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Abstract

A variational framework is employed to generate inverse mass matrices for iso-
geometric analysis. As different dual bases impact not only accuracy but also
computational overhead, several dual bases are extensively investigated. Specifi-
cally, locally discontinuous bi-orthogonal basis functions are evaluated in detail for
B-splines of high continuity and Bézier elements with a standard 𝐶0 continuous
finite element structure. The boundary conditions are enforced by the method of
localized Lagrangian multipliers after generating the inverse mass matrix for com-
pletely free body. Thus, unlike inverse mass matrix methods without employing the
method of Lagrange multipliers, no modifications in the reciprocal basis functions
are needed to account for the boundary conditions. Hence, the present method does
not require internal modifications of existing Isogeometric analysis software struc-
tures. Numerical examples show that globally continuous dual basis functions yield
better accuracy than locally discontinuous bi-orthogonal functions, but with much
higher computational overhead. Locally discontinuous dual basis functions are found
to be an economical alternative to lumped mass matrices when combined with mass
parametrization. The resulting inverse mass matrices are tested in several vibration
problems and applied to explicit transient analysis of structures.

KEYWORDS:
Inverse mass matrix; isogeometric analysis; Bézier extraction; localized Lagrange multipliers; partitioned
analysis; free vibration, explicit transient analysis

1 INTRODUCTION

Efficient explicit time integration of structural dynamics equations calls for the availability of diagonal mass matrices. This is
because the computational cost associated with the use of consistent/nondiagonal mass matrices in an explicit integration is
equivalent with that of implicit time integration procedures, whose time step sizes can be chosen much larger than for explicit
integration procedures. Specifically, explicit time integration methods in transient dynamics require a repeated application of the
inverse mass matrix to obtain accelerations at every time step. For example, computing the inverse of a consistent mass matrix
requires (𝑛3) flops. This has led to the adoption of the diagonalized lumped mass matrix (LMM) that is typically obtained
by a row-sum of the consistent mass matrix (CMM). However, even though the accuracy of LMM is acceptable for capturing
low-frequency response components, it is unable to track high-frequency components1,2,3,4,5. Another shortcoming of LMM for
higher-order elements is that most of the mass is lumped at the center node, causing very strange behavior when high-order
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modes are excited. These deficiencies motivated researchers to find ways of generating the inverse of consistent mass matrix in
a consistent and efficient way6,7,8.

From the viewpoint of principles in dynamics, there are two ways for computing the mass matrices, which need to be inverted
for efficient explicit time integration. One approach is to directly discretize system kinetic energy. The second is to exploit
Hamilton’s principle (or Hamilton’s equations) that require discretization of both momentum (𝒑) and displacement (𝒖). In this
case, the inverse mass matrix (𝐌−1) is obtained as a second-order tensor product, where only a diagonalized projection operator
(𝐀 which will be detailed later in the paper) needs to inverted, viz.:

(∫
Ω

1
𝜌
𝛿𝒑 ⋅ 𝒑 𝑑Ω ≈ 𝛿𝐩 𝐂 𝐩, ∫

Ω

𝛿𝒑 ⋅ 𝒖 𝑑Ω ≈ 𝛿𝐩 𝐀𝖳 𝐮) ⇒ 𝐌−𝟣 = 𝐀−𝖳𝐂𝐀−𝟣 (1)

where 𝐂 is labeled as a momentum matrix, 𝐩 denotes discretized momentum vector. Hence, inversion of mass matrix is
accomplished via the generation of the momentum matrix (𝐂) followed by a push-forward projection operation.

Thus, an efficient generation of consistent inverse mass matrices depends on how efficiently the projection operator (𝐀)
can be generated and inverted. This in turn requires that the interpolation functions for the momentum must be bi-orthogonal
with respect to the displacement interpolation functions so that the resulting projection matrix (𝐀) becomes diagonal. While
derivations of bi-orthogonal basis functions are straightforward for most interpolation functions for the interior elements, for
the elements bordering the boundaries, special bi-orthogonal basis functions need to be constructed. This construction has to
performed for each of the corresponding 𝐮-interpolation functions. It should be noted that, by the very nature of finite element
method, elements bordering the boundaries do not need to be specialized.

The preceding complications in generating bi-orthogonal basis functions for the momentum vector in treating the boundary
conditions were alleviated in the work of González et al.9 for FEM by introducing the method of localized Lagrange multi-
pliers10,11,12,13. In that work, the system is considered completely free floating such that no special treatment is required for
generating the bi-orthogonal interpolation of the momentum vector. Enforcement of boundary conditions is simply accom-
plished via constraining the boundary conditions. We believe that the same ideas used for the obtention of FEM inverse mass
matrices, can be extended to the more general framework of isogeometric analysis (IGA).

Particularly for IGA, different approaches have been proposed in the literature to address this difficulty present in the mass
matrix inversion. First contributions in explicit dynamics were developed for B-spline collocation methods, treating the equations
of motion (EOM) in strong form and obtaining one-point quadrature mass matrices14,15. Solutions to the mass inversion problem
were then suggested at the time-integration solution algorithm level, introducing a predictor multi-corrector scheme that predicts
accelerations with LMM on the left-hand-side of the linear system and corrects the residual using the CMM. This method is
iterative in essence and energy stability is not guaranteed.

Other methods benefit from the regularity of the reference patches used in IGA, taking advantage of the tensor product
separable form of the mass matrix associated to these structured meshes. For example, at the linear solver level with a CMM,
Gao et al.16 proposed using a preconditioned conjugate gradient method with special preconditioners that achieves a complexity
of (𝑛) flops. However, this procedure is not completely general and non-separable mass matrices require a carefully designed
preconditioner that adds significant complexity and computational cost to the linear solver. New preconditioning and multigrid
techniques with linear cost17,18,19 could also be considered for that task.

In the context of multi-patch discontinuous Galerkin IGA for acoustic wave propagation and linear advection, a recent work
of Chan et al.20 aims to approximate the mass matrix inverse by a computable weight-adjusted mass matrix that is pre-post
multiplied by an easily invertible affine mass matrix obtained from the tensor product of 1D inverses. Although not derived from
energy principles, the proposed algebraic approximation is demonstrated to be high order accurate only for sufficiently regular
discretizations.

A different approach, the methodology used in this paper belongs to this last group, tries to derive a reciprocal mass matrix
(RMM) directly from parametrized variational principles and dual-space shape functions21. The idea here is to derive varia-
tionally consistent reciprocal mass matrices from a parametrized functional and adjust the value of these parameters to construct
customizable RMMs with desired properties, like high accuracy on certain frequency ranges or extending the critical time-step
needed for time integration stability.

The objective of the present paper is to extend the procedure for generating FEM inverse mass matrices presented in González
et al.9 for explicit transient analysis by utilizing existing IGA capabilities22,23,24,25. To this end, the paper is organized as fol-
lows: Section 2 briefly reviews some basic concepts on B-splines, NURBS and Bézier elements interpolation. Section 3 derives
the displacement-momentum mixed equations of elastodynamics from Hamilton’s principle and Section 4 describes the direct
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construction of inverse mass matrices through bi-orthogonal basis functions. Sections 5 and 6 categorize and analyze the con-
struction of dual basis functions. Section 7 discusses the incorporation of boundary conditions into the inverse mass matrix via
the method of localized Lagrange multipliers. Finally, in Section 8 we present several numerical examples, where we test the
accuracy of the proposed mass matrix inverse in vibration and transient analyses, and Section 9 closes with the conclusions.

2 A BRIEF REVIEW OF BASICS OF ISOGEOMETRIC ANALYSIS

In this Section we review the basic concepts of the isogeometric analysis techniques that will be used to construct the proposed
reciprocal mass matrices. We start with the classical B-spline and NURBS approximation and next outline the basics of the
Bézier extraction technique. This last technique is utilized to produce a finite element data structure of the geometry with the
same approximation than the B-spline basis functions.

2.1 B-splines and NURBS-based functions
In NURBS based Galerkin IGA, the approximation of a displacement field 𝒖 (𝐱) uses the same mathematical representation than
the geometry based on spline-like approximation techniques26. For three-dimensional problems in particular, the geometry of a
domain Ω ∈ ℝ3 is described by the tensor product formula:

𝐱 (𝜉, 𝜂, 𝜁 ) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

𝑙
∑

𝑘=1
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁 )𝐏𝑖,𝑗,𝑘, (2)

where 𝐱 ∈ Ω marks the position of point of interest in the physical space, (𝜉, 𝜂, 𝜁 ) are its associated coordinates in the parametric
space, 𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 are NURBS basis functions of orders (𝑝, 𝑞, 𝑟) on each dimension, and 𝐏𝑖,𝑗,𝑘 with 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚, 𝑘 =
1,… , 𝑙 is a matrix with the three coordinates of the control points defining the geometry.

An associated displacement field 𝒖(𝐱) is then approximated as follows:

𝒖 (𝐱 (𝜉, 𝜂, 𝜁 )) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

𝑙
∑

𝑘=1
𝑅𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁 )𝐮
P
𝑖,𝑗,𝑘, (3)

where 𝐮P𝑖,𝑗,𝑘 are now the displacements corresponding to the control point indicated by indices 𝑖, 𝑗, 𝑘.
For NURBS solids, the shape functions are described by the tensor product as

𝑅𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁 ) =

𝑁𝑝
𝑖 (𝜉)𝑁

𝑞
𝑗 (𝜂)𝑁

𝑟
𝑘 (𝜁 )𝑤𝑖,𝑗,𝑘

∑𝑛
𝑖=1

∑𝑚
𝑗=1

∑𝑙
𝑘̂=1 𝑁

𝑝
𝑖
(𝜉)𝑁𝑞

𝑗
(𝜂)𝑁 𝑟

𝑘̂
(𝜁 )𝑤𝑖,𝑗,𝑘̂

, (4)

where 𝑤𝑖,𝑗,𝑘 is referred to as the 𝑖, 𝑗, 𝑘-th weight corresponding to the 𝑖, 𝑗, 𝑘-th control point, and 𝑁𝑝
𝑖 (𝜉) , 𝑁

𝑞
𝑗 (𝜂) , 𝑁

𝑟
𝑘 (𝜁 ) are

univariate B-spline basis functions of orders 𝑝, 𝑞 and 𝑟 corresponding to the knot vectors Ξ, , , respectively27.
Let us define a knot vector in one-dimensional case as a non-decreasing set of coordinates in the parametric space, written

as Ξ = {𝜉1, 𝜉2,… , 𝜉𝑚𝑘
}, where 𝜉𝑖 ∈ ℝ is the 𝑖-th knot, 𝑖 is the knot index, 𝑖 = 1, 2,… , 𝑚𝑘, number of knots 𝑚𝑘 = 𝑛 + 𝑝 + 1,

order 𝑝 is the polynomial degree and 𝑛 is the number of basis functions (control points) used to construct the B-spline curve.
Associated B-spline basis functions 𝑁𝑝

𝑖 (𝜉), see Figure 1 , are 𝐶𝑝−𝑘 continuous piecewise polynomials defined by the Cox-de
Boor recursion formula28. Observe that 𝑁𝑝

𝑖 are 𝐶𝑝−𝑘 continuous piecewise polynomials, where 𝑘 is the knot multiplicity, and
that continuity can be controlled by the multiplicity of a knot in the knot vector Ξ.

