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Abstract

Could somebody please explain that to me like I’m a six year old?
Philadelphia (1993), Fi lm

T he goal of data exchange is to populate a target data model using
data that come from one or more source data models. It is common
to address data exchange building on correspondences that are trans-
formed into executable mappings. The problem that we address in

this dissertation is how to generate executable mappings in the context of
semantic-web ontologies, which are the shared data models of the Seman-
tic Web. In the literature, there are many proposals to generate executable
mappings. Most of them focus on relational or nested-relational data mod-
els, which cannot be applied to our context; unfortunately, the few propos-
als that focus on ontologies have important drawbacks, namely: they solely
work on a subset of taxonomies, they require the target data model to be pre-
populated, or they interpret correspondences in isolation, not to mention the
proposals that actually require the user to handcraft the executable mappings.
In this dissertation, we present MostoDE, a new automated proposal to gener-
ate executable mappings in the context of semantic-web ontologies. Its salient
features are that it does not have any of the previous drawbacks, it is compu-
tationally tractable, and it has been validated using a repository that has been
generated using MostoBM, a benchmark that is also described in this disser-
tation. Our validation suggests that MostoDE is very efficient in practice and
that the exchange of data it performs amongst semantic-web ontologies is ap-
propriate.
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Resumen

Por favor, ¿podría alguien explicarme esto como si tuviese seis años?
Philadelphia (1993), Película

E l objetivo del intercambio de datos es cargar un modelo de datos de
destino usando datos procedentes de uno o más modelos de datos
fuente. Es común que el intercambio de datos sea tratado haciendo
uso de correspondencias que son transformadas en mappings ejecu-

tables. El problema tratado en esta tesis doctoral es cómo generar mappings
ejecutables en el contexto de las ontologías, que son modelos de datos com-
partidos de la Web Semántica. En la bibliografía existen numerosas propuestas
que generan mappings ejecutables. Muchas de estas propuestas se centran en
los modelos de datos relacional y relacional-anidado, que no pueden ser apli-
cadas a nuestro contexto. Por desgracia, las pocas propuestas que se centran
en ontologías tienen inconvenientes importantes, a saber: sólo trabajan con
un subconjunto de las taxonomías, requieren que el modelo de datos de des-
tino esté previamente cargado con datos, o interpretan las correspondencias
de forma aislada, sin mencionar las propuestas que requieren que el usua-
rio codifique manualmente los mappings ejecutables. En esta tesis doctoral
presentamos MostoDE, una nueva propuesta automática para generar map-
pings ejecutables en el contexto de las ontologías de la Web Semántica. Las
características más importantes de nuestra propuesta son que no posee nin-
guno de los inconvenientes previos, es computacionalmente tratable y ha sido
validada usando un repositorio generado usando MostoBM, un benchmark
que también se describe en esta tesis doctoral. Nuestra validación sugiere que
MostoDE es muy eficiente en la práctica y que el intercambio de datos entre
ontologías que realiza es adecuado.
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Chapter 1

Introduction

Ah, yes. T he age of information (...) not, of course, that there has
ever been any other kind of age. Information and knowledge:

these are currencies that have never gone out of style.
Neil Gaiman, American Gods (2001)

O
ur goal in this dissertation is to report on our work to devise a
proposal to automatically generate SPARQL executable mappings
to exchange data amongst semantic-web ontologies, and a bench-
mark to test these executable mappings and semantic data ex-

change systems. The chapter is organised as follows: in Section 1.1, we first
introduce the context of our research work; Section 1.2 presents the hypothesis
that has motivated it and states our thesis; Section 1.4 introduces the collabo-
rations we have conducted throughout the development of this dissertation;
Section 1.3 summarises our main contributions; finally, we describe the struc-
ture of this dissertation in Section 1.5.

3
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1.1 Research context

The goal of the Semantic Web is to endow the current Web with metadata,
i.e., to evolve it into a Web of Data [84]. Currently, there is an increasing popu-
larity of semantic-web ontologies, chiefly in the context of Linked Open Data,
and they focus on a variety of domains, such as government, life sciences, ge-
ography, media, education, libraries, or scholarly publications [49]. Semantic-
web ontologies build on the so-called semantic-web technologies, i.e., RDF,
RDF Schema and OWL ontology languages for modelling structure and data,
and the SPARQL query language to query them [7, 106, 114]. Note that, for
the sake of brevity, we refer to semantic-web ontologies as ontologies in the
rest of this dissertation.

Ideally, ontologies are shared data models that are developed with the con-
sensus of one or more communities; unfortunately, reaching an agreement
in a community is not a trivial task [10, 46]. Furthermore, new ontologies
try to reuse existing ontologies as much as possible since it is considered a
good practice; unfortunately, it is usual that existing ontologies cannot be com-
pletely reused since new parts are needed to model the data [49]. Due to these
problems, there exists a variety of heterogenous ontologies to publish data on
the Web, and there is a need to integrate them [49].

In the literature, there are different proposals to address this integration,
such as data exchange [37], data integration [58], model matching [36], or
model evolution [75]. In this dissertation, we focus on data exchange, which
aims to populate a target data model using data that come from one or more
source data models. Data exchange has been paid much attention in the fields
of relational, nested-relational and XML data models [6, 37, 86]. Recently, with
the emergence of the Semantic Web [106] and Linked Data [20], the problem is
motivating many authors to work on data exchange in the context of ontolo-
gies [65, 69, 80, 87].

Without an exception, data exchange has been addressed using map-
pings [36, 73]. In the literature, it is common to distinguish between two
kinds of mappings: correspondences and executable mappings [36, 86, 90, 95].
A correspondence is a hint that specifies which entities (or elements) in the
source and target data models correspond to each other, i.e., are somewhat
related [36, 90]; an executable mapping, aka operational mapping, is an ex-
ecutable artefact that encodes how the correspondences must be interpreted,
i.e., how to perform data exchange [86, 95]. (By executable artefact we mean a
SPARQL query, a Datalog rule, an XSLT script, or other means to read, trans-
form, and output data.) Correspondences are inherently ambiguous since
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there can be many different executable mappings that satisfy them, but gener-
ate different target data [4, 19, 34, 86].

Creating mappings automatically is appealing because this relieves users
from the burden of writing them, checking whether they work as expected
or not, making changes if necessary, and restarting this cycle [18, 83, 89, 90].
Regarding correspondences, the literature provides a number of proposals
that help generate them (semi-) automatically [90], even in the context of on-
tologies [30, 36]. Generating executable mappings automatically in the con-
text of relational and nested-relational data models has been studied exten-
sively [4, 44, 86]; unfortunately, these proposals are not applicable to ontolo-
gies due to the differences amongst these data models [72, 75, 94]. This has
motivated several authors to work on proposals that are specifically tailored
towards ontologies, namely: Mergen and Heuser [65] presented a proposal
that can deal with a subset of taxonomies only; Qin and others [87] devised
a proposal that requires the target model to be pre-populated; the proposal
by Mocan and Cimpian [69] interprets each correspondence in isolation, with-
out taking their inter-relationships into account; Maedche and others [60],
Parreiras and others [80], Bizer and Schultz [25], and Dou and others [34] pre-
sented a proposal that requires the user to handcraft the executable mappings.

1.2 Research rationale
In this section, we present the hypothesis that has motivated our research

work in the context of generating executable mappings to exchange data
amongst ontologies, and state our thesis, which we prove in the rest of the
dissertation.

1.2.1 Hypothesis

Nowadays, there is an increasing interest of individuals, organisations and
companies in ontologies to publish and share their data on the Web, chiefly
in the context of the Linked Open Data initiative [49, 116]. According to [28],
the current Web shall gradually become a Web of Data between the years 2007
and 2017, and the grand vision of the Semantic Web proposed in [106] shall
be a reality in the year 2027. In the context of ontologies, information integra-
tion is one of the most important research challenges due to the variety and
heterogeneity of existing ontologies [22, 25].

According to the previous argumentation, we conclude that our hypothesis
is the following:



6 Chapter 1. Introduction

There is an increasing interest regarding ontologies and this interest
is going to grow day after day. There is also a need for companies
to integrate information from the Web, and the ontologies become of
great importance in this context.

1.2.2 Thesis

In the context of databases, there exist a number of proposals to generate
executable mappings automatically, namely: [40, 61–64, 86, 89]. They have
proven to be an efficient solution to reduce integration costs when performing
data exchange [44]. Furthermore, they have proven that the resulting exe-
cutable mappings capture the intuition of an expert with a high precision and
recall [4].

In the context of ontologies, there are also a number of proposals, namely:
[25, 34, 60, 65, 69, 80, 87]. Unfortunately, they suffer from a number of draw-
backs that may hinder their applicability, such as: they deal with a subset of
taxonomies only, they require the target model to be pre-populated, they in-
terpret correspondences in isolation, or they require the user to handcraft the
executable mappings.

As a consequence, we conclude that our thesis is the following:

In the context of ontologies, it is possible to overcome the problems of
existing proposals and develop a new one to automatically generate
efficient executable mappings that capture the intuition of an expert
with a high precision and recall.

1.3 Summary of contributions
To prove our thesis, we have devised MostoDE and MostoBM, which are

the contributions of this dissertation, namely:

• First, MostoDE is a technique that allows to automatically generate
SPARQL executable mappings to exchange data amongst ontologies, i.e.,
these mappings are executed by means of a query engine over the source
ontology and produce data according to the target ontology. To gener-
ate them, we rely on constraints over the source and target ontologies,
and correspondences between the entities of these ontologies. Note that
MostoDE assumes that a set of constraints and correspondences already
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exist. Our technique relies on a conceptual framework that provides
a theoretically-sound foundation. They both have a number of limita-
tions, which we think do not hinder their applicability. The limitations
of our technique are that 1) it cannot deal with more than one instance
of the same class or superclass (except rdfs:Resource and owl:Thing);
2) it is not able to deal with RDF collections; 3) it may generate equiva-
lent executable mappings. The limitations of our conceptual framework
are that 1) it comprises six types of constraints and four types of corre-
spondences; 2) it is not possible to restrict more than two entities, or to
establish that more than one source entity corresponds to a target entity.

Regarding this contribution, we had the following accepted publica-
tions: [41, 78, 92, 94, 95, 97]. Furthermore, we submitted an extension
of MostoDE to the Knowledge and Information Systems journal.

• Second, MostoDE interprets correspondences in a way that have be to
checked by domain experts and, to perform this, we rely on MostoBM,
a benchmark that is able to generate real-world and synthetic data ex-
change problems. Furthermore, MostoBM can be used to test semantic
data exchange systems, so we have devised and evaluation methodol-
ogy that allows to make informed and statistically-sound decisions re-
garding such systems.

Regarding this contribution, we had the following accepted publica-
tions: [32, 93, 96, 98]. Furthermore, we submitted an extension of
MostoBM to the IEEE Transactions of Knowledge and Data Engineering
journal.

1.4 Collaborations
Throughout the development of this dissertation, several collaborations

were conducted. Not only allowed these collaborations to gather feedback
regarding our research results, but they also resulted in joint publications,
new research topics, and lots of interesting discussions. Below, we provide
additional information about each collaboration. Further collaborations are
expected in future: Dr. Paea LePendu, Stanford University (United States),
Dr. Lucian Popa, IBM Research (United States), Dr. Axel Polleres, Siemens
(Austria), and Dr. Sergiu Dascalu, University of Nevada (United States).

University of A Coruña (Spain): A research visit was paid to the research
group of Dr. Alberto Pan, who is a professor in the Department of Informa-
tion and Communication Technologies and R & D Director in Denodo Tech-
nologies, from November 24 until December 8, 2008. The goal of this visit
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was to study proposals in the context of information integration using (web)
databases, to present our research work, and to gather feedback.

University Roma Tre (Italy): A research visit was paid to the research group
of Dr. Paolo Papotti, who is a professor in the Department of Computing and
Automation, from November 1 until December 15, 2010. In this visit, we stud-
ied the proposals to automatically generate executable mappings in the con-
text of nested-relational data models, in which Dr. Paolo Papotti is an expert
with publications in major database conferences [40, 61–64, 89]. These propos-
als were a starting point to the research work presented in this dissertation.

Freie University Berlin (Germany): A research visit was paid to the research
group of Dr. Christian Bizer, who is a professor in the Department of Informa-
tion Systems and the leader of the Web-based Systems Group, from October 14
to December 5, 2011. Dr. Christian Bizer is one of the authors of the Berlin
SPARQL Benchmark [24] and one of the promoters of the Linked Open Data
initiative. The goal of this visit was to devise a benchmark to exchange data in
the context of the Linked Open Data initiative.

The Open University (United Kingdom): Dr. Carlos Pedrinaci devised a
handcrafted proposal to exchange data from OWL-S web services into MSM
web services [81]. In this context, we used our automatic proposal to generate
SPARQL executable mappings to perform this exchange with excellent results
(see Section 10.2).

1.5 Structure of this dissertation

This dissertation is organised as follows:

Part I: Preface. It comprises this introduction and Chapter 2, in which we
motivate our research work and conclude that current proposals to au-
tomatically generate executable mappings in the context of ontologies
have a number of drawbacks.

Part II: Background Information. It provides information about ontologies,
exchanging data, generating executable mappings, and benchmarking
data exchange systems. In Chapter 3, we introduce the data and query
models of ontologies. In Chapter 4, we describe the exchanging of data
in current proposals. In Chapter 5, we present different proposals to
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automatically generate executable mappings. In Chapter 6, we present
current systems to perform data exchange and current benchmarks to
test them.

Part III: Our Proposal. It reports on the core contributions we made with this
dissertation. In Chapter 7, we present the conceptual framework on
which our proposal is based. In Chapter 8, we present our proposal to
automatically generate executable mappings in SPARQL based on con-
straints and correspondences. In Chapter 9, we describe our benchmark
to test semantic data exchange systems. In Chapter 10, we deal with the
experimental evaluation of our proposal using a repository that has been
built using our benchmark.

Part IV: Final Remarks. It concludes this dissertation and highlights a few fu-
ture research directions in Chapter 11.
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Chapter 2

Motivation

Do... or do not. T here is no try.
Star Wars: Episode V − T he Empire Strikes Back (1980), Fi lm

A lthough data exchange has been studied extensively, chiefly in the
context of nested-relational data models, it is still necessary to
solve the drawbacks of current proposals, which hinder their ap-
plicability in practice. Our goal in this chapter is to present the

problems of exchanging data; to detail to which extent current proposals deal
with these problems, and to motivate the need for a new proposal. The chapter
is organised as follows: in Section 2.1, we introduce it; Section 2.2 presents the
problems of exchanging data in detail; in Section 2.3, we conclude that none
of the current proposals solve these problems at a time; Section 2.4 discusses
the drawbacks of current proposals; Section 2.5 introduces our contributions
and compares them with current proposals; finally, we summarise the chapter
in Section 2.6.

11
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2.1 Introduction
Nowadays, there is an increasing interest of individuals, organisations and

companies in ontologies to publish, share and expose their data on the Web,
chiefly in the context of (Linked) Open Data, which focuses on a variety of
domains, such as government, life sciences, geography, media, education, li-
braries, or scholarly publications [49, 116].

Ideally, ontologies are shared data models that are developed with the con-
sensus of one or more communities; unfortunately, reaching an agreement
in a community is not a trivial task [10, 46]. Furthermore, new ontologies
try to reuse existing ontologies as much as possible since it is considered a
good practice; unfortunately, it is usual that existing ontologies cannot be com-
pletely reused since new parts are needed to model the data [49]. Due to these
facts, there exists a variety of heterogenous ontologies to publish data on the
Web, and there is a need to integrate them [10, 18, 20, 49, 74].

In the literature, there are different proposals to address the problem of
integrating ontologies, and, in this dissertation, we focus on data exchange,
which aims to populate a target data model using data that come from one or
more source data models [65, 69, 80, 86, 87]. Unfortunately, these proposals
have a number of drawbacks that hinder their applicability in practice. Con-
sequently, it is still necessary to research on exchanging data in the context of
ontologies, which is our purpose in this dissertation.

2.2 Problems
Exchanging data is not a trivial task and, if it is not performed appropri-

ately, it may increase integration costs. In this section, we present the prob-
lems that must be coped with by proposals to perform data exchange, with an
emphasis on the ontology context. These problems are the following:

(P1) To handcraft executable mappings: Data exchange is usually a complex
task that requires a strong knowledge of the domain of the data exchange
problem, so domain experts are required to perform it. Executable map-
pings, which consist of rules or queries that can be executed over a rea-
soner or a query engine to perform data exchange, help reduce integra-
tion costs. To handcraft executable mappings implies that domain ex-
perts have to code them, which is usually not trivial. Furthermore, it is
not surprising that existing data models may undergo modifications in
response to requests for change, therefore, when handcrafting executable
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mappings, software engineers have to adapt and maintain them accord-
ing to these modifications. As a conclusion, the automatic generation of
executable mappings is appealing to reduce integration costs.

