following Refs. [5,10],
we introduce an operator A responsible for the P±-subspace
mixing while � − A acts only within each subspace. This is
accomplished without ambiguity by defining

A = � − P+�P+ − P−�P−, (9)

which verifies [� − A,P±] = 0 and P±AP± = 0. In Eq. (1),
by expanding

�2 = (�− A + A)2 = (� − A)2 + A2 + {�− A,A}, (10)

with {,} the anticommutator, and considering [Am,P±] = 0
together with the properties of projection operators (P2

± = P±
and P+ + P− = 1), one arrives at

Hd = 1

2m
[(� − A)2 + A2] + V (r) + μ(B · l̂)(l̂ · σ ), (11)

and

Hnd = 1

2m
{� − A,A} + μ[B · σ − (B · l̂)(l̂ · σ )], (12)

where we dropped the dependence on r when convenient for
ease in notation. Moreover, the explicit evaluation of A gives

A = ih̄

2
(l̂ · σ )∇(l̂ · σ ). (13)

Both Hd and Hnd are written in the laboratory frame. We now
turn to the nonadiabatic spin-eigenstate basis by introducing
the local unitary operator

U(r) =
(

cos θ
2 eiδ sin θ

2

− sin θ
2 eiδ cos θ

2

)
, (14)

which diagonalizes H by acting on the nonadiabatic spinors
(4) as

U(r)|+〉 =
(

1
0

)
, U(r)|−〉 =

(
0
1

)
. (15)

We first notice that

UAU† =
(

0 a+−
g

a−+
g 0

)
, (16)

where

ass̄
g = h̄

2
(sin θ∇δ + is∇θ ) (17)
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plays the role of a geometric mixing. Moreover,

U(� − A)U† =
(

� − A+
g 0

0 � − A−
g

)
, (18)

where

As
g = h̄

2
(1 + s cos θ )∇δ (19)

is a geometric vector potential responsible for the AA geomet-
ric phases. Indeed, a direct computation proves the identity
As

g = ih̄〈s|∇|s〉, with |s〉 the nonadiabatic spin eigenstates of
Eq. (4). Thus, the AA geometric phase reads

φs
g = 1

h̄

∫
As

g · dr = i

∫
〈s|∇|s〉dr, (20)

in agreement with the general expression introduced by the
authors of Ref. [7].

Back to the Hamiltonian, we find

UHdU† =
(
H+ 0
0 H−

)
, (21)

where

Hs = 1

2m

(
� − As

g

)2 + V s
eff (22)

describes an electron gas corresponding to the non-adiabatic
spin species s, with

V s
eff = 1

2m
ass̄

g · as̄s
g + V (r) + s μB(r) · l̂(r). (23)

The first term in Eq. (23) represents a spin-independent
geometric scalar potential acting as a local energy shift,
which is typically negligible when compared to the kinetic
energy in mesoscopic implementations. We further notice
that the Zeeman energy in Eq. (23) can be expanded as
μB(r)(|〈s|↑〉|2 − |〈s|↓〉|2). Similarly, we find

UHndU† =
(

0 H±
H∓ 0

)
, (24)

with

Hss̄ = 1

2m

[(
� − As

g

) · ass̄
g + ass̄

g · (
� − As̄

g

)]
+μB(r) (〈s|↑〉〈↑|s̄〉 − 〈s|↓〉〈↓|s̄〉). (25)

Notice that the constraint imposed on Eq. (25) by Eq. (8)
establishes a definite link between As

g and B(r) that will be
of particular importance in the identification of the effective
geometric phase introduced in Ref. [8], as discussed below.

