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Supervisors:
Manuel Garćıa Muñoz
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Abstract

At the University of Seville, a significant leap forward is being pursued in the
race towards achieving viable fusion energy. In this pursuit, the construction of the
SMall Aspect Ratio Tokamak (SMART), a spherical tokamak, is currently underway.
Having good confinement is essential for the proper function of a tokamak. Different
operation regimes have been proposed. The advanced tokamak regime seems to be
the more promising for nuclear fusion plants. The high pressures in this regime give
rise to pressure driven instabilities that deteriorate the confinement and limit the
operational space. A good understanding of the instabilities is key to operate the
tokamak.

The objective of this master thesis is to ascertain the influence of an ideal wall
on the plasma stability. To accomplish this, CHEASE and MARS-F codes have been
employed. The simulations are centered on the ideal magnetohydrodynamic (MHD)
scenario, neglecting plasma rotation and kinetic effects, as well as plasma resistivity
and viscosity. The aim of this simplified approach is to isolate and comprehend
the fundamental impacts of the wall on plasma stability. MHD instabilites in the
advanced tokamak regime for low-nmodes (n = 1, ..., 6), and the effects of the wall at
varying distances, were studied. Taking advantage of SMART’s capability to operate
at different triangularities, a study to determine the most favorable triangularity for
achieving good confinement has been conducted. The highest positive triangularities
have shown better MHD stability.

Final Master Thesis 3 Sevilla, June 2023



Stability Analysis of SMART Alex Reyner Viñolas
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1 Introduction

1.1 Nuclear fusion

Plasma, usually called the fourth state of matter, is a highly ionized gas composed of
positive and negative charges, that forms when matter is so hot and energetic that atoms
are separated in ions (nucleus) and electrons. Stars, like the Sun, produce tremendous
amounts of energy through nuclear fusion. While on a universal scale this process may
not be eternal, we can consider it as an infinite source of energy. The plasma in their
core, composed of hydrogen, helium, carbon, and other heavier nuclei, is subjected to
extremely high temperatures and pressures due to the intense gravitational forces. This
causes the light nuclei to fuse together, forming heavier elements and liberating energy.
This process is called Nucleosynthesis.

For Sun-like stars, the dominant fusion process is the proton-proton chain. Of course,
we can not replicate the same processes that occur in the core of the stars here, in the
Earth. With the objective of imitating the stars, the development of fusion power plants
is of special interest for our future. The ultimate goal is the creation of a fusion reactor
capable of achieving sustainable, clean, and virtually limitless energy generation. The
most promising reaction is the deuterium-tritium1 fusion,

2
1D + 3

1T −→ 4
2He + n + Q (1.1)

Figure 1.1: Cross sections of nuclear
fusion reactions. [1]

produces Q = 17.6 MeV of energy. Although
this reaction does not yield the largest release
of energy, it is the most promising one in terms
of the cross-sections for the achievable temper-
atures (Fig. 1.1). Tritium is a highly contami-
nating element and does not exist in large quan-
tities on earth. However, this problem can be
solved by utilizing the neutron from the fusion
reaction to induce a reaction with lithium,

n + 6
3Li −→ 4

2He + 3
1T (1.2)

Thus, the problem of fuel acquisition is solved,
as lithium is a relatively common element, and
deuterium can be found in water.

1Deuterium and tritium are isotopes of hydrogen, 2H and 3H respectively.
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1.2 The tokamak concept

As we lack the gravitational forces of the stars to confine the plasmas, we had to search
other methods for plasma confinement. Since plasma is composed of charged particles, we
take advantage of the Lorentz force and magnetic fields to confine the plasma. Numerous
fusion devices have been designed for this purpose.

The tokamak shows the highest confinement rates so far, due to the strong decrease of
MHD fluctuations at the plasma edge in the high-confinement mode (H-mode) [2]. The
plasmas in tokamaks are much less denser than the ones in the stars. To compensate this
and having nuclear fusion reactions we need really high temperatures (∼ keV ). The high
temperatures reached in fusion devices require avoiding physical contact with any material
of the vessel, as the plasma temperature is well over the melting point of any material. In
a purely toroidal confinement the toroidal component is not uniform (Bt ∝ 1/R, being R
the radius of the torus). This leads to the distinction of two regions. The high field side
(HFS), located in the interior part of the torus, and low field side (LFS), in the outer most
part. Therefore, a gradient directed towards the center of the torus is observed. Particles
gyrating in such a non-uniform magnetic field will experience different magnetic fields
during their gyration. This leads to drift forces that, eventually, will transport particles
to the vessel walls. To counteract this effect, a poloidal magnetic field is added to the
toroidal magnetic field. Then, the magnetic field lines take a helical shape. A schematic
representation of the coils used in a tokamak, field lines, and trajectories can be seen in
Fig. 1.2.

Figure 1.2: Structure of a typical tokamak device. The coils, magnetic fields and plasma
are represented. Credit: EUROfusion.
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In order to have profitable energy production, it is necessary for these plants to operate
at a constant energy output, and be as efficient as possible and produce an equivalent or
larger amount of energy. The advanced tokamak regime (AT) [3, 4] appears to be very
promising for this goal. This regime is characterized by flat or reversed safety factor
profiles (Fig. 1.3) and high bootstrap current, only possible for high pressures gradients.
Most of the most harmful resonant surfaces are avoided due to the elevated safety factor.
The normalized plasma beta [5], which is the ratio between the plasma pressure and
magnetic field pressure, as it will be an important parameter in this work, is introduced:

β =
2µ0⟨p⟩
⟨B2⟩

−→ βN = β(%)(
a(m)B0(T )

Ip(MA)
) (1.3)

where ⟨p⟩ is the average plasma pressure, B0 the magnetic field, a the minor radius and Ip
the plasma current. It is especially important to control the instabilities to maximise this
parameter, as fusion power scales as ⟨p⟩2 ∼ β2

N [6]. However, βN is limited by numerous
magnetohydrodinamic (MHD) fluctuations that deteriorate the plasma confinement and,
thus, reduce the plasma βN . The ideal external kink is the instability that limits the
maximum plasma pressure achievable, which is rather low for AT tokamaks [7]. There-
fore, the understanding of the physics underlying MHD instabilities, as well as of control
techniques, is mandatory for future fusion reactors. The AT regime offers significant ad-
vantages only when the beta limit is significantly increased by the presence of a closely
fitting wall [8].

Figure 1.3: Different safety factor profiles corresponding to different scenarios. [16]

In a tokamak, the safety factor q is defined as the ratio of toroidal magnetic flux to
the poloidal magnetic flux. It is expressed as,

q =
dΦ

dΨ
(1.4)
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In other words, it represents the number of toroidal turns, n, compared to poloidal turns,
m, before a closed path is formed; or the helical twist of the field lines,

q =
m

n
(1.5)

The safety factor gives a measure of the MHD stability of a tokamak. In general, the higher
the safety factor is, the more stable it is. For a diverted tokamak [9], like the SMART,
q value is mathematically infinite at the LCFS. This would imply that we always have
stability for edge localized modes. However, studies have shown that this is not the case.
For this type of tokamak, the q value at the 95% is often used to give a measure of the
plasma stability at the edge.