Finally, the NURBS based interpolation in ℝ3 of a displacement field 𝒖(𝐱) can then be expressed in matrix form as:

𝒖(𝝃) =
𝑛
∑

𝑖=1
𝐍𝑝

𝑖 (𝝃)𝐮
P
𝑖 = 𝐍𝑢(𝝃) 𝐮, (5)

where the matrix of interpolation functions 𝐍𝑢(𝝃) is constructed by using B-spline basis functions of a given degree 𝑝 and vector
𝐮 groups the unknown discrete values at the control points.
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FIGURE 1 Standard one-dimensional quadratic p=2 (left) and cubic p=3 (right) B-spline basis functions 𝑁𝑝
𝑢 (𝜉) in the normal-

ized parameter space for an open knot vector with internal values Ξ = {0, 0.2, 0.4, 0.6, 0.8, 1}.
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FIGURE 2 Result of the application of the Bézier extraction process to the original quadratic p=2 (left) and cubic p=3 (right)
B-spline basis functions represented in Figure 1 . After knot insertion, Ξ = {0, 0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1} for 𝑝 = 2,
the original B-spline basis functions can be expressed as a linear combination of the new Bézier interpolation functions with
compact support.

2.2 Bézier extraction - transformation of NURBS based mesh into Bézier based mesh
As mentioned in the previous section, the support of a B-spline basis function 𝑁𝑝

𝑖 is compact and contained over 𝑝+1 knot spans
in the interval [𝜉𝑖, 𝜉𝑖+𝑝+1]. As a result, it is not possible to use the concept of a single parent finite element with locally defined
shape functions that is mapped onto individual knot intervals, complicating the implementation. One solution to circumvent this
difficulty is the Bézier’s extraction process29.

In the same way that NURBS are a generalization of B-Splines, B-Splines rerpesent the generalization of Bézier splines
(based on Bernstein polynomials) and as such, the Bézier representation of a domain can be written in the form:

𝐱 (𝜉, 𝜂, 𝜁 ) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

𝑙
∑

𝑘=1
𝐵𝑝,𝑞,𝑟
𝑖,𝑗,𝑘 (𝜉, 𝜂, 𝜁 )𝐏

𝐵
𝑖,𝑗,𝑘 (6)

where 𝐏𝐵
𝑖,𝑗,𝑘 are new coordinates of control points for a Bézier based representation and 𝐵𝑝,𝑞,𝑟

𝑖,𝑗,𝑘 are the shape functions based on
the Bernstein polynomials of order 𝑝, 𝑞, 𝑟.
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FIGURE 3 Bézier extraction operation performed in a 2D cubic (𝑝 = 3) B-spline curve. The shape of the ini-
tial 𝐶2 continuous curve (a) is defined by six control points and six basis functions, and its associated knot vector is
Ξ = {0, 0, 0, 0, 1∕3, 2∕3, 1, 1, 1, 1}. After a first repetition of knot values, one gets the curve with 𝐶1 continuity (b) with
eight control points/basis functions and knot vector Ξ = {0, 0, 0, 0, 1∕3, 1∕3, 2∕3, 2∕3, 1, 1, 1, 1}. Finally, 𝑝 repetitions
of the knot values results in the 𝐶0 continuous curve (c) with ten control points/basis functions and knot vector Ξ =
{0, 0, 0, 0, 1∕3, 1∕3, 1∕3, 2∕3, 2∕3, 2∕3, 1, 1, 1, 1}. Now the basis functions are the same for all the knot intervals, therefore the
curve can be constructed through a systematic assembling of Bézier elements with Bernstein polynomials as shape functions.

By Bézier extraction, it is meant the construction of a mesh of isogeometric Bézier elements from a NURBS representation.
This process provides a local element support structure for isogeometric analysis, that can be easily incorporated into existing
finite element codes, see Figure 3 . Following this technique, the B-spline functions 𝐍(𝝃) can be unambiguously written as
linear combination of Bernstein polynomials 𝐁(𝝃), expressed in matrix form:

𝐍(𝝃) = 𝐂𝐵𝐁(𝝃), (7)

where matrix 𝐂𝐵 is the extraction operator, that is uniquely associated to a particular knot vector29.
Technically, the new mesh is constructed step-by-step repeating all the knots contained in the original knot vector up to

multiplicity 𝑝 + 1, reducing at the same time continuity to 𝐶0, by following the process described in Figure 3 . Then, for each
B-spline segment, an expression like (7) can be expressed in local form. Furthermore, new position and weights of the Bézier
mesh, 𝐏𝐵 and 𝐰𝐵 , can be computed directly from the position of control points and weights, 𝐏 and 𝐰, corresponding to the
NURBS mesh as:

𝐏𝐵 = 𝐖−𝟣
𝐵 𝐂𝖳

𝐵𝐖𝐏, 𝐰𝐵 = 𝐂𝖳
𝐵𝐰, (8)

where matrices 𝐖𝐵 and 𝐖 are diagonal matrices storing the weight vectors 𝐰𝑏 and 𝐰, for more details see29.
In a typical 2D case, like the one represented in Figure 4 , Bézier analysis starts with an IGA mesh. Then, one can use the

previous transformations to convert step-by-step the NURBS based mesh into a Bézier mesh by repeating knots in the two
parametric directions. Finally, a finite element mesh is obtained with 𝐶0 continuity of neighboring elements with Bernstein
polynomials as shape functions.

3 HAMILTON’S PRINCIPLE WITH THE METHOD OF LOCALIZED LAGRANGE
MULTIPLIERS

We consider the evolution in time of the displacement and momentum fields 𝒖,𝒑 ∈ ℝ𝑑 , where 𝑑 = 1, 2, 3 is the number of
space dimensions, of a body with domain Ω and boundary Γ for a total time 𝑇 . The body is subjected to prescribed interface
displacements 𝒖𝑏 on part of its boundary Γ𝑏, to the traction 𝒕 on the rest of its boundary Γ𝑡 and to a body force 𝒃 per unit volume.
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FIGURE 4 Illustration of the Bézier extraction operation performed in a 2D patch of quadratic B-splines. The Bézier extraction
operator maps a piecewise Bernstein polynomials basis (right) onto a B-spline basis (left). This transformation makes it possible
to create Bézier elements as the finite element representation of B-splines or NURBS.

Initial conditions that are compatible with the boundary conditions define the displacement and velocity field respectively at
time 𝑡 = 0. The initial boundary value problem of elastodynamics expressed in strong form can be formulated as follows:

𝛁 ⋅ 𝝈 + 𝒃 = 𝒑̇ in Ω × [0, 𝑇 ] ,
𝒖 = 𝒖𝑏 on Γ𝑏 × [0, 𝑇 ] ,

𝝈 ⋅ 𝒏 = 𝒕 on Γ𝑡 × [0, 𝑇 ] ,
𝒖|𝑡=0 = 𝒖0 in Ω,
𝒖̇|𝑡=0 = 𝒖̇0 in Ω,

(9)

where 𝒑 = 𝜌𝒖̇ is the momentum per unit volume and 𝝈 is the stress tensor that, in the case of linear elasticity is linearly
related with the deformation tensor 𝜺 = 1

2
[∇𝒖+∇𝖳𝒖] by the fourth-order constitutive tensor  through the constitutive relation

𝝈 =  ∶ 𝜺. This is an initial value problem to be solved for all time 𝑡 in the interval [0, 𝑇 ].
The strong form of the of the initial value problem (9) can be transformed into an equivalent weak variational form. To this

end, we invoke Hamilton’s principle for constrained elastodynamic problems. This principle states that the path followed by a
dynamic system is the one which minimizes the action integral of the Lagrangian; condition that can be expressed using the
following three-field variational form:

𝛿𝐻(𝒖,𝒑,𝓵) =

𝑡2

∫
𝑡1

𝛿 {𝑇 (𝒖̇,𝒑) − 𝑈 (𝒖,𝓵) +𝑊 (𝒖)} 𝑑𝑡 = 0, (10)

where 𝛿𝑇 is the virtual kinetic energy, 𝛿𝑈 the virtual elastic energy and 𝛿𝑊 the virtual work done by the external loads,
magnitudes that can be expressed:

𝛿𝑇 = ∫
Ω

𝛿( 1
2
𝒑 ⋅ 𝒖̇) 𝑑Ω, (11)

𝛿𝑈 = ∫
Ω

𝛿𝜺 ∶ 𝝈 𝑑Ω + ∫
Γ𝑏

𝛿
{

𝓵 ⋅ (𝒖 − 𝒖𝑏)
}

𝑑Γ, (12)

𝛿𝑊 = ∫
Ω

𝛿𝒖 ⋅ 𝒃 𝑑Ω, (13)
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with known displacement boundary conditions 𝒖𝑏 imposed at interface Γ by using a field of localized Lagrange multipliers 𝓵
and external body forces per unit volume 𝒃 acting on Ω.