(P2) To rely on many target data: The goal of the data exchange is to populate
a target data model with data that come from source data models. The
target data model is not usually expected to be pre-populated. Therefore,
due to the nature of the problem of exchanging data, relying on many
target data may increase integration costs, since, if the target data model
cannot be pre-populated with actual data, software engineers must pro-
vide representative-enough synthetic data. As a conclusion, it is not ap-
pealing to rely on many target data when performing data exchange.

(P3) To not benchmark the exchanged data: Without an exception, systems
that are suitable to perform data exchange have uneven performance.
Therefore, it is appealing to assess and rank them from an empirical
point of view. As a conclusion, it is necessary to devise benchmarks and
statistical evaluation methodologies to make informed and statistically-
sound decisions about such systems.

(P4) To not check the interpretation of correspondences: Data exchange pro-
posals construct target data that may not be as expected by domain ex-
perts. This is crucial in the context of executable mappings, which en-
code how correspondences between source and target data models must
be interpreted. Correspondences are inherently ambiguous since there
can be many different executable mappings that satisfy them, but gener-
ate different target data. As a conclusion, it is necessary to check if the
interpretation of correspondences that a proposal assumes agrees with
the interpretation of domain experts.

(P5) To interpret correspondences in isolation: A correspondence is a hint
that specifies which entities in the source and target data models cor-
respond to each other, i.e., are somewhat related. Since they are hints,
data exchange proposals that rely on correspondences must not inter-
pret them in isolation, i.e., without taking their inter-relationships into
account. For instance, an instance of property sch:name, which denotes
the name of a person, cannot be exchanged in isolation, but in the con-
text of an instance of class sch:Person, which denotes a person. As a
conclusion, executable mappings must not interpret correspondences in
isolation but in the context of other inter-related correspondences.

(P6) To encode non semantic-web executable mappings: In the context of
nested-relational data models, executable mappings are encoded using
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XQuery or XSLT, which build on the structure of the XML documents
on which they are executed. However, to exchange data amongst on-
tologies, these executable mappings must be encoded in a language that
is independent from the structure of the documents used to represent
an ontology, since the same ontology may be serialised to multiple lan-
guages, e.g., XML, N3, or Turtle. As a conclusion, in the context of on-
tologies, it is mandatory to use executable mappings encoded using ap-
propriate query or rule languages, such as SPARQL, or SWRL, since they
are specifically tailored towards ontologies.

(P7) To not deal with arbitrary graphs: An ontology is a shared data model
that represents an arbitrary graph in which there may be zero, one
or more paths connecting two arbitrary entities, there may not exist a
unique root entity, and there may be cycles. As a conclusion, it is a must
to deal with arbitrary graphs to exchange data amongst ontologies.

(P8) To not deal with arbitrary taxonomies: Ontologies allow to define arbi-
trary taxonomies amongst their entities, i.e., it is possible to define that
a class is a subclass of another class, or that a property is a subproperty
of another property. Furthermore, these taxonomies may be completely
arbitrary in the sense that all relations are allowed, such as an undefined
number of specialisation levels, a class (property) may have more than
one superclass (superproperty), or a class (property) is subclass (sub-
property) of itself. As a conclusion, it is necessary to deal with arbitrary
taxonomies when performing data exchange in the context of ontologies.

Problems P1, P2, P3, P4, and P5 deal with common problems of exchanging
data amongst data models of any type. Problems P6, P7, and P8 focus on
performing data exchange amongst ontologies.

2.3 Analysis of current solutions
Fagin and others [37] and Arenas and Libkin [9] presented the theoretical

foundations for performing data exchange using executable mappings in the
context of relational and XML data models. It is important to notice that rela-
tional data models are a special case of nested-relational data models [86] and
that a nested-relational data model is defined by means of a tree that comprises
a number of nodes, which may be nested and have a number of attributes, and
it is also possible to specify referential constraints that relate these attributes.

In the context of nested-relational data models, data exchange has been
studied extensively [3, 40, 44, 63, 86, 89]. Popa and others [86] devised the
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state-of-the-art proposal regarding data exchange in nested-relational data
models. Although it seems efficient and effective enough to be used in prac-
tical applications, it cannot be applied in the context of ontologies. The main
reason is that it builds on computing primary paths from the root node of a
data model to every attribute in this model, and then applying a variation
of the well-known Chase algorithm that takes referential constraints into ac-
count [33]. In general, an ontology is not a tree, but a graph in which there is
not a root node, which prevents us from computing primary paths, and it can
contain cycles, which prevents us from using the Chase algorithm. Note that
there are more differences between nested-relational data models and ontolo-
gies [72, 75, 94], such as an instance in a nested-relational data model has a
unique type that corresponds to an existing node, contrarily, an ontology in-
stance may have multiple types of several existing classes, which need not be
related by specialisation; in addition, in nested-relational data models, queries
to exchange data are encoded using XQuery or XSLT, contrarily, in an ontol-
ogy, these queries must be encoded in a language that is independent from the
structure used to represent an ontology.

These differences amongst nested-relational data models and ontologies
have motivated several authors to work on proposals that are specifically tai-
lored towards ontologies. The initial work on data exchange in this context put
the emphasis on defining the problem and the strategies to address it, which
mainly consisted of devising handcrafted correspondences and performing
data exchange using ad-hoc proposals [60, 76]. Later proposals performed
data exchange using reasoners instead of ad-hoc proposals [34, 69, 104], or
using SPARQL query engines [80, 85, 94].

The majority of current ontology proposals to exchange data in the liter-
ature focus on the automatic generation of correspondences and executable
mappings that interpret them; there are a few proposals, however, that re-
quire the user to provide executable mappings using ad-hoc languages. Cor-
respondences can be handcrafted using visual tools [2, 89, 91], or discovered
automatically using model matching proposals [30, 36, 90]. This dissertation
focuses on the automatic generation of executable mappings to perform data
exchange, finding them is orthogonal to the problem of generating executable
mappings, which is the reason why we do not discuss them further in this
section. The most closely related proposals in the field of ontologies were pre-
sented by Mergen and Heuser [65], Qin and others [87], Mocan and Cimpian
[69], Maedche and others [60], Parreiras and others [80], Bizer and Schultz
[25], and Dou and others [34]. Table 2.1 summarises how these proposals deal
with the problems of performing data exchange (see Section 2.2).

Mergen and Heuser [65] devised an automated proposal that works with
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Proposals P1 P2 P3 P4 P5 P6 P7 P8

Bizer and Schultz [25] 5 3 5 5 3 3 3 3

Dou and others [34] 5 3 5 5 3 3 3 3

Maedche and others [60] 5 3 5 5 3 3 3 3

Mergen and Heuser [65] 3 3 5 5 3 5 5 5

Mocan and Cimpian [69] 3 3 5 5 5 3 3 3

Parreiras and others [80] 5 3 5 5 5 3 3 3

Popa and others [86] 3 3 5 5 3 5 5 5

Qin and others [87] 3 5 5 5 3 3 3 3

P1 = To handcraft executable mappings; P2 = To rely on many target data; P3 = To not bench-
mark the exchanged data; P4 = To not check the interpretation of correspondences; P5 = To
interpret correspondences in isolation; P6 = To encode non semantic-web executable map-
pings; P7 = To not deal with arbitrary graphs; P8 = To not deal with arbitrary taxonomies.

Table 2.1: Comparison of current proposals to exchange data.

a subset of taxonomies in which there are only classes, data properties, and
single specialisations amongst classes. Their algorithm analyses every class
correspondence independently, and tries to find the set of correspondences
that are involved in its properties, super-classes, and super-properties; this
helps identify data that must be exchanged together and the many possible
exchanges that can be performed. These subsets of correspondences are then
translated into an ad-hoc script language that was devised by the authors.

Qin and others [87] devised a semi-automatic proposal that relies on data-
mining. They first require the user to select a subset of source and target data
for each data property; these are used to feed a mining algorithm that attempts
to discover a set of queries that can exchange these data; these queries are
then sorted according to an ad-hoc metric, and the top ones are selected and
transformed into Web-PDDL, Datalog, or SWRL rules. The most important
problem with this proposal is that it requires the target data model to be pre-
populated so that the data-mining algorithm can work, which is not the case
in common data exchange problems [4, 18, 37, 86]; if the target cannot be pre-
populated with actual data, then the user must provide representative-enough
synthetic data. Furthermore, it requires the user to select appropriate subsets
of data from both the source and target data models, i.e., subsets of data that
capture variability well enough; this is not a trivial task since the data have
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to be selected very carefully to avoid over-fitting, i.e., generating executable
mappings that can deal with only the selected training data.

Mocan and Cimpian [69] studied the problem of data exchange in the con-
text of semantic-web services. They presented a formal framework to describe
correspondences in terms of first-order logic formulae that can be mapped
onto WSML rules very easily. Their proposal is similar in spirit to the one
by Maedche and others [60], whose focus was on modelling correspondences
in a general-purpose setting. The main difference with the previous proposals
is that Mocan and Cimpian went a step beyond formalising correspondences
and devised a mediator that executes them using a WSML reasoner. Note that
no attempt is made to identify groups of correspondences that must be taken
into account together, which may easily lead to incoherent target data, i.e.,
data that does not satisfy the constraints in the target ontology [4, 19, 86].

Parreiras and others [80] presented a proposal within the framework of
Model-Driven Engineering. They extended the ATL metamodel to support
OWL 1 ontologies, which allows to express constraints on them using the
OCL language. They devised a mapping language called MBOTL by means of
which users can express executable mappings that are later transformed into
SPARQL and Java by means of a library of ATL transformations. Their pro-
posal does not build on correspondences, but requires users to handcraft and
maintain their executable mappings using MBOLT. This is similar in spirit to
the proposals by Bizer and Schultz [25] and Dou and others [34]; the difference
is the language used to represent the executable mappings.

Regarding benchmarks, Alexe and others [4] devised a benchmark that is
used to test proposals to automatically generate executable mappings to per-
form data exchange in the context of nested-relational data models. It pro-
vides eleven data exchange patterns that occur frequently in the information
integration context. To the best of our knowledge, this is the unique bench-
mark in the literature specifically tailored towards data exchange so it allows
to construct data exchange scenarios, each of which comprises a source and a
target data model and a set of queries to perform data exchange. As a conclu-
sion, it can be used to construct repositories to check if the interpretation of
correspondences is according to domain experts. Unfortunately, this bench-
mark is not suitable in the context of ontologies due to the differences with
respect to nested-relational data models (see above).

There are a number of benchmarks to test systems that implement
semantic-web technologies. Bizer and Schultz [24] and Schmidt and others
[103] focused on comparing the performance of SPARQL query engines; Guo
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and others [42] focused on comparing the performance of RDF stores, reason-
ers, and query engines; Wu and others [117] focused on the performance of an
implementation of a reasoner in Oracle.

In addition, there are a number of proposals that deal with patterns in
the ontology evolution context, which may be used to test the interpreta-
tion of correspondences. Stojanovic and others [109] identified sixteen atomic
changes an ontology may undergo, and some combinations of these changes
are very frequent in practice, so this motivated the authors to devise a cata-
logue of twelve common composite changes. Noy and Klein [75] extended the
catalogue of atomic changes to twenty two, and they classified these changes
according to whether data are lost after changes are applied or not.

2.4 Discussion
The previous proposals have problems that hinder their applicability in

practice: Popa and others [86] focused on nested-relational data models (P6,
P7, and P8), Mergen and Heuser [65] dealt with only a subset of taxonomies
(P7 and P8), Qin and others [87] required the target model to be pre-populated
(P2), Mocan and Cimpian [69] interpreted correspondences in isolation (P5),
Maedche and others [60], Parreiras and others [80], Bizer and Schultz [25],
and Dou and others [34] relied on handcrafted executable mappings (P1). Fur-
thermore, none of these proposals use a repository to test whether or not they
interpret correspondences as expected by domain experts (P4).

Regarding benchmarks, none of the existing benchmarks focus on data ex-
change problems (P3), i.e., they do not provide source and target ontologies
and mechanisms to exchange data [24, 42, 103, 117]. In addition, they are
domain-specific, which entails that they provide ontologies with a fixed struc-
ture in a particular domain, so they only allow to tune the construction of syn-
thetic data but not their structure. Last, they focus on SELECT queries instead
of the CONSTRUCT queries that are required to exchange data.

Regarding patterns, current proposals focus on the ontology evolution con-
text [75, 109]. Unfortunately, the specification of the evolution of an ontology
does not take how data are exchanged into account (P3). Our catalogue of
synthetic patterns summarises common changes we have found in real-world
information integration problems: not only specify they how the structure of
the source ontology evolves, but also how source data must be exchanged by
means of SPARQL queries of the CONSTRUCT type. Our synthetic patterns
are instantiated by tuning a number of structure parameters that allow to con-
struct synthetic scenarios. These scenarios range from simple atomic changes
to complex composite changes.
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2.5 Our proposal

To solve the previous drawbacks, we present a proposal called MostoDE
to automatically generate SPARQL executable mappings in the context of on-
tologies, which are executed by means of a query engine to exchange data (see
Chapters 7 and 8). Contrarily to the previous proposals, ours is able to com-
pute the executable mappings automatically, which saves the user from the
burden of designing them (P1). Our proposal is based on constraints of the
source and target ontologies, and correspondences amongst them (P2).

We have devised MostoBM, a benchmark to test semantic data exchange
systems, and an evaluation methodology that allows to make informed and
statistically-sound decisions regarding such systems (P3) (see Chapters 9
and 10). The interpretation of correspondences that our proposal assumes
has been tested by means of a publicly-available repository that comprises
four real-world data exchange scenarios and 3, 780 synthetic data exchange
scenarios (P4) (see Chapter 10). To construct these synthetic data exchange
scenarios, we have used MostoBM that provides a tool to construct synthetic
data exchange scenarios by means of a number of parameters to scale them.

Furthermore, our proposal identifies groups of correspondences that must
be analysed together, which impedes the resulting executable mappings from
producing incoherent target data (P5). It generates executable mappings that
are represented in standard SPARQL, which allows to perform data exchange
using a commodity SPARQL engine (P6). Our proposal can deal with quite
a complete subset of ontologies that adhere to the OWL 2 Lite profile, which
allows for classes, data properties, object properties, and multiple specialisa-
tions between classes and properties (P7) (see Appendix A). Last, our pro-
posal does not require the target data model to be pre-populated, and it does
not require the user to provide any additional data to compute the resulting
executable mappings (P8).

2.6 Summary

In this chapter, we have motivated the reason for this piece of research
work. We have analysed the problems of exchanging data and current pro-
posals in the literature to exchange data, and we have concluded that none of
these proposals solves these problems at a time. This motivates the necessity
of our contribution and that it advances the state of the art a step forward.
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Chapter 3

Semantic-web Ontologies

You do not want to argue semantics with a PhD candidate.
T he Rundown (2003), Fi lm

T he Semantic Web aims to evolve the current Web into a Web of Data
that revolves around ontologies. In this chapter, we introduce the
data models and query languages to define and query ontologies,
the current state of the Web of Data, and the principles of the Linked

Data initiative. The chapter is organised as follows: in Section 3.1, we in-
troduce it; Sections 3.2 and 3.3 present the data model and the query model,
respectively; in Section 3.4, we present the current state of the Web of Data;
Section 3.5 describes the principles of the Linked Data initiative; finally, we
summarise the chapter in Section 3.6.
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3.1 Introduction

The vision of the Semantic Web is an evolution of the old Web, which
mainly comprises a variety of documents devised and consumed by humans,
to a new Web that should be automatically manipulated by machines [16]. To
achieve this, the goal of the Semantic Web is to endow the current Web with
metadata, i.e., to evolve it into a Web of Data [84, 106]. Ontologies are the data
models of this Web of Data; they build on the semantic-web technologies, i.e.,
RDF, RDF Schema and OWL ontology languages for modelling structure and
data, and the SPARQL query language to query them [7, 114].

Currently, there is an increasing popularity of the Web of Data, chiefly in
the context of (Linked) Open Data in the following domains: government, life
sciences, geography, media, education, libraries, or scholarly publications [49].
Linked Data is a successful initiative of the Web of Data that consists of a
number of principles to publish, connect, and query data in the Web that rely
on semantic-web technologies [20, 22, 49].

The Web of Data can be used as it was a large database, i.e., it allows to
answer structured queries from users [84]. In this context, the most important
research challenge is to cope with scalability problems of processing amounts
of data at Web scale [21]. Furthermore, the Web of Data is been constructed on
demand, as an ongoing effort that involves different parties [10].

