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Two-nucleon emitters within a pseudostate method: The case of 6Be and 16Be
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Background: Since the first experimental observation, two-nucleon radioactivity has gained renewed attention
since the early 2000s. The 6Be system is the lightest two-proton ground-state emitter, while 16Be was recently
proposed to be the first two-neutron ground-state emitter ever observed. A proper understanding of their properties
and decay modes requires a reasonable description of the three-body continuum.
Purpose: Study the ground-state properties of 6Be and 16Be within a general three-body model and investigate
their nucleon-nucleon correlations in the continuum.
Method: The pseudostate (PS) method in hyperspherical coordinates, using the analytical transformed harmonic
oscillator (THO) basis for three-body systems, is used to construct the 6Be and 16Be ground-state wave functions.
These resonances are approximated as a stable PS around the known two-nucleon separation energy. Effective
core-N potentials, constrained by the available experimental information on the binary subsystems 5Li and 15Be,
are employed in the calculations.
Results: The ground state of 16Be is found to present a strong dineutron configuration, with the valence neutrons
occupying mostly an l = 2 state relative to the core. The results are consistent with previous R-matrix calculations
for the actual continuum. The case of 6Be shows a clear symmetry with respect to its mirror partner, the two-neutron
halo 6He: The diproton configuration is dominant, and the valence protons occupy an l = 1 orbit.
Conclusions: The PS method is found to be a suitable tool in describing the properties of unbound core + N + N

ground states. For both 16Be and 6Be, the results are consistent with previous theoretical studies and confirm the
dominant dinucleon configuration. This favors the picture of a correlated two-nucleon emission.
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I. INTRODUCTION

Exotic nuclei far from stability give rise to unusual prop-
erties and decay modes [1]. In the past few decades, the
advances in radioactive beam physics has enabled the study
and characterization of nuclear systems close to the neutron
and proton driplines. Large efforts have been devoted to
understanding the properties of two-neutron halo nuclei [2,3].
These are Borromean systems, in which all binary subsystems
do not form bound states. Theoretical investigations within
core + n + n models indicate that the correlations between
the valence neutrons play a fundamental role in shaping the
properties of two-neutron halo nuclei [2,4,5].

The evolution of these correlations beyond the driplines
has implications for two-nucleon radioactivity. First proposed
for two-proton decays in the sixties [6], this topic gained
renewed attention after the first experimental observation of
the correlated emission from the ground state of 45Fe [7,8].
Since then, other examples of two-proton emitters have been
confirmed, e.g., 54Zn [9], 19Mg [10], or 6Be [11]. More recently,
the case of two-neutron emission has also been observed from
16Be [12], 26O [13], and 24O [14].

The decay paths for two-nucleon emitters can follow dif-
ferent mechanisms. If there is a narrow state available in the
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intermediate nucleus, i.e., below the ground state of the parent
system, the process is expected to proceed sequentially. On the
contrary, if this sequential decay is not energetically possible
and the parent nucleus present a strong correlation between the
two nucleons prior to emission, a simultaneous “dinucleon”
decay takes place (see Ref. [15] and references therein). When
these extreme pictures do not apply, the concept of true three-
body “democratic” [1] decay is introduced. The boundaries
between these two- and three-body dynamics are still not clear,
especially in the decay of excited states, although there have
been recent developments [16]. In this context, three-body
models are a natural choice to study the nucleon-nucleon
correlation and decay modes.

Very exotic beryllium isotopes offer a good opportunity to
study two-nucleon correlations. On the proton-rich side, 6Be
is known to be the lightest two-proton emitter in its original
sense [6]: The intermediate 5Li states are not accessible for
sequential decay from the ground state of 6Be [11,16]. On the
neutron-rich side, the case of 16Be was claimed to be the first
experimental observation of a ground-state decay showing a
clear signature of correlated dineutron emission [12]. Three-
body models in terms of 4He + p + p and 14Be + n + n have
been recently used to analyze the structure of these unbound
systems [11,15–17]. This requires a proper description of
core + N + N continuum states. The three-body continuum
problem for systems comprising a single charged particle can
be solved, for instance, using the hyperspherical R-matrix
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FIG. 1. The three sets of scaled Jacobi coordinates.

theory [15]. The extension for systems involving the Coulomb
interaction is not an easy task, as the asymptotic behavior
for these systems is not known in general. To deal with this
problem, very involved procedures are needed [18–20] that
are not free from uncertainties.