By making use of the momentum-velocity relation (𝒑 = 𝜌𝒖̇) in the following identity:
1
2
𝒑 ⋅ 𝒖̇ = 𝒑 ⋅ 𝒖̇ − 1

2𝜌
𝒑 ⋅ 𝒑 (14)

we can obtain an equivalent expression for the virtual kinetic energy per unit volume:

𝛿
(

1
2
𝒑 ⋅ 𝒖̇

)

= 𝛿𝒖̇ ⋅ 𝒑 + 𝛿𝒑 ⋅
(

𝒖̇ − 1
𝜌
𝒑
)

(15)

and finally performing an integration by parts of the second term of the last equation yields:
𝑡2

∫
𝑡1

𝛿𝐮̇ ⋅ 𝒑 𝑑𝑡 = −

𝑡2

∫
𝑡1

𝛿𝒖 ⋅ 𝒑̇ 𝑑𝑡, (16)

relation that can be used to eliminate the virtual velocity field from the formulation.
Introducing previous identities, (15) and (16), into the principle of stationary action (10), we obtain the final the three-field

variational form of the Hamilton’s principle for constrained elastodynamics:

𝛿𝐻(𝒖,𝒑,𝓵) =

𝑡2

∫
𝑡1

⎧

⎪

⎨

⎪

⎩

∫
Ω

𝛿𝒑 ⋅
(

𝒖̇ − 1
𝜌
𝒑
)

𝑑Ω − ∫
Ω

(𝛿𝒖 ⋅ 𝒑̇ + 𝛿𝜺∶ 𝝈) 𝑑Ω + ∫
Ω

𝛿𝒖 ⋅ 𝒃 𝑑Ω

+∫
Γ𝑏

𝛿𝒖 ⋅ 𝓵 𝑑Γ − ∫
Γ𝑏

𝛿𝓵 ⋅
(

𝒖 − 𝒖𝑏
)

𝑑Γ

⎫

⎪

⎬

⎪

⎭

𝑑𝑡 = 0, (17)

expression that will be used to derive the discrete equations of motion.

Remark 1. Through the use of a parametrized form of the kinematic energy with three free parameters
(

𝐶1, 𝐶2, 𝐶3
)

, Schaeuble
et al.21 proposed a general template for obtaining variationally scaled and customized consistent and reciprocal mass matrices.
Variational equation (17) can be considered a particular case of their general template form for

{

𝐶1 = −1, 𝐶2 = 0, 𝐶3 = 0
}

.
An important difference with that work lies on the use of a volume-specific linear momentum instead of a mass-specific linear
momentum and the consistent-lumped parametrization of the mass matrix that will be introduced later.

4 CONSTRUCTING INVERSE MASS MATRIX VIA THE LOCALIZED LAGRANGE
MULTIPLIERS

Discretization in space of the mixed variational form (17) is performed by using independent interpolation functions for displace-
ments, momenta and Lagrangian multipliers. For this purpose, we carry out a standard IGA discretization (5) with independent
B-spline shape functions for the three fields:

𝒖(𝝃) = 𝐍𝑢(𝝃) 𝐮, 𝒑(𝝃) = 𝐍𝑝(𝝃) 𝐩, 𝓵(𝝃) = 𝐍𝜆(𝝃) 𝝀, (18)

and introduce these discrete approximations in the variational form (17) to obtain, after imposing the stationarity condition, the
following set of semi-discrete equations:

𝐀𝐩̇ + 𝐁𝝀 = 𝐫 Equilibrium equation, (19)
𝐀𝖳𝐮̇ − 𝐂𝐩 = 𝟎 Momentum equation, (20)

𝐁𝖳𝐮 − 𝐋𝑏𝐮𝑏 = 𝟎 Boundary (and interface) constraints, (21)
−𝐋𝖳

𝑏𝝀 = 𝟎 Newton’s 3rd law on the boundaries, (22)

where vector 𝐫 = 𝐟 − 𝐟 𝑖𝑛𝑡 is the external-internal forces residual, 𝐀 is the global projection matrix, 𝐂 the global reciprocal mass
matrix, 𝐁 the boundary assembly operator and 𝐋𝑏 the Localized multipliers assembly matrix. These matrices are constituted by
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an element-by-element assembly of the element matrices:

𝐀𝑒 = ∫
Ω𝑒

𝐍𝖳
𝑢 𝐍𝑝 𝑑Ω , 𝐂𝑒 = ∫

Ω𝑒

1
𝜌
𝐍𝖳

𝑝 𝐍𝑝 𝑑Ω, (23)

𝐁𝑒 = ∫
Γ𝑒

𝐍𝖳
𝑢 𝐍𝜆 𝑑Γ , 𝐋𝑒 = ∫

Γ𝑒

𝐍𝖳
𝜆 𝐍𝑢 𝑑Γ, (24)

the first two needed for the construction of the element reciprocal mass and the last ones used to enforce interface compatibility
and equilibrium. Moreover it is important to mention that we assume constant mass density along every physical patch.

Going one step forward by eliminating symbolically the momentum variable 𝐩 from (19) and (20), one obtains the classical
equation of motion expressed in terms of displacements:

(

𝐀𝐂−𝟣𝐀𝖳
)

𝐮̈ + 𝐁𝝀 = 𝐫 (25)

with the mass matrix approximated as:
𝐌 = 𝐀𝐂−𝟣𝐀𝖳 (26)

and observe that there must exist an inverse mass matrix (denoted by equivalence as 𝐌−𝟣) given by:

𝐌−𝟣 = 𝐀−𝖳𝐂𝐀−𝟣 (27)

assuming that the global projection matrix is invertible.
Since the objective of the present paper is to obtain inverse mass-matrices for IGA in efficient and accurate ways, one must

seek for easily to invert diagonal or narrowly banded projection matrices. This certainly can be accomplished in (27) with a
diagonal projection 𝐀-matrix, leaving only the task of constructing the reciprocal 𝐂-matrix efficiently and accurately.

5 DUAL BASIS FUNCTIONS

Observing again the expression obtained for the mass matrix inverse (27), we realize that a careful selection of the basis functions
can simplify its calculation. Dual bases can be local or global, continuous or discontinuous and satisfy exactly the orthogonality
condition or not. In particular, by using displacement and momentum bi-orthogonal interpolation functions, we are able to
construct a diagonal projection matrix in the form:

[

𝐀𝑒
]

𝑖𝑗 = ∫
Ω𝑒

𝐍𝖳
𝑢𝑖
𝐍𝑝𝑗 𝑑Ω = 𝑑𝑖𝛿𝑖𝑗 , where

[

𝐀𝑒
]

𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 (28)

with a trivial inverse that permits to compute the inverse mass matrix directly from the momentum matrix. Different local and
global dual interpolation functions of this kind, originally designed and tested for mortar methods, have been recently proposed
in the literature30,31,32 for NURBS and B-spline interpolations. Specifically for the construction of reciprocal mass matrices, bi-
orthogonal basis functions have been proposed under the framework of FEM8,9 and also IGA21. The different options available
for the construction of dual bases are discussed next.

5.1 Local dual bases
These dual basis functions entail minimal support, i.e., the support of the dual basis is equal to the support of the original B-
spline basis, that for the case of B-splines covers 𝑝+1 knot spans. Analytical expressions for the construction of local continuous
(LC) bi-orthogonal dual basis exist in the literature for one-dimensional B-splines33,34,32, but they are difficult to generalize for
multidimensions, restricting their application to our case.

For higher dimensions, the simplest alternative is the use of a local discontinuous (LD) bi-orthogonal dual basis35,31 obtained
via an element-wise linear combination of the primal shape functions, providing discontinuous reciprocal basis functions that
fulfill the partition of unity with the same support than their primal counterparts. A dual basis 𝐍𝑝(𝝃) of this type, orthogonal to
the B-spline displacement interpolation functions 𝐍𝑢(𝝃), can be written in matrix form as:

𝐍𝑝(𝝃) = 𝐍𝑢(𝝃)𝐌−𝟣
𝑒 𝐌𝐿

𝑒 (29)
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FIGURE 5 Representation of local discontinuous quadratic p=2 (left) and cubic p=3 (right) orthogonal B-spline basis functions
𝑁𝑝

𝑝 (𝜉) in the normalized parameter space for an open knot vector with internal values Ξ = {0, 0.2, 0.4, 0.6, 0.8, 1}. These dual
interpolation functions are locally orthogonal to the basis 𝑁𝑝

𝑢 (𝜉) represented in Figure 1 .

constructed by using the knot intervals as independent elements and where 𝐌𝑒 is an element-by-element constructed mass
matrix, with 𝐌𝐿

𝑒 = diag
(

∑

𝑗
[

𝐌𝑒
]

𝑖𝑗

)

the lumped mass matrix obtained by row-sum of its components.
Orthogonality of these interpolation functions is easily demonstrated evaluating the projection matrix (28) at the element

level:
𝐀𝑒 = ∫

Ω𝑒

𝐍𝖳
𝑢𝐍𝑝 𝑑Ω = {∫

Ω𝑒

𝐍𝖳
𝑢𝐍𝑢 𝑑Ω}𝐌−𝟣

𝑒 𝐌𝐿
𝑒 = 1

𝜌
𝐌𝐿

𝑒 (30)

obtaining by design a diagonal projection matrix 𝐀𝑒 that is equal to the lumped element mass matrix computed with unit density.
As an example, Figure 5 represents the discontinuous interpolation functions 𝑁𝑝

𝑝 (𝜉) locally orthogonal to the B-spline basis
𝑁𝑝

𝑢 (𝜉) contained in Figure 1 for quadratic (p=2) and cubic (p=3) B-spline interpolations.
Finally, we can evaluate analytically the elemental momentum mass matrix from its definition (23), by substituting (29) and

considering (30), with a very simple expression:

𝐂𝑒 = ∫
Ω𝑒

1
𝜌
𝐍𝖳

𝑝𝐍𝑝 𝑑Ω = 𝐀𝖳
𝑒𝐌

−𝟣
𝑒 𝐀𝑒 (31)

confirming that it is possible to compute a reciprocal mass matrix element-by-element without expensive operations.