Tokamaks do not have always the same size and proportions. There are conventional
tokamaks and spherical tokamaks. The difference between them lies in the aspect ratio,
A = R/a (see Fig. 1.4). Spherical tokamaks are characterized by low aspect ratios (A < 2),
high β, high fraction of bootstrap currents and good energy confinement. Spherical torus
plasmas have large elongation, large plasma current and similar toroidal and poloidal
fields. This kind of tokamak shows improved stability respect other devices. ST have
more compact and simple designs, and lower cost of operation, with a fusion power similar
to conventional tokamaks. [10,11]

Figure 1.4: Section of a conventional tokamak and a spherical tokamak. [12]
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1.3 SMART

The SMall Aspect Ratio Tokamak (SMART) [13, 14] is a new spherical tokamak being
commissioned at the University of Seville. The main characteristic that differentiates
SMART from other spherical tokamaks is its capability to operate in both positive trian-
gularities (PT) and negative triangularities (NT). A cross section of the SMART can be
seen in Fig. 1.5. The design of the device is very compact: the toroidal vacuum vessel has
an inner and outer radius of 150 and 800 mm respectively, and 1600 mm of inner height.
Two pairs of poloidal coils (PF1 and PF2) are used for plasma shaping and control. The
divertor field coils (DIV1 and DIV2) are needed to achieve the desired elongation. Twelve
copper coils (with four turns each one) are in charge of creating the toroidal magnetic field
Bt. The plasma characteristics of the tokamak are: R0 ≥ 0.4 m, a ≥ 0.2 m, Ip ≤ 500 kA,
Bt < 1T, pulse length of 500 ms, and neutral beam injection power of 1 MW. The main
goals of the SMART are:

• Studying plasma transport and confinement in positive and negative triangularities

• Effect of shear flow velocity on edge plasma turbulence

• MHD stability and the control of energetic particle losses in high β plasmas

• Development of novel diagnostic techniques, divertor configurations, plasma facing
materials and control schemes

• Formation of new generation of physicists and engineers

1.4 Structure of the work

In this work, a linear ideal MHD stability analysis of the SMART tokamak is performed.
Firstly, in Sec. 2, an introduction to the magnetohydrodynamic (MHD) theory will be
given, introducing the MHD and the ideal linear MHD equations. Also, main MHD
instabilities analyzed in this work are described in Sec. 2.3. In Sec. 3 a brief description
of the programs used in this work, CHEASE and MARS-F, and its normalization factors and
equilibria definition are presented. The results of the simulations will be presented in
Sec. 4. In Sec. 4.1 the results of a plasma beta scan without the inclusion of a wall. Then,
in Sec. 4.2 the effects of the ideal wall on mode stability are investigated. In Sec. 4.3
a combined scan in both plasma beta and wall distance is presented. To provide more
completeness to the study, a scan over several AT regimes has been conducted in Sec. 4.4.
Finally, in Sec. 4.5, the effects of the plasma triangularity will be studied. Conclusions
and outlook are presented in Sec. 5.
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Figure 1.5: Cross section of the SMART tokamak.
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2 Theoretical background
To begin with, it is necessary to grasp the concept of a plasma and the physics that
governs its behavior. In this chapter, an introduction to plasmas and their fundamental
characteristics will be provided. The definition of a plasma, its fundamental properties,
the various descriptions used to analyze it, the confinement methods employed, and some
of the instabilities observed in fusion devices are discussed in this section. For more detail,
the text is based in references [15–18].

A plasma is a state of matter in which a gas becomes highly ionized, consisting of a
collection of charged particles such as electrons and ions. Plasmas are known for their
unique properties and behavior. They are electrically conductive, responding strongly
to electric and magnetic fields. Due to the presence of charged particles, plasmas can
generate and carry electrical currents. Globally, plasmas are electrically neutral when
their dynamics are studied over distances larger than the Debye length. Plasmas also
exhibit collective phenomena like waves with their own frequencies, instabilities, and self-
organization.

Describing a plasma is not a straightforward task. Initially, one can approach the
problem by considering the plasma as a collection of many individual particles and eval-
uating all interactions between them. This method becomes exceedingly difficult to solve
as the individual behaviour of each particle in the phase space can not be described.
Also, this description is not viable computationally given the elevated number of parti-
cles. Therefore, a fluid-statistic description is commonly employed to effectively deal with
plasmas.

2.1 Magnetohydrodynamic model

The MHD equations describe the plasma as a charged neutral electromagnetic conducting
fluid, meaning that the individual particle motion cannot be studied. The plasma is a
mixture of ions and electrons. With the MHD description, both species are described
by MHD equations. From them, one can obtain the one-fluid MHD equations. For this
purpose, the one-fluid variables are defined below:

ρ = neme + nimi ≈ nimi = ρi

u = (nemeue + nimiui)/ρ ≈ ui

ρel = − ene + emi ≈ 0

j = − eneue + emiui

p = pe + pi

(2.1)

where ρ is the mass density, u is the velocity, ρel the charge density, j the current and p
the pressure. The one-fluid ideal MHD continuity, momentum and energy equations, and
pre-Maxwell equations form a closed set of equations (2.2),
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∂ρ

∂t
+∇ · (ρu) = 0 E+ u×B = 0

ρ
du

dt
= j×B−∇p ∇× E = −∂B

∂t
d

dt
(pργ) = 0 ∇×B = µ0j

(2.2)

2.2 Linear ideal MHD equations

The equilibrium can be stable, unstable or metastable against small variations around the
equilibrium itself. The linearization of MHD equations are a useful tool to understand the
mechanisms that make the plasma unstable and, thus, develop MHD instabilities. In the
following, the linear ideal MHD equations are shown. These are obtained doing a Taylor
expansion of MHD variables,

f(x, t) = f0(x) + ϵf1(x, t) +O(ϵ2) (2.3)

where f(x, t = 0) = f0(x) and f1(x, t = 0) = 0. , and the ϵ parameter is small. Introduc-
ing this expansion to the MHD equations (2.2), keeping only the lineal terms, the linear
ideal MHD equations are obtained,

∂ρ1
∂t

+∇ · (ρ0u1) = 0 E1 + u1 ×B0 = 0

ρ0
du1

dt
= j0 ×B1 + j1 ×B0 −∇p1 ∇× E1 = −∂B1

∂t
∂p1
∂t

+ u1 · ∇p+ γp0∇ · u1 = 0 ∇×B0 = µ0j0 , ∇×B1 = µ0j1

(2.4)

The displacement vector ξ(x, t) of the plasma is defined as,

u1 =
∂ξ

∂t
(2.5)

After introducing equation (2.5) integrating the equations (2.4), the linear ideal MHD
force equation is obtained,

ρ0
∂2ξ

∂t2
= F · ξ (2.6)

where F is the linear force dyadic operator,

F · ξ =
1

µ0

{[∇×∇× (ξ ×B0)]×B0 + (∇×B0)×∇× (ξ ×B0)}

+∇[∇ · (p0ξ) + (γ − 1)p0∇ · ξ]
(2.7)

The problem is reduced to an eigenvalue problem with,

ξ(x, t) =
+∞∑

n=−∞

ξn(x) exp{−iωnt} (2.8)

The eigenvalues ωn determine the stability. If ωn ∈ R, the solution is oscillatory and the
equilibrium is stable. If ωn ∈ C, the solution grows and the equilibrium is unstable.
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2.3 MHD instabilities

The plasma is a highly responsive medium, characterized by a delicate equilibrium that
can be easily disturbed. Even the smallest of perturbations can trigger instabilities,
turbulences, waves, etc. that change the behavior of the plasma and lead to degradation
of confinement. That is why it is of utmost importance to actively prevent and carefully
manage instabilities to ensure optimal control. A brief explanation of the instabilities
observed in this work is given below.