An alternative is the so-called pseudostate (PS) method
[21], which consists in diagonalizing the Hamiltonian in a
complete set of square-integrable functions. This provides
the bound states of the system and a discrete representation
of the continuum. In this context, a variety of bases have
been proposed for two-body [22–25] and three-body systems
[26–29]. Lately, the PS method in hyperspherical coordinates
[2,4] has been successfully applied to describe the structure
properties and reaction dynamics of three-body nuclei (e.g.,
Refs. [30–35]). This approach, involving a standard eigenvalue
problem, is computationally simpler than the calculation of
actual continuum states.

It is the purpose of this work to study the ground-state
properties of 16Be and 6Be by means of the PS method
in a three-body (core + N + N ) scheme. Calculations are
constrained by the experimental information on the binary
subsystems 15Be (14Be + n) [36] and 5Li (4He + p) [37], and
the known two-nucleon separation energies in 16Be [12] and
6Be [37]. The validity of the discretization is assessed by
comparing with previous theoretical studies, and the results
are analyzed in terms of two-nucleon correlations.

The paper is structured as follows. In Sec. II, the three-body
formalism used in this work is presented. Results for 16Be and
6Be are shown in Sec. III, where the reliability of the theoretical
approach is discussed. Finally, Sec. IV summarizes the main
conclusions and outlines possible further applications.

II. HYPERSPHERICAL HARMONICS (HH) FORMALISM

Three-body systems can be described using Jacobi coordi-
nates {xk, yk}, where the label k = 1,2, or 3 indicates one of the
three coordinate choices in Fig. 1. In these sets, the variable xk

is proportional to the relative coordinate between two particles
and yk is proportional to the distance from the center of mass
of the x subsystem to the third particle. The scaling factors
between physical distances and Jacobi coordinates are given
by [2]

xk = rxk

√
AiAj

Ai + Aj

(1)

and

yk = ryk

√
Ak(Ai + Aj )

A
, (2)

where A = Ai + Aj + Ak is the total mass number and {i,j,k}
are in a cyclic order. It is then clear that the Jacobi-k set
corresponds to the system where particles (i,j ) are related by
the x coordinate. From Jacobi coordinates, the hyperspherical
coordinates {ρ,αk,̂xk ,̂yk} can be introduced. Here, the hyper-
radius (ρ) and the hyperangle (αk) are given by

ρ =
√

x2
k + y2

k , (3)

αk = tan

(
xk

yk

)
, (4)

and {̂xk,̂yk} are the two-dimensional angular variables related
to {xk, yk}. Note that, while the hyperangle depends on k, the
hyper-radius does not.

In the hyperspherical harmonic (HH) formalism, the eigen-
states of the system are expanded in hyperspherical coordinates
as

�jμ(ρ,�) = 1

ρ5/2

∑
β

χ
j
β (ρ)Yjμ

β (�), (5)

where � ≡ {α,̂x,̂y} is introduced for the angular dependence.
For simplicity, the label k has been omitted, assuming a fixed
Jacobi set. Here β ≡ {K,lx,ly,l,Sx,jab} is a set of quantum
numbers referred to as channel, where K is the hypermomen-
tum; lx and ly are the orbital angular momenta associated with
the Jacobi coordinates x and y, respectively; l is the total orbital
angular momentum (l = l x + l y); Sx is the spin of the particles
related by the coordinate x; and jab results from the coupling
j ab = l + Sx . By denoting by I the spin of the third particle,
which is assumed to be fixed, the total angular momentum is
j = j ab + I . The angular functions in Eq. (5), Yjμ