Remark 2. Expression (30), with the element projection matrix 𝐀𝑒 equal to the lumped element mass matrix, was originally
proposed by González et al.9 for the construction of reciprocal mass matrices in the context of FEM. The same projection matrix
was later employed by Schaeuble et al.21 to construct variationally consistent masses and reciprocal masses for IGA, eliminating
the density inverse from its definition by introducing a momentum velocity field instead of a pure momentum field.

A similar element-wise construction process can be applied to Bézier elements, obtaining a basis with compact support
restricted to the knot intervals that presents 𝐶0 continuity at the element interfaces. In this case, see Figure 6 , the local dual
basis presents the same support than the original basis and the element-by-element compact support is well defined.

5.2 Global dual bases
On the contrary, global dual basis functions present complete support along the parametric space. A common technique to com-
pute global continuous (GC) bases is to write the dual functions as linear combination of the primal shape functions, finding the
coefficients by enforcing the orthogonality condition. Accelerated algorithms36 exist for this task, exploiting the mathematical
properties of the dual bases that can reduce the algorithm complexity, from (𝑛3) flops needed to compute a full inverse, to
(𝑛2) flops.
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FIGURE 6 Form of the quadratic p=2 (left) and cubic p=3 (right) local discontinuous dual basis functions 𝑁𝑝(𝜉) locally
orthogonal to the Bézier element basis 𝑁𝑝

𝑢 (𝜉) represented in Figure 2 .
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FIGURE 7 Representation of quadratic p=2 (left) and cubic p=3 (right) B-spline global continuous dual basis functions 𝑁𝑝
𝑝 (𝜉)

in the normalized parameter space for an open knot vector with internal values Ξ = {0, 0.2, 0.4, 0.6, 0.8, 1}. These interpolation
functions are orthogonal to the basis 𝑁𝑝

𝑢 (𝜉) represented in Figure 1 .

Another possibility to determine GC dual basis functions for B-spline basis functions is the inversion of the Gram matrix32,37.
In this case, the first step in the calculation of the dual basis requires the computation of the Gramian matrix for the primal basis:

𝐆𝑁𝑢,𝑁𝑢
=

⎡

⎢

⎢

⎢

⎣

𝜉𝑛+𝑝+1

∫
𝜉1

𝑁𝑢𝑖(𝜉)𝑁𝑢𝑗 (𝜉) 𝑑𝑠

⎤

⎥

⎥

⎥

⎦(𝑖=1,…,𝑛; 𝑗=1,…,𝑛)

(32)

that integrates cross products of primal B-spline functions along the complete parametric space. The resulting Gram matrix is
symmetric, block-diagonal and always invertible. Then, the Gram matrix needs to be efficiently inverted to obtain the dual basis:

𝐍𝑝(𝝃) = 𝐆−1
𝑁𝑢,𝑁𝑢

𝐍𝑢(𝝃) (33)

where a full populated inverse 𝐆−1
𝑁𝑢,𝑁𝑢

produces a dual basis with global support. The resulting GC bi-orthogonal basis functions
yield the optimal reproduction degree, but increase the number of operations and storage needed to compute the inverse mass
matrix due to their full support, see Figure 7 .
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Compared to local reciprocal bases, global dual basis functions produce full reciprocal mass matrices that are computationally
more expensive. In particular, the RMM computed with the inverse of the Gram dual basis (33) yields very accurate numerical
results, but at significantly higher computational cost than local dual bases.

5.3 Convenient dual bases
We incorporate into this final category bases that are not strictly orthogonal but can simplify the computation of the mass inverse
thanks to the exploitation of a convenient property. One example is the approximate dual basis based on wavelets proposed in
Dornisch et al.32 for mortar coupling methods, that are able to produce semi-compact approximations of an orthogonal basis.

Another example is the inverse mass matrix approximation proposed by Chan et al.20, in the context of discontinuous Galerkin
IGA for wave propagation, where an approximated weight-adjusted reciprocal mass matrix is derived empirically. It is interesting
to note that the same inverse mass matrix is obtained if we apply the proposed variational framework to the LC ansatz basis,

𝐍𝑝(𝝃) = 𝐍𝑢(𝝃)𝐽−1(𝝃), (34)

where 𝐽 (𝝃) is the Jacobian determinant of the physical to parametrical domain transformation and Ω̂ represents the parametric
domain. This basis is not bi-orthogonal, but a simple scaling of the primal basis and its advantage resides in the elimination of
the physical domain influence from the projection matrix (23),

𝐀 = ∫
Ω

𝐍𝖳
𝑢𝐍𝑝 𝑑Ω = ∫

Ω̂

𝐍𝖳
𝑢𝐍𝑢 𝑑Ω̂ = 𝐌Ω̂ (35)

a mass matrix that is not diagonal, but is constant for a particular patch and its inversion can be automatized for regular structured
patches or affine transformations. The associated momentum matrix is then computed as,

𝐂 = ∫
Ω

𝐍𝖳
𝑢𝐍𝑢𝐽

−1(𝝃) 𝑑Ω (36)

and from (27) the inverse mass matrix presents the form,

𝐌−1 = 𝐌−1
Ω̂
𝐂𝐌−1

Ω̂
, (37)

where the mass inverse of the parametric domain can be written as the tensor product,

𝐌−1
Ω̂

= 𝐌−1
1𝐷 ⊗⋯⊗𝐌−1

1𝐷, (38)

when the parametric domain Ω̂ is regular with the same structure on each dimension. In this specific case, the inverse mass
matrix in one direction 𝐌−1

1𝐷 is very cheap to compute and the complete patch inverse presents a Kronecker delta structure.

6 ASSESSMENT OF LOCAL DISCONTINUOUS DUAL BASES

From all the possible dual basis functions discussed in Section 5, the element-wise computation of a LD bi-orthogonal basis
seems a perfect candidate, due to its simplicity and good results demonstrated in FEM and IGA mortar methods. LD bi-
orthogonal bases produce diagonal projection matrices and sparse inverse mass matrices. In this Section we describe in detail its
implementation and integration into the proposed variational framework. It is also performed a dispersion study that reveals the
weakness of this type of basis under certain conditions, together with a parametrization method of the mass matrix that palliates
this defect.

6.1 Procedure to obtain IGA reciprocal mass matrices
The procedure used for the evaluation of the inverse mass matrix for IGA can be summarized in the following steps:

1. Consider all the open patches independently as free-floating substructres.

2. Compute element by element a parametrized mass matrix 𝐌𝑒 using (43) for example.

3. Approximate the element projection matrix 𝐀𝑒 by lumping the element mass matrix.
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4. Compute the element reciprocal mass matrix 𝐂𝑒 from a direct inversion of the element mass matrix.

5. Assemble the global projection and reciprocal matrices and compute the global mass matrix inverse.

6. Impose boundary conditions between patches using localized Lagrange multipliers.

The first four steps of this process are described next and the last step, that is a little bit more involved, will be analyzed in
Section 7.

First, we consider an element of the patch at a time and compute the parametrized element mass matrix. Second, we use the
element lumped mass matrix to obtain the element projection matrix by diagonalization, viz.:

𝐀𝑒 =
1
𝜌
𝐌𝐿

𝑒 (39)

assuming that the density is constant in the patch. Third, the elemental reciprocal mass matrix is evaluated inverting numerically
the element mass matrix:

𝐂𝑒 = 𝐀𝖳
𝑒𝐌

−𝟣
𝑒 𝐀𝑒 (40)

where (𝐀𝑒,𝐂𝑒,𝐌𝑒) are elemental matrices, and particularly 𝐀𝑒 is a diagonal matrix, so this operation is very cheap.
Finally, we proceed with the assembly of the global reciprocal mass matrix:

𝐂 =
𝑁𝑒

A
𝑒=1

𝐂𝑒 (41)

and the global projection matrix:

𝐀 =
𝑁𝑒

A
𝑒=1

𝐀𝑒 (42)

observing that as long as the elemental 𝐀𝑒 is diagonal, so is the assembled matrix 𝐀 and its inverse. These steps permit to
evaluate the inverse of the global mass matrix through expression (27) in an efficient way.

Remark 3. The same process can be applied to obtain reciprocal mass matrices for the FEM. The details of the methodology,
as well as its application to solid and structural elements, was investigated by the authors9 in a previous paper.

6.2 Mass matrix parametrization
A family of reciprocal mass matrices can be constructed by incorporating mass matrix parametrization38,7,8 into the previous
process. Introducing free parameters, we can create a family of inverses and later select the members of this family with best
properties for different applications. There exist several ways to parametrize mass matrices at the element level, see Felippa et
al.39 for an exhaustive classification39, being a consistent-lumped linear combination the simplest choice:

𝐌𝑒 = (1 − 𝛽)𝐌𝐶
𝑒 + 𝛽𝐌𝐿

𝑒 (43)

in which a parameter 𝛽 ∈ [0, 1] is used to balance between the element consistent mass matrix 𝐌𝐶
𝑒 and lumped mass matrix 𝐌𝐿

𝑒 .
For example, using 𝛽 = {0, 1∕2, 1} the element mass matrix is then easily reduced respectively to the consistent mass matrix
(CMM), averaged mass matrix (AMM) and lumped mass matrix (LMM).

In particular, the case 𝛽 = 1 is of no interest because it reduces the reciprocal matrix to the common diagonal LMM with a
trivial inverse. LMM computed for IGA by the row-sum technique is very popular in explicit dynamics15. Unfortunately, the
lumped mass matrix does not maintain the accuracy of the consistent mass matrix for high frequencies and finding better options
would suppose an important advantage for explicit dynamics. It is well known that the frequencies by CMM converge from
above, whereas the frequencies by LMM converge from below. Then, it remains the task of selecting an appropriated parameter
𝛽 for B-spline interpolations of different degree with the objective of beating the LMM accuracy with equivalent computational
costs. This point will be addressed in the following section.