Some authors have also proposed that the Web of Data should follow a
pay-as-you-go approach, i.e., it does not require full integration to provide
useful services [39, 100]. In this context, the effort of integrating different
sources is not made in one single initial step, but it is a continuous effort
that involves different parties [49, 100]. Usually, when a pay-as-you-go sys-
tem is deployed for the first time, it can process only simple queries, but, as it
evolves, it is expected to be able to process more complex queries.

3.2 The data model

In this section, we report on the OWL 2 Lite profile ontology language, and
how it is represented by means of the RDF language. Herein after, wherever
we mention OWL, we are just implicitly referring to this version unless other-
wise stated. The OWL ontology language allows to model both the structure
and the data of an ontology. Regarding modelling structure, an OWL ontol-
ogy comprises classes, data properties, and object properties, each of which is
identified by a URI. Figures 3.1(a) and 3.1(b) show the structure of the same
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rdfs:range

sch:Person

sch:Author

rdfs :subclassOf
sch:writes

rdfs:domain

sch:Paper

rdfs:range

sch:alias

rdfs:domain

xsd:string

sch:title

rdfs:range

rdfs :domain

sch:yearrdfs:domain

xsd:gYear

rdfs:range

sch:name

rdfs:range

rdfs:domain

sch:Document

rdfs:subclassOf

sch:ownerOfrdfs:domain rdfs:range

rdfs:subPropertyOf

(a) Structure (Graph).
sch:Person

sch:name <xsd:string>

sch:alias <xsd:string>

sch:writes [sch:ownerOf ] <sch:Paper>

sch:Author [sch:Person]

sch:Document

sch:Paper [sch:Document ]

sch:year <xsd:gYear>

sch:ownerOf <sch:Document>

(b) Structure (tree).

sch:CRRivero [sch:Author]sch:alias “Carlos R. Rivero”sch:name “Carlos Rivero”sch:writes [sch:CIKMPaper]sch:CIKMPaper [sch:Paper]sch:year “2011”
sch:alias “Carlos R. Osuna”
sch:ERPaper [sch:Paper]sch:writes [sch:ERPaper]

(c) Data.

(sch:Person, rdf:type, owl:Class)

(sch:Author, rdf:type, owl:Class)

(sch:Author, rdfs:subClassOf, sch:Person)

(sch:CIKMPaper, rdf:type, sch:Document)

(sch:CIKMPaper, rdf:type, sch:Paper)

(sch:CIKMPaper, sch:year, “2011”^^xsd:gYear)

(d) RDF.

Figure 3.1: Example of the structure and data of an ontology.
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sample ontology using graph-based and tree-based notations, respectively. In
this dissertation we use both notations but, for the sake of simplicity, we use
the tree-based notation in this section since it is easier to read than the graph-
based notation.

In Figure 3.1(b), sch:Author is a class that models an author, and we de-
note it as a circle. In this example, we use namespace sch: as a prefix. A
class can be specialised into other classes, e.g., sch:Author is a subclass of
sch:Person, and we denote it as sch:Author [sch:Person]. An example of a
data property is sch:name, which models the name of a person, and we de-
note it as a square. Data properties have a set of classes as domain and a basic
XML data type as range, e.g., the domain of sch:name is {sch:Person}, and
we denote it by nesting sch:name into sch:Person. The range of sch:name

is xsd:string, and we denote it as sch:name<xsd:string>. An example of
an object property is sch:writes, which models “an author writes a paper”,
and we denote it as a pentagon. Object properties have a set of classes as do-
main and range, e.g., the domain of sch:writes is {sch:Author} and the range
is {sch:Paper}. Data and object properties can be also specialised into other
properties, e.g., sch:writes is subproperty of sch:ownerOf, and we denote it
as sch:writes [sch:ownerOf].

Beyond subclass, domain, range and subproperty constructs, the OWL
Lite profile ontology language provides other constructs to represent other
constraints, e.g., owl:sameAs, which deals with relating two instances that
model the same real-world object; owl:minCardinality, which restricts the
minimal number of property instances that an ontology should contain; or
owl:versionInfo, which is devised to express meta-information.

Regarding data modelling, a class instance is identified by its own URI,
and it may have a number of types (see Figure 3.1(c)). We denote a class in-
stance as a diamond, e.g., sch:CRRivero is a class instance of type sch:Author.
sch:CRRivero is also, implicitly, an instance of sch:Person, since sch:Author

is a subclass of sch:Person; reasoners are used to make this knowledge ex-
plicit [112]. In addition, it is possible to have class instances of types that are
not related by specialisation, e.g., assume that sch:CRRivero is the URL of a
web page that provides the biography of a person, therefore, sch:CRRivero

might have both types sch:Person and sch:Document. A data property in-
stance relates a class instance with a literal, and we denote it as a square,
e.g., sch:name relates sch:CRRivero with “Carlos Rivero”. An object prop-
erty instance relates two class instances, e.g., sch:writes relates sch:CRRivero

and sch:CIKMPaper, which represents that an author has written a partic-
ular paper. By default, data and object property instances have a minimal
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cardinality of zero, e.g., there is no data property instance of sch:year relat-
ing sch:ERPaper and the actual year of the paper; however, there is a data
property instance of sch:year relating sch:CIKMPaper and “2011”. Further-
more, by default, data and object property instances may be multiple, e.g.,
sch:CRRivero is related to “Carlos R. Rivero” and “Carlos R. Osuna” by data
property sch:alias.

RDF, which is based on triples, is used to store both the structure and data
of an OWL ontology. A triple comprises three elements: the first one is called
subject, the second one is called predicate, and the third one is called object.
In Figure 3.1(d), we present some examples of RDF triples.

3.3 The query model

In this section, we report on the SPARQL 1.1 query language. Herein after,
wherever we mention SPARQL, we are just implicitly referring to this version
unless otherwise stated. SPARQL queries are used to retrieve and/or con-
struct triples. They are based on triple patterns that are similar to triples, but
they allow to specify variables in the subject, predicate, and/or object, which
are prefixed with a ‘?’. A set of triple patterns match RDF data by unifying the
variables of the triple patterns with these data.

SPARQL provides four types of queries, namely: SELECT, ASK, DE-
SCRIBE, and CONSTRUCT. SELECT and ASK queries can only retrieve data.
A SELECT query comprises a unique WHERE clause, which specifies a set of
triple patterns, and a set of variables to be returned, and it retrieves a plain ta-
ble of values. An ASK query comprises a single WHERE clause and it checks
whether the specified triple patterns have an instantiation in the RDF data.

DESCRIBE and CONSTRUCT are able to retrieve and construct RDF data.
A DESCRIBE query comprises a unique WHERE clause and a set of variables
to be returned. This structure is similar to SELECT queries but, instead of
returning a plain table of values, DESCRIBE queries retrieve an RDF graph, so
the client needs not know the structure of the retrieved RDF graph.

A CONSTRUCT query comprises two parts: the WHERE and CON-
STRUCT clauses. The triple patterns of the WHERE clause are used to retrieve
data from an RDF store, and the triple patterns of the CONSTRUCT clause are
responsible for constructing RDF data. CONSTRUCT queries return a unique
RDF graph, which is formed by taking each query solution, replacing the vari-
ables of the WHERE clause, and combining the resulting triples by set union.
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Q1: CONSTRUCT {
?p rdf:type sch:Person .

} WHERE {

?p rdf:type sch:Author . }

Q2: CONSTRUCT {
?p rdf:type sch:Person .

?p sch:name ?n .

} WHERE {

?p rdf:type sch:Author .

?p sch:alias ?a .

BIND(toName(?a) AS ?n) }

Figure 3.2: Example of queries.

In this dissertation, we focus on CONSTRUCT queries, since they are suit-
able to perform data exchange amongst ontologies. Figure 3.2 shows two
examples of SPARQL queries, in which we use a notation to give names to
queries (Q1 and Q2) since they help us refer to them. In this example, Q1

retrieves instances of sch:Author (the WHERE clause) and reclassifies those
instances as sch:Person (the CONSTRUCT clause); Q2 reclassifies instances
of sch:Author as sch:Person, and transforms the value of sch:alias into
sch:name by means of a toName function using a BIND clause, which as-
signs the final value to variable ?n.

3.4 Current state of the Web of Data
The Web is being transformed from a Web of documents into a global data

space called the Web of Data, which consists of a huge graph that comprises
billions of units of data [22, 84]. There exists a variety of ontologies that focus
on a variety of domains, such as government, life sciences, geography, media,
education, libraries, or scholarly publications [49].

Ontologies are growing steadily, chiefly in the context of Linked Open
Data: in 2007, there were roughly 12 such ontologies and, as of the time of
writing this dissertation, there exist 326 ontologies in this context, according
to [59]. These ontologies are represented in the Linked Open Data cloud (see
Figure 3.3), and some illustrative examples of them are the following:

• Gene Ontology [13]: it is a daily updated ontology that represents gene
and gene product attributes, which comprises roughly 32, 000 classes
with a dozen specialisation levels.

• DBpedia [23]: it is a community effort to annotate and make the data
stored at Wikipedia accessible by means of an ontology. DBpedia 3.7
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Figure 3.3: A part of the Linked Open Data cloud [59].

comprises 3.64 million individuals, i.e., instances of owl:Thing, using 97
different natural languages.

• BBC Programmes [56]: the BBC provides this ontology to publicise the
programmes they broadcast in both radio and television. It uses the Pro-
grammes Ontology that describes programmes including brands, series,
and episodes.

• LinkedGeoData [12]: it is an effort to add a spatial dimension to the Web
of Data that uses the data of the OpenStreetMap project, whose goal is
to construct an editable map of the world. It comprises data about 350
million places and 30 million ways.

3.5 Principles of Linked Data

Linked Data is a successful initiative of the Semantic Web that is based
on four principles to publish, connect, and query data in the Web that rely
on semantic-web technologies [49]. The intuitive idea behind these principles
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is to apply the general architecture of the Web to share structured data on a
global scale. All principles refer to URIs as a mechanism to identify things
uniquely, i.e., resources on the Web that include real-world objects, such as
people, authors, books, or geographic places, or abstract concepts, such as
relationships that state that an author has written a book, or that an author is
a person.

The first principle states that things should be identified using URIs. The
second principle promotes using HTTP URIs to allow users to look things
up. The third principle establishes that we should use W3C specifications
(RDF, RDF Schema, OWL, and SPARQL) to represent and query things. Fi-
nally, the fourth principle states that related things should be explicitly linked;
this is accomplished by using the following OWL constructs: owl:sameAs,
owl:equivalentClass, and owl:equivalentProperty.

3.6 Summary

In this chapter, we have presented an overview of the Web of Data. We
have described the languages on which the Web of Data builds, i.e., the data
model (RDF and OWL) and the query model (SPARQL). Furthermore, we
have summarised current state of ontologies by focusing on four examples.
Last, we have described the principles of the Linked Data initiative.



Chapter 4

Exchanging Data

Data! data! data! −he cried impatiently−
I can’t make bricks without clay.

Sir Arthur Conan Doyle, T he Adventure of the Copper Beeches (1892)

D ata exchange aims to populate a target data model using data that
come from one or more source data models. In this chapter, we
present the applications of exchanging data and how it is per-
formed in current proposals in the literature. The chapter is organ-

ised as follows: in Section 4.1, we introduce it; Section 4.2 describes several
applications of exchanging data; Sections 4.3 and 4.4 deal with the whole pro-
cess of performing data exchange amongst ontologies based on reasoners and
query engines, respectively; in Section 4.5, we present mappings, which are
the cornerstone components to perform data exchange; finally, we summarise
the chapter in Section 4.6.
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4.1 Introduction
Integration is a common term by means of which researchers refer to a va-

riety of problems, including: data integration, which deals with answering
queries posed over a target data model using a number of source data models
only [45, 58]; model matching, aka model mapping, whose goal is to unveil
correspondences amongst the elements of two data models [36, 90]; model
merging, which consists of automatically generating an integrated model by
means of multiple and possibly overlapping input models [48, 74]; model
evolution, which focuses on the modifications of an existing data model in
response to a request for change [38, 75]; or data exchange, which aims to
populate a target data model using data that come from one or more source
data models [9, 34, 37, 65, 69, 80, 86, 87].

This dissertation focuses on data exchange, which has been paid much at-
tention in the fields of relational and nested-relational data models [9, 37, 86].
In the ontology context, there exists a variety of heterogenous ontologies to
publish data on the Web, and it is necessary to exchange data amongst them,
which is motivating many authors to work on this topic [34, 65, 69, 80, 87].

In addition to ad-hoc proposals [76], there are several automated proposals
to perform data exchange that rely on reasoners [104] and query engines [86].
When using ad-hoc proposals, data exchange is based on handcrafted pieces
of software that transform source data into target data. When using reasoners,
data exchange consists of reclassifying source instances into target instances
by means of rules. Finally, when using queries, data exchange is performed by
executing a number of queries that extract data from the source data models,
transform them, and load the results into the target data model.

4.2 Applications
Data exchange is a mainstream integration proposal by itself [9, 37, 86, 94].

However, it is used in other contexts, namely:

• Data integration: a query is posed over a target data model and has to be
answered using source data models only. The target query is reformu-
lated into a single query over source data models, which is divided into
individual queries that retrieve data from each source data model. Fur-
thermore, an execution plan is generated that specifies how these source
queries must be executed. Finally, the source data retrieved must be
combined into data that conform to the target data model, which is per-
formed by means of data exchange.
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• Model evolution: a data model may undergo changes due to a variety
of reasons. After the data model has changed, data have to be updated
to adapt them according to the new data model. Data exchange can be
used to update these data. In this case, we assume that the source data
model is the data model before changes are applied, and the target data
model is the data model after changes are applied.

• Model merging: two or more source data models are combined to create
a new target data model, which includes information about all source
data models. In this context, source data must be transformed into target
data according to the new target model. Data exchange can be used to
perform this transformation.

• Vocabulary adaptation: usually, two ontologies offer the same data but
structured according to different vocabularies. Therefore, we wish to
adapt the vocabulary of the source ontology to the vocabulary of the
target ontology. Data exchange can be used to perform this adaptation.

• Publication of Linked Data: before the success of the Linked Open Data
initiative, there were a variety of ontologies that publish their data with-
out taking Linked Data principles into account. Usually, there is a need
for these ontologies to publish their data using these principles. Data
exchange can be used to perform this publication.

The previous applications provide an overall idea of how important data
exchange is becoming. They also make it clear to foresee that this research
field shall remain active in the years to come.

4.3 The reasoner-based process
In the context of ontologies, exchanging data by means of reasoners con-

sists of reclassifying source instances into target instances by means of rules.
This process comprises five steps (see Figure 4.1(a)), namely:

i. Loading: This step consists of loading the source and target ontologies
and the set of rules from a persistent storage into the appropriate internal
data structures.

ii. Merging: In this step, source and target ontologies are merged into a
single ontology, since the vast majority of reasoners take only single on-
tology as input.
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Figure 4.1: Workflows of data exchange.

iii. Reasoning: In this step, the reasoner is responsible for applying rules
to reclassify source instances into target instances. Furthermore, built-
in rules are applied to make it explicit the knowledge in the source and
target ontologies.

iv. Projecting: This step deals with the splitting of the merged ontology by
projecting the structure and data of the target ontology.

v. Unloading: This step deals with saving the target ontology from the in-
ternal data structures to a persistent storage.

4.4 The query-based process
In the context of ontologies, performing data exchange using a query en-

gine consists of executing a number of queries that extract data from the source
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data models, transform them, and load the results into the target data model.
This process comprises five steps (see Figure 4.1(b)), namely:

i. Loading: This step consists of loading the source and target ontologies
and the set of SPARQL queries from a persistent storage into the appro-
priate internal data structures.

ii. Reasoning over source: This step is optional and deals with making it
explicit the knowledge in the source ontology. This step is not required
if the knowledge is already explicit in the source ontology, but it is a
must in many cases since SPARQL does not deal with RDF Schema or
OWL entailments.

iii. Query execution: This step consists of executing a set of SPARQL queries
over the source ontology to produce instances of the target ontology. The
result of this step must be the same regardless of the order in which
queries are executed.

iv. Reasoning over target: This step is also optional and it deals with making
it explicit the knowledge in the target ontology.

v. Unloading: This step deals with saving the target ontology from the in-
ternal data structures to a persistent storage.

4.5 Mappings
Without an exception, the cornerstone components of proposals that ex-

change data are the so-called mappings, which describe the relationships
amongst source and target data models in different ways [17]. Mappings pro-
vide the “semantic glue” that is needed to perform data exchange amongst
data models. In the literature, it is common to distinguish between two kinds
of mappings: correspondences and executable mappings [30, 36, 86, 90, 94].