Figure 2.1: Eigenmode structure, for typical MHD instabilities: (A) internal kink, (B)
external kink, (E) infernal mode. [19]

2.3.1 Internal kink

The Internal kink (IK) is an instability found in the core of the plasma. In regions where
high plasma current flows, strong poloidal magnetic fields are induced by this current. If
the plasma experiences a perturbation, these fields amplify it further. This kink mode
consists in a shift and tilting [20] of the central plasma column without deformation, with
typically n = m = 1. The critical condition to have an IK is to have q0 < 1. This
condition is, however, not sufficient for an unstable IK. In a tokamak plasma, the IK
becomes unstable only if the plasma pressure exceeds certain critical value, the Bussac
limit [21]. For a flat central q-profile, the ideal m = 1 IK may be unstable in a torus
with arbitrarily small values of β. The growth rate of the IK is proportional to (1− q0),
describing a parabolic shape [22]. The presence of an IK limits the maximum current Ip
achievable and the confinement, since the confinement time is proportional to Ip [17]. As
will be seen in this work, even when the external kink is the dominant mode, the internal
kink contribution is non negligible. The IK stability also depends on other factors, such
as trapped particles, rotation and resistive effects.

2.3.2 External Kink

The External kink (EK) is a plasma current and pressure driven mode with no null edge
component. The purely current driven EK becomes unstable when qa < m/n [17, 25].
This instability has a main component with a poloidal mode number m and toroidal
mode number n. The most unstable case is the (2,1) mode. Thus, EK with m/n < qa
are stable at negligible pressures. As usually the safety factor has high values that help
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stabilize the modes caused by plasma current, EK modes induced by pressure are the most
common in tokamaks. These modes typically have low toroidal mode numbers, usually
n = 1−3. When pressure exceeds a certain threshold βN,no−wall, the mode becomes highly
unstable. Past this limit the EK grows really fast, with a growth rate γ0 ∼ 1/τA, where
τA is the Alfvén time. The mode becomes impossible to control and plasma confinement
is lost.

However, the presence of an ideal conducting wall surrounding the plasma within a
critical distance rc has shown to have a stability effect over the EK. Below a higher βN
threshold called the “ideal-wall” limit, βN,ideal−wall, the external kink is stabilized by the
wall [26, 27]. This value depends on the shape and geometry of the wall, and increases
the βN limit by a factor of 1.2 − 2. If the plasma pressure surpasses this limit, the EK
will also rapidly increase like in the no-wall case.

2.3.3 Infernal Mode

The Infernal mode (IF) is a plasma current and pressure driven instability, but mainly
pressure-driven. An IF is an EK with resonant surface inside the plasma, in a region
where the magnetic shear is low and the pressure gradient is large around this resonant
surface [17]. One of the main characteristics to identify an IF is that the main instability
with (m0,n) is coupled to the neighboring modes (m0 ± 1,n). The growth rate of the IF
increases with smaller ratio between the mode and q-profile: δq = qmin − m0/n, and is
highly dependent on the pressure [23]. The safety factors considered in AT regime are
most unstable to IF. IF is most unstable for qmin just below a rational number [24].
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3 CHEASE and MARS-F
The MARS-F code [28–30] solves the standard, linearized, ideal or resistive, MHD equations
(2.4) in a toroidal geometry as an eigenvalue problem. The equilibrium input to MARS-F

is produced with CHEASE [31]. CHEASE solves the Grad-Shafranov equation for a toroidal
MHD equilibria.

∇ · 1

R2
0

∇ψ =
jϕ
R0

= −p′(ψ)− 1

R2
0

TT ′(ψ) (3.1)

where jϕ is the toroidal plasma current density, p′ the plasma pressure gradient and T
is the poloidal current flux function. To solve the equation, the free functions p′(ψ) and
TT ′(ψ) need to be determined. The coordinate system used is the flux coordinate system
(s, χ, ϕ), where the radial coordinate is defined as

s =

√
ψ − ψaxis

ψedge − ψaxis
=

√
ψN ≡ ρpol (3.2)

where ψ is the poloidal magnetic flux. χ is a generalized poloidal angle, and ϕ is the
toroidal angle. Some important parameters mentioned in further explanations, for CHEASE
are:

• R0: normalisation factor for the length.

• B0: normalisation for the magnetic field.

• CFBAL: scaling factor of the pressure gradient.

• NVC: radial resolution of final vacuum mesh, in terms of s.

• REXT: vacuum radius normalized by the minor radius of the plasma, a.

and for MARS-F are:

• NVM: cell number specifying vacuum extension.

• M1 & M2: denotes the lower and higher poloidal modes simulated.

• NWALL: number of resistive walls considered in the simulation.

The complete set of parameters and their explanations can be found in reference [32].
In MARS-F simulations without a wall are not possible. In our code, the boundary of the
computational domain acts as an ideal conductive wall. However, if the boundary is far
enough, it can be treated as if there were no wall, and the effect will be the same as an
infinite vacuum. This will be seen in the next sections. The parameters values for the
simulations are:

CHEASE: NVC=160, NVEXP=0, REXT=3, R0= 0.526 m, B0=0.37 T
MARSF: NVM=160, NWALL=0, M1=-9, M2=30
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3.1 Equilibria definition

Equilibria with a reversed, or nearly reversed, q-profile according to the advanced tokamak
regime, with qmin > 1, have been produced. Due to the way the version used of the CHEASE
code functions q-profiles can not be entered as an input. A discretization of the pressure
(RPPF), the current profile (RFUN) and the plasma boundary, or last closed flux surface
(LCFS) are used to determine the equilibrium. The starting point is an equilibrium
generated by the FIESTA code. Modifications to the current profile and plasma shape
have been made to alter the output of the q-profile.

The pressure gradient is given by,

RPPF = 1.54ρ2pol − 5.38× 10−8ρpol − 1.54 (3.3)

Instead of the TT ′ quantity of equation (3.1), the surface averaged current profile has

been used,

I∥ =

∮
J ·BJdχ∮
B · ∇ϕJdχ

(3.4)

The procedure followed was manually creating current profiles using analytical expres-
sions, such as Gaussian and Fermi like distributions, as a basis.

G(A, x, µ, σ) = A · e−(x−µ)2/σ ; F (x, µ, σ) =
1

1 + e(x−µ)/σ
(3.5)

Combining this expressions, current densities and q-profiles similar to those used in Refs [7,
24,36] are obtained. Once the shape of the profile is determined, it is normalized so that
its maximum value is 1. Then, to adjust the current profile amplitude a multiplier, M , is
used.

RFUN =M ·
(

[G(A, ρpol, µ, 0.2) + F (ρpol, 0.9, 0.15)] · F (ρpol, 0.85, 0.05)
([G(A, ρpol, µ, 0.2) + F (ρpol, 0.9, 0.15)] · F (ρpol, 0.85, 0.05))max

)
(3.6)

The LCFS used is given by following expression:

R = R0 + a cos (θ + δ sin θ) ; Z = aκ sin θ (3.7)

where R0 and a are the major and minor radius respectively, κ is the elongation and δ
the triangularity of the plasma. The wall used in this study will have a shape conformal
to the LCFS shape, meaning it is described by:

R = R0 + aw cos (θ + δ sin θ) ; Z = awκ sin θ (3.8)

where aw is the wall radius. A section of the plasma surface and wall, the surface averaged
current profile, and plasma pressure gradient can be seen in Fig. 3.1.
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Figure 3.1: On the left, a representation of the normalized plasma LCFS and wall. In
this case R0 = 0.53 m, a = 0.27 m, κ = 1.98, δ = 0.5 and aw = 0.4 m. On the right, the
surface averaged current profile. Below them, the ∇p input.

As mentioned, CHEASE produces the equilibrium input for MARS-F simulations from
these expressions. The main characteristics of the equilibrium: total current, q-profile,
plasma beta, etc.; are obtained with CHEASE. A problem encountered in our simulations
is that CHEASE can not produce an equilibrium for every set of parameters, especially the
high pressure equilibria (βN > 6). Once the CHEASE simulation is done and the output
equilibrium is produced, MARS-F is used to simulate the plasma stability. Among all the
results obtained with MARS-F, the focus will be placed on the growth rate of the specific
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toroidal mode n, and its mode structure. Since MARS-F solves the problem iteratively
starting from an initial guess of the growth rate, it is possible that for some cases (mainly
the most stable plasmas with lower growth rates) non-physical results are obtained. These
types of results are characterized by having very narrow and tall peaks in the eigenstate
structure (Fig. 3.2).