6.3 Dispersion analysis
The introduction of a consistent-lumped mass matrix parametrization in the reciprocal mass matrix makes it possible to tune the
free parameter 𝛽 for different objectives, like maximum accuracy for certain frequency ranges. The tool used for evaluating the
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FIGURE 8 A compression wave with velocity 𝑐 and length 𝜆 is assumed to travel in a discretized uniform bar. Infinite one
dimensional lattice of equidistant control points (left) and associated quadratic B-spline interpolation functions (right) used for
dispersion analysis.

accuracy of a particular reciprocal mass is Fourier analysis39,40. For this task, we assume a monochromatic compressive steady
wave of frequency 𝜔 traveling in a uniform and infinite one-dimensional bar.

The governing equation for longitudinal vibration in an elastic bar has the form:
𝜕
𝜕𝑥

(

𝐸𝐴𝜕𝑢
𝜕𝑥

)

− 𝜌𝐴𝜕2𝑢
𝜕𝑡2

= 0 (44)

where 𝑢(𝑥, 𝑡) is the axial displacement, 𝑥 ∈ (−∞,∞) is the axial coordinate, 𝑡 ≥ 0 denotes the time, 𝜌 is the mass density, 𝐴
is the area of a cross-section and 𝐸 denotes the Young’s modulus. The exact speed of longitudinal waves in an elastic bar41 is
𝑐0 =

√

𝐸∕𝜌. Then, we discretize the problem with an uniform infinite mesh of equidistant knots, see Figure 8 , to study the
effect of IGA discretization and parametrization in the numerically calculated wave speed 𝑐 for different wave numbers 𝑘.

Assuming an interpolation of B-spline functions of order 𝑝 in an infinite patch, with uniformly distributed knots and charac-
teristic element length ℎ, we can compute analytically the stiffness and mass matrices and later use expression (40) to obtain the
elemental momentum matrix. This process starts obtaining the element matrices, for example, for the linear case:

Linear (𝑝 = 1)

𝐊𝑒 =
𝐸𝐴
ℎ

[

1 −1
−1 1

]

, 𝐌𝐶
𝑒 =

𝜌𝐴ℎ
6

[

2 1
1 2

]

, 𝐌𝐿
𝑒 =

𝜌𝐴ℎ
2

[

1 0
0 1

]

(45)

𝐀𝑒 =
𝐴ℎ
2

[

1 0
0 1

]

, 𝐂𝑒 =
𝐴ℎ

2(1 + 2𝛽)𝜌

[

(𝛽 + 2) (𝛽 − 1)
(𝛽 − 1) (𝛽 + 2)

]

(46)

and for quadratic B-splines,

Quadratic (𝑝 = 2)

𝐊𝑒 =
𝐸𝐴
6ℎ

⎡

⎢

⎢

⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎥

⎥

⎦

, 𝐌𝐶
𝑒 =

𝜌𝐴ℎ
120

⎡

⎢

⎢

⎣

6 13 1
13 54 13
1 13 6

⎤

⎥

⎥

⎦

, 𝐌𝐿
𝑒 =

𝜌𝐴ℎ
6

⎡

⎢

⎢

⎣

1 0 0
0 4 0
0 0 1

⎤

⎥

⎥

⎦

(47)

𝐂𝑒 =
𝐴ℎ

12(1 + 3𝛽)(1 + 39𝛽)𝜌

⎡

⎢

⎢

⎣

39𝛽2 + 250𝛽 + 31 52(3𝛽 + 1)(𝛽 − 1) (39𝛽 − 23)(𝛽 − 1)
52(3𝛽 + 1)(𝛽 − 1) 16(3𝛽 + 1)(13𝛽 + 7) 52(3𝛽 + 1)(𝛽 − 1)
(39𝛽 − 23)(𝛽 − 1) 52(3𝛽 + 1)(𝛽 − 1) 39𝛽2 + 250𝛽 + 31

⎤

⎥

⎥

⎦

(48)

with the momentum matrix expressed as a function of the weighting parameter 𝛽, used to interpolate between CMM and LMM.
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FIGURE 9 Analytical dispersion diagrams for an infinite bar modeled with quadratic p=2 B-splines (left) and cubic p=3 B-
splines (right) using different mass scaling parameters. Note that 𝜅 = 𝜋

2
corresponds to a resolution of four elements per wave

length. Divergence is observed for 𝛽 = 0 and a minimum dispersion error is obtained for 𝛽 = 2∕5.

These element matrices are then used to assemble the discrete equations of motion, obtained from momentum (20) and
equilibrium (19) equations, particularized for the infinite lattice in the form:

𝐀𝐩̇ +𝐊𝐮 = 𝟎
𝐀𝖳𝐮̇ − 𝐂𝐩 = 𝟎

}

←→
(

𝐀−𝖳𝐂𝐀−𝟣𝐊
)

𝐮 − 𝐮̈ = 𝟎 (49)

from where we have eliminated the momentum variable to finally write the dynamic equilibrium only in terms of displacements.
Next, we force a harmonic solution for the axial displacement in the form:

𝑢(𝑥, 𝑡) = 𝑈𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝑈𝑒𝑖(𝜅𝜉−Ω𝑐0𝑡)∕ℎ (50)

with the dimensionless wavenumber 𝜅 and frequency Ω respectively defined as 𝜅 = 𝑘ℎ and Ω = 𝜔ℎ∕𝑐0. Then, we particularize
it at the control point coordinates 𝑥𝑖 = {… ,−2ℎ,−ℎ, 0, ℎ, 2ℎ,…} and substitute back in the equilibrium equation (49) to obtain:

[

𝐀−𝖳𝐂𝐀−𝟣𝐊 −
(

Ω𝑐0
ℎ

)2

𝐈
]

𝐮ℎ = 𝟎 (51)

with a discrete solution vector for displacements:

𝐮ℎ = 𝑈
[

… 𝑒−2𝑖𝜅𝑒−𝑖𝜅 1 𝑒𝑖𝜅𝑒2𝑖𝜅 …
]𝖳 (52)

obtaining a discrete system that repeats the same equilibrium equation at each location 𝑥𝑖 of the lattice.
Finally, the extraction of 𝑖𝑡ℎ row of system (51) provides us with the sought dispersion equation, relating the dimensionless

numerical frequency Ω with the wave number 𝜅 and parameter 𝛽. This relation is represented in Figure 9 for quadratic (left)
and cubic (right) B-spline interpolations and compared with the exact solution for an infinite elastic bar. We observe a divergent
result for 𝛽 = 0 (CMM) which invalidates the use of that particular RMM for practical purposes. However, it is also observed
that convergence is recovered for some positive values of the mass averaging parameter (𝛽 > 0). In particular, a good low-mid
frequency fitting is obtained for 𝛽 = 1∕2, clearly outperforming the accuracy of the LMM (𝛽 = 1).

In order to investigate this divergence issue, we perform a Taylor series expansion of (51) around 𝜅 = 0. For 𝑝 = 1, traditional
𝐶0 linear finite element shape functions, Fourier analysis using element matrices (45) and (46) yields the dispersion relation:

Ω2 = 𝜅2 +
5 − 8𝛽

12(1 + 2𝛽)
𝜅4 + (𝜅6) (53)

revealing that, for lower frequencies, the RMM obtained with mass parametrization diverges for 𝛽 ∈ [0, 5∕8). In particular, it is
fourth order accurate for 𝛽 = 5∕8 and produce acceptable results for 𝛽 ∈ [5∕8, 1].
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Similarly, for quadratic B-splines, with element matrices given by (47) and (48), the Taylor expansion with respect to
wavenumber 𝜅 yields the dispersion relation,

Ω2 = 𝜅2 +
3 − 7𝛽

4(1 + 3𝛽)
𝜅4 + (𝜅6) (54)

where it is observed that fourth order approximation can be achieved by using 𝛽 = 3∕7 and the admissible interval of the
averaging parameter is extended to 𝛽 ∈ [3∕7, 1]. Moreover, an optimization of parameter 𝛽 for higher frequencies, see Figure
9 , reveals that the best approximation is obtained for 𝛽 = 2∕5. Using 𝛽 = 2∕5 is a compromise to improve accuracy for the
higher frequencies, maintaining second order approximation for the lower frequencies. This value has been obtained empirically,
minimizing by numerical experiment the dispersion error at 𝜅 = 𝜋∕2.

Remark 4. For B-splines, the RMM obtained with an element-wise LD dual-basis is very cheap to compute but should be used
with care. It diverges for 𝛽 = 0 (CMM) and is not able to provide accurate results. However, the use of mass parametrization with
𝛽 ∈ [2∕5, 1) always provides a better approximation than the LMM diagonal mass inverse, although p-convergence property is
not preserved.

It is worth to mention that this type of LD B-spline dual basis has also been studied mathematically in the context of IGA
mortar methods for contact problems by Steiz et al.31, observing that LD bases generated element-wise only guarantee partition
of unity and consequently the global approximation order is limited to one in the 𝐿2-norm, independently of the local approxi-
mation order. This defect in the approximation order of the B-spline dual basis causes that optimal convergence rates cannot be
guaranteed. Obviously, our element-wise dual basis reproduce the same convergence problems when utilized for inverse mass
matrix computations, but these difficulties can be palliated with mass matrix parametrization techniques21. Finally, it has been
also investigated the use of sixth-order accurate element mass matrices42,43,44 instead of the fourth order approximation given
by (43) for 𝛽 = 0. By adopting these high-order mass matrices, it is possible to increase the accuracy of the RMM, but the
improvement is still not enough for its practical use with LD dual bases.

Remark 5. Because the reciprocal mass matrix 𝐂 is by definition positive definite, the unsymmetric eigenvalue problem
[

𝐀−𝖳𝐂𝐀−1𝐊 − 𝜔2
𝑖 𝐈
]

𝝓𝑖 = 0 represented by equation (51) can be converted into a symmetric eigenvalue problem by a Cholesky
decomposition of the reciprocal mass matrix with𝐂 = 𝐋𝐋𝖳, where𝐋 is a lower triangular matrix. Then, the equivalent symmetric
eigenvalue problem is obtained:

[

𝐋𝖳𝐀−1𝐊𝐀−𝖳𝐋 − 𝜔2
𝑖 𝐈
]

𝝋𝑖 = 0 (55)
which has different eigenvectors but the same eigenvalues as the original unsymmetric problem.