β (�), are
states of good total angular momentum, which are expanded
as [2]

Yjμ
β (�) = {[

ϒ
lxly
Klml

(�) ⊗ κsx

]
jab

⊗ φI

}
jμ

, (6)

where ϒ
lxly
Klml

are the hyperspherical harmonics. These are the
analytical eigenfunctions of the hypermomentum operator K̂ ,
given by

ϒ
lxly
Klml

(�) = ϕ
lx ly
K (α)

[
Ylx (x) ⊗ Yly ( y)

]
lml

, (7)

ϕ
lx ly
K (α) = N

lxly
K (sin α)lx (cos α)ly

×P
lx+ 1

2 ,ly+ 1
2

n (cos 2α), (8)

with P a,b
n a Jacobi polynomial of order n = (K − lx − ly)/2

and N
lxly
K a normalization constant. With the above definition,

the three-body Schrödinger equation leads to a set of coupled
hyper-radial equations[

− h̄2

2m

(
d2

dρ2
− 15/4 + K(K + 4)

ρ2

)
− ε

]
χ

j
β (ρ)

+
∑
β ′

V
jμ
β ′β(ρ)χj

β ′(ρ) = 0, (9)

where V
jμ
β ′β(ρ) are the coupling potentials defined as

V
jμ
β ′β(ρ) = 〈Yjμ

β (�)
∣∣V12 + V13 + V23

∣∣Yjμ
β ′ (�)

〉
. (10)
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In this work, the system given by Eq. (9) is replaced by a
standard eigenvalue problem by using the PS method [21],
Here, as in Refs. [29,30,32,33], the analytical transformed
harmonic oscillator (THO) basis is used. The radial functions
are expanded as

χ
j
β (ρ) =

∑
i

C
j
iβUTHO

iβ (ρ), (11)

where i denotes the hyper-radial excitation and C
j
iβ are just

the diagonalization coefficients. Therefore, the wave functions
(5) involve infinite sums over β and i. However, calculations
are typically truncated at maximum hypermomentum Kmax and
imax hyper-radial excitations in each channel. These parameters
have to be large enough to provide converged results.

The THO basis functions in Eq. (11) are obtained from
the harmonic oscillator (HO) functions using a local scale
transformation, s(ρ), satisfying the relationship

UTHO
iβ (ρ) =

√
ds

dρ
UHO

iK [s(ρ)]. (12)

This transformation keeps the simplicity of the HO func-
tions but converts their Gaussian asymptotic behavior into
an exponential one. This provides a suitable representation of
bound and resonant states to calculate structure and scattering
observables. For this purpose. the analytical form proposed by
Karataglidis et al. [38] can be used,

s(ρ) = 1√
2b

⎡⎣ 1(
1
ρ

)4 + (
1

γ
√

ρ

)4

⎤⎦
1
4

. (13)

Note that the THO hyper-radial wave functions depend, in
general, on all the quantum numbers included in a channel
β, although the HO hyper-radial wave functions only depend
on the hypermomentum K . The preceding transformation
depends on parameters γ and b. The most interesting feature
of the analytical THO method is that the ratio γ /b governs
the asymptotic behavior of the basis functions and controls the
density of PSs as a function of the energy. This allows us to
select an optimal basis depending on the system or observable
under study [29]. In order to study the properties of a single
three-body resonance, the Hamiltonian can be diagonalized
using a THO basis with a small hyper-radial extension. This
gives a representation of the continuum characterized by
a low level density, so that the resonant behavior can be
associated with a single PS. Examples of this approach have
been previously reported, for instance, to study the properties
of the 2+ resonance in 6He [28,29] or the 5/2− resonance in
9Be [31]. Here, the spatial distribution of the valence nucleons
in unbound core + N + N states is analyzed in terms of the
ground-state probability written in the Jacobi-1 set,