We use a sample data exchange problem to illustrate correspondences and
executable mappings (see Figure 4.2). In this problem, we assume that we
want to exchange the source ontology, which models people and documents,
into the target ontology, which models users and files. Note that, for the sake
of simplicity, we omit the ranges of data properties when using the graph-
based notation.

On the one hand, a correspondence is a hint that specifies which entities
(or elements) in the source and target data models correspond to each other,
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(a) Graph-based notation.
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tgt:owner <tgt:User>

src:Person

src:name <xsd:string>

src:Document

src:ownerOf <src:Document>

(b) Tree-based notation.

Figure 4.2: An example of a data exchange problem.

Q2: CONSTRUCT {
?p rdf:type tgt:User .

?p tgt:alias ?n .

} WHERE {

?p rdf:type src:Person .

?p src:name ?n . }

Q1: CONSTRUCT {
?d rdf:type tgt:File .

} WHERE {

?d rdf:type src:Document . }

Figure 4.3: Example of executable mappings in SPARQL.

i.e., are somewhat related [30, 36, 90]. We denote a correspondence as an arrow
between a source and a target entity (see Figures 4.2(a) and 4.2(b)). Sample cor-
respondences in our examples are the following: between classes src:Person

and tgt:User, src:Document and tgt:File, between data properties src:name

and tgt:alias, and between object properties src:ownerOf and tgt:owner.

On the other hand, an executable mapping, aka operational mapping, is
an executable artefact that encodes how the correspondences must be inter-
preted, i.e., how to perform data exchange [86, 94]. Note that, by executable
artefact, we mean a SPARQL query, a Datalog rule, an XSLT script, or other
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means to read, transform, and output data.

Figure 4.3 shows two sample executable mappings in SPARQL that en-
codes an interpretation of the previous correspondences. Query Q1 encodes
the interpretation of the correspondence between classes src:Document and
tgt:File, which entails that every instance of class src:Document is copied as
class tgt:File. Furthermore, Q2 encodes the interpretation of the correspon-
dence between src:Person and tgt:User, which entails that every instance of
class src:Person is copied as class tgt:User, and the correspondence between
src:name and tgt:alias, which entails that every object of each instance of
property src:name is copied as the object of an instance of property tgt:alias,
and the subject of the latter instance has tgt:User type.

4.6 Summary

In this chapter, we have presented an overview of data exchange, which
aims to populate a target data model using data that come from one or more
source data models. We have summarised a number of applications of data
exchange, and we have described the process of exchanging data amongst
ontologies using reasoners and query engines. Finally, we have introduced
mappings, which are the cornerstone components of data exchange propos-
als.
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Chapter 5

Generating Mappings

I don’t need a map! I have the GPS.
Never need a map again, thank you.

Cars (2006), Fi lm

T o reduce integration costs, it is desirable to automatically generate
mappings to perform data exchange. In this chapter, we present cur-
rent proposals in the literature to automatically generate them. The
chapter is organised as follows: in Section 5.1, we introduce it; Sec-

tions 5.2 and 5.3 introduce several forms in the literature to represent and gen-
erate correspondences, respectively; furthermore, Sections 5.4 and 5.5 describe
several forms to represent and generate executable mappings, respectively; fi-
nally, we summarise the chapter in Section 5.6.
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5.1 Introduction

It is well-known that generating and maintaining handcrafted mappings
increases integration costs [18, 83, 89]. With the goal of reducing them, there
are a number of proposals in the literature to automatically generate map-
pings, i.e., correspondences and executable mappings. This generation may
be fully-automated, in which case the user has no intervention, or may be
semi-automated, in which case a visual tool helps the user generate them.

Since we focus on the automatic generation of mappings, mechanisms to
represent them are needed to make them machine-processable. On the one
hand, there are several proposals to represent correspondences and, in gen-
eral, almost every proposal uses its own representation format. On the other
hand, executable mappings are represented in several rule languages in the
context of reasoner-based proposals. However, in query-based proposals, they
are usually represented by means of SPARQL, since it is the unique language
recommended by the W3C for querying ontologies.

5.2 Representing correspondences

Regarding nested-relational data models, Popa and others [86] used the
most simple form of correspondences: a logic equality between a source en-
tity and a target entity. These correspondences are represented in a internal
model that is similar to nested-relational data models. Mecca and others [63]
used a more general form of correspondences: they relate a number of source
entities with a target entity via a transformation function, and they use the
same internal model as Popa and others [86].

Regarding ontologies, Bouquet and others [26] presented the C-OWL on-
tology, which allows to contextualise ontologies, i.e., express constraints that
are not present in ontologies but are needed for certain tasks. The C-OWL
ontology represents oriented correspondences from source entities to target
entities. Five types of relation predicates are allowed, namely: more general,
more specific, equivalent, disjoint and overlap. C-OWL allows to express cor-
respondences amongst classes, properties, and class instances.

Euzenat [35] proposed the alignment format to represent correspondences.
This format is divided into three levels, each of which characterises the type of
correspondences. The first level relates a pair of entities in the modelling lan-
guage by using a relation predicate, which can be equivalence, subsumption,
incompatibility or even fuzzy relations. The second level is a generalisation of
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the first level allowing sets or lists of entities. Finally, the third level considers
expressions in a given language such as first-order logic, SWRL or SPARQL.

Maedche and others [60] devised the Semantic Bridge Ontology, which al-
lows to relate classes, properties, and class instances by means of semantic
bridges. They identify five dimensions (aspects) for correspondences, namely:
entity, cardinality, constraint, transformation and structural. The entity di-
mension establishes which entities are related. The cardinality dimension
covers how many entities are related. The constraint dimension are condi-
tions that must hold to when integrating the source and target data models.
The transformation dimension specifies how the data have to be exchanged.
Finally, the structural dimension covers how the semantic bridges are com-
bined. These combinations include specialisation, abstraction, composition
and alternative.

Miles and Bechhofer [66] developed SKOS that stands for Simple Knowl-
edge Organisation System, and it was developed for sharing and linking
the knowledge of organisation systems in the Web. SKOS provide the class
skos:Concept, which represents a concept in the domain of interest. These
concepts can be aggregated by means of concept schemata. Furthermore,
SKOS provides semantic relations and mapping properties, which allow to ex-
press correspondences amongst two or more concepts by means of constructs
such as narrower, broader or related.

Mocan and Cimpian [69] proposed a formal framework to describe cor-
respondences in terms of first-order logic formulae, each of which relates a
source and a target entity. Furthermore, Serafini and Tamilin [104] used the
OWL 1 ontology language to represent correspondences, each of which relates
two classes (more general or more specific) or two class instances.

Scharffe and Fensel [101], Scharffe and others [102] proposed a number
of patterns to represent correspondences inspired in the design patterns in
the software engineer context. The authors have devised a pattern library, in
which each pattern comprises a name, the problem that this patterns aims to
solve, the solution, and consequences, i.e., known uses and other related pat-
terns. They classify their patterns into generic patterns, such as subsumption,
conditional, or transformation, and application-specific patterns, in which
they focus in correspondences amongst relational databases and ontologies.

5.3 Generating correspondences
The literature provides several proposals that help generate correspon-

dences (semi-) automatically by means of matchers. This research topic has
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been extensively studied during the last fifteen years in both contexts: nested-
relational data models and ontologies. In this dissertation, we focus on two
well-known surveys in both contexts [36, 90]. Recent surveys on this topic
were provided by Bellahsene and others [15] and Shvaiko and Euzenat [107].

Rahm and Bernstein [90] focused on nested-relational data models and
they classified matchers into two groups: individual and combined match-
ers. The former generate correspondences based on a single criterion, and the
latter generate correspondences by combining multiple matching criteria. Re-
garding individual matchers, they classified them according to the following
features:

• Instance vs. data model: matchers may take instances, data models or
both into account.

• Entity vs. structure: matchers may use entities in isolation or combina-
tions of them.

• Linguistic vs. constraints: matchers may be based on a linguistic pro-
posal, such as names and textual descriptions of entities, or based on
constraints of the data models.

Regarding combined matchers, on the one hand, hybrid matchers apply
different matching criteria in the same algorithm; on the other hand, compos-
ite matchers combine the results of different (individual or hybrid) matchers.

Euzenat and Shvaiko [36] focused on ontologies and they extended the
classification of Rahm and Bernstein [90] by introducing features such as the
following:

• Syntactic vs. external vs. semantic: syntactic matchers are based on the
source and target entities, external matchers use auxiliary resources, e.g.,
human input or a thesaurus of relationships, and semantic matchers use
some formal semantics.

• Refined structure: structure matchers can be graph-based, taxonomy-
based, based on repositories of data models, model-based, or based on
data analysis and statistics.

• Kind of input: matchers can be terminological, structural, semantics, or
extensional if the input is formed by strings, entities, data models (enti-
ties and constraints), or instances, respectively.
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Finally, there exist some visual tools in the literature that help generate
handcrafted correspondences. In the context of nested-relational data models,
there are several tools that allows to handcraft these correspondences using vi-
sual languages [44, 62, 64, 89]. These tools also incorporate matching services
to help designers generate correspondences for large data models. Therefore,
the process of generating handcrafted correspondences becomes a best-effort
process: matchers are used to generate simple correspondences amongst the
data models and, then, the user is responsible for refining simple correspon-
dences and building more complex correspondences with the help of these
visual tools.

5.4 Representing executable mappings

In the literature, there are several languages to define executable mappings
to perform data exchange. In the context of relational data models, SQL or
Datalog with extensions have been used to represent these mappings [8, 37,
111]. In the context of nested-relational data models, XSLT or XQuery have
been used to represent them [3, 40, 63, 86, 89].

In the context of ontologies, Mergen and Heuser [65] relied on ad-hoc
scripts to represent executable mappings, which are formed by groups of cor-
respondences with optional conditions of when to apply them. Furthermore,
there exist a number of proposals that use different rule languages to represent
these mappings, such as Datalog, Web-PPDL, SWRL or WSML [69, 87]. These
rules have to be executed by means of a reasoner to perform data exchange.

There are other proposals that use SPARQL to represent executable map-
pings. Bizer and Schultz [25] devised a mapping language called R2R based
on a subset of SPARQL 1.0 that provides three data properties, namely:
r2r:prefixDefinitions, r2r:sourcePattern and r2r:targetPattern. The for-
mer property allows to define the prefixes used in a particular executable map-
ping as a single string. The goal of the other properties is to define the triple
patterns of the WHERE and CONSTRUCT clauses, respectively, each one as a
single string. In addition to these properties, R2R offers other properties to de-
fine transformation functions, to reduce the scope of the executable mappings
to particular ontologies, or to specify provenance information.

Parreiras and others [80] used an extension of the OCL language to repre-
sent executable mappings, and these intermediate mappings are automatically
transformed into executable mappings represented in SPARQL 1.0. Polleres
and others [85] presented preliminary ideas on the use of SPARQL executable
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mappings to perform data exchange. They focused on the limitations of the
SPARQL 1.0 query language to work as a language to describe executable
mappings, and they proposed a number of extensions, such as regular ex-
pressions to describe paths, external functions, or aggregations. Some of these
extensions have been incorporated to the SPARQL 1.1 working draft. Fur-
thermore, Ressler and others [91] devised a visual language to represent exe-
cutable mappings that are automatically transformed into SPARQL 1.0.

5.5 Generating executable mappings

Generating executable mappings automatically in the context of relational
and nested-relational data models has been studied extensively [40, 44, 63,
86, 89]. Unfortunately, the proposals in this context are not applicable to
ontologies due to the differences with respect to nested-relational data mod-
els [72, 75, 94]. Some examples of these differences are the following: a nested-
relational data model represents a tree, whereas an ontology represents an ar-
bitrary graph; an instance in a nested-relational data model has a unique type
whereas an instance may be of multiple types in an ontology; or the query
language to encode executable mappings in the context of nested-relational
data models cannot be applied to ontologies. This has motivated several
authors to work on proposals that are specifically tailored towards ontolo-
gies [25, 34, 65, 69, 80, 87, 91].

There exists a few proposals that require the user to handcraft executable
mappings [25, 34, 80, 91]. Amongst these proposals, we focus on [80, 91] since
they provide mechanisms to automatically generate executable mappings, but
they do not build on correspondences.

Parreiras and others [80] presented a proposal within the framework of
Model-Driven Engineering. They extended the ATL metamodel to support
OWL 1 ontologies, which allows to express constraints on them using the
OCL language. They devised a mapping language called MBOTL by means of
which users can express executable mappings that are later transformed into
SPARQL and Java by means of a library of ATL transformations.

Ressler and others [91] devised a visual tool to define executable mappings
that are automatically translated into SWRL rules. It allows to define corre-
spondences between entities or individuals of the source and target ontolo-
gies. Furthermore, it provides mechanisms to express logical, string manipu-
lation, and mathematical functions. To test their tool, the authors used a case
study in the maritime domain, which is included in the geospatial domain.
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Regarding automatic proposals, Mergen and Heuser [65] devised a pro-
posal to automatically generate executable mappings that works with a subset
of taxonomies in which there are classes, data properties, and single speciali-
sations amongst classes. Their algorithm analyses every class correspondence
independently, and tries to find the set of correspondences that are involved
in its properties, superclasses, and superproperties; this helps identify data
that must be exchanged together and the many possible exchanges that can
be performed. These subsets of correspondences are then translated into an
ad-hoc script language that was devised by the authors.

Mocan and Cimpian [69] studied the problem of data exchange in the con-
text of semantic-web services. They presented a formal framework to describe
correspondences in terms of first-order logic formulae that can be mapped
onto WSML rules very easily. Their proposal is similar in spirit to the one
by Maedche and others [60], whose focus was on modelling correspondences
in a general-purpose setting. The main difference with the previous proposals
is that Mocan and Cimpian [69] went a step beyond formalising correspon-
dences, which are transformed into WSML rules, and devised a mediator that
executes these rules using a WSML reasoner.

Qin and others [87] devised a semi-automatic proposal that relies on data-
mining. They first require the user to select a subset of source and target data
for each data property; these are used to feed a mining algorithm that attempts
to discover a set of queries that can exchange these data; these queries are
then sorted according to an ad-hoc metric, and the top ones are selected and
transformed into Web-PDDL, Datalog, or SWRL rules. This proposal uses a
module to determine whether two instances in different ontologies represent
the same real-world entity.

5.6 Summary

In this chapter, we have presented several languages to represent corre-
spondences, such as the Semantic Bridge Ontology, C-OWL or SKOS, and a
classification of proposals to automatically generate them. Furthermore, we
have described several languages to represent executable mappings, such as
XQuery, SWRL or SPARQL, and several proposals in the literature to hand-
craft or automatically generate them.
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Chapter 6

Benchmarking Data Exchange
Systems

I have no data yet. It is a capital mistake to theorize before
one has data. Insensibly one begins to twist facts to

suit theories, instead of theories to suit facts.
Sir Arthur Conan Doyle, A Scandal in Bohemia (1891)

C
urrent systems that implement semantic-web technologies have un-
even performance when performing data exchange. In this chapter,
we introduce the benchmarks and patterns in the literature to test
the performance of data exchange systems. The chapter is organ-

ised as follows: in Section 6.1, we introduce it; Section 6.2 introduces current
systems that implement semantic-web technologies; in Section 6.3, we present
current benchmarks in the literature to test the performance of data exchange
systems; Section 6.4 describes patterns in the literature that can be used to test
data exchange systems; finally, we summarise the chapter in Section 6.5.
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6.1 Introduction

Currently, there are a large number of systems that implement semantic-
web technologies and are, thus, suitable to perform data exchange amongst
semantic-web ontologies. Without an exception, these systems have uneven
performance [24, 42, 103, 117], which makes assessing and ranking them from
an empirical point of view appealing, since this helps make informed deci-
sions about which the best system for a particular integration problem is.

In the literature, there exists a number of benchmarks to assess and rank
the performance of such systems. These benchmarks incorporate catalogues of
common patterns that usually occur in information integration and/or evolu-
tion contexts. In this chapter, we present these benchmarks and patterns, and
current systems that implement semantic-web technologies that are suitable
to perform data exchange.

In the context of executable mappings, correspondences are inherently
ambiguous since there can be many different executable mappings that sat-
isfy them, but generate different target data [4, 19, 34, 86]. Since executable
mappings encode a particular interpretation of correspondences, it is a must
to check whether or not this interpretation agrees with the interpretation of
domain experts [4, 19, 34, 86]. Data exchange benchmarks can be used to
check this interpretation since they incorporate information on how data is
exchanged, so the final target data using a benchmark and a set of executable
mappings should be the same.