7 INCORPORATION OF BOUNDARY CONDITIONS WITH LAGRANGE MULTIPLIERS

As we mentioned earlier, in the connection with other patches or presence of Dirichlet boundary conditions a direct computation
of the mass-inverse requires complicated modifications of the bi-orthogonal shape functions. We eliminate the necessity of these
modifications by considering the patches as free-floating substructures and applying the boundary conditions through localized
Lagrangian multipliers10,11,12,13. To explain the enforcement of boundary conditions, we reorganize the semi-discrete equations
of motion (20)-(22) to obtain the following partitioned equation set:

⎡

⎢

⎢

⎣

𝐌 𝐁 𝟎
𝐁𝖳 𝟎 −𝐋𝑏
𝟎 −𝐋𝖳

𝑏 𝟎

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝐮̈
𝝀
𝐮̈𝑏

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝐫
𝟎
𝟎

⎫

⎪

⎬

⎪

⎭

(56)

where the second equation is simply twice time-differentiated expression of (21).
Let’s assume now that the boundary acceleration vector (𝐮̈𝑏) consists of entirely the prescribed boundary quantities, regardless

whether they are zero or nonzero. In this case, we obtain the accelerations (𝐮̈) from the first equation of (56) as:

𝐮̈ = 𝐌−𝟣 (𝐫 − 𝐁𝝀) (57)

in which once again we emphasize that the computation of 𝐌−𝟣 = 𝐀−𝖳𝐂𝐀−𝟣 does not requiere additional computational effort
because the global projection matrix 𝐀 is diagonal.
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Then, substitute the accelerations obtained above into the second equation of (56):

𝐁𝖳𝐌−𝟣 (𝐫 − 𝐁𝝀) − 𝐋𝑏𝐮̈𝑏 = 𝟎 (58)

to compute the Lagrange multipliers:
𝝀 =

[

𝐁𝖳𝐌−𝟣𝐁
]−𝟣 (𝐁𝖳𝐌−𝟣𝐫 − 𝐋𝑏𝐮̈𝑏

)

(59)
as a function of the forces residual and the boundary conditions. Finally, substitute the multipliers back in the equilibrium
equation (57) to obtain the final accelerations:

𝐮̈ = 𝐌−𝟣
𝑏 𝐫 +𝐌−𝟣𝐁

[

𝐁𝑇𝐌−𝟣𝐁
]−𝟣 𝐋𝑏𝐮̈𝑏 (60)

with a constrained inverse mass matrix:

𝐌−𝟣
𝑏 = 𝐌−𝟣 −𝐌−𝟣𝐁

[

𝐁𝖳𝐌−𝟣𝐁
]−𝟣 𝐁𝖳𝐌−𝟣 (61)

incorporating the applied boundary conditions. This transformation can also be understood as a projection of the free-floating
mass matrix inverse9.

Once again, since the size of
[

𝐁𝑇𝐌−𝟣𝐁
]

is small, pertaining only to the constrained degrees of freedom, its inversion is very
cheap. It is also noted that 𝐮̈ contains not only the interior but also the constrained degrees of freedom, and the imposition of
boundary conditions will produce zeros in the associated rows and columns of 𝐌−𝟣

𝑏 making it singular. These zero rows and
columns, corresponding to restricted degrees of freedom, can be simply eliminated.

Algorithm 1 Procedure for the computation of the constrained inverse mass matrix 𝐌−1
𝑏

for e do 1...𝑁𝑒 (elements)
Compute parametrized element mass matrix:
𝐌𝑒 = (1 − 𝛽)𝐌𝐶

𝑒 + 𝛽𝐌𝐿
𝑒

Assemble diagonal projection matrix:

𝐀𝑒 =
1
𝜌
𝐌𝐿

𝑒 ←→ 𝐀 =
𝑁𝑒

A
𝑒=1

𝐀𝑒

Assemble reciprocal mass matrix:

𝐂𝑒 = 𝐀𝖳
𝑒𝐌

−1
𝑒 𝐀𝑒 ←→ 𝐂 =

𝑁𝑒

A
𝑒=1

𝐂𝑒

end for
Compute the free-floating inverse mass matrix:
𝐌−1 = 𝐀−𝖳𝐂𝐀−1

Obtain the projector:
 = 𝐈 −𝐌−1𝐁

[

𝐁𝖳𝐌−1𝐁
]−1 𝐁𝖳

Apply boundary conditions by projection:
𝐌−1

𝑏 = 𝐌−1

Eliminate the rows and columns of 𝐌−1
𝑏 with applied boundary conditions

8 NUMERICAL TESTS

In the following examples, for vibration analyses we seek for an harmonic solutions that satisfy the EOM and fulfill the boundary
conditions 𝐮𝑏 = 𝟎. These solutions are obtained by solving the following eigenvalue problem:

[

𝐌−1
𝑏 𝐊𝑏 − 𝜔2𝐈

]

𝝓 = 𝟎 (62)

where 𝐌−1
𝑏 is the inverse mass matrix computed as described in Section 7 and 𝐊𝑏 is the stiffness matrix incorporating the applied

boundary conditions. From the solution of this eigenvalue problem, we obtain the vibration frequencies 𝜔𝑖 of the system and its
associated mode shapes 𝝓𝑖 for mode number 𝑖 = 1,… 𝑛.
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In time-domain analyses, for time integration of the semi-discrete equations of elastodynamics, we use the classical explicit
central difference scheme45,46,47. This method is among the most popular explicit methods in computational mechanics4, based
on a repetition of the basic steps summarized in Algorithm 2 until the total simulation-time has been reached.

Algorithm 2 Explicit time integration by central difference scheme
Solve time 𝑡 = 0:
𝐮̈0 = 𝐌−1

𝑏 𝐫0
for n do 1...𝑛 (time steps)

Evaluate the forces residual:
𝐫𝑛 = 𝐟𝑛 −𝐊𝑏𝐮𝑛

Compute accelerations:
𝐮̈𝑛 = 𝐌−1

𝑏 𝐫𝑛
Update nodal velocities:

𝐮̇𝑛+
1
2 = 𝐮̇𝑛−

1
2 + Δ𝑡𝐮̈𝑛

Update nodal displacements:

𝐮𝑛+1 = 𝐮𝑛 + Δ𝑡𝐮̇𝑛+
1
2

end for

It is well known that the explicit central difference scheme in linear dynamics is conditionally stable, so the time-step Δ𝑡 must
be chosen below a critical value Δ𝑡𝑐𝑟𝑖𝑡 = 2∕𝜔𝑚𝑎𝑥, where 𝜔𝑚𝑎𝑥 is the maximum frequency of the system. We have seen that the
proposed RMM with parametrization, obtained following the process described in Section 4, is able to retain accuracy the for
lower frequencies reducing highest frequencies at the same time. This reduction automatically increases the critical time-step,
allowing the use of larger time steps and improving the computational efficiency.

To evaluate all element matrices we have used a Gauss-Legendre quadrature formula1 of degree 𝑝+1 over the knot intervals,
where 𝑝 is the order of the used B-spline or Bézier interpolation function. For the presentation of results we have adopted the
following nomenclature. Plots with labels IGA and IGA-BE are used as a reference, indicating results obtained with the exact
IGA mass matrix inverse, computed respectively with B-splines or Bézier extraction. The proposed reciprocal matrix is referred
as RMM and RMM-BE depending on the interpolation functions, B-splines or Bézier elements, respectively.

8.1 Free vibration of a bar
In this first example, we analyze the accuracy of the proposed method for direct computation or reciprocal mass matrices by
analyzing the free vibration of elastic bars. For this purpose we consider we consider a long bar of length 𝐿 = 1 m of uniform
section. The material of the bar is linear elastic, with Young’s modulus 𝐸 = 69 GPa and constant volumetric mass density
𝜌 = 2700 kg∕m3.

The bar is discretized using a linear parameterization of 43 control points to investigate the accuracy of the RMM for quadratic
and cubic 𝑝 = 2, 3 orders of longitudinal displacement discretization. In particular, we investigate differences in the use of exact
IGA inverses of the CMM and LMM matrices and the proposed approximation of the mass matrix inverse RMM computed with
an optimized 𝛽.

8.1.1 Free-free case
We start with the free-free case, by comparing the numerical frequencies with exact solutions obtained from continuum theory.
The exact frequencies of this problem are 𝜔𝑒𝑥𝑎𝑐𝑡

𝑛 = (𝑛 − 1)𝑐0𝜋∕𝐿 rad∕s for mode number 𝑛 = 1, 2,… where 𝑐0 =
√

𝐸∕𝜌 is the
wave speed of compressive waves and 𝑛 = 0 provides a zero eigenfrequency corresponding to the free rigid body motion.

Results for this case are presented in Figure 10 for two orders of approximation, quadratic 𝑝 = 2 on the left and cubic 𝑝 = 3
on the right, and two different discretization methods, B-splines on the top and Bézier extraction at the bottom. We include
frequencies for the exact inverse of the IGA mass matrix, for CMM 𝛽 = 0, optimized 𝛽 = 2∕5 and LLM 𝛽 = 1 cases. For
comparison, the RMM computed with the proposed method and optimized parameter 𝛽 = 2∕5 is also included.
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FIGURE 10 Free-free bar vibration problem computed with LD dual basis. Error in the frequencies for quadratic 𝑝 = 2 (left)
and cubic 𝑝 = 3 (right) orders using B-splines (top) and Bézier extraction discretizations (bottom). The RMM with 𝛽 = 0
(CMM) produces divergent results for B-splines and p-convergent behaviour for Bézier elements. In all cases, RMM with an
optimized parameter 𝛽 = 2∕5 are able to capture correctly the low frequency band providing higher accuracy than LMM (𝛽 = 1)
for the full frequency spectrum.