P (x,y) = x2y2
∫

|�jμ(x, y)|2dx̂dŷ, (14)

where the wave function has been transformed back to Ja-
cobi coordinates, and, after scaling to the relative distances
rx ≡ rN-N and ry ≡ rcore-(NN), it satisfies the normalization

(a)

16Be n + 15Be 2n + 14Be

0+
5/2+

(b)

6Be p + 5Li 2p + 4He

0+

3/2−

FIG. 2. Two-nucleon decay paths for (a) 16Be and (b) 6Be.

relationship ∫
P (rx,ry)drxdry = 1. (15)

III. APPLICATION TO EXOTIC BERYLLIUM ISOTOPES

The only stable beryllium isotope, 9Be, is already a weakly
bound system [39]. Exotic Z = 4 isotopes form bound states
from 7Be to 14Be (with the exception of the unbound systems
8Be and 13Be). Beyond the driplines, 16Be and 6Be ground
states have been observed as 0+ resonances characterized by
two-nucleon separation energies S2n(16Be) = −1.35(10) MeV
[12] and S2p(6Be) = −1.372(5) MeV [37]. Their widths are
0.8 and 0.092 MeV, respectively, although a much narrower
state, 0.17 MeV, was found for 16Be in recent calculations [15].
The discrepancy was attributed to the effect of the experimental
resolution. The properties of the relevant binary subsystems
15Be and 5Li have also been measured. The ground state of
15Be is a d5/2 state 1.8(1) MeV above the neutron separation
threshold and has a width of 0.58(20) MeV [36]. On the other
hand, the p3/2 state in 5Li is unbound with respect to the proton
emission by 1.96(5) MeV, and its accepted width is 1.5 MeV
[37]. Therefore, the sequential two-nucleon emission from the
ground state of 16Be (6Be) is (mostly) unaccessible, as shown
in Fig. 2. This favors a simultaneous two-nucleon emission,
either in the form of a “dinucleon” or in a true three-body
(democratic) decay [1].

Three-body core + N + N descriptions require, as input,
a nucleon-nucleon interaction and realistic core + N poten-
tials. For the former, in this work the Gogny-Pires-Tourreil
(GPT) nucleon-nucleon potential [40] is employed, including
central, spin-orbit, and tensor terms. This potential, although
simpler than the robust Reid93 [41] or AV18 [42] interactions,
reproduces NN observables up to 300 MeV. This makes it
suitable for three-body calculations [15,28,29]. The 14Be + n
and 4He + p potentials are adjusted to reproduce the position
of the 15Be and 5Li ground states, respectively. These are
l-dependent Woods-Saxon potentials with central and spin-
orbit terms, whose parameters are given in Table I. Note that,
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TABLE I. Parameters of the binary potentials for 15Be and 5Li
corresponding to Woods-Saxon geometries. The spin-orbit terms
follow the typical derivative form using the definition from Ref. [43].
The potential depth (V ) is given in MeV, while the radius (R) and
diffuseness (a) are provided in fm. RCoul is the hard-sphere Coulomb
radius.

n-14Be [15] p-4He

Vc(l = 0) − 26.18 +48.00
Vc(l = 1) − 30.50 − 42.35
Vc(l = 2) − 42.73 − 21.50
Vso(l = 1) − 10.00 − 40.00
Vso(l = 2) − 33.77 − 40.00
ac 0.65 0.70
aso 0.65 0.35
Rc 3.02 2.00
Rso 3.02 1.50
RCoul – 2.00

in this work, the 14Be + n interaction is the same used in
Ref. [15], while the 4He + p potential is essentially the one
used in Refs. [28,29] for the 4He + n case but including also
the Coulomb repulsion. The latter is a shallow potential, in the
sense that the 1s1/2 Pauli state has been removed by introducing
a repulsive l = 0 term. However, the 14Be + n potential gives
rise to 1s1/2, 1p3/2, and 1p1/2 bound states which represent
the neutron-occupied orbitals of the core. These states have
to be projected out for the 14Be + n + n three-body calcula-
tions, and this can be achieved, as in Ref. [15], by using a
supersymmetric transformation [44]. Note that the treatment
of the Pauli principle in three-body systems is a delicate issue,
and the inert core approximation with the 1s and 1p states
permanently occupied might not be a very realistic model to
describe 15,16Be. Effects not explicitly included within this
strict three-body model could affect the properties of 16Be.