6.2 Current systems

Currently, there exists a variety of systems that implement semantic-web
technologies. These systems are suitable to exchange data amongst ontologies,
e.g., TDB, Pellet, ARQ, Jena, Oracle, OWLIM, Sesame, or Virtuoso to mention
a few; as of the time of writing this dissertation, the W3C lists a total of 272
systems [115]. A semantic data exchange system comprises an RDF store, a
reasoner, and a query engine, which is only needed when data exchange is
implemented using query engines. The systems that implement semantic-web
technologies provide different services, e.g., TDB is an RDF store, Pellet is a
reasoner, ARQ is a query engine, Jena provides an RDF store and a reasoner,
and Oracle or OWLIM provide an RDF store, a reasoner and a query engine.

In the rest of this section, we describe the systems that we use in this disser-
tation. TDB 0.8.7 [110] is a high performance, transactional RDF store based on
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files. TDB runs on both 32-bit and 64-bit Java Virtual Machines, but it is specif-
ically tailored towards 64-bit systems since they can provide more memory for
file caching. Pellet 2.2.2 [82] is a reasoner for Java that supports every OWL
profile and implements a number of optimisations to improve its performance,
such as incremental reasoning, reasoning over XML Schema datatypes, or ax-
iom pinpointing, which provides a justification when any arbitrary rule is ap-
plied to an ontology [108].

ARQ 2.8.7 [11] is a SPARQL query engine that natively supports the
SPARQL 1.0 specification. Furthermore, it provides a number of extensions
to support the SPARQL 1.1 working draft, such as the following:

• Free text search: ARQ is combined with Apache Lucene to perform free
text searches over RDF data.

• Property paths: this extension allows to add paths over the graphs de-
fined by RDF data, which are specified by means of regular expressions.

• Assignments: this extension allows to explicitly define a value for a par-
ticular variable of a triple pattern. This value may be any expression,
including constants, other variables, or functions applied to constants or
variables.

• Custom functions: ARQ provides a function library that includes string
manipulation, math utilities, or manipulation of collections. Further-
more, it allows to extend this library by means of user-defined functions
that are implemented in Java.

Jena 2.6.4 [53] offers an in-memory RDF store that provides an API to load
and unload RDF files in several formats, such as RDF/XML, N3, or Turtle.
Furthermore, it offers an in-memory reasoner that allows four types of rea-
soning, namely:

• Transitive: this type of reasoning only implements the transitive and re-
flexive features of rdfs:subPropertyOf and rdfs:subClassOf.

• RDF Schema: this type implements a configurable subset of the RDF
Schema constructs.

• OWL: this type implements a configurable subset of the OWL 1 Lite and
OWL 1 Full profiles.

• Generic: this type of reasoning allows to incorporate user-defined rules.
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owl:allValuesFrom owl:inverseOf

owl:differentFrom owl:onProperty

owl:disjointWith owl:Restriction

owl:equivalentClass owl:sameAs

owl:equivalentProperty owl:someValuesFrom

owl:FunctionalProperty owl:SymmetricProperty

owl:hasValue owl:TransitiveProperty

owl:InverseFunctionalProperty

Table 6.1: OWL constructs of the OWLSIF set of rules.

Oracle 11.2.0.1.0 [77] offers an RDF store, a reasoner, and a query en-
gine as part of Oracle Spatial 11g, which is an installation option for Oracle
Database 11g Enterprise Edition. The RDF store is based on a normalised,
compressed and partitioned storage architecture that is able to manage the
repetition of URIs and literals across triples in real-world ontologies. The rea-
soner provides three different set of rules to make it explicit the knowledge,
namely:

• RDFS++: this set of rules comprises all constructs of RDF Schema, i.e.,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and rdfs:range.
It also incorporates two constructs of OWL, namely: owl:sameAs, and
owl:InverseFunctionalProperty.

• OWLSIF: this set of rules was proposed by ter Horst [112], and it extends
RDF Schema constructs with the OWL constructs shown in Table 6.1.

• OWL RL: this set of rules corresponds to the OWL RL profile, which is
“aimed at applications that require scalable reasoning without sacrific-
ing too much expressive power” [71].

The query engine natively supports the use of SQL to query ontologies.
Furthermore, it natively supports SPARQL queries of the SELECT type that
are automatically translated into SQL queries. For the rest of SPARQL queries,
this query engine relies on ARQ to support them (see below).

OWLIM 4.2 [79] offers an RDF store, a reasoner, and a query engine. It is
divided into three versions: 1) Lite, which deals with tens of million triples; 2)
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SE, which is able to handle tens of billion triples; and 3) Enterprise, which pro-
vides a replication cluster based on OWLIM SE. In this dissertation, we focus
on OWLIM 4.2 Lite, which is completely implemented in Java. Regarding the
reasoner, it allows to use the set of rules of RDF Schema, the ones proposed
by ter Horst [112], and the rules of OWL RL profile. In addition, this reasoner
supports user-defined rules. The query engine of OWLIM 4.2 supports the
SPARQL 1.1 query language.

6.3 Current benchmarks

There exists a number of benchmarks to help software engineers make
informed decisions about different systems. Guo and others [42] presented
LUBM, a benchmark to compare systems that support semantic-web technolo-
gies, which is based on the context of universities. This benchmark provides
a single ontology, a data constructor algorithm that allows to create scalable
synthetic data, and fourteen SPARQL queries of the SELECT type.

Wu and others [117] presented the conclusions regarding an implemen-
tation of an inference engine for Oracle. This engine implements the RDF
Schema and OWL entailments, i.e., it performs reasoning over OWL and RDF
Schema ontologies. Furthermore, they present a performance study based on
two examples: LUBM, which comprises data that ranges from 6.7 to 133.7

million triples, and UniProt, which comprises five million triples roughly.

Bizer and Schultz [24] presented BSBM, a benchmark to compare the per-
formance of SPARQL queries using native RDF stores and SPARQL-to-SQL
query rewriters. Their benchmark focuses on an e-commerce case study, and
they provide a data constructor and a test driver: the former allows to create
large ontologies and offers RDF and relational outputs to compare the pro-
posals; the latter emulates a realistic workload by simulating multiple clients
that concurrently execute queries. The benchmark consists of twelve SPARQL
queries that are divided into ten SELECT queries, one DESCRIBE query, and
one CONSTRUCT query.

Schmidt and others [103] presented SP2Bench, a benchmark to test
SPARQL query management systems, which is based on DBLP and comprises
both a data constructor and a set of benchmark queries in SPARQL. They
study the DBLP dataset to construct a realistic set of synthetic data by mea-
suring probability distributions for certain attributes, e.g., authors or cites in
articles or papers. The benchmark queries comprise seventeen queries that are
divided into fourteen SELECT queries and three ASK queries.
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Furthermore, there are other benchmarks that are specifically tailored to-
wards data exchange problems. Alexe and others [4] devised a benchmark
that is used to test data exchange systems in the context of nested-relational
models. This benchmarks allows to scale the structure of source and target
data models, and the data of the source data model when performing data
exchange using a set of parameters.

6.4 Data exchange patterns

There are a number of proposals that identify common patterns that usu-
ally occur in integration contexts. On the one hand, there are proposals based
on nested-relational models. On the other hand, there are other proposals that
focus on the ontology evolution context. These patterns can be used to test the
interpretation of a set of correspondences by executable mappings.

Regarding nested-relational proposals, Alexe and others [4] devised a
benchmark that comprises eleven data exchange patterns that occur fre-
quently in the information integration context. Their benchmark focuses on
the evaluation of mapping systems for nested-relational models, which con-
sist of visual programming systems to assist a designer in the generation of
mappings between two data models. Examples of the scenarios of this bench-
mark are the Object Fusion scenario, which deals with the merging of a num-
ber of unrelated source data models into a unique target data model, or the
Manipulation of Atomic Values scenario, which consists of transforming one
source element into various target elements and vice versa.

Regarding ontology evolution proposals, ontology evolution can be seen
as a data exchange problem in which the source is the original ontology, and
the target is an evolution of the source ontology. Stojanovic and others [109]
identified sixteen atomic changes an ontology may undergo, e.g., adding or
removing classes, subclasses, properties, subproperties, property domains or
property ranges. These changes can be seen as the simplest operations build-
ing on which the evolution of an ontology may be specified. Due to the fact
that some combinations of changes are very frequent in practice, this moti-
vated the authors to devise a catalogue of twelve common composite changes
that are expressed at a higher level, such as merging classes, extracting sub-
classes, moving properties, or copying classes.

Noy and Klein [75] studied the differences between database and ontol-
ogy evolution. Based on these differences, they extended the catalogue of
atomic changes to twenty two, accounting for, e.g., the reclassification of an
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instance as a class or viceversa, the declaration of two classes to be disjoint,
moving properties to a subclass or superclass, or moving classes amongst a
subclass taxonomy. Furthermore, they classified these changes according to
whether data are lost after changes are applied or not: in nine out of twenty
two changes data are not lost, in nine out of twenty two changes data may be
lost, and in the rest of the changes data are not lost if they are transformed
according to the new ontology.

6.5 Summary

In this chapter, we have presented an overview on the benchmarking of
data exchange systems. We have presented current systems that implement
semantic-web technologies. Then, we have analysed current benchmarks in
the literature to test systems that implement semantic-web technologies. Fi-
nally, we have analysed a number of patterns that usually occur in integration
contexts, which may be used to test the interpretation of a set of correspon-
dences by executable mappings.
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Our Proposal





Chapter 7

Conceptual Framework

Are you kidding? I model everything (...).
T he modeling is like pushing and pulling clay.

William Gibson, Spook Country (2007)

T o describe our proposal, we rely on a conceptual framework that
models ontologies, entities, triples, or executable mappings to men-
tion a few. Our description relies on a small subset of the Z stan-
dard. The chapter is organised as follows: in Section 7.1, we

introduce it; Section 7.2 presents the foundations of this framework; Sec-
tions 7.3, 7.4, 7.5, 7.6 describe how we model triples, ontologies, executable
mappings, and data exchange problems, respectively; Sections 7.7 and 7.8
deal with the satisfaction of constraints and correspondences, respectively;
Section 7.9 highlights a number of limitations of this framework; finally, we
summarise the chapter in Section 7.10.
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7.1 Introduction
Our proposal relies on a conceptual framework. In this chapter, we define

its foundations, i.e., entities (classes, data properties, and object properties),
URIs, literals, and blank nodes. We also define triples, each of which is a
three-element tuple that comprises a subject, a predicate, and an object. Spe-
cial types of triples are constraints and correspondences: the former have a
constraint construct as its predicate, whereas the latter have a correspondence
construct as predicate.

Furthermore, we define ontologies, which comprises a number of entities
and a number of constraints over these entities. Triple patterns generalise the
concept of triples by allowing variables in the subject, the predicate, and/or
the object. Executable mappings comprise two sets of triples patterns, i.e., the
set of triple patterns in the CONSTRUCT clause, and the set of triple patterns
in the SELECT clause, respectively. A data exchange problem comprises two
ontologies (the source and the target), and a set of correspondences between
the entities of these ontologies. Last, we define when a constraint and a corre-
spondence are satisfied.

In our formulation, we use a minimal subset of the Z mathematical lan-
guage standard (ISO/IEC 13568:2002) [52]. This helps us make sure that our
specifications are correct using the appropriate tools. This standard has been
used, e.g., to describe the W3C WSDL specification [29].

7.2 Foundations
Entities lay at the heart of every ontology, and they are denoted by means

of URIs. Entities can be classified into classes and properties; the latter can
be further classified into data properties and object properties. We denote the
sets of classes, data properties, and object properties as follows:

[Class,DataProperty, ObjectProperty]

and define the set of entities and properties as follows:

Entity == Class ∪ Property

Property == DataProperty ∪ObjectProperty

Ontologies also build on a set of URIs, which are used to identified re-
sources on the Web, literals, which denote values of simple data types, and
blank nodes, which denote anonymous data. We denote these sets as follows:
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[URI, Literal, BlankNode]

Note that Entity is a subset of URI, and URI, Literal and BlankNode are
pairwise disjoint sets [55]:

Entity ⊆ URI

(URI ∩ Literal = ∅) ∧ (URI ∩ BlankNode = ∅) ∧

(Literal ∩ BlankNode = ∅)

7.3 Triples

Triples are three-tuples in which the first element is called subject, the sec-
ond predicate, and the third object. They help describe both the structure and
data of ontologies. We define the set of all triples as follows:

Triple == Subject× Predicate×Object

Subject == URI ∪ Literal ∪ BlankNode

Predicate == Property ∪ BuiltInConstruct

Object == URI ∪ Literal ∪ BlankNode

Note that there is a contradiction between the RDF and the SPARQL speci-
fications. On the one hand, the RDF specification does not allow to use literals
in the subject of a triple [55]. On the other hand, the SPARQL specification
actually allows to use literals in the subject of a triple [47], therefore, we are
able to build triples in which the subject is a literal using SPARQL. Since our
research focuses on SPARQL queries, we have decided to include literals in
the subject of triples.

Note, too, that a predicate can be a property or a built-in construct. By
built-in construct, we mean a URI that denotes one of the predefined RDF,
RDF Schema, and Mosto constructs with which we deal. (In the sequel we use
prefix mosto: to refer to the constructs that we have defined in our proposal.)
We define these sets as follows:

BuiltInConstruct == {rdf:type} ∪
ConstraintConstruct ∪
CorrespondenceConstruct

ConstraintConstruct == {rdfs:subClassOf,

rdfs:subPropertyOf,

rdfs:domain,

rdfs:range,



60 Chapter 7. Conceptual Framework

mosto:strongDomain,

mosto:strongRange}

CorrespondenceConstruct == {mosto:classToClass,

mosto:dataToData,

mosto:objectToObject,

mosto:dataToClass}

ConstraintConstruct does not actually include every possible construct
in the OWL Lite profile, but the minimal subset of constraints with which we
deal. Section 7.7 provides additional details regarding the semantics of this
subset of constraints, and Appendix A provides additional details on how to
translate other constructs into this minimal subset.

Set CorrespondenceConstruct includes the correspondence constructs
with which we can deal. They allow to establish correspondences from classes
to classes, data properties to data properties, object properties to object prop-
erties, and data properties to classes. Section 7.8 provides additional details
regarding the semantics of these constructs.

For the sake of convenience, we also define the following subsets of triples:

Constraint == Subject× ConstraintConstruct×Object

Correspondence == Subject× CorrespondenceConstruct×Object

7.4 Ontologies
An ontology is a representation of a data model, which comprises a de-

scription of the structure of the data, and the data themselves. For the purpose
of this dissertation, we just need the description of the structure. An ontology
can thus be defined by means of a two-tuple, which consists of a set of entities
and a set of constraints. We then define the set of all ontologies as follows,
where P denotes powerset:

Ontology == {E : PEntity;C : PConstraint |

∀s : Subject; p : ConstraintConstruct;o : Object •
(s, p, o) ∈ C ⇒ {s, o} ⊆ E}

For the sake of convenience, we define the following projection functions:

entities : Ontology → PEntity

constraints : Ontology → PConstraint

∀E : PEntity; C : PConstraint;o : Ontology | o = (E,C) •
entities(o) = E ∧

constraints(o) = C
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7.5 Executable mappings
In our proposal, executable mappings are SPARQL conjunctive queries of

the CONSTRUCT type. Such queries consist of a CONSTRUCT clause that
specifies which triples have to be constructed in the target ontology, and a
WHERE clause that specifies which triples should be retrieved from the source
ontology. These clauses can then be represented as sets of triple patterns that
are implicitly connected by means of a logical and. A triple pattern generalises
the concept of triple by allowing the subject, the predicate, and/or the object
to be variables. We denote the set of all variables as follows:

[Variable]

and define the set of all triple patterns as follows:

TriplePattern == Subject? × Predicate? ×Object?

Subject? == Subject ∪ Variable

Predicate? == Predicate ∪ Variable

Object? == Object ∪ Variable

An executable mapping can thus be represented as a two-tuple in which
the first component corresponds to the set of triple patterns in the CON-
STRUCT clause, and the second component corresponds to the set of triple
patterns in the WHERE clause. We then define the set of all executable map-
pings as follows:

ExecutableMapping == P TriplePattern× P TriplePattern

For the sake of convenience, we define an instance of a class as a triple
pattern of the form: (s, rdf:type, c), in which s ∈ Subject?; c ∈ Class; and
an instance of a property as a triple pattern of the form: (s, p, o), in which
s ∈ Subject?, p ∈ Property, and o ∈ Object?. Furthermore, we define the
following projection functions:

subject : TriplePattern → Subject?

predicate : TriplePattern → Predicate?

object : TriplePattern → Object?