Figure 3.2: Example of a result considered non-physical.

3.2 Normalization

In this work, the normalized variables for the quantities computed are used. Table 3.1
lists the normalization used for each variable, the normalization used for each variable
can be seen. Both CHEASE and the MARS-* codes share the same normalization scheme.

Quantity SI unit Norm. factor

length m R0

mag. field T B0

current A R0B0/µ0

current density A/m2 B0/(µ0R0)
pressure Pa B2

0/µo
γ0 s ωA

Table 3.1: Normalization factors of variables.

The Alfvén frequency, ωA, is computed as,

ωA = νa/R0 ; νA = B0/
√
µ0mHn0 (3.9)

where mH is the Hydrogen mass and n0 the plasma density at the magnetic axis. In this
work, where B0 = 0.4 T and n0 = 3.72·1019 m−3, the Alfvén frequency is ωA = 2.514 µs−1.

Final Master Thesis 20 Sevilla, June 2023



Stability Analysis of SMART Alex Reyner Viñolas

4 Simulation results
Our work has been divided into four phases. Firstly, with a fixed current profile, how the
increase in pressure affects our plasma has been examined. Secondly, how the ideal wall
affects plasma stability. Then, a scan for different currents has been conducted. Finally,
the triangularity of the plasma has been modified to produce a scan over positive and
negative triangularities, using the current profile from the first part of the work. In this
section the results obtained in the simulations over the different scans are presented.

4.1 Plasma β scan

For this first part of the work, the averaged current profile (3.6) is fixed to:

RFUN(M = 2.3, µ = 0.7, A = 1) (4.1)

By changing the CFBAL parameter, the pressure gradient is modified and, thus, the
plasma beta is modified. Tab. 4.1 shows the different parameters of the equilibria for
each CFBAL value considered. A wide range of pressures has been covered to observe the
effect plasma beta has on the GR of the modes.

Tag CFBAL q0 qmin q95 qedge β (%) Ip (kA) βN

ek6v4.0 4.0 1.80 1.62 4.12 5.70 19.22 359.36 5.276
ek6v3.8 3.8 1.78 1.59 4.04 5.62 18.66 356.99 5.157
ek6v3.6 3.6 1.76 1.56 3.97 5.53 18.08 354.56 5.030
ek6v3.4 3.4 1.74 1.53 3.89 5.45 17.47 352.06 4.895
ek6v3.2 3.2 1.72 1.50 3.82 5.36 16.82 349.49 4.750
ek6v3.0 3.0 1.70 1.48 3.74 5.27 16.15 346.86 4.594
ek6v2.8 2.8 1.69 1.45 3.67 5.18 15.44 344.16 4.426
ek6v2.6 2.6 1.67 1.43 3.59 5.08 14.69 341.39 4.246
ek6v2.4 2.4 1.66 1.40 3.52 4.99 13.90 338.54 4.051
ek6v2.2 2.2 1.65 1.38 3.44 4.89 13.06 335.63 3.840
ek6v2.0 2.0 1.65 1.36 3.37 4.79 12.18 332.64 3.612
ek6v1.8 1.8 1.64 1.33 3.29 4.70 11.24 329.58 3.364
ek6v1.6 1.6 1.64 1.31 3.22 4.59 10.24 326.45 3.096
ek6v1.4 1.4 1.64 1.29 3.14 4.49 9.19 323.25 2.805
ek6v1.2 1.2 1.65 1.28 3.07 4.39 8.07 319.99 2.488
ek6v1.0 1.0 1.65 1.26 2.99 4.29 6.89 316.68 2.146

Table 4.1: q0, qmin, qedge, plasma beta, total plasma current and normalized plasma beta
(1.3) for different CFBAL values. The tag allows us to reference each case.

Fig. 4.1 illustrates the pressure and safety factor profiles for some of the cases listed
in Tab.4.1. This equilibrium returns us a slightly reversed q-profile, with a q value at the
edge close to 5. This is a typical profile for an AT scenario (see Fig. 1.3). Since CHEASE

calculates the equilibrium for each CFBAL value self-consistently, this implies that not all
the equilibirum parameters can be kept constant when changing one of them (in this case,
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CFBAL). It can be observed that q decreases with decreasing pressure. When changing
the pressure is expected to have a slight change in the q-profile, specially in the edge zone.
In our case this change is more global. From Tab. 4.1, it can be seen that qedge changes
∼ 28%, q95 ∼ 32%, qmin ∼ 25% and q0 ∼ 10%. The effects of a change like this can
modify the results obtained for the GRs. There is also an important value change on the
total current Ip, that varies ∼ 10%.

Figure 4.1: Pressure and safety factor for some of the EK6 equilibria.

The growth rates and eigenfunctions for modes n = 1, ..., 6 have been computed.
Fig. 4.2 shows the normalized GR of these modes for some cases of the plasma beta scan.
A clear tendency for an increase in the GR with plasma beta can be seen. For the lowest
pressures, the GR has an oscillatory behaviour with the toroidal mode number n. For
elevated pressures, this behaviour disappears and the the GR increases monotonically
with n.
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Figure 4.2: Normalized growth rates obtained for some of the simulations of the EK6
equilibria. Full data in Tab. A.1 in the appendix.
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In Fig. 4.3 all the modes are plotted for the ek6v3.0 case. For n = m = 1, despite
having q0 > 1, an IK with edge component can be seen. Plasmas with this kind of q-
profile are unstable for the IK even for high qmin and β [33]. For lower β the n = 1 mode
is unstable for the m = 1, and as plasma pressure is increased the m = 2 contribution
gains importance. The IF modes are also unstable in this regime. The GR of these IF
has an oscillatory character over n, as observed in this work, that becomes stronger as
qmin increases until a certain value where it disappears [33]. In this case, EK are mainly
present in modes n = 1, 2 and even 3. EK can be identified by their component at the
boundary, and because they are globally defined. The higher n IF are also coupled to an
EK.
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Figure 4.3: Eigenstate structure of the n = 1, ..., 6 modes for the ek6v3.0. The dominant
poloidal modes m = 1, ..., 6 has been marked to differentiate them.
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4.2 Ideal wall inclusion

Our goal is to study the effect that an ideal wall has on the stability of the external kinks.
Tthe EK6 equilibrium with CFBAL=3 (tag: ek6v3.0, Tab. 4.1) has been choosen, because
this case has a normalized plasma beta value βN = 4.6, reasonable for the operation of a
spherical tokamak [17]. This case will be named as the ICW6 equilibrium, in particular
the icw6v3.0 case. The ideal wall effects are investigated changing the NVM parameter
in MARS-F, i.e., by changing the radial location of the ideal wall. By setting NVM=NVC,
the entire vacuum region is included, as in the previous section. Otherwise, the ideal wall
condition at the plasma boundary is achieved by setting NVM=1. The relation between
the wall radius and NM in an equidistant mesh is,

rw
a

= 1 + (REXT− 1)
NVM − 1

NVC

(4.2)

Fig. 4.4 shows the normalized linear GRof n = 1, ..., 6 modes for different ideal wall
radial locations. For low n values, the component at the edge has more influence on the
mode’s GR, making the effect of the wall more pronounced. As n increases, the effect
appears for shorter distances of the ideal wall respect of the LFCS. This suggests that
for these n values, the dominant IF is not stabilized by the wall. If the wall very close
enough to the plasma, these modes are partially stabilized as well.
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Figure 4.4: Normalized growth rates versus the ideal wall radius. Modes with lower n are
affected by the wall effect earlier. Data in Tab. A.2 in the appendix.