The N -core phase shifts corresponding to the potentials
given in Table I are shown in the upper panels of Figs. 3
and 4 for 15Be(5/2+) and 5Li(3/2−) states, respectively. In
the lower panels, the position of the two-body resonances can
be associated with the maximum of the overlaps between the
15Be (5Li) continuum states and the three-body ground state
of 16Be (6Be). Details about these three-body calculations
are given in the following sections. In these figures, vertical
lines represent the experimental position of the resonances to
which the interactions have been adjusted. For completeness,
in Fig. 4, the phase shifts for n-4He scattering as well as
the corresponding overlaps are shown together with those for
p-4He. These have been obtained by just switching off the
Coulomb interaction in the binary potential. It is clear that both
systems, 5He and 5Li, can be described using the same N -core
potential, and this enables the description of the mirror nuclei
6Be and 6He using the same three-body Hamiltonian except
for the Coulomb part. Details are presented in Sec. III B.

A. 2n configuration in 16Be

The 0+ states in 16Be (14Be + n + n) are computed in the
Jacobi-1 set, where the two valence neutrons outside a 14Be
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FIG. 3. Upper panel: n-14Be phase shifts for 5/2+ states. Lower
panel: Overlaps between 15Be continuum states and the 16Be ground
state, with the maximum representing the resonance position. The
shaded area corresponds to the experimental value [36].

core are related by the x coordinate. Since three-body models
are an approximation to the full many-body picture, realistic
binary interactions alone are typically insufficient to reproduce
the known spectra [28,30,43,45]. It is then customary to include
also a simple hyper-radial three-body force, whose parameters
can be fixed to reproduce the (known) three-body energies
without distorting the structure of the states. In this work, as
in Ref. [33], a Gaussian form is adopted,

V3b(ρ) = v3b exp(−ρ/ρ3b)2. (16)
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FIG. 4. The same as Fig. 3 but corresponding to the p-4He (solid)
and n-4He (dashed) 3/2− continuum, together with the experimental
data on 5Li and 5He ground-state energies [37].
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0
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1.6
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FIG. 5. 16Be spectra as a function of the THO parameter γ ,
which controls the level density after diagonalization. Calculations
are provided for b = 0.7 fm, Kmax = 30, and imax = 15. A stable PS
around 1.3 MeV can be clearly identified.

Using ρ3b = 6 fm and v3b = −1 MeV, a low-lying resonance
around the two-neutron separation energy of 16Be is obtained.
Note that this three-body force, with different geometry and
parameters, was also employed in the previous 16Be three-body
calculation of Ref. [15].

In this work, the three-body continuum problem is solved
approximately within the three-body PS method using the
THO basis. The parameters of the analytical transformation
defining the basis control the level density after diagonalization
[29]. Following the stabilization method by Hazi and Taylor
[22], stable eigenstates close to resonance energies provide a
good approximation of the inner part of the exact scattering
wave function. The stability can be checked by changing the
parameters γ and b of the transformation [46]. However, it
is worth noting that not any combination of these parameters
is suitable for the purpose of this work. Since the ratio γ /b
controls the level density, as discussed in Sec. II, very small γ
or large b values give rise to a high concentration of states at
low energy, which would make difficult the identification of a
resonance. On the other hand, large γ or small b values go to
the other limit, where the radial extension of the basis function
is too small to cover the necessary range to describe physical
systems. This would require many more radial excitations (i.e.,
larger imax values) to achieve convergence. In this sense, a
compromise must be adopted and, in this work, the values
of the parameters used are chosen by trial and error. In order
to locate the ground-state resonance, the 16Be spectra obtained
within different THO bases are shown in Figs. 5 and 6. In this
calculations, either b or γ is fixed, and the three-body problem
is solved using different values of the other parameter and
truncating the basis expansion with Kmax = 30 and imax = 15.
From Fig. 5, where b is fixed to 0.7 fm, it is clear that a
state around 1.3 MeV shows a rather stable pattern and, for
γ values above 1.8 fm1/2, is well isolated from the rest of
discretized continuum states. With γ = 2 fm1/2, the state has a
variational minimum and can be used to study the ground-state
properties. A similar behavior is found in Fig. 5, now changing
the parameter b. This is a solid evidence that a resonance has
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THO parameter b (fm)
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FIG. 6. As in Fig. 5 but changing the parameter b while keeping
γ = 2 fm1/2.