III. NONADIABATIC SPIN DYNAMICS IN MAGNETIC
TEXTURES: 1D RINGS

Among the several proposals for the manipulation of spin
states by guiding fields based on spin interferometry, one
by Lyanda-Geller stands out for its simplicity [12]. There,
he studied a 1D ring interferometer subject to the combined
action of internal (spin-orbit) and external in-plane magnetic
fields producing a magnetic texture with variable topology: By
tuning the magnitude of the external field the global magnetic
texture undergoes a topological transition, from a rotating
texture (enclosing the point of vanishing magnetic field in the

FIG. 1. Conducting ring with traveling spin carriers (thin arrow)
subject to a hybrid magnetic-field texture: a radial effective field
(originated internally by spin-orbit coupling) plus a uniform in-plane
field (of external origin). The global field texture undergoes a
topological transition from a rotating setup (left) to a waving one
(right) as the uniform in-plane component increases.

parameter space) to a waving one (the vanishing-field point
is not enclosed), see Fig. 1. By working within the limits of
adiabatic spin dynamics, Lyanda-Geller concluded that the
Berry phase accumulated by a spin state in a round trip would
mirror the topological transition experienced by the magnetic
texture by switching from π to 0, appearing as a topological
imprint of the spin dynamics in the conductance of the ring.

Recently we pointed out that this description turns out
to be oversimplified [8]: The spins are unable to follow the
magnetic field in the vicinity of the transition point since the
magnetic field vanishes and reverses its direction abruptly,
which casts serious doubts on the adiabatic character of the
dynamics. Despite this, we reported a phase dislocation in the
conductance as the remarkable signature of the topological
transition undergone by the magnetic field, close to what
expected in the case of adiabatic spin dynamics. This result
is intriguing since, as noticed above, the complexity of the
nonadiabatic spin dynamics near the critical point does not
ease the way for an intuitive picture of the transition in terms
of geometric spin phases.

As we show below, the theoretical framework introduced
in the previous section provides a way to address the reported
topological transition in terms of an effective (adiabatic-like)
Berry phase emerging from the actual nonadiabatic spin
dynamics. To this end, we approach the particular case of
electrons moving on a 1D ballistic ring of radius r and polar
angle ϕ in the presence on an in-plane magnetic field texture
[α = π/2 in Eq. (3)], generated from Am = Azẑ with an
appropriate gauge choice (eventually an additional component
Aϕϕ̂ leading to an Aharonov-Bohm flux could be considered).
With the help of Eqs. (17) and (23), Eq. (22) reduces to

Hs = 1

2m

(
� − As

g

)2 + h̄2

8mr2

[
sin2 θ

(
∂δ

∂ϕ

)2

+
(

∂θ

∂ϕ

)2
]

+V (r) + sμB(r) sin θ cos(δ − η), (26)

with

As
g = h̄

2r
(1 + s cos θ )

∂δ

∂ϕ
ϕ̂. (27)

When the kinetic term in Eq. (26) is dominant, the angular
momentum of the moving charge is approximately conserved
and the spatial part of the eigenfunctions takes the form |ψ〉 ∼
e±i�ϕ for counterclockwise (+) and clockwise (−) motion,
with � = kF r and kF the Fermi wave vector. According to
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Eq. (20), the AA geometric phase acquired by the spin s carrier
in a round trip is

φs
g = 1

h̄

∫
As

g · dl = 1

2

∫ 2π

0
(1 + s cos θ )

∂δ

∂ϕ
dϕ

= nπ + s

2

∫ 2π

0
cos θ

∂δ

∂ϕ
dϕ, (28)

with dl = rdϕϕ̂ the elemental displacement along the ring and
n the winding (integer) number of the spin texture around the
north pole of the Bloch sphere. The second term in Eq. (28)
is typically responsible for the fluctuations of the geometric
phase appearing in complex spin textures [8]. Likewise, the
corresponding dynamical spin phase in a round trip is given
by

φs
d = −mr2

h̄2�

∫ [
Hs − 1

2m

(
� − As

g

)2
]
dϕ

= −
∫ 2π

0

{
1

8�

[
sin2 θ

(
∂δ

∂ϕ

)2

+
(

∂θ

∂ϕ

)2]

+ s
mr2

h̄2�
μB(r) sin θ cos(δ − η)

}
dϕ, (29)

after subtracting the kinetic contribution from Hs in Eq. (26)
and parametrizing the integral in terms of the polar angle of the
ring. Notice that we also dropped off the contribution from the
confining potential V (r) which essentially results in a constant
phase shift.