∀s : Subject?;p : Predicate?; o : Object?; t : TriplePattern | t = (s, p, o) •
subject(t) = s ∧

predicate(t) = p ∧

object(t) = o

Note that Triple ⊆ TriplePattern, which implies that instances may refer
to both triples and triple patterns, and that the previous projection functions
can be applied to both triples and triple patterns.
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7.6 Data exchange problems

A data exchange problem consists of a source ontology, a target ontology,
and a set of correspondences between some of their entities. We define the set
of all data exchange problems as follows:

DataExchangeProblem == {o1, o2 : Ontology; V : PCorrespondence |

∀v : Correspondence • v ∈ V ⇒
subject(v) ∈ entities(o1) ∧

object(v) ∈ entities(o2)}

For the sake of convenience, we define the following projection functions:

source : DataExchangeProblem → Ontology

target : DataExchangeProblem → Ontology

correspondences : DataExchangeProblem → PCorrespondence

∀o1, o2 : Ontology;V : PCorrespondence;d : DataExchangeProblem |

d = (o1, o2, V) •
source(d) = o1 ∧

target(d) = o2 ∧

correspondences(d) = V

7.7 Satisfaction of constraints

Given an executable mapping, it is important to know whether it satisfies
a given constraint or not. This prevents us from retrieving data that does not
satisfy the constraints in the source or the target of a data exchange problem.
In the following subsections, we describe how to infer whether a set of triple
patterns in the CONSTRUCT or the WHERE clause of an executable mapping
satisfies a given constraint or not. We use symbol |= to denote satisfaction, T

to denote a set of triple patterns, c, c1, and c2 to denote classes, and p, p1, and
p2 to denote properties.

7.7.1 Subclassification constraints

A set of triple patterns satisfies a subclass or a subproperty constraint if, for
every instance of a given class or property, we may find another instance of the
corresponding subclass or subproperty, respectively. The following inference
rules formalise this idea:
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[SC]
∀s : Subject? • (s, rdf:type, c1) ∈ T ⇒ (s, rdf:type, c2) ∈ T

T |= (c1, rdfs:subClassOf, c2)

[SP]
∀s : Subject?;o : Object? • (s, p1, o) ∈ T ⇒ (s, p2, o) ∈ T

T |= (p1, rdfs:subPropertyOf, p2)

7.7.2 Domain and range constraints

A set of triple patterns satisfies a domain or a range constraint regarding
a property if, for every property instance that states that a subject is related
to an object, there are additional class instances that state that the type of the
subject or the object are the appropriate classes, respectively. The following
inference rules formalise this idea:

[D]
∀s : Subject?; o : Object? • (s, p, o) ∈ T ⇒ (s, rdf:type, c) ∈ T

T |= (p, rdfs:domain, c)

[R]
∀s : Subject?;o : Object? • (s, p, o) ∈ T ⇒ (o, rdf:type, c) ∈ T

T |= (p, rdfs:range, c)

7.7.3 Strong domain and strong range constraints

We deal with two additional constraints to which we refer to as strong do-
main (mosto:strongDomain) and strong range (mosto:strongRange). Intu-
itively, if a class is the strong domain of a property, that means that this prop-
erty has cardinality one regarding that class; similarly, if a class is the strong
range of a property, that means that for every instance of that class, there must
be a subject that is related to that instance by means of the property. These se-
mantics are expressed in OWL as a combination of several triples. For the sake
of simplicity, we introduced mosto:strongDomain and mosto:strongRange

as shorthands (see Appendix A for further details). The following inference
rules formalise the satisfaction of these constraints:

[SD]
∀s : Subject? • (s, rdf:type, c) ∈ T ⇒ ∃o : Object? • (s, p, o) ∈ T

T |= (c,mosto:strongDomain, p)

[SR]
∀o : Object? • (o, rdf:type, c) ∈ T ⇒ ∃s : Subject? • (s, p, o) ∈ T

T |= (c,mosto:strongRange, p)
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7.8 Satisfaction of correspondences
Given an executable mapping, it is also important to know whether it sat-

isfies a given correspondence or not. This prevents the executable mapping
from constructing data that does not satisfy the correspondences in a data ex-
change problem.

In the next subsections, we describe how to infer whether an executable
mapping satisfies a correspondence or not. We use symbol |= to denote sat-
isfaction, TC to denote a set of triple patterns in a CONSTRUCT clause, TW

to denote a set of triple patterns in a WHERE clause, c, c1, and c2 to denote
classes, p, p1, and p2 to denote data properties, and q1 and q2 to denote object
properties.

7.8.1 Class to class correspondences

These correspondences specify that an instance of a class in the source has
to be reclassified in the target. We formalise this idea as follows:

[C2C]
∀s : Subject? • (s, rdf:type, c1) ∈ TW ⇒ (s, rdf:type, c2) ∈ TC

(TC, TW) |= (c1,mosto:classToClass, c2)

7.8.2 Data property to data property correspondences

Such a correspondence specifies that, if there is an instance of a data prop-
erty in the source, then there must be another instance of the corresponding
data property in the target that must have the same object. The correspon-
dence itself cannot specify what the subject is. This idea is formalised as fol-
lows:

[D2D]

∀s : Subject?;o : Object? • (s, p1, o) ∈ TW ⇒
∃s ′ : Subject? • (s ′, p2, o) ∈ TC

(TC, TW) |= (p1,mosto:dataToData, p2)

7.8.3 Object property to object property correspondences

These correspondences specify that, for every instance of an object prop-
erty in the source, there must exist another instance of the corresponding ob-
ject property in the target. The correspondence itself cannot specify which the
subjects and the objects are. This idea is described formally as follows:



7.9. Limitations 65

[O2O]

∀s : Subject?;o : Object? • (s, q1, o) ∈ TW ⇒
∃s ′ : Subject?; o ′ : Object? • (s ′, q2, o

′) ∈ TC

(TC, TW) |= (q1,mosto:objectToObject, q2)

7.8.4 Data property to class correspondences

A correspondence of this kind specifies that the object of every instance of
a data property in the source must be reclassified in the target. The following
inference rule formalises this idea:

[D2C]
∀s : Subject?; o : Object? • (s, p, o) ∈ TW ⇒ (o, rdf:type, c) ∈ TC

(TC, TW) |= (p,mosto:dataToClass, c)

7.9 Limitations

The conceptual framework described in this chapter has a number of lim-
itations that make it unapplicable to some data exchange problems. In this
section, we highlight these limitations.

Our conceptual framework is able to deal with six types of constraints and
four types of correspondences. Regarding constraints, there are some OWL
constructs with which our proposal cannot deal, namely: zero-cardinality re-
strictions, general property restrictions, and intersection of restrictions (see
Appendix A for further details). Regarding correspondences, our conceptual
framework can deal with class to class, data property to data property, ob-
ject property to object property, and data property to class. However, some
real-world data exchange problems might require to define other types of cor-
respondences, such as class to data property, data property to object property,
or object property to class.

Another limitation is that, in the constraints and correspondences that our
conceptual framework defines, it is not possible to restrict more than two en-
tities, and to establish that more than one source entity corresponds to a target
entity. General OWL constructs allow to define constraints amongst an arbi-
trary number of entities, so our conceptual framework is not able to model
these constraints. Furthermore, there are proposals that allow to define corre-
spondences to combine a number of source entities that correspond to a single
target entity using a transformation function, so our conceptual framework is
not able to model these correspondences.
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7.10 Summary

In this chapter, we have described the conceptual framework on which
our proposal is based. It defined entities, literals, URIs, blank nodes, triples,
ontologies, executable mappings, and data exchange problems. Furthermore,
we have defined precisely what satisfying a constraint or a correspondence
means. Finally, we have described the limitations of our conceptual frame-
work.



Chapter 8

Automatic Generation of
Executable Mappings

We’re now on full automatic, in the hands of the computers.
Planet of the Apes (1968), Fi lm

W e describe MostoDE in this chapter. It is our proposal to auto-
matically generate executable mappings in SPARQL by means
of constraints and correspondences. Furthermore, we analyse
MostoDE and present its limitations. The chapter is organised

as follows: in Section 8.1, we introduce it; Section 8.2 describes our proposal;
in Section 8.3, we analyse our proposal to prove that its worst-case complexity
is computationally tractable, and we also prove that it is correct; Section 8.4
presents the limitations of our proposal; finally, we summarise the chapter in
Section 8.5.

67
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8.1 Introduction

In this chapter, we describe our proposal to automatically generate exe-
cutable mappings in SPARQL. We rely on constraints, which relate entities of
the source or the target of a data exchange problem, and correspondences,
which relate a source entity with a target entity. First, our proposal com-
putes the so-called kernels, which are data exchange subproblems that de-
scribe structures to be exchanged as a whole. Then, kernels are automatically
transformed into executable mappings in SPARQL, which are used to perform
data exchange.

In addition, we prove that our proposal is correct and computationally
tractable, since O(e4

s et + es e4
t + e2

s e2
t(es + et)) is an upper bound to its worst-

time complexity, where es and et denote the number of entities in the source
and target ontologies, respectively. Our proposal has a number of limitations
that are described in this chapter, such as dealing with zero-cardinality re-
strictions, dealing with intersection of restrictions, or taking more than one
instance of the same class or superclass into account.

8.2 Description of our proposal

Our proposal relies on the algorithm in Figure 8.1. It takes a data exchange
problem as input and outputs a set of executable mappings. The algorithm
loops through the set of correspondences and applies a series of steps to com-
pute their kernels, initial executable mappings, variable links, and substitu-
tions before creating the resulting executable mappings. The key feature of
these mappings is that they retrieve data that satisfies the source constraints
and constructs data that satisfies both the target constraints and the correspon-
dences. At a first glance, it might be surprising that we take source constraints
into account, since source data should ideally satisfy them; however, in the
decentralised environment of the Semantic Web, it is common that real-world
ontologies have data that do not satisfy their constraints [26]. The results of
our experimental validation prove that this interpretation of correspondences
seems to capture the intuition behind many common data exchange problems.

Below, we provide additional details on each of the steps of our algorithm.
To illustrate them, we use a non-trivial, real-world data exchange problem
that is based on the evolution from DBpedia 3.2 to DBpedia 3.6 [23], which
involved many major structural changes. Figure 8.2 illustrates this problem
using our graph-based notation (see Section 3.2).
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1: algorithm generateExecutableMappings

2: input d : DataExchangeProblem

3: output M : PExecutableMapping

4: variables o1, o2 : Ontology; TC, TW : P TriplePattern;
5: V : PCorrespondence; LW , LC, LV : PLink; S : Substitution

6:
7: M := ∅
8: for each v : Correspondence | v ∈ correspondences(d) do
9: –- Compute the kernel (o1, o2, V) of v

10: o1 := findSubOntology(subject(v), source(d))

11: o2 := findSubOntology(object(v), target(d))

12: V := findCorrespondences(o1, o2, correspondences(d))

13: –- Compute the initial executable mapping (TC, TW)

14: TW := initialiseTriplePatterns(entities(o1))

15: TC := initialiseTriplePatterns(entities(o2))

16: –- Compute variable links in (TC, TW)

17: LW := findConstraintLinks(TW , constraints(o1))

18: LC := findConstraintLinks(TC, constraints(o2))

19: LV := findCorrespondenceLinks(TW , TC, V)

20: –- Compute substitutions and apply them to (TC, TW)

21: S := findSubstitution(LW ∪ LC ∪ LV , TW)

22: TC := applySubstitution(TC, S)

23: TW := applySubstitution(TW , S)

24: –- Update the resulting set of executable mappings
25: M := M ∪ {(TC, TW)}

26: end for

Figure 8.1: Algorithm to generate executable mappings.

8.2.1 Step 1: Computing kernels

For every correspondence in the data exchange problem being analysed,
our algorithm constructs a kernel, which is a data exchange subproblem. In-
tuitively, a kernel describes the structure of a subset of data in the source on-
tology that needs to be exchanged as a whole, and the structure of a subset of
data in the target ontology that needs to be created as a whole; in other words,
if more or less data are considered, then the exchange would be incoherent.

For instance, Figure 8.3 presents the kernel that is associated with the corre-
spondence between property dbp32:academyaward and class dbp36:Award

in our running example. This correspondence specifies that, for every instance
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Figure 8.2: A running example.
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Figure 8.3: A sample kernel.
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of property dbp32:academyaward that is found in the source ontology, the
object of this instance must be classified as dbp36:Award in the target ontol-
ogy. But property dbp32:academyaward has a domain constraint that re-
lates it to class dbp32:Actor, which has a subclassing constraint that relates
it to class dbp32:Artist, which has an additional subclassing constraint that
relates it to class dbp32:Person. As a conclusion, the object of an instance
of property dbp32:academyaward cannot be exchanged in isolation, but in
the context of an instance of class dbp32:Actor that acts as the subject, which
is also an instance of classes dbp32:Artist and dbp32:Person. Similarly, we
cannot simply classify the object of property dbp32:academyaward as an in-
stance of class dbp36:Award in the target data model, since this class is the
strong range of property dbp36:academyAward, which in turn is related to
class dbp36:Artist by means of domain constraints, and to dbp36:Person by
means of a subclassing constraint. As a conclusion, neither can the instance of
dbp36:Award be constructed in isolation, but in the context of an instance of
property dbp36:academyAward that has an instance of classes dbp36:Artist

and dbp36:Person as subject.

In the algorithm in Figure 8.1, the computation of the kernel that is asso-
ciated with every correspondence is performed in lines 10–12. Given a cor-
respondence that is referred to as v, we first find the subontologies that are
associated with the subject and the object of v, and then find the correspon-
dences between them.

We present the algorithm to compute subontologies in Figure 8.4. It works
on an input entity e and an input ontology o, and returns an ontology (E,C)

that results from exploring e in depth. The algorithm iterates over a set of
entities Q that is initialised to {e}; intuitively, Q stores the entities that remain
to be explored. In each iteration of the main loop, the algorithm removes an
entity f from set Q and then calculates the subset of constraints whose subject
is f, which is immediately added to the resulting set of constraints C; note,
however, that we only add to Q the objects that have not been explored so far
to prevent the algorithm from looping forever in the many common cases in
which the ontology has cycles.

We present the algorithm to compute the correspondences between two
subontologies in Figure 8.5. It takes two ontologies o1 and o2 and a set of
correspondences V as input. The output is calculated as the subset of corre-
spondences from V whose subject belongs to the entities of ontology o1, and
the object belongs to the set of entities of ontology o2.
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1: algorithm findSubOntology

2: input e : Entity; o : Ontology

3: output o ′ : Ontology

4: variables E, Q : PEntity; C, Z : PConstraint; f : Entity

5:
6: E,C := ∅
7: Q := {e}
8: while Q 6= ∅ do
9: f := pick an entity from Q

10: Q := Q \ {f}

11: E := E ∪ {f}

12: Z := {z : Constraint | z ∈ constraints(o) ∧ subject(z) = f}

13: C := C ∪ Z

14: Q := Q ∪ {g : Entity | g 6∈ E ∧ ∃z : Constraint • z ∈ Z ∧ object(z) = g}

15: end while
16: o ′ := (E,C)

Figure 8.4: Algorithm to find subontologies.

1: algorithm findCorrespondences

2: input o1, o2 : Ontology; V : PCorrespondence

3: output V ′ : PCorrespondence

4:
5: V ′ = {v : Correspondence | v ∈ V ∧ subject(v) ∈ entities(o1) ∧

6: object(v) ∈ entities(o2)}

Figure 8.5: Algorithm to find the correspondences between two subontologies.

8.2.2 Step 2: Computing initial executable mappings

A kernel is just a starting point; it needs to be transformed into an exe-
cutable mapping. The first step is to transform its source and its target subon-
tologies into two sets of initial triple patterns. The set that corresponds to the
WHERE clause must include a triple pattern to retrieve every instance of an
entity in the source ontology of the kernel, whereas, the set that corresponds to
the CONSTRUCT clause must include a triple pattern to construct an instance
of every entity in the target ontology of the kernel.

Figure 8.6(a) presents the initial executable mapping of the kernel of Fig-
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CONSTRUCT {

?x1 rdf:type dbp36:Person .

?x2 rdf:type dbp36:Artist .

?x3 rdf:type dbp36:Award .

?x4 dbp36:academyAward ?x5.

}

TC

WHERE {

?y1 rdf:type dbp32:Person .

?y2 rdf:type dbp32:Artist .

?y3 rdf:type dbp32:Actor .

?y4 dbp32:academyaward ?y5 .

}

TW

(a) Initial executable mapping.

?y1

?y2

?y3

?y5

?x1

?x2

?x3

?x4

?y4

?x5

(b) Variable links.