been identified. The PS approximation to analyze resonance
properties of three-body systems was previously reported, for
instance, for the 2+ resonance in 6He [28,29] or the 5/2−
resonance in 9Be [31].

The stability of the calculations is further clarified in Fig. 7,
where the convergence of the ground-state energy as a function
of the maximum hypermomentum Kmax and the number of
hyper-radial excitations imax is presented. This corresponds to
the lowest PS obtained using b = 0.7 fm and γ = 2 fm1/2,
which is taken as an approximation of the resonance ground-
state wave function. With Kmax = 30, corresponding to 136 β
channels in the wave function expansion (5), the resonance
around 1.3 MeV is fully converged. It is also clear that
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FIG. 7. Convergence of the 16Be ground-state energy as a function
of (a) Kmax and (b) imax. Calculations correspond to γ = 2.0 fm1/2.
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FIG. 8. Ground-state probability of 16Be, with the scale given in
fm−2, as a function of rx ≡ rn-n and ry ≡ r(nn)-14Be. The maximum
corresponds to the dineutron configuration.

imax = 15 hyper-radial basis functions for each channel are
sufficient to achieve convergence of the ground state.

The spatial distribution of the valence neutrons in 16Be can
be studied from the probability function defined by Eq. (14).
Note that, with this definition, the two-dimensional contour
plots avoid the axes, as opposed to the results presented in
Ref. [15] where the probability does not include the Jacobian.
The ground-state probability is shown in Fig. 8 as a function
of rx ≡ rn-n and ry ≡ r(nn)-14Be. The maximum at rx � 2 fm
and ry � 3.5 fm corresponds to the dineutron configuration,
while the other smaller peaks are typically associated with
the triangle and cigarlike arrangements. From Fig. 8, it is
clear that the dineutron component dominates the ground
state of 16Be. A similar behavior was previously reported
for the two-proton configuration in 17Ne [33]. This state is
governed by relative lx = 0 components between the valence
neutrons, which amount for 75% of the total norm. From
these results, it is possible to perform a transformation to the
Jacobi set in which the 14Be core and a neutron are related
by the x coordinate. This transformation is related to the
Raynal-Revai coefficients [43,47]. In this set, the n-14Be d5/2

partial wave content of the ground state is 81%. The total
d-, s-, and p-wave probabilities in this scheme are 85%,
10%, and 4%, respectively. The present calculations confirm
the strong dineutron configuration in the 16Be ground state,
which favors the picture of a correlated two-neutron emission.
These findings agree with the experimental interpretation in
Ref. [12] of 16Be as a ground-state dineutron emitter and are
also consistent with the previous theoretical work [15].

Note that, in Ref. [15], the actual 14Be + n + n continuum
was obtained within the R-matrix approach. In the present
work, this problem has been approximated by solving a
simple eigenvalue problem, which provides discrete PSs as a
representation of the continuum. Results using the same three-
body Hamiltonian are fully consistent, which supports the
reliability of the PS method to study the properties of unbound
three-body states. This can be achieved due to the versatility
of the THO basis, whose analytical parameters enable the
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FIG. 9. The same as Fig. 8 but without n-n interaction. The
dineutron configuration no longer dominates.

identification and analysis of single resonances. Note that,
from the computational point of view, using the PS method
is much less demanding than solving the actual continuum
problem, such as in R-matrix calculations. Moreover, the
present approach is general and can be easily applied to systems
comprising any number of charged particles, for which the
exact computation of scattering states is a well-known open
problem. An application in this line will be presented in the
following subsection for the case of 6Be.