The results obtained for the case with the closest wall are shown in Fig. 4.5. It is worth
noting that while the outermost component becomes negligible in all cases, the modes still
exhibit their IK and IF with the same dominant poloidal number. Having a wall prevents
the displacement from expanding to the plasma edge. In Fig. 4.6, the evolution of the
n = 1 in terms of the wall distance can be seen. The IK is not suppressed in any case and
its contribution to the GR is really important. The internal component of the modes is
barely affected by the ideal wall presence, and is probably the reason why the GR tending
to zero at a certain radius is not observed, rc, as seen in the literature [34,35].
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Figure 4.5: Eigenstate structure of the n = 1, ..., 6 modes for the icw6v3.0 with the wall
at the LCFS. The dominant modes m = 1, ..., 6 has been marked to differentiate them.
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Figure 4.6: Evolution of the eigenstate structure of the n = 1 mode for different wall
radius. The dominant poloidal modes m = 1, ..., 6 has been marked to differentiate them.
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4.3 Plasma β and wall distance scan

So far, how the wall affects the various toroidal modes n for an specific βN has been
studied. The equilibrium studied is not stable for this pressure even with the ideal wall
inclusion. For a more comprehensive study, it is necessary to determine the pressures and
wall distances for which the plasma is stable. For this purpose, special focus has been put
on the modes n = 1 and n = 2. Fig. 4.7 shows the linear GRof n = 1 and 2 modes as a
function of normalized beta and wall radius. It can be observed that, indeed, the GR of
the two modes increases as normalized plasma beta rises for any fixed wall distance.
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Figure 4.7: Normalized growth rates for the n = 1 and n = 2, as a function of plasma
beta and wall radius. Data interpolated from a 21x16 simulation mesh.

On the right side, there is a region where the values of the GR do not vary with the

Final Master Thesis 28 Sevilla, June 2023



Stability Analysis of SMART Alex Reyner Viñolas

wall. This is because at that distance, the effects of the wall are not noticeable. Hence,
our assumption of considering rw = 3 as the case without a wall (infinite vacuum) made
in Sec. 3 and used in the previous sections is indeed correct. For both cases, a lower GR
region can be seen on the left side, corresponding to the stabilization of the EK by the
ideal wall. For n = 1, the effect of the wall starts to be noticeable at rw/a ≈ 2. For n = 2,
the effect of the wall starts to be noticeable at rw/a ≈ 1.5. Therefore, the stabilization is
more effective for n = 1.

In Fig. 4.8 the GR of the n = 1 and n = 2 for the “no-wall” and rw/a = 1.00 cases
are plotted. From these results, an approximation of the βN limits can be obtained by
extrapolating when the GR becomes zero. Since the linear approximation did not yield
good results, the order of the approximation has been increased by one. Also, IF modes
GR is proportional to β2, and the results show a high presence of them. Higher orders
provide better results for fitting, but second-order polynomial is sufficient.

γ0 = c2 · β2
N + c1 · βN + c0 (4.3)

The lowest pressure points have not been used in obtaining the polynomial fit. They
diverged from the behaviour of the highest pressure results and the eigenstate structure
of the modes is different. The βN limits obtained are almost the same for the two cases.
Thus, it can be concluded that for this case βN,no−wall ≈ 2.4 and βN,ideal−wall ≈ 3.3, which
represents an increase of approximately 37%, close to the typical 40% increase observed
for ideal walls [36].
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Figure 4.8: Normalized GR of the n = 1 and n = 2 modes vs βN , for the “no-wall” case
and ideal wall at the LCFS. The second-degree polynomial approximated to the data is
also plotted. Full data and approximation parameters in Tab. A.3.

As mentioned before, for low pressures the modes obtained are more diverse. The
most notable case is for βN = 2.49. For n = 1 (see Fig. 4.9) a peak emerges in the mode
structure at a poloidal radius corresponding to the q = 2 surface. This peak at all rw
values but increases for rw/a < 2.2. Additionally, for this same pressure, the n = 2 (see
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Fig. 4.10) mode exhibits a structure resembling the RWM found in the literature [36].
These peaks correspond to the surfaces q = 1, 1.5, 2, 2.5, ... and so on. Since it is the
n = 2 mode, they correspond to the m = 2, 3, 4, 5, ... surfaces (m = q · n). For plasma
beta above βN = 2.49 this structures are also present, but only for the the cases where
the ideal wall is really close to the LCFS. However, all these modes correspond to the
region with the smallest GR and have been considered them as residual perturbations.

Figure 4.9: Eigenstate structure of the n = 1 mode at low pressure.

Figure 4.10: Eigenstate structure of the n = 2 mode at low pressure.
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4.4 AT regime scan

A study for numerous regimes in SMART has been conducted, with different current
profiles, to identify what equilibria are stable against IK, EK and IF. Let us recall the
RFUN equation (3.6). The parameters of the Gaussian distribution are the ones changed
in this scan of current profiles, while the rest is held constant. In this way, an AT scenario-
like q-profile is maintained. In Fig. 4.11 it can be seen how the q-profile changes when
the current is modified. Increasing the current amplitude causes an overall decrease in
the entire q-profile. If central region of the current profile is fixed and the core region
reduced the safety factor increases only in the core region, with a minor change in the
edge. Hence a more reversed q-profile.

Figure 4.11: Change in the surface averaged current profile and the resulting q-profile
according to the change in the RFUN parameters.
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Simulations have been conducted for different current profiles with A = 1 and A = 2.5,
over a broad set of pressures, for the n = 1 and n = 2 modes, with and without the ideal
wall. The GR results have been filtered to determine which equilibria are stable. The
GR threshold value below which the equilibrium has been considered stable is γT/ωA =
1 × 10−3. The mode profiles have been studied, and it has been found that this value is
a good discriminator for ruling out where there are not IK, EK, or IF. Some simulations
have converged to non-physical results (see Fig. 3.2). To identify these modes, a more
in-depth study was conducted by identifying the peaks of each mode. If the width of the
highest peak is lower than 0.03, the mode is considered to be non-physical, and if the value
was lower than γ = 5× 10−3, the mode has been considered stable. For cases where the
current profile is very high, the qmin drops to values below 1. The results corresponding
to this cases have been also filtered out.

Fig. 4.12 shows the results for the A = 1 equilibria, and Fig. 4.13 shows the results
for the A = 2.5 equilibria. The results show that SMART exhibits stability for βN < 3
without a wall. When an ideal wall is considered, the region of stability increases to
βN ≈ 6. Similar results has been obtained in studies for other spherical tokamaks [37,38].
At high currents the stabilization thanks to the ideal wall is less effective. The βN limit
found presents a step like behaviour, found also in [39]. Comparing both figures, it can
be seen that having a more reversed q-profile gives us access to higher normalized current
operational range. In Fig. 4.14 the GR obtained for the RFUN(M = 1.90, µ = 0.7, A = 1)
equilibrium are plotted. It can be seen that the βN limits found change substantially
from the ones found in Fig. 4.8. While the βN,no−wall limits for both n = 1 and 2 are
almost the same, the βN,ideal−wall are significantly increased from βN,ideal−wall ≈ 3.3 to
βN,ideal−wall ≈ 5.