Moreover, the conditionHss̄ = 0 imposed by Eq. (8) results
in the following equations for the real and imaginary parts of
Eq. (25):

h̄2

4mr2

[
sin θ

∂δ

∂ϕ

(
±2� − ∂δ

∂ϕ

)
+ s

∂2θ

∂ϕ2

]
+μB(r) cos θ cos(δ − η) = 0 (30)

and

h̄2

4mr2

[
s
∂θ

∂ϕ

(
±2� − ∂δ

∂ϕ

)
−

(
sin θ

∂2δ

∂ϕ2
+ cos θ

∂θ

∂ϕ

∂δ

∂ϕ

)]
+μB(r) sin(δ − η) = 0. (31)

For simplicity, we focus on the case of counterclockwise
spin carriers (with positive orbital quantum number +�) and
take the semiclassical limit � � 1 corresponding to large
momentum or small Fermi wavelength, typical in mesoscopic
rings [13]. By doing so we find that the previous expressions
reduce to

h̄2

2mr2
sin θ

∂δ

∂ϕ
+ μB(r)

�
cos θ cos(δ − η) = 0, (32)

s
h̄2

2mr2

∂θ

∂ϕ
+ μB(r)

�
sin(δ − η) = 0, (33)

for magnetic-field strengths of, at least, the order of the ring’s
orbital-level spacing and/or containing a term proportional
to the momentum as, e.g., in the case of effective, spin-
orbit Rashba fields. The same approximation applies to the
dynamical phase in Eq. (29) by neglecting the first terms under
the integral sign. This implicitly assumes that all derivatives

exist. Notice that this will be usually the case, with important
exceptions as, e.g., spins passing over the poles of the Bloch
sphere, where ∂δ/∂ϕ diverges. In principle, our approach
would not apply to those cases.

A. Case study 1: AA phases in 1D Rashba rings

To test the validity and soundness of the approach intro-
duced above, we first apply it to the case of a 1D ring of
radius r subject to the sole action of Rashba spin-orbit coupling
displaying an effective radial field (see Fig. 1 left). This model
has the advantage of being exactly solvable [14]. The explicit
solution shows that the corresponding spin-eigenstates do not
quantize along the direction of the effective radial field but
are lifted with a constant angle from the ring’s plane. More
precisely, Eq. (4) reduces to

|+〉 =
(

cos θ
2 e−iϕ

sin θ
2

)
, |−〉 =

(
− sin θ

2 e−iϕ

cos θ
2

)
, (34)

while the effective magnetic field reads B(r) =
BR(cos ϕ, sin ϕ,0), with ϕ the polar angle on the ring’s
plane and BR the strength of the effective Rashba field
(momentum dependent and proportional to the orbital
quantum number �). The tilt angle θ does not depend on
ϕ and is given by tan θ = ωR/ω0, where ωR = 2μBR/h̄

and ω0 = h̄�/mr2 are characteristic Larmor and orbital
frequencies, respectively (see Ref. [14] for further details).

For the spinors (34), Eqs. (27), (32), and (33) reduce to

As
g = h̄

2r
(1 + s cos θ ) ϕ̂ , (35)

h̄2

2mr2
sin θ + μBR

�
cos θ = 0, (36)

s
h̄2

2mr2

∂θ

∂ϕ
= 0, (37)

respectively, where we used δ = η = ϕ and ∂δ/∂ϕ = 1 due to
azimuthal symmetry. It is straightforward to see that Eqs. (36)
and (37) may be rewritten as

tan θ = 2μBR/(h̄)

�h̄/(mr2)
= ωR

ω0
,

∂θ

∂ϕ
= 0, (38)

which simply means that the tilt angle of the corresponding
eigenspinors is constant and that its value depends on the
adibaticity parameter ωR/ω0 in the precise manner reported in
Ref. [14] by direct calculation.