While the properties of the binary subsystem 15Be =
14Be + n play a relevant role in shaping the properties of the
compound system 16Be, the dominant dineutron configuration
can be associated to the effect of the neutron-neutron inter-
action [15]. This can be studied by diagonalizing the three-
body Hamiltonian without the NN potential. The ground-
state probability corresponding to this unphysical solution
is depicted in Fig. 9, where the same 14Be + n interaction
is employed. In this calculation, the three-body force has
been adjusted to recover the same two-neutron separation
energy. The fundamental difference with respect to the physical
ground state in Fig. 8 is the absence of a dominant dineutron
configuration. Here the dineutron and cigarlike contributions
carry almost the same strength. In this case, the n-n relative
l = 0 components are reduced to ∼50%, while these valence
neutrons occupy an almost pure d5/2 orbit with respect to the
core, i.e., ∼98%. This illustrates that the strong dineutron
character of the 16Be ground state is driven by the NN inter-
action, and it is again consistent with the conclusions drawn in
Ref. [15].

This work is focused on the identification of resonances
and the study of their spatial correlations using a pseudostate
approach. For the purpose of comparing with typical observ-
ables measured in the context of two-neutron emission [12], it
would be interesting to study (i) the relative energy distribution
between the neutrons and (ii) the angular correlation between
them. The latter can be obtained through a change of coor-
dinates, while the former could be achieved by performing
the Fourier transform of the radial wave functions. Work
along these lines is ongoing. Another interesting question rises
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regarding the determination of the width. In Ref. [15], the
width of the 16Be ground state is obtained from the derivative
of the scattering eigenphases. It has been shown (e.g., in
Ref. [48]) that the width can also be estimated from the
internal norm of the scattering wave functions. These energy
distributions, however, are not available within the present
pseudostate approach, so an estimation of the width in this
context requires additional considerations. For two-body sys-
tems, integral formulas to compute the phase shifts and width
of a state from a stabilized eigenstate are available [22,49].
Also in the three-body case, the treatment of resonances as
“quasibound” states provides an estimation of the width from
the internal part of the wave functions, as discussed in Ref. [50].
In that work, it is found that the quasibound wave function
for a narrow resonance, obtained from actual continuum
calculations, coincides with that obtained as a bound state to
within 0.5% of the total norm. This would open the possibility
of studying the width by using pseudostates. However, this
has yet to be explored in the context of the present THO
calculations.

B. 2 p configuration in 6Be

The three-body Hamiltonian for the 4He + p + p system
includes now, in addition to the binary nuclear potentials,
the pairwise Coulomb repulsion between the three interacting
particles. Nevertheless, from the point of view of the PS
method, the 6Be case is totally analogous to the one of 16Be
discussed in the preceding subsection. Moreover, its mirror
partner 6He can be described using the same method by just
switching off the Coulomb part of the binary interactions.
This enables a comparative study between both systems in a
three-body scheme.

The 0+ ground states of 6He and 6Be are generated in a
THO basis with the same parameters used for 16Be: b = 0.7 fm
and γ = 2 fm1/2. As in the previous case, this choice gives a
stable PS in the continuum carrying the resonant properties
of the 6Be ground state. The position of the states is again
adjusted using the three-body force introduced in Eq. (16) with
ρ3b = 6 fm. The depths to reproduce the experimental two-
neutron separation energy in 6He, 0.975 MeV [51], as well as
the energy of the unbound 6Be are v3b = −2.35 and −2.5 MeV,
respectively. In Fig. 10, the convergence of the ground-state
energy for both systems is shown as a function of Kmax, which
determines the size of the model space. It is clear that, within
the PS approximation, the convergence of the bound state in
6He is achieved much faster than that of unbound systems.
As in the previous case, the basis is set to imax = 15 hyper-
radial excitations, which was found to be sufficient to provide
converged results.