Figure 4.12: Operational range for equilibria with A = 1. βN vs. normalized current for
equilibria found stable without the presence of an ideal wall (black) and with an ideal
wall at the LCFS (red). The parameters of the equilibria are in Tab. A.4. B0 = 0.4 T.
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Figure 4.13: Operational range for equilibria with A = 2.5. βN vs. normalized current
for equilibria found stable without the presence of an ideal wall (black) and with an ideal
wall at the LCFS (red). The parameters of the equilibria are in Tab. A.4. B0 = 0.4 T.
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Figure 4.14: Normalized growth rates of the n = 1 and n = 2, for the “no-wall” case and
ideal wall at the LCFS, vs βN . Equilibrium: RFUN(M = 1.90, µ = 0.7, A = 1).
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4.5 Triangularity scan
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Figure 4.15: LCFS for two differ-
ent triangularities.

As mentioned in Sec. 1.3, SMART has been designed
to operate with positive and negative triangulari-
ties. In the following, the effects of the triangual-
rity on mode stability are discussed. Until now, the
triangularity has been fixed to δ = 0.5. A scan has
been conducted over trinagularities between 0.3 and
-0.3 (Tab. A.5). CHEASE has been unable to obtain
the equilibrium for δ = −0.5. In this scan, the pres-
sure gradient and average parallel current density
input are fixed to the EK6 equilibrium (Fig. 3.1).
The shape of the LCFS and wall changes according
to equation (3.7). In Fig. 4.16 it can be seen how
changing δ modifies the q-profile. Due to the change
in plasma shape [40], for decreasing triangularities
the q-profile becomes more reversed, and the edge
value is lower. The pressure profile also changes
for different triangularities, but not as much as the
safety factor.

Triang. q0 qmin q95 qedge β (%) Ip (kA) βN

δ = 0.5 1.70 1.48 3.74 5.27 16.15 346.86 4.569
δ = 0.3 1.91 1.51 3.27 4.04 17.61 359.33 4.809
δ = 0.1 2.12 1.53 2.93 3.40 18.94 366.62 5.068
δ = −0.1 2.82 1.53 2.71 3.08 20.08 366.62 5.375
δ = −0.3 2.92 1.54 2.64 2.98 20.55 360.21 5.600

Table 4.2: q0, qmin, qedge, plasma beta, total plasma current and normalized plasma beta
(1.3) for different triangularity simulations.

Figure 4.16: Pressure and safety factor for the different triangularities.
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In Fig. 4.17 the GRs without considering the ideal wall in the simulations are presented.
It can be observed that the GR increases for decreasing triangularity. This shows that
for our case of study PT are better than NT. Its interesting to see that δ = 0.3 gives us
a lower GR than δ = 0.5, except for n = 1.
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Figure 4.17: Normalized growth rates versus the toroidal mode number n, without con-
sidering an ideal wall, for different triangularities. Full data in Tab. A.5 in the appendix.

In Fig. 4.18 the GRs with an ideal wall in the simulations are presented. As expected,
the wall affects the plasma stability in both PT and NT. The main difference is how the
wall affects the modes. For the n = 1 mode, for δ = 0.3, the decrease in GR is progressive
with wall distance, while for δ = −0.3, the effect of the wall increases significantly when
it is brought close to the LCFS. This behavior leads us to think that this mode has a
greater component at the edge, or that the IK is less important than for δ = 0.3, since it
has been observed that the effect of the wall on the IK is less noticeable than on the EK.
In Fig. 4.19Ir can be see how, indeed, this mode has less edge component. This change in
the profile is probably because of the change in the q-profile (higher q0 and lower qedge).
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Figure 4.18: Effect of the ideal wall on the normalized growth rates of the δ = 0.3
and δ = −0.3 triangularities for modes n = 1, ..., 6. Data in Tab. A.6 and Tab. A.7,
respectively, in the appendix.

Figure 4.19: Eigenstate structure of the n = 1 mode for δ = 0.3 and δ = −0.3.
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5 Summary and future work
In this thesis, the aim of this master thesis is to study the differences in plasma stability in
the SMART tokamak when considering the presence or absence of the surrounding wall.
Simulations over n = 1, ..., 6 have been carried out using the CHEASE and MARS-F codes.

The first objective of the work was to generate an equilibrium according to our objec-
tive, and simulate and evaluate the instabilities within it. The q-profile chosen was one in
the advanced tokamak regime. The plasma shape with positive triangularity, A = 1.97,
B0 = 0.37 T and a total current Ip < 500 kA. It has been found that in our case, the
most unstable modes are not the external kinks, but rather the infernal modes and the
internal kink. This internal kink is driven by the high plasma pressure in the tokamak.

For the second part of the project, the goal was to include the ideal wall and study
its effect on plasma stability. As seen in the literature, the wall has a significant influence
over the growth rate the closer it is to the plasma surface. However, due to the presence
of these internal kink and infernal modes, the full stabilization of the external kink at a
certain wall radius via the computation of the growth rate could not be seen. Instead, it
can be seen that the edge component of all modes disappears when the wall is close enough
to the plasma. The plasma pressure limits found for the initial case: βN,no−wall ≈ 2.4 and
βN,ideal−wall ≈ 3.3, which implies an increase of ≈ 37% in the plasma pressure. To conclude
this study, various AT regimes have been explored. It has been found that the plasma
beta limit without the presence of a wall limit in SMART is βN = 3, but it extends to as
much as βN = 6 when an ideal wall is introduced. This represents a significantly larger
increase than anticipated, effectively doubling the beta value.

Lastly, a scan over positive and negative triangulatities has been conducted to give
completeness to the work done. The current and pressure gradient profiles are fixed, and
only the triangularity of the plasma has been changed. The result obtained is that positive
triangularities have a better MHD stability than negative triangularities.These conclusions
must be approached with caution as the plasma pressure varies substantially over the
different triangularities, being the negative triangularities the ones with higher βN , and
plasmas at higher pressures are generally less stable. Nonetheless, positive triangularities
has been found more stable than negative triangularities for low-nmodes (the ones studied
in this work) in other studies [41].

To continue this work, the resistivity of the wall should be included in the simulations.
This would allow us to simulate a more real case and the RWM. The wall does not
necessarily need to have the same shape as the plasma. The CHEASE code allows us to
input an arbitrary shape for the wall. In this work, all positive values of m are considered
until m = 30, but the presence of the m = 1 internal kink disturbs our analysis. The
work can be repeated by excluding the m = 1, and thus the internal kink, for a more
focused study of the wall effects on the external kink. Additionally, our simulations are
based on the ideal MHD case, without considering resistivity, plasma rotation, and the
effects of free particles. This would significantly change the results, as these mechanisms
help control modes such as the infernal mode.
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Final Master Thesis 38 Sevilla, June 2023



Stability Analysis of SMART Alex Reyner Viñolas
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A Data
Data tables from the growth rates computed.

Tag n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

ek6v4.0 3.34E-01 4.03E-01 4.27E-01 4.41E-01 4.49E-01 4.56E-01
ek6v3.8 3.18E-01 3.83E-01 4.05E-01 4.17E-01 4.25E-01 4.33E-01
ek6v3.6 3.02E-01 3.62E-01 3.81E-01 3.92E-01 4.01E-01 4.08E-01
ek6v3.4 2.84E-01 3.40E-01 3.56E-01 3.67E-01 3.76E-01 3.83E-01
ek6v3.2 2.65E-01 3.17E-01 3.30E-01 3.43E-01 3.50E-01 3.57E-01
ek6v3.0 2.45E-01 2.93E-01 3.04E-01 3.17E-01 3.22E-01 3.30E-01
ek6v2.8 2.23E-01 2.69E-01 2.78E-01 2.90E-01 2.95E-01 3.01E-01
ek6v2.6 2.00E-01 2.44E-01 2.51E-01 2.60E-01 2.68E-01 2.69E-01
ek6v2.4 1.76E-01 2.17E-01 2.24E-01 2.27E-01 2.41E-01 2.35E-01
ek6v2.2 1.51E-01 1.89E-01 1.98E-01 1.91E-01 2.13E-01 2.03E-01
ek6v2.0 1.24E-01 1.58E-01 1.74E-01 1.51E-01 1.80E-01 1.78E-01
ek6v1.8 9.58E-02 1.23E-01 1.51E-01 1.11E-01 1.39E-01 1.56E-01
ek6v1.6 6.57E-02 8.40E-02 1.27E-01 7.51E-02 8.50E-02 1.30E-01
ek6v1.4 3.08E-02 3.97E-02 9.95E-02 5.22E-02 2.32E-02 8.97E-02
ek6v1.2 5.24E-03 4.50E-03 6.77E-02 4.45E-02 4.21E-03 2.86E-02
ek6v1.0 2.40E-04 7.91E-04 2.98E-02 4.29E-02 2.77E-03 3.22E-03

Table A.1: Growth rates obtained with MARS-F code for the different pressures and modes
n = 1, ..., 6 in the EK6 equilibrium.