Figure 8.6: Sample initial executable mapping and variable links.

ure 8.3. For example, to retrieve the instances of class dbp32:Actor, we need
a triple pattern of the form (?y3, rdf:type, dbp32:Actor), where ?y3 denotes
a fresh variable. Similarly, there is a property called dbp32:academyaward,
which requires a triple pattern of the form (?y4, dbp32:academyaward, ?y5),
where ?y4 and ?y5 denote fresh variables, as well. Intuitively, we should
link variables ?y3 and ?y4 since the subject of an instance of property
dbp32:academyaward must be an instance of class dbp32:Actor; the initial
executable mapping does not take these links into account, since computing
them is the goal of the next step.

In the algorithm in Figure 8.1, the computation of the initial executable
mapping is performed in lines 14 and 15. We present the algorithm to initialise
the triple patterns in Figure 8.7. It takes a set of entities E as input and returns a
set of triple patterns T . The resulting set is initialised to the empty set, and then
the algorithm iterates over the set of entities. In each iteration, it adds a new
triple pattern to the result set according to the type of entity being analysed,
namely: for every class c, it adds a triple pattern of the form (?x, rdf:type, c),
where ?x denotes a fresh variable; and for every property p, it adds a triple
pattern of the form (?y, p, ?z), where ?y and ?z denote two fresh variables.
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1: algorithm initialiseTriplePatterns

2: input E : PEntity

3: output T : P TriplePattern

4:
5: T := ∅
6: for each e : Entity | e ∈ E do
7: if e ∈ Class then
8: T := T ∪ {(freshVar(), rdf:type, e)}

9: else if e ∈ Property then
10: T := T ∪ {(freshVar(), e, freshVar())}

11: end if
12: end for

Figure 8.7: Algorithm to initialise triple patterns.

8.2.3 Step 3: Computing variable links

The variables in the triple patterns generated by the previous step are pair-
wise distinct. This step is responsible for finding links amongst these vari-
ables. To find them, we need to analyse the constraints and the correspon-
dences in the kernel that is associated with the correspondence being anal-
ysed.

Figure 8.6(b) presents the variable links regarding the initial executable
mapping in Figure 8.6(a). Links can be naturally represented as an undirected
graph in which the nodes are variables, and the edges indicate which vari-
ables are linked. For example, property dbp32:academyaward in our run-
ning example has a constraint of type rdfs:domain that indicates that its do-
main is class dbp32:Actor; this means that we need to locate the triple pat-
terns that we generated for these entities and link their corresponding sub-
jects, i.e., ?y3 and ?y4. Similarly, there exists a correspondence between prop-
erty dbp32:academyaward and class dbp36:Award in our running example;
this means that we need to locate the triple patterns that we generated for
these entities and link ?y5 and ?x3.

We formally define the sets of links as follows:

Link == Variable× Variable

In the algorithm in Figure 8.1, lines 17–19 compute variable links. We first
find the links that are due to the constraints in the source ontology, then the
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1: algorithm findConstraintLinks

2: input T : P TriplePattern; C : PConstraint

3: output L : PLink

4: variables t1, t2 : TriplePattern

5:
6: L := ∅
7: for each z : Constraint | z ∈ C do
8: t1 := findTriplePattern(subject(z), T)

9: t2 := findTriplePattern(object(z), T)

10: if predicate(z) ∈ {rdfs:subClassOf, rdfs:domain,

11: mosto:strongDomain} then
12: L := L ∪ {(subject(t1), subject(t2))}

13: else if predicate(z) = rdfs:subPropertyOf then
14: L := L ∪ {(subject(t1), subject(t2)), (object(t1), object(t2))}

15: else if predicate(z) = rdfs:range then
16: L := L ∪ {(object(t1), subject(t2))}

17: else if predicate(z) = mosto:strongRange then
18: L := L ∪ {(subject(t1), object(t2))}

19: end if
20: end for

Figure 8.8: Algorithm to find variable links using constraints.

links that are due to the constraints in the target ontology, and then finish the
process by finding the links that are due to the correspondences, themselves.

We present the algorithms to find the variable links due to constraints and
correspondences in Figures 8.8 and 8.9, respectively. They both operate very
similarly: they iterate over the set of input constraints or correspondences,
find the triple patterns associated with their subjects and objects, and create
the appropriate links. The only feature that requires a little explanation is that
correspondences between object properties do not result in any links. The
reason is that, according to inference rule O2O, an object property to object
property correspondence does not specify how to link the subject or the object
of the target instance; it only specifies that an instance of the source property
must exist in the source triple patterns, and an instance of the target property
must exist in the target triple patterns; these instances are generated in the
second step.

The algorithm to find the triple pattern that is associated with an entity is
presented in Figure 8.10. Due to the way we initialise triple patterns, their
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1: algorithm findCorrespondenceLinks

2: input TW , TC : P TriplePattern; V : PCorrespondence

3: output L : PLink

4: variables t1, t2 : TriplePattern

5:
6: L := ∅
7: for each v : Correspondence | v ∈ V do
8: t1 := findTriplePattern(subject(v), TW)

9: t2 := findTriplePattern(object(v), TC)

10: if predicate(v) = mosto:classToClass then
11: L := L ∪ {(subject(t1), subject(t2))}

12: else if predicate(v) = mosto:dataToData then
13: L := L ∪ {(object(t1), object(t2))}

14: else if predicate(v) = mosto:dataToClass then
15: L := L ∪ {(object(t1), subject(t2))}

16: end if
17: end for

Figure 8.9: Algorithm to find variable links using correspondences.

1: algorithm findTriplePattern

2: input e : Entity; T : P TriplePattern

3: output t : TriplePattern

4:
5: t := nil

6: for each u : TriplePattern | u ∈ T while t = nil do
7: if predicate(t) = e ∨ object(t) = e then
8: t := u

9: end if
10: end for

Figure 8.10: Algorithm to find a triple pattern of an entity.

subject is always a variable; only the predicate or the object can be entities.
This is the reason why this algorithm does not check the subject of the triple
patterns it examines.



8.2. Description of our proposal 77

?z1

?z2

?y1

?y2

?y3

?y5

?x1

?x2

?x3

?x4

?y4

?x5

(a) Resulting substitution.

CONSTRUCT {

?z1 rdf:type dbp36:Person .

?z1 rdf:type dbp36:Artist .

?z2 rdf:type dbp36:Award .

?z1 dbp36:academyAward ?z2.

}

TC

WHERE {

?z1 rdf:type dbp32:Person .

?z1 rdf:type dbp32:Artist .

?z1 rdf:type dbp32:Actor .

?z1 dbp32:academyaward ?z2 .

}

TW

(b) Final executable mapping.

Figure 8.11: Sample substitution and executable mapping.

8.2.4 Step 4: Computing and applying substitutions

The result of the previous step is a graph in which every connected com-
ponent includes a group of variables that are linked, i.e., a group of variables
that should actually be the same. Consequently, the next step is to transform
this graph into a substitution in which every variable in every connected com-
ponent is replaced for the same fresh variable, and then apply it to the initial
executable mapping that we computed in the second step.

Figure 8.11(a) highlights the two connected components in the variable
links in Figure 8.6(b); the substitution maps the variables in each connected
component to fresh variables ?z1 and ?z2, respectively. Figure 8.11(b) shows
the executable mapping that results from applying the previous substitution
to the initial executable mapping in Figure 8.6(a).

In this example, every variable in the CONSTRUCT clause is linked to a
variable in the WHERE clause. There can be, however, cases in which there
exists a variable in the CONSTRUCT clause that is not linked to any variable
in the WHERE clause. Whenever this happens, the interpretation is that the
set of correspondences is not complete enough to describe the data exchange
problem that is being analysed. In some situations, the set of correspondences
can be completed to solve the problem, but there are others in which this is
not possible because the target ontology provides more information than the
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1: algorithm findSubstitution

2: input L : PLink; TW : P TriplePattern

3: output S : Substitution

4: variables CC : PPLink; x : Variable ∪ BlankNode

5:
6: CC := findConnectedComponents(L)

7: S := ∅
8: for each K : PLink | K ∈ CC do
9: if variables(K) ∩ variables(TW) 6= ∅ then
10: x := freshVar()

11: else
12: x := freshBlankNode()

13: end if
14: S := S ∪ {y, z : Variable | (y, z) ∈ K • y 7→ x} ∪
15: {y, z : Variable | (y, z) ∈ K • z 7→ x}

16: end for

Figure 8.12: Algorithm to find substitutions.

source ontology. For instance, DBPedia 3.6 provides information about work
abstracts (property dbp36:abstract), which is not present in DBpedia 3.2. In
these cases, it makes sense to generate a blank node that acts as a placeholder;
in other words, instead of failing to exchange any data due to this problem,
we can exchange as much data as possible and highlight special cases using
blank nodes. These placeholders are known as labelled nulls in the context of
nested-relational data models [37].

We formally define a substitution as a finite map from variables onto vari-
ables and blank nodes, namely:

Substitution == Variable 7 7→ Variable ∪ BlankNode

In the algorithm in Figure 8.1, the computation and the application of sub-
stitutions are performed in lines 21–23. We first find the substitution that cor-
responds to the variable links that we have found in the third step, and then
apply it to both the initial set of triple patterns in the CONSTRUCT and the
WHERE clauses that we calculated in the second step.

We present the algorithm to find substitutions in Figure 8.12. It takes a set
of links L and a set of triple patterns TW as input and returns a substitution S;
we implicitly assume that TW is the set of triples in the WHERE clause of an ex-
ecutable mapping. The algorithm first invokes findConnectedComponents
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1: algorithm applySubstitution

2: input T : P TriplePattern; S : Substitution

3: output T ′ : P TriplePattern

4: variables s : Subject?; o : Object?

5:
6: T ′ := ∅
7: for each t : TriplePattern | t ∈ T do
8: s := subject(t)

9: o := object(t)

10: if s ∈ dom S then
11: s := S(s)

12: end if
13: if o ∈ dom S then
14: o := S(o)

15: end if
16: T ′ := T ′ ∪ {(s, predicate(t), o)}

17: end for

Figure 8.13: Algorithm to apply substitutions.

to find the set of connected components CC in the input variable links; we do
not provide any additional details on this algorithm since it is well-known in
the literature [51]. It then initialises S to the empty set and iterates through the
set of connected components CC. In each iteration, it checks if a component
K includes variables from both the CONSTRUCT and the WHERE clauses, in
which case a fresh variable is created; otherwise, we have found a group of
variables for which there is not a correspondence that assigns values to them,
which justifies the creation of a fresh blank node. Immediately after, it up-
dates the resulting substitution S by mapping every pair of variables to the
fresh variable or blank node that was created previously.

We present the algorithm to apply a substitution in Figure 8.13. It takes a
substitution S and a set of patterns T as input and returns a new set of patterns
T ′ that results from applying substitution S to every subject and object in T .

8.3 Analysis of our proposal

In this section, we analyse our proposal to prove that its worst-case com-
plexity is computationally tractable, and we also prove that it is correct.
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8.3.1 Analysis of complexity

In the following theorems and propositions, we analyse the worst-case
complexity of our algorithm and its subalgorithms. The worst case is a data
exchange problem in which every entity of the source ontology has a corre-
spondence with every entity of the target ontology. Furthermore, the source
and target ontologies are complete graphs, i.e., every pair of entities are con-
nected by a constraint. As a conclusion, in the worst case problem, v = es et,
cs = (e2

s − es)/2, and ct = (e2
t − et)/2, where es and et denote the number

of entities in the source and target ontologies, v denotes the number of corre-
spondences, and cs and ct denote the number of source and target constraints.

In our proofs, we assume that simple set operations like invoking a projec-
tion function, checking for membership, merging two sets, or constructing a
tuple can be implemented in O(1) time. We also implicitly assume that data
exchange problems must be finite, i.e., the sets of entities, constraints, and cor-
respondences involved are finite.

Theorem 8.1 (Generating executable mappings (see Figure 8.1)) Let d be a
data exchange problem. O(e4

s et + es e4
t + e2

s e2
t(es + et)) is an upper bound for

the worst-time complexity of Algorithm generateExecutableMappings(d),
where es and et denote the number of entities in the source and target of d,
respectively.

Proof Algorithm generateExecutableMappings(d) has to iterate through
the whole set of correspondences in d. It calls findSubOntology two times
for each correspondence (lines 10 and 11): the first time is to compute the
source subontology, and the second time to compute the target subontology,
which, according to Proposition 8.1, terminate in O(es cs) and O(et ct) time,
respectively, where cs = (e2

s − es)/2 is the number of source constraints, and
ct = (e2

t − et)/2 is the number of target constraints. In the next step, the
algorithm calls findCorrespondences (line 12), which, according to Propo-
sition 8.2, terminates in O(v) time, where v = es et denotes the correspon-
dences of d. Furthermore, the algorithm calls initialiseTriplePatterns two
times (lines 14 and 15): the first time is to compute the initial source triple
patterns and the second time to compute the initial target triple patterns,
which, according to Proposition 8.3, terminates in O(es) and O(et) time, re-
spectively. In the following steps, the algorithm calls findConstraintLinks

two times (lines 17 and 18): the first time is to compute the links that are re-
lated to the source constraints, and the second time to compute the links that
are related to the target constraints, which, according to Proposition 8.4, ter-
minate in O(cs tw) and O(ct tc) time, where cs = (e2

s − es)/2 is the number
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of source constraints, tw = es is the number of triple patterns in the WHERE
clause, which is equal to the whole set of source entities in the worst case,
ct = (e2

t − et)/2 is the number of target constraints, and tc = et is the num-
ber of triple patterns in the CONSTRUCT clause, which is equal to the whole
set of target entities in the worst case. In the next step, the algorithm calls
findCorrespondenceLinks (line 19), which, according to Proposition 8.5, ter-
minates in O(v (tw + tc)) time, where v = es et denotes the correspondences of
d, tw = es is the number of triple patterns in the WHERE clause, and tc = et

is the number of triple patterns in the CONSTRUCT clause. In the next step,
the algorithm calls findSubstitution (line 21), which, according to Proposi-
tion 8.7, terminates in O(l) time, where l = 2 cs+2 ct+v = e2

s−es+e2
t −et+es et

is the total number of links which, in the worst case, comprise two links for
each source and target constraint (subproperty constraint), and a link for each
correspondence. Finally, the algorithm calls applySubstitution two times
(lines 22 and 23): the first time is to compute the substitution of the WHERE
clause, and the second time to compute the substitution of the CONSTRUCT
clause, which, according to Proposition 8.8, terminate in O(tw) and O(tc) time,
respectively, where tw = es is the number of triple patterns in the WHERE
clause, and tc = et is the number of triple patterns in the CONSTRUCT clause.

Therefore, we get the following expression: O(es et(es/2 (e2
s−es)+et/2 (e2

t−

et) + es et + es + et + es/2 (e2
s − es) + et/2 (e2

t − et) + es et(es + et) + e2
s − es +

e2
t − et + es et + es + et)) = O(e4

s et + es e4
t + 2 e2

s e2
t + e3

s e2
t + e2

s e3
t + e2

s et + es e2
t),

in which e4
s et > e2

s et, es e4
t > es e2

t , and e2
s e3

t > 2e2
s e2

t . As a conclusion,
O(e4

s et+es e4
t +e2

s e2
t(es+et)) is an upper bound for the worst-time complexity

of Algorithm generateExecutableMappings(d). 2

Proposition 8.1 (Finding subontologies (see Figure 8.4)) Let f be an entity
and o an ontology. findSubOntology(f, o) terminates in O(e c) time in the
worst case, where e and c denote the number of entities and constraints in
ontology o, respectively.

Proof In the worst case, findSubOntology(f, o) has to iterate through the
whole set of entities in o; additionally, in each iteration, it has to iterate through
the whole set of constraints. As a conclusion, findSubOntology(f, o) termi-
nates in O(e c) time in the worst case. 2

Proposition 8.2 (Finding correspondences (see Figure 8.5)) Let o1 and o2 be
two ontologies, and V a set of correspondences. In the worst case,
findCorrespondences(o1, o2, V) terminates in O(v) time, where v denotes the
number of correspondences in set V .
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Proof Algorithm findCorrespondences has to iterate through the whole set
of correspondences V to find the ones whose subject belongs in o1 and whose
object belongs in o2. As a conclusion, findCorrespondences(o1, o2, V) termi-
nates in O(v) time in the worst case. 2

Proposition 8.3 (Initialising triple patterns (see Figure 8.7)) Let E be a set of
entities. initialiseTriplePatterns(E) terminates in O(e) time in the worst
case, where e denotes the number of entities in set E.

Proof Algorithm initialiseTriplePatterns has to iterate through the whole
set of entities E. As a conclusion, initialiseTriplePatterns(E) terminates in
O(e) time in the worst case. 2

Proposition 8.4 (Finding constraint links (see Figure 8.8)) Let T be a set of
triple patterns, and C a set of constraints, findConstraintLinks(T, C) termi-
nates in O(c t) time in the worst case, where t denotes the number of triple
patterns in T and c denotes the number of constraints in C.