It is well known27,48 and evident from inspection of Figure 10 (top) that, by increasing the order 𝑝 of the LMM inverse,
higher-order accuracy is not achieved. We also observe that the present method, using the RMM with 𝛽 = 2∕5, yields far better
accuracy than the LMM for all frequencies. With quadratic B-splines, the optimized RMM is able to approximate almost half
of the spectrum with good accuracy, first 20 modes are below 5% error while for cubic order it is reduced to the 15 first modes
approximately. But in general, increasing the approximation order either for B-spline or Bézier approximations, expands the
nonzero elements of the banded mass matrix and reduces the accuracy in the mid and high frequency range.

The RMM for Bézier elements, on the contrary, is completely stable for 𝛽 = 0 conserving the p-convergence property, see
Figure 10 (bottom) for cases p=2,3. It can also be observed that although Bézier extraction introduces higher branching in
the spectrum49, its accuracy is very close to the B-splines approximation. This branching is caused by the two distinct types
of equations for the Bézier based elements: those corresponding to nodes located at the element boundaries, and those corre-
sponding to the internal nodes located inside the element27. Note that the number of branches coincide with the Bézier element
degree.

Moreover, RMM produces a maximum frequency around 40% lower than the exact IGA consistent matrix (IGA 𝛽 = 0), so
the critical time-step for explicit time integration with the RMM can be reduced by the same amount. This is close to the 55%
reduction of the diagonal LMM but without so much degradation of the accuracy for the low frequencies.
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FIGURE 11 Error in the natural frequencies of a free-free bar computed using GC dual bases. The inverse Gram matrix (left)
and the weight-adjusted (GC-WA) basis (right) produce p-convergent approximations. These GC bases provide high accuracy,
but at the price of elevated computational cost in the case of the Gram matrix and loss of generality for the weight-adjusted basis.

Finally, we explore the accuracy of GC dual bases in the bar frequencies. In particular we use the inverse Gram matrix and
the weight-adjusted to compute the RMM for different B-spline basis orders. The results are shown in Figure 11 , where it is
observed that the frequency error is totally equivalent to the IGA mass matrix and p-converge is maintained. Once again, note
that the evaluation of these two reciprocal bases require two costly operations, invert the Gramian matrix (left) and invert the
mass matrix of the parametric domain (right), but nevertheless these operations are cheaper than the inversion of the original
mass matrix.

8.1.2 Fixed-free bar
Now, to test the proposed technique for applying boundary conditions using localized Lagrange multipliers described in Section
7, we proceed to fix the displacement of the first control point located on the left side of the bar. In terms of frequencies, the
only difference with the free-free case is in the restriction of the rigid body motion of the bar and the shift of exact frequencies
to 𝜔𝑒𝑥𝑎𝑐𝑡

𝑛 = (𝑛 − 1∕2)𝑐0𝜋∕𝐿 for mode number 𝑛 = 1, 2,… .
Figure 12 contains the results obtained for this case. We corroborate that accuracy is not affected by the imposition of

boundary conditions through localized Lagrange multipliers and the results are completely equivalent. In this case we have
tested the RMM with 𝛽 = 2∕5 that provides very similar approximation of the bar frequencies. The results confirm that using the
present method to approximate the inverse mass matrix yields much better accuracy than the LMM with similar computational
effort.

8.2 Free vibration of a cantilevered tapered plate - FV32 test
This example is a plane-stress test proposed by the National Agency for Finite Element Methods and Standards50. In partic-
ular the dynamic case FV32 for checking the accuracy of flexural and longitudinal modes, where the natural frequencies of a
trapezoidal elastic plate are analyzed. The geometry and dimensions of the plate are represented in Figure 13 together with the
boundary conditions. It is assumed a linear elastic material with Young’s modulus 𝐸 = 200 GPa, Poisson’s ratio 𝜈 = 0.3, and
density 𝜌 = 8000 kg∕m3.

First, the plate is discretized using a single patch with a regular mesh of 10 × 10 control points and quadratic isogeometric
NURBS-based elements, constraining the horizontal and vertical displacements of the 10 control points located at 𝑥 = 0, a
lateral side of the plate. The knot points vector Ξ = {0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1} is used in each
direction to construct a regular 2D patch Ξ × Ξ with B-splines of order 𝑝 = 2.
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FIGURE 12 Fixed-free bar problem computed with LD dual basis. Error in the frequencies for quadratic 𝑝 = 2 (left) and cubic
𝑝 = 3 (right) orders using B-splines (top) and Bézier extraction discretizations (bottom). We observe that RMM with 𝛽 = 0
(CMM) produces divergent results for B-splines and p-convergent behaviour for Bézier elements. In all cases, RMM with an
optimized parameter 𝛽 = 2∕5 are able to capture correctly the low frequency band providing higher accuracy than LMM (𝛽 = 1)
for the full frequency spectrum..

Next, the Bézier extraction process is applied to the patch of quadratic B-splines, see Figure 14 , producing a mesh of 5 × 5
Bézier elements with 11×11 nodes. Note that in both cases, these are more refined meshes than the one proposed in the original
NAFEMS benchmark case, that uses quadrilateral finite elements.

This is a particular example where the weight-adjusted dual basis (34) is readily applicable, because the parametric domain
is completely regular and the parametrical-to-physical geometrical transformation is an affine mapping, hence Jacobian of the
transformation is constant.

The first 9 mode shapes of the plate are illustrated in Figure 15 and their associated frequencies, obtained with different mass
matrix inverses, arranged in Table 1 . As a reference, we use the frequencies computed with the original mass matrix, IGA or
IGA-BE (CMM). These frequencies are very close to the NAFEMS test for FEM and results from other authors obtained with
different RMM proposals.

First, we note that GC-Gram and GC-WA bases produce exactly the same frequencies and are able to approximate the correct
values with negligible error, confirming once again the superiority of these GC bases over the LD ones. Nevertheless, the LD-
RMM computed with 𝛽 = 2∕5 provides a very good fit, with maximum difference obtained respectively in the fourth mode with
1.8% error and the fifth mode with 4.9% error. Note that they correspond to flexural modes that are more difficult to capture
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FIGURE 13 NAFEMS benchmark case FV32. Geometry with dimensions in meters and zero boundary displacements imposed
on the lateral side of the plate at 𝑥 = 0. The IGA regular mesh presents 𝑙 × 𝑚 = 10 × 10 control points, indicated in blue and
uses quadratic B-spline interpolation functions in both directions.

FIGURE 14 A computational IGA mesh based on B-spline shape functions (on the left) and based on Beziér shape functions
after Beziér extrapolation (on the right).

than extension modes, see Figure 15 . For Bézier elements, maximum errors correspond to the same flexural modes with values
under 8%.

In general, it is verified that the proposed RMM obtained with LD bases and mass-matrix parametrization is a better alternative
than the LMM for all modes.

8.3 Free vibration of a clamped thin circular plate
This numerical example is inspired by the paper of Cottrell et al.22, where the problem of free vibration of a thin circular plate is
solved. The purpose of this example is to show the behavior of the proposed method also for a domain with a curved boundary.
The circular plate has a radius 𝑟 = 2 m and thickness 𝑡 = 0.02 mm. Although it would seem natural to model the plate using
shell finite elements, we follow the paper22 and model the circular plate as a three-dimensional body. Material of the plate is
considered to be linear elastic with Young’s modulus 𝐸 = 30 GPa, Poisson’s ratio 𝜈 = 0.2, and density 𝜌 = 2320 kg∕m3.

Similar to the preceding example, the plate is first discretized using a single patch with a regular mesh of 18 × 18 × 3 control
points and quadratic isogeometric NURBS-based elements, clamping of the control points located at 𝑥2+𝑦2 = 𝑟2 as represented
in Figure 16 . The knot vectors Ξ1 = Ξ2 = {0, 0, 0, 1∕16, 2∕16,… , 15∕16, 1, 1, 1} and Ξ3 = {0, 0, 0, 1, 1, 1} are used in each
parametric direction to construct a 3D patchΞ1×Ξ2×Ξ3 with NURBS of order 𝑝 = 2. Details regarding the used parameterization
can be found in the work51.

Again, the Bézier extraction process is applied to the patch of quadratic B-splines, see Figure 17 , producing a mesh of 8×8×1
Bézier elements with 17 × 17 × 3 control points.
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FIGURE 15 NAFEMS benchmark case FV32. Representation of the 9 lowest vibration modes occurring at frequencies con-
tained in Table 1 . Results correspond to the proposed reciprocal mass matrix with parameter 𝛽 = 2∕5 computed with quadratic
B-splines.

The three first symmetric 𝜔01, 𝜔11 and antisymmetric 𝜔02 eigenmodes22 are illustrated in Figure 18 , and their associated
frequencies, obtained with different mass matrix inverses, summarized in Table 2 . Classical IGA with CMM gives the first
three eigenmodes at frequencies 𝜔01 = 57.636 rad/s, 𝜔11 = 127.061 rad/s, and 𝜔02 = 260.913 rad/s that are used as a reference.
Note that GC-Gram basis produces again a perfect approximation. As predicted by dispersion analysis, the LD-RMM with best
fit is obtained for 𝛽 = 2∕5, see IGA RMM results in Table 2 , presenting discrepancies of 0.05%, 0.04% and 0.2% respectively.

Observing now the IGE-BE (CMM) solution, a slightly poorer approximation is obtained for the Bézier extraction results,
compared to IGA with NURBS basis functions. The average relative errors for the Bézier extraction for eigenfrequencies 𝜔01,
𝜔11, and 𝜔02 are 0.3%, 0.8% and 2%, respectively. It is important to mention again that the accuracy of the results for LC-RMM
crucially depends on the selection of an appropriated value for the parametrization factor 𝛽. Its value has been derived from one
dimensional dispersion analyses and its optimization for 2D cases deserves further study.

8.4 Transient analysis of a cantilever beam under self weight
Finally, to test the RMM with a transient case, we consider a 3D cantilever beam under self weight with a sudden application
of the gravity load at time 𝑡 = 0 s. The geometrical definition of the problem is shown in Figure 19 (left), where a cantilever
beam of length 𝐿 = 10 m and section width 𝑏 = 4 m with height ℎ = 2 m is considered. The elastic material properties of the
beam are 𝐸 = 10 MPa, 𝜈 = 0.3 and density 𝜌 = 100 kg∕m3 with a gravity acceleration 𝑔 = 9.81 m∕s2.