NVM rw/a n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

80 1.99 2.27E-01 2.89E-01 3.03E-01 3.17E-01 3.22E-01 3.30E-01
72 1.89 2.21E-01 2.87E-01 3.02E-01 3.17E-01 3.22E-01 3.30E-01
64 1.79 2.14E-01 2.84E-01 3.01E-01 3.16E-01 3.22E-01 3.30E-01
56 1.69 2.04E-01 2.81E-01 3.00E-01 3.16E-01 3.22E-01 3.30E-01
48 1.59 1.92E-01 2.75E-01 2.97E-01 3.15E-01 3.21E-01 3.30E-01
40 1.49 1.76E-01 2.67E-01 2.93E-01 3.12E-01 3.20E-01 3.29E-01
32 1.39 1.57E-01 2.54E-01 2.85E-01 3.08E-01 3.18E-01 3.28E-01
24 1.29 1.35E-01 2.36E-01 2.71E-01 2.99E-01 3.12E-01 3.24E-01
16 1.19 1.13E-01 2.10E-01 2.47E-01 2.81E-01 2.98E-01 3.14E-01
8 1.09 9.12E-02 1.79E-01 2.11E-01 2.46E-01 2.66E-01 2.88E-01
1 1.00 7.15E-02 1.49E-01 1.67E-01 1.96E-01 2.10E-01 2.33E-01

Table A.2: Growth rates versus wall radius for n = 1, ..., 6 for the icw6v3.0 equilibrium.

Final Master Thesis 41 Sevilla, June 2023



Stability Analysis of SMART Alex Reyner Viñolas

n = 1 n = 2
βN no wall rw/a = 1 no wall rw/a = 1

6.087 4.459E-01 1.189E-01 5.625E-01 2.395E-01
6.015 4.355E-01 1.178E-01 5.469E-01 2.363E-01
5.939 4.245E-01 1.165E-01 5.310E-01 2.326E-01
5.859 4.128E-01 1.148E-01 5.148E-01 2.284E-01
5.775 4.008E-01 1.129E-01 4.981E-01 2.237E-01
5.686 3.883E-01 1.106E-01 4.807E-01 2.186E-01
5.592 3.754E-01 1.079E-01 4.622E-01 2.131E-01
5.493 3.621E-01 1.049E-01 4.429E-01 2.071E-01
5.388 3.481E-01 1.015E-01 4.230E-01 2.007E-01
5.276 3.335E-01 9.772E-02 4.029E-01 1.939E-01
5.157 3.181E-01 9.351E-02 3.824E-01 1.867E-01
5.031 3.016E-01 8.882E-02 3.614E-01 1.787E-01
4.895 2.840E-01 8.362E-02 3.396E-01 1.700E-01
4.750 2.651E-01 7.786E-02 3.167E-01 1.600E-01
4.594 2.447E-01 7.151E-02 2.930E-01 1.485E-01
4.426 2.230E-01 6.430E-02 2.686E-01 1.348E-01
4.246 2.001E-01 5.608E-02 2.436E-01 1.183E-01
4.051 1.759E-01 4.644E-02 2.173E-01 9.784E-02
3.840 1.505E-01 3.444E-02 1.891E-01 7.154E-02
3.612 1.238E-01 1.655E-02 1.579E-01 3.385E-02
3.364 9.567E-02 2.209E-03 1.231E-01 3.184E-04
3.096 6.564E-02 1.404E-03 8.393E-02 2.761E-04
2.805 3.072E-02 1.914E-04 3.959E-02 5.227E-04
2.489 5.234E-03 6.477E-04 4.492E-03 7.020E-04
2.146 1.794E-04 0.000E+00 7.980E-04 2.498E-04

c2 5.54E-03 -8.72E-03 1.10E-02 -1.81E-02
c1 7.60E-02 1.25E-01 5.74E-02 2.53E-01
c0 -2.22E-01 -3.19E-01 -2.01E-01 -6.37E-01
R2 0.99990 0.9993 0.9992 0.997

Table A.3: Computed growth rates for the n = 1 and n = 2 for the “no-wall” and rw/a = 1
cases. Below, the parameters of the second-grade polynomial fit. In red, the values not
used to the fitting.
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M = 1.00, µ = 0.7, A = 1.0 M = 1.00, µ = 0.7, A = 2.5
M = 1.05, µ = 0.7, A = 1.0 M = 1.05, µ = 0.7, A = 2.5
M = 1.10, µ = 0.7, A = 1.0 M = 1.10, µ = 0.7, A = 2.5
M = 1.15, µ = 0.7, A = 1.0 M = 1.15, µ = 0.7, A = 2.5
M = 1.20, µ = 0.7, A = 1.0 M = 1.20, µ = 0.7, A = 2.5
M = 1.25, µ = 0.7, A = 1.0 M = 1.25, µ = 0.7, A = 2.5
M = 1.30, µ = 0.7, A = 1.0 M = 1.30, µ = 0.7, A = 2.5
M = 1.35, µ = 0.7, A = 1.0 M = 1.35, µ = 0.7, A = 2.5
M = 1.40, µ = 0.7, A = 1.0 M = 1.40, µ = 0.7, A = 2.5
M = 1.45, µ = 0.7, A = 1.0 M = 1.45, µ = 0.7, A = 2.5
M = 1.50, µ = 0.7, A = 1.0 M = 1.50, µ = 0.7, A = 2.5
M = 1.55, µ = 0.7, A = 1.0 M = 1.55, µ = 0.7, A = 2.5
M = 1.60, µ = 0.7, A = 1.0 M = 1.60, µ = 0.7, A = 2.5
M = 1.65, µ = 0.7, A = 1.0 M = 1.65, µ = 0.7, A = 2.5
M = 1.70, µ = 0.7, A = 1.0 M = 1.70, µ = 0.7, A = 2.5
M = 1.75, µ = 0.7, A = 1.0 M = 1.75, µ = 0.7, A = 2.5
M = 1.80, µ = 0.7, A = 1.0 M = 1.80, µ = 0.7, A = 2.5
M = 1.85, µ = 0.7, A = 1.0 M = 1.85, µ = 0.7, A = 2.5
M = 1.90, µ = 0.7, A = 1.0 M = 1.90, µ = 0.7, A = 2.5
M = 1.95, µ = 0.7, A = 1.0 M = 1.95, µ = 0.7, A = 2.5
M = 2.00, µ = 0.7, A = 1.0 M = 2.00, µ = 0.7, A = 2.5
M = 2.05, µ = 0.7, A = 1.0 M = 2.05, µ = 0.7, A = 2.5
M = 2.10, µ = 0.7, A = 1.0 M = 2.10, µ = 0.7, A = 2.5
M = 2.15, µ = 0.7, A = 1.0 M = 2.15, µ = 0.7, A = 2.5
M = 2.20, µ = 0.7, A = 1.0 M = 2.20, µ = 0.7, A = 2.5
M = 2.25, µ = 0.7, A = 1.0 M = 2.25, µ = 0.7, A = 2.5
M = 2.30, µ = 0.7, A = 1.0 M = 2.30, µ = 0.7, A = 2.5
M = 2.35, µ = 0.7, A = 1.0 M = 2.35, µ = 0.7, A = 2.5
M = 2.40, µ = 0.7, A = 1.0 M = 2.40, µ = 0.7, A = 2.5
M = 2.45, µ = 0.7, A = 1.0 M = 2.45, µ = 0.7, A = 2.5
M = 2.50, µ = 0.7, A = 1.0 M = 2.50, µ = 0.7, A = 2.5
M = 2.55, µ = 0.7, A = 1.0 M = 2.55, µ = 0.7, A = 2.5
M = 2.60, µ = 0.7, A = 1.0 M = 2.60, µ = 0.7, A = 2.5
M = 2.65, µ = 0.7, A = 1.0 M = 2.65, µ = 0.7, A = 2.5
M = 2.70, µ = 0.7, A = 1.0 M = 2.70, µ = 0.7, A = 2.5
M = 2.75, µ = 0.7, A = 1.0 M = 2.75, µ = 0.7, A = 2.5
M = 2.80, µ = 0.7, A = 1.0 M = 2.80, µ = 0.7, A = 2.5
M = 2.85, µ = 0.7, A = 1.0 M = 2.85, µ = 0.7, A = 2.5
M = 2.90, µ = 0.7, A = 1.0 M = 2.90, µ = 0.7, A = 2.5
M = 2.95, µ = 0.7, A = 1.0 M = 2.95, µ = 0.7, A = 2.5
M = 3.00, µ = 0.7, A = 1.0 M = 3.00, µ = 0.7, A = 2.5