As in the previous example, the correlation between valence
nucleons can be studied by plotting the ground-state proba-
bilities. This is shown in Figs. 11 and 12 for 6He and 6Be,
respectively. The two-neutron halo in 6He presents the typical
dineutron configuration [2] around rx � 2 fm and ry � 2.5 fm.
This is a clear signal of the strong correlations in the halo. The
situation for 6Be is found to be analogous, with the absolute
maximum corresponding to two protons close to each other
at some distance apart from the 4He core. The distribution is
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FIG. 10. Convergence of the 6He ground-state (upper panel) and
6Be (lower panel) as a function of the maximum hypermomentum
Kmax.

similar to the initial two-proton density presented in Ref. [17],
where the 2p decay from 6Be is described as the time evolution
of the valence protons in the spherical mean field generated by
the core. The spatial distribution for 6Be is more diffuse than
that for 6He, as it corresponds to an unbound system under the
influence of the Coulomb repulsion between the three bodies.
This is consistent with the results drawn in Ref. [52] using
the Gamov coupled-channels approach. The wave function
contains 86% (83%) of relative lx = 0 components between the
two valence protons (neutrons) in 6Be (6He), and the nucleon-
core p3/2 content is close to 90%. The present calculations
confirm the strong diproton configuration in 6Be, in clear
symmetry with the two-neutron halo of 6He. These results
favor the picture of a correlated two-proton emission from the
ground state of 6Be.

 0  2  4  6  8  10  12
rx (fm)

 0

 2

 4

 6

 8

r y
 (

fm
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

FIG. 11. Ground-state probability of 6He as a function of rx ≡
rn-n and ry ≡ r(nn)-4He.
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FIG. 12. Ground-state probability of 6Be as a function of rx ≡
rp-p and ry ≡ r(pp)-4He.

IV. SUMMARY AND CONCLUSIONS

Three-body calculations for the unbound 16Be (14Be + n +
n) and 6Be (4He + p + p) systems have been carried out to
study the correlations between the valence nucleons, in relation
with two-nucleon radioactivity. Their ground states have been
generated within the PS method using the analytical THO
basis. This enables the identification of single resonances as
discrete eigenstates in the continuum, which are stable with
respect to the choice of the basis parameters. The models
incorporate the GPT NN interaction, realistic core-nucleon
potentials adjusted to reproduce the known resonance energies
of the binary subsystems 15Be(d5/2) and 5Li(p3/2) and also a
phenomenological three-body force to adjust the position of
the three-body states to the known experimental energies.

The ground-state probability distribution for 16Be presents
a strong dineutron configuration, consistent with recent exper-
imental observations. The present approach agrees with the
conclusions from R-matrix calculations of actual scattering
states. This supports the reliability of the PS method to study
the ground-state properties of unbound three-body systems.
The method is computationally less demanding and can be
applied in general to systems comprising several charged
particles. In this line, the ground state of 6Be shows a dominant
diproton component, in clear symmetry with the two-neutron
halo of its mirror partner 6He. For both 16Be and 6Be, the
present results favor the picture of a correlated two-nucleon
emission.

From the present calculations, the next step involves the
study of the energy correlation between valence nucleons
and the estimation of resonance widths within the PS ap-
proach. Other possible applications of the method to study
nucleon-nucleon correlations in unbound systems include the
description of exotic oxygen isotopes such as 24O, 26O, or
11O, the latter being the mirror partner of the two-neutron
halo 11Li. The decay from excited states of dripline nuclei,
e.g., the resonances in 6He or 17Ne, and the influence of these
correlations for reaction observables, could also be studied.
Work along these lines is ongoing.
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