The parametric domain is defined by a 3D patch constructed with knot spans on each direction Ξ1 =
{

𝜉1,… , 𝜉𝑙+𝑝+1
}

with
Δ𝜉 = 1∕19, Ξ2 =

{

𝜂1,… , 𝜂𝑚+𝑝+1
}

with Δ𝜂 = 1∕5 and Ξ3 =
{

𝜇1,… , 𝜇𝑛+𝑝+1
}

with Δ𝜇 = 1∕3. Quadratic B-splines with
𝑝 = 2 are used in the three directions. Elements are defined in the parametric space Ξ1 × Ξ2 × Ξ3 as non-zero knot spans,
[𝜉𝑖, 𝜉𝑖+1] × [𝜂𝑖, 𝜂𝑖+1] × [𝜇𝑖, 𝜇𝑖+1] and elements in the physical space are images of their parametric counterparts.
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TABLE 1 Plane-stress case FV-32 from NAFEMS. Six lowest frequencies obtained with different mass matrices.

Frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

NAFEMS50 (FEM) 44.623 130.03 162.70 246.05 379.90 391.44
Tkachuk et al.8 (FEM) 45.499 133.55 162.89 255.37 393.16 398.56
Schaeuble et al.21 (IGA) VSRMS† 44.615 128.489 162.860 235.104 335.874 385.989

IGA 𝛽 = 0 (CMM) 44.634 130.107 162.709 246.639 382.937 391.525
IGA 𝛽 = 1 (LMM) 44.022 122.936 161.413 218.492 308.210 373.077

LD-RMM 𝛽 = 2∕5 44.645 129.581 162.720 241.956 363.728 390.592
GC-Gram 44.634 130.107 162.709 246.639 382.937 391.525
GC-WA 44.634 130.107 162.709 246.641 382.961 391.526

IGA-BE 𝛽 = 0 (CMM) 44.651 130.343 162.730 248.396 389.846 391.848
IGA-BE 𝛽 = 1 (LMM) 44.096 123.304 161.532 219.363 309.573 374.468

LD-RMM-BE 𝛽 = 2∕5 44.544 128.531 162.489 238.999 358.320 387.791

The cited references use different meshes and methods.
†Variationally scaled consistent inverse mass matrices.

4

y

x

FIGURE 16 Clamped thin circular plate. Geometry with diameter in meters and zero boundary displacements imposed on the
lateral side of the plate at 𝑥2 + 𝑦2 = 4. The IGA mesh presents 𝑙×𝑚× 𝑛 = 18× 18× 3 control points, indicated in blue and uses
quadratic NURBS interpolation functions in all three directions.

This patch describes the physical domain with a mesh of 𝑙 × 𝑚 × 𝑛 = 21 × 7 × 5 = 735 control points, producing a total
number of 735 × 3 = 2205 unknowns except for those control points located at the plane 𝑥 = 0 that are restricted in the three
directions of space.

An exact eigenvalue analysis of the problem with a CMM reveals that the maximum frequency of the structure is 𝜔𝑚𝑎𝑥 =
3510.5 rad∕s, hence the critical time step for stability of the central difference scheme is Δ𝑡𝐼𝐺𝐴

𝑐𝑟𝑖𝑡 = 5.7 × 10−4 s. This critical
time step is utilized to compute the reference solution of the problem. The use of RMM with 𝛽 = 2∕5 reduces the maximum
frequency to 𝜔𝑚𝑎𝑥 = 1554.8 rad∕s, increasing the critical time step to Δ𝑡𝑅𝑀𝑀

𝑐𝑟𝑖𝑡 = 0.0013 s, i.e., 2.3 times larger than the initial
critical time step. Then, a time step Δ𝑡 = 0.001 s is selected to perform time-domain analysis, integrating in time the response
of the beam with the explicit central difference method described in Algorithm 2. It is observed in Figure 19 (right) that this
large time-step Δ𝑡 ≫ Δ𝑡𝐼𝐺𝐴

𝑐𝑟𝑖𝑡 produces unstable results with classical IGA, while the RMM with Δ𝑡 ≤ Δ𝑡𝑅𝑀𝑀
𝑐𝑟𝑖𝑡 is able to obtain
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FIGURE 17 A computational IGA mesh based on NURBS basis functions (on the left) and based on Beziér shape functions
after Beziér extrapolation (on the right).

TABLE 2 Clamped thin circular plate. Three lowest eigenfrequencies obtained with different mass matrices.

IGA Bézier extraction
Frequency (rad/s) 𝜔01 𝜔11 𝜔02 𝜔01 𝜔11 𝜔02

IGA 𝛽 = 0 (CMM) 57.636 127.061 260.913 55.933 119.250 231.591
IGA 𝛽 = 1 (LMM) 56.947 123.291 245.604 55.022 114.317 211.815

LD-RMM 𝛽 = 2∕5 57.666 127.114 260.358 55.774 118.274 226.896
GC-Gram 57.636 127.061 260.914 - - -

Eigenmode ω01 Eigenmode ω11 Eigenmode ω02

FIGURE 18 Clamped thin circular plate. Two symmetric and one antisymmetric vibration modes corresponding respectively
to frequencies 𝜔01, 𝜔02 and 𝜔11.

a stable and very accurate solution. In all the cases, initial conditions of the beam are assumed to be zero displacements and
velocities, applying the full gravity load at the initial time-step.

The results are shown in Figures 19 and 20 for NURBS and Figure 21 for Bézier elements. We have selected for comparison
the RMM computed with different values of the parameter 𝛽 = {0, 2∕5, 1∕2, 1}, representing the evolution of the tip deflection
of the beam with both approximation methods in Figures 19 (right) and 21 (left). We also compare the time evolution of total
internal 𝑈 , external 𝑊 and kinetic 𝑇 energies.

Finally, in Figure 20 (right) it is represented the relative error (𝑢 − 𝑢𝑒𝑥𝑎𝑐𝑡)∕|𝑢𝑒𝑥𝑎𝑐𝑡| of the tip displacement 𝑢, computed with
the proposed RMM (𝛽 = 2∕5). It is observed that the error remains under 0.12% during the 1.5 s of simulation, indicating a
very good agreement with the reference solution.
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FIGURE 19 Cantilever beam under sudden gravity load. Geometry, dimensions and mesh with elements defined in the physical
space. Deformation with contours of vertical displacement at time 𝑡 = 1.5 s computed with the reciprocal mass matrix RMM
(left). Comparison of tip deflections |𝑢𝑧| obtained with explicit IGA and critical time step, IGA with large time-step and the
reciprocal mass matrix RMM with 𝛽 = 2∕5 (right).
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FIGURE 20 Results of the tip loaded cantilever beam. Evolution of the internal, external and kinetic energies in the beam
(left). Solutions obtained using the proposed RMM inverse matrix are represented with dots. Error evolution of the beam tip
deflection computed with RMM 𝛽 = 2∕5 (right).

9 CONCLUSIONS

In structural dynamics, classical explicit time-integration methods equipped with a direct solver require an initial factorization
of the mass matrix and repeat subsequent forward and backward substitution operations every time step. If we choose Cholesky
factorization, for example, the total cost of this process is around (𝑛3∕3) flops plus (2𝑛2) operations per time step for each
forward-backward substitution. With a direct approximation of the inverse mass matrix, factorization cost is eliminated and
operation count per time step is reduced to a sparse-matrix vector multiplication (𝑚𝑛) flops, where 𝑚 is the average number of
nonzero entries per row.

This work presents a variational framework for the direct generation of inverse mass matrices that can be used for the isogeo-
metric analysis of elastodynamic problems. The method requires the definition of an appropriated dual basis for the momentum
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FIGURE 21 Results of the tip loaded cantilever beam discretized by the Bézier elements. Comparison of tip deflections |𝑢𝑧|
obtained with the exact consistent and lumped mass matrices (IGA) and the reciprocal mass matrix (RMM) with parameters
𝛽 = 1∕2 and 𝛽 = 2∕5 (left). Evolution of the internal, external and kinetic energies in the beam (right).

field and the influence of the selected reciprocal basis in the efficiency and accuracy of the results has been analyzed for the case
of B-splines and Bézier elements. In particular, three types of dual bases have been studied: one local discontinuous (LD) and
two global continuous (GC) based respectively on the inverse Gram matrix and a weight-adjustment of the primal basis through
the Jacobian of the transformation.

It is observed that, in terms of computational efficiency and accuracy, LD dual basis combined with mass matrix parametriza-
tion produces a RMM that can be a better alternative than the LMM for all frequencies and IGA approximation orders. However,
element-wise construction of LD dual basis functions for B-splines with the CMM (𝛽 = 0), produces divergent results. That is
not the case for other approximations with 𝐶0 continuity, like Bézier and high order isoparametric finite elements for example,
that produce RMMs which retain the p-convergence property for 𝛽 = 0. In general, the combination of mass averaging (𝛽 > 0)
with LD bases forbids p-convergence for B-spline and Bézier elements of order 𝑝 ≥ 2. On the contrary, the GC Gram basis
is able to achieve high accuracy for any approximation order. Nevertheless, global dual bases produce fully populated inverses
and entail higher computational costs. The inverse Gram basis requires the inversion of a block-diagonal symmetric matrix and
weight-adjusted dual basis computational efficiency greatly depends on the regularity of the mesh defined on the parametric
space. Moreover, the final inverse mass matrix becomes a fully populated symmetric matrix.

In the present method, inter-patch compatibility and Dirichlet boundary conditions are handled by the method of localized
Lagrange multipliers. This process is completely general, avoids the need for dual basis function modifications near the boundary
conditions and is found to be computationally efficient because it only requires the factorization of a small element-like matrix
associated with the constrained DOFs.

In conclusion, the proposed variational framework for the computation of IGA inverse mass matrices is completely general
but, in terms of accuracy and efficiency, its results are influenced by a proper selection of the dual basis. The investigation of
analytical LC basis for high-dimensional NURBS and more efficient algorithms for the GC dual basis computation remain an
open issue, which we will consider in future work.
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