Table A.4: Parameters of the Gaussian distribution part of all surface averaged current
profiles studied in the AT regime scan.
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Triang. n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

δ = 0.5 2.45E-01 2.93E-01 3.04E-01 3.17E-01 3.22E-01 3.30E-01
δ = 0.3 2.58E-01 2.87E-01 2.92E-01 3.03E-01 3.05E-01 3.13E-01
δ = 0.1 3.57E-01 3.64E-01 3.72E-01 3.83E-01 3.90E-01 3.98E-01
δ = −0.1 4.15E-01 4.15E-01 4.13E-01 4.15E-01 4.18E-01 4.24E-01
δ = −0.3 5.05E-01 5.12E-01 5.22E-01 5.35E-01 5.48E-01 5.60E-01

Table A.5: Growth rates computed for the n = 1, ..., 6 modes for different triangularities
in the icw6v3.0 equilibrium. No wall is considered.

NVM rw/a n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

80 1.99 2.63E-01 3.13E-01 3.27E-01 3.41E-01 3.46E-01 3.55E-01
72 1.89 2.57E-01 3.11E-01 3.27E-01 3.41E-01 3.46E-01 3.55E-01
64 1.79 2.50E-01 3.09E-01 3.26E-01 3.41E-01 3.46E-01 3.54E-01
56 1.69 2.40E-01 3.06E-01 3.24E-01 3.40E-01 3.46E-01 3.54E-01
48 1.59 2.27E-01 3.01E-01 3.22E-01 3.39E-01 3.45E-01 3.54E-01
40 1.49 2.11E-01 2.93E-01 3.18E-01 3.37E-01 3.44E-01 3.54E-01
32 1.39 1.90E-01 2.81E-01 3.11E-01 3.33E-01 3.42E-01 3.53E-01
24 1.29 1.66E-01 2.63E-01 2.98E-01 3.25E-01 3.37E-01 3.50E-01
16 1.19 1.41E-01 2.39E-01 2.77E-01 3.09E-01 3.25E-01 3.41E-01
8 1.09 1.18E-01 2.10E-01 2.43E-01 2.78E-01 2.98E-01 3.19E-01
1 1 9.61E-02 1.78E-01 2.02E-01 2.32E-01 2.48E-01 2.71E-01

Table A.6: Growth rates computed versus wall radius for the n = 1, ..., 6 modes for the
icw6v3.0 equilibrium with δ = 0.3 triangularity.

NVM rw/a n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

80 1.99 4.75E-01 4.89E-01 4.97E-01 5.06E-01 5.14E-01 5.24E-01
72 1.89 4.70E-01 4.88E-01 4.97E-01 5.06E-01 5.14E-01 5.24E-01
64 1.79 4.65E-01 4.86E-01 4.96E-01 5.06E-01 5.14E-01 5.24E-01
56 1.69 4.57E-01 4.83E-01 4.95E-01 5.05E-01 5.14E-01 5.24E-01
48 1.59 4.47E-01 4.79E-01 4.94E-01 5.05E-01 5.14E-01 5.23E-01
40 1.49 4.34E-01 4.73E-01 4.91E-01 5.03E-01 5.13E-01 5.23E-01
32 1.39 4.15E-01 4.64E-01 4.85E-01 5.01E-01 5.12E-01 5.22E-01
24 1.29 3.87E-01 4.49E-01 4.76E-01 4.95E-01 5.08E-01 5.20E-01
16 1.19 3.45E-01 4.26E-01 4.60E-01 4.84E-01 5.01E-01 5.15E-01
8 1.09 2.81E-01 3.86E-01 4.29E-01 4.60E-01 4.81E-01 5.00E-01
1 1 1.76E-01 2.88E-01 3.45E-01 3.87E-01 4.19E-01 4.45E-01

Table A.7: Growth rates computed versus wall radius for the n = 1, ..., 6 modes for the
icw6v3.0 equilibrium with δ = −0.3 triangularity.
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B Acronyms and symbols

D Deuterium
T Tritium
He Helium
n Neutron
Li Litium
AT Advanced Tokamak (regime)

MHD Magnetohydrodynamic
HFS High Field Side
LFS Low Field Side
RPPF Pressure gradient input CHEASE
RFUN Current density input CHEASE
LCFS Last Closed Flux Surface
GR Growth Rate
IK Internal Kink
IF Infernal mode
EK External Kink
EIR External-Internal Ratio
PT Positive Triangularity
NT Negative Triangulaity

Q Fusion energy
nα α species number density
mα α species mass
uα α species velocity
pα α species pressure
ρ Plasma density
u Plasma velocity
ρel Charge density
j Current vector
p Plasma pressure
E Electric field vector
B Magnetic field vector
∇ Gradient

∇ · () Spatial divergence
∇× () Spatial curl
γ Adiabatic coefficient
ξ Displacement vector
F Force
ωn Mode frequency
β Plasma beta
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βN Normalised plasma beta
jψ Toroidal current density
ϕ Toroidal angle
χ Generalized poloidal angle
ψ Poloidal magnetic flux
ψN Normalized poloidal flux
ρpol Radial flux coordinate
ωA Alfvén frequency
τA Alfvén time
γ0 Growth rate
I∥ Surface averaged current
R0 Major radius of magnetic axis
a Plasma minor radius
A Aspect ratio of the tokamak
B0 Magnetic field at the magnetic axis
κ Elongation
δ Triangularity
Ip Plasma total current
q Safety factor

qmin Minimum safety factor value
q0 Safety factor at the core
q95 Safety factor at 95% flux surface
qedge Safety factor at plasma edge
m Poloidal mode number
n Toroidal mode number

aw ≡ rw Wall radius
rc Ideal wall critical radius
e Electron charge, 1.602 · 10−19 C
µ0 Vacuum permeability, 1.257 · 10−6 N·A−2
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