Moreover, an explicit calculation of the geometric phase
from Eq. (28) by using the geometric vector potential (35)
gives φs

g = π (n + s cos θ ) with n = 1, which is exactly the
AA geometric phase accumulated by a spin in a round trip
(equal to half the solid angle subtended by the spin texture in
the Bloch sphere). Again, this reproduces the result obtained
by the authors of Ref. [14].

B. Case study 2: Topological transitions in 1D rings

When a uniform in-plane field is considered in addition to
the intrinsic Rashba spin-orbit contribution, the problem is no
longer solvable by exact means. In Ref. [8], we showed that
the total phase acquired in this situation by a spin carrier in
a round trip, φs = φs

d + φs
g, undergoes a transition determined
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by the topology of the total (Rashba plus uniform) guiding
field. In the following we identify the basics of this transition
by applying the approach introduced here.

From Eq. (32), the dynamical phase (29) can be written as

φs
d = s

∫ 2π

0

1

2

(
1

cos θ
− cos θ

)
∂δ

∂ϕ
dϕ, (39)

holding for � � 1. At first glance, here we recognize two
contributions to φs

d: a fluctuating one proportional to cos θ and
a smooth one proportional to 1/ cos θ [from Eq. (32) we see
that the former does not diverge for vanishing cos θ ]. In this
way, by adding Eqs. (28) and (39) the total phase reduces to

φs = s

∫ 2π

0

1

2 cos θ

∂δ

∂ϕ
dϕ + nπ, (40)

thanks to the cancellation of the terms proportional to cos θ .
The total spin phase (40) consists then of a smooth dynamical
contribution plus a topological one determined by the parity of
the winding number n, where nπ plays the role of and effective
(adiabatic-like) Berry phase emerging from the nonadiabatic
spin dynamics. A parity transition in n would then explain
the results reported in Ref. [8]. However, the actual existence
of complex spin textures running over the poles of the Bloch
sphere in the vicinity of the transition point results in the
development of singularities in the terms proportional to
∂δ/∂ϕ appearing in the geometric vector potential (27) and
the total spin phase (40). This complicates the analysis near
the transition point and a full picture remains so far incomplete
(see next paragraph for a complementary discussion).

It is worthy of mention that, in the limit � � 1 considered
here, the spin dynamics of the carriers maps into a time-
dependent problem with localized spins subject to an external
driving (by basically identifying the polar angle ϕ with the time
t in the ring’s case) [15]. This eventually leads to the finding
of a scalar analog of the geometric vector potential encoding
the AA geometric phases accumulated by the spin due to
the driving [15]. Moreover, it has been shown that a parity
transition in the effective Berry phase also exists to a great
approximation in this case. The mapping to a time-dependent
problem has the significant advantage to clarify the limits of

our approach in terms of spin resonances at the same time that
it opens a door to a new class of resonance experiments for
the study of topological transitions in spin and other two-level
systems [15].

IV. CONCLUSION

We introduce an algebraic technique providing a closed
expression of geometric vector potentials and geometric
phases for spin carriers subject to arbitrary magnetic textures
in the general case of nonadiabatic spin dynamics. More
importantly, the theory imposes some dynamical constraints of
particular importance in practice by allowing the identification
of geometric and topological features without solving the full
problem. The work is based on previous developments on the
perturbative induction of geometric vector potentials in the
limit of adiabatic spin dynamics [5]. We relax the adiabatic
condition away from the perturbative regime.

We illustrate the potentials of our approach by discussing
two examples. We first reproduced the exact results [14] of an
analytically solvable problem on AA geometric phases in 1D
Rashba rings. Second, we consider the more difficult problem
of a conducting 1D ring subject to the combined action of
in-plane Rashba and uniform fields [8]. There we identify an
effective Berry phase underlying the nonadiabatic dynamics
as a key to single out the topological imprints left by the field
texture.

Finally, we notice that the scope of our approach is best
understood in the semiclassical limit of large momentum
(where a dynamical decoupling emerges between charge and
spin dynamics) by mapping the spin carrier problem into a
time-dependent one with localized spins [15].
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