Proof Algorithm findConstraintLinks iterates over the whole set of input
constraints C. In each iteration, it invokes findTriplePattern on T twice, and
each invocation terminates in O(t) time in the worst case according to Propo-
sition 8.6. As a conclusion, findConstraints(T, C) terminates in O(c t) time in
the worst case. 2

Proposition 8.5 (Finding correspondence links (see Figure 8.9)) Let TW and
TC be two sets of triple patterns, and V an arbitrary set of correspondences.
findCorrespondenceLinks(TW, TC, V) terminates in O(v (tw + tc)) time in the
worst case, where v denotes the number of correspondences in V , and tw and
tc denote the number of triple patterns in TW and TC, respectively.

Proof Algorithm findCorrespondenceLinks iterates through the whole
set of input correspondences V . In each iteration, it invokes Algorithm
findTriplePattern on both TW and TC; these invocations terminate in O(tw +

tc) time in the worst case according to Proposition 8.6. As a conclusion, Al-
gorithm findCorrespondenceLinks terminates in O(v (tw + tc)) time in the
worst case. 2

Proposition 8.6 (Finding triple patterns (see Figure 8.10)) Let e be an entity,
and T a set of triple patterns. findTriplePattern(e, T) terminates in O(t) time
in the worst case, where t denotes the number of triple patterns in T .

Proof Algorithm findTriplePattern iterates through the whole set of triple
patterns T , as long as it does not find the triple pattern that refers to e in its
predicate or its object. In the worst case, this triple is the last one. As a conclu-
sion, findTriplePattern, terminates in O(t) time in the worst case. 2
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Proposition 8.7 (Finding substitutions (see Figure 8.12)) Let L be a set of
variable links, and TW a set of triple patterns. O(l) is an upper bound for
the worst-time complexity of findSubstitution(L, TW), where l denotes the
number of links in L.

Proof Algorithm findConnectedComponents terminates in O(max{a, l})

time in the worst case [51], where a denotes the number of variables in L.
The algorithm then iterates through the set of connected components in L; it
is not easy to characterise the worst case, but it is safe to assume that l must
be an upper bound to the number of connected components that is returned
by findConnectedComponents since a graph with l edges may have a max-
imum of l connected components. Therefore, O(max{a, l} + l) is an upper
bound to the worst-case time complexity of Algorithm findSubstitution. If
max{a, l} = a, then the upper bound is O(a + l); contrarily, if max{a, l} = l,
then the upper bound is O(l). Therefore, O(a + l) is also an upper bound
for the worst-case time complexity of this algorithm. Note that, in the worst
case, a = 2 l since all variables related by the links are pairwise distinct. As
a conclusion, O(l) is an upper bound to the worst-case time complexity of
Algorithm findSubstitution. 2

Proposition 8.8 (Applying substitutions (see Figure 8.13)) Let T be a set of
triple patterns and S a substitution. applySubstitution(T, S) terminates in
O(t) time in the worst case, where t denotes the cardinality of T .

Proof Algorithm applySubstitution has to iterate through the whole set of
triple patterns T . As a conclusion, applySubstitution terminates in O(t) time
in the worst case. 2

8.3.2 Analysis of correctness

In the following theorem and propositions, we prove that our algorithm is
correct. This requires us to prove that the executable mappings it generates
retrieve source data that satisfy the source constraints and exchanges them
into target data that satisfy the target constraints and the correspondences.

Theorem 8.2 (Generating executable mappings) Let d be a data exchange
problem. generateExecutableMappings(d) outputs a number of executable
mappings that satisfy the following properties: i) every source triple it re-
trieves satisfies the constraints of source(d); ii) every target triple it generates
satisfies the constraints of target(d); and, iii) they satisfy the correspondences
in the kernels from which they originate.



84 Chapter 8. Automatic Generation of Executable Mappings

Proof The proof builds on Propositions 8.9, 8.10, and 8.11, in which we prove
each property of the resulting executable mappings independently. 2

Proposition 8.9 (Source constraint satisfaction) Let d be a data exchange
problem and m = (TC, TW) any of the executable mappings that are returned
by generateExecutableMappings(d). m retrieves data that satisfies the con-
straints of the source ontology of d.

Proof The proof follows from reductio ad absurdum: assume that z is a con-
straint in the source of d, and that TW does not satisfy it. Depending on the
predicate of z, we may distinguish the following cases:

• If constraint z is of the form (c1, rdfs:subClassOf, c2), where c1 and
c2 denote two classes, then the initial triple patterns are of the form
(?x1, rdf:type, c1) and (?x2, rdf:type, c2); thus, the algorithm to find con-
straint links must return a link between variables ?x1 and ?x2, which,
after computing the corresponding substitution and applying it to
the initial triple patterns, results in two triple patterns of the form
(?x, rdf:type, c1) and (?x, rdf:type, c2). According to inference rule SC,
TW satisfies constraint z.

• If z is of the form (p1, rdfs:subPropertyOf, p2), where p1 and p2 denote
two properties, then the initial triple patterns are of the form (?x1, p1, ?y1)

and (?x2, p2, ?y2); thus, the algorithm to find constraint links must return
a link between variables ?x1 and ?x2, and another link between variables
?y1 and ?y2, which, after computing the corresponding substitution and
applying it to the initial triple patterns, result in two triple patterns of
the form (?x, p1, ?y) and (?x, p2, ?y). According to inference rule SP, TW

satisfies constraint z.

• If z is of the form (p, rdfs:domain, c), where p denotes a property and c

denotes a class, then the initial triple patterns are of the form (?x1, p, ?y1)

and (?x2, rdf:type, c); thus the algorithm to find constraint links must
return a link between variables ?x1 and ?x2, which, after computing the
corresponding substitution and applying it to the initial triple patterns,
results in two triple patterns of the form (?x, p, ?y1) and (?x, rdf:type, c).
According to inference rule D, TW satisfies constraint z.

• If z is of the form (p, rdfs:range, c), where p denotes a property and c

a class, then the initial triple patterns are of the form (?x1, p, ?y1) and
(?x2, rdf:type, c); thus the algorithm to find constraint links must return
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a link between variables ?y1 and ?x2, which, after computing the corre-
sponding substitution and applying it to the initial triple patterns, re-
sults in two triple patterns of the form (?x1, p, ?y) and (?y, rdf:type, c).
According to inference rule R, TW satisfies constraint z.

• If z is of the form (c,mosto:strongDomain, p), where c denotes a
class and p a property, then the initial triple patterns are of the form
(?x1, rdf:type, c) and (?x2, p, ?y2); thus the algorithm to find constraint
links must return a link between variables ?x1 and ?x2, which, after com-
puting the corresponding substitution and applying it to the initial triple
patterns, results in two triple patterns of the form (?x, rdf:type, c) and
(?x, p, ?y2). According to inference rule SD, TW satisfies constraint z.

• If z is of the form (c,mosto:strongRange, p), where c denotes a class
and p a property, then the initial triple patterns are of the form
(?x1, rdf:type, c) and (?x2, p, ?y2); thus the algorithm to find constraint
links must return a link between variables ?x1 and ?y2, which, after com-
puting the corresponding substitution and applying it to the initial triple
patterns, results in two triple patterns of the form (?y, rdf:type, c) and
(?x2, p, ?y). According to inference rule SR, TW satisfies constraint z.

Since we have found a contradiction in every case, we can conclude that
the initial hypothesis is wrong. As a conclusion, m retrieves data that satisfies
the constraints of the source ontology of d. 2

Proposition 8.10 (Target constraint satisfaction) Let d be a data exchange
problem and m = (TC, TW) any of the executable mappings that are returned
by generateExecutableMappings(d). m constructs data that satisfies the
constraints of the target ontology of d.

Proof The proof follows straightforwardly using the same reasoning as in the
previous proposition. 2

Proposition 8.11 (Correspondence satisfaction) Let d be a data exchange
problem and m = (TC, TW) any of the executable mappings that are returned
by generateExecutableMappings(d). Assume that v is the correspondence
from which generateExecutableMappings generated m, and that k is the
kernel associated with v. m satisfies the subset of correspondences in k.

Proof The proof follows from reductio ad absurdum: assume that v is a corre-
spondence in correspondences(k), and that m does not satisfy it. Depending
on the predicate of v, we may distinguish the following cases:
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• If v is of the form (c1, mosto:classToClass, c2), where c1 and c2

denote two classes, the initial triple patterns of the WHERE and
the CONSTRUCT clauses contain two triple patterns of the form
(?x1, rdf:type, c1) and (?y1, rdf:type, c2), respectively; the algorithm to
find correspondence links must then find a link between variables ?x1

and ?y1, which, after computing the corresponding substitution and ap-
plying it, results in triple patterns (?x, rdf:type, c1) and (?x, rdf:type, c2).
According to inference rule C2C, m satisfies this correspondence.

• If v is of the form (p1,mosto:dataToData, p2), where p1 and p2 de-
note two data properties, the initial triple patterns of the WHERE
and the CONSTRUCT clauses contain two triple patterns of the form
(?x1, p1, ?y1) and (?x1, p2, ?y2), respectively; the algorithm to find corre-
spondence links must then find a link between variables ?y1 and ?y2,
which, after computing the corresponding substitution and applying it,
results in triple patterns (?x1, p1, ?y) and (?x2, p2, ?y). According to infer-
ence rule D2D, m satisfies this correspondence.

• If v is of the form (p1,mosto:objectToObject, p2), where p1 and p2 de-
note two object properties, the initial triple patterns of the WHERE
and the CONSTRUCT clauses contain two triple patterns of the form
(?x1, p1, ?y1) and (?x1, p2, ?y2), respectively; the algorithm to find corre-
spondence links ignores this kind of correspondences and that, accord-
ing to inference rule O2O, the initial triple patterns satisfy this corre-
spondence.

• If v is of the form (p,mosto:dataToClass, c), where p denotes a data
property and c denotes a class, the initial triple patterns of the WHERE
and the CONSTRUCT clauses contain two triple patterns of the form
(?x1, p, ?y1) and (?x2, rdf:type, c), respectively; the algorithm to find cor-
respondence links must then find a link between variables ?y1 and ?x2,
which, after computing the corresponding substitution and applying it,
results in triple patterns (?x1, p, ?y) and (?y, rdf:type, c). According to
inference rule D2C, m satisfies this correspondence.

Since we have found a contradiction in every case, we can conclude that
the initial hypothesis is wrong. As a conclusion, m satisfies the correspon-
dences in the kernel that is associated with the correspondence from which m

originated. 2
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8.4 Limitations
Our proposal has a number of limitations that make it unapplicable to

some data exchange problems. In this section, we highlight these limitations.

Our proposal relies on a conceptual framework in which it is not possible
to restrict more than two entities, and to establish that more than one source
entity correspond to a target entity (see Section 7.9). Regarding constraints,
if this type of constraint were necessary, it is mandatory to change the algo-
rithm to find subontologies in kernels (see Section 8.2.1). Regarding corre-
spondences, in our tool that implements this proposal [95], we allow to define
correspondences from one or more source entities, which may be also related
by a function to exchange them, into a single target entity.

An additional limitation is that our proposal cannot deal with more
than one instance of the same class or superclass (except rdfs:Resource

and owl:Thing). For instance, if a kernel comprises both dbp32:Person

and dbp32:Author classes, the final executable mapping shall comprise
a single variable ?x of both types, i.e., (?x, rdf:type, dbp32:Person) and
(?x, rdf:type, dbp32:Author). Therefore, it is not possible to have two or more
variables of type dbp32:Person or dbp32:Author. Two problems are derived
from this fact: the first one is that, if an ontology comprises a class that is a
superclass of the rest of the classes, the exchange produces incoherent target
data; the second problem is that properties that have the same class as do-
main and range cannot be appropriately exchanged. For instance, property
sch:marriedTo has the same domain and range, i.e., class dbp32:Person, and
the generated executable mappings in this case only exchanges a person that
is married to herself or himself, which does not make sense.

Our proposal does not generate SPARQL executable mappings that in-
clude triple patterns with regular expressions [5]. This implies that we are
not able to deal with RDF collections, such as bags, lists, or sequences [27].
Furthermore, it may generate equivalent SPARQL executable mappings, i.e.,
executable mappings that exchange exactly the same source data into the same
target data. Note that it is not trivial to detect this type of executable map-
pings, so we do not try to remove them. This implies that the exchange of
data may be inefficient because the same data is exchanged more than once,
but it does not generate incorrect target data.

8.5 Summary
This chapter has described our proposal on the automatic generation of

executable mappings in SPARQL. It relies on constraints and correspondences
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amongst source and target ontologies. We have proved that our proposal is
computationally tractable and correct, and we have presented its limitations.



Chapter 9

Benchmarking Semantic Data
Exchange Systems

Like a diet of the mind, I just choose not to indulge
certain appetites; like my appetite for patterns;
perhaps my appetite to imagine and to dream.

A Beautiful Mind (2001), Fi lm

I n this chapter, we present MostoBM, a benchmark for testing semantic
data exchange systems in the context of ontologies and query engines.
The chapter is organised as follows: in Section 9.1, we introduce it; Sec-
tion 9.2 describes the real-world data exchange patterns included in our

benchmark; in Section 9.3, we present the synthetic data exchange patterns
that our benchmark comprises; Section 9.4 presents a number of parameters
that allow to scale the data exchange patterns of our benchmark; finally, we
summarise the chapter in Section 9.5.

89
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9.1 Introduction

MostoBM is a benchmark for testing semantic data exchange systems in
the context of ontologies and query engines. Our benchmark provides a cat-
alogue of three real-world and seven synthetic data exchange patterns; seven
parameters to construct scenarios that are instantiations of the patterns; and a
publicly available tool that facilitates the instantiation of the patterns, and the
gathering of data about the performance of systems [70].

The three real-world patterns are relevant data exchange problems in the
context of Linked Open Data, whereas the seven synthetic ones are common
integration problems that are based on current proposals in the ontology evo-
lution context and on our experience regarding real-world information inte-
gration problems. This catalogue is not meant to be exhaustive: the patterns
described in this dissertation are the starting point to a community effort that
is expected to extend them.

A benchmark should be scalable and the results that it produces should be
deterministic and reproducible [43]. To fulfill these properties, MostoBM pro-
vides a number of parameters to construct and/or populate scenarios, each
of which is a three-element tuple (S, T,Q), where S is the source ontology, T

is the target ontology, and Q is a set of SPARQL queries to perform data ex-
change. The parameters allow to scale the data of the source ontology for the
real-world patterns, in which the structure of the source and target ontologies
and the SPARQL queries are fixed. Furthermore, the parameters allow to scale
the structure of source and target ontologies, the data of the source ontology,
and the SPARQL queries to perform data exchange for the synthetic patterns.
Thanks to them, we can automatically construct the structure of a source and
a target ontology with, for instance, a thousands classes, a dozen specialisa-
tion or object property levels, or the data of a source ontology with a million
triples. The scaling of the patterns helps analyse the performance of seman-
tic data exchange systems in future, when it is assumed that data exchange
problems are going to increase their scale in structure and/or data.

9.2 Real-world patterns

Our benchmark provides three real-world data exchange patterns, each of
which is instantiated into a variety of scenarios using a number of parameters
(see Section 9.4). These patterns are illustrated in Figure 9.1 and presented be-
low. The source ontology is on the left side and the target is on the right side;
the arrows represent correspondences between the entities of the ontologies.
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dbp32:imdbId <xsd:string>

dbp36:Person

dbp36:academyAward 

<dbp36:Award>

dbp32:starring <dbp32:Person>

dbp32:director <dbp32:Person>

dbp32:Actor [dbp32:Artist]

dbp32:Film [dbp32:Work]

dbp32:Artist [dbp32:Person]

dbp32:Person

dbp32:awards <xsd:anyURI>

dbp32:Work

dbp36:Artist [dbp36:Person]

dbp36:Award

dbp36:Actor [dbp36:Artist]

dbp36:Work

dbp36:starring <dbp36:Person>

dbp36:Film [dbp36:Work]

dbp36:director <dbp36:Person>

dbp36:imdbId <xsd:string>

(a) Evolving DBpedia.
dbp37:Workpo:Programme

dbp37:TelevisionShow [dbp37:Work]po:Brand [po:Programme]

dbp37:TelevisionEpisode [dbp37:Work]po:Episode [po:Programme]

po:title <xsd:string> dbp37:title <xsd:string>

dbp37:series

<dbp37:TelevisionEpisode >
po:series <po:Series>

po:Series [po:Programme]

po:episode <po:Episode>

po:Version [po:Programme]

po:version <po:Version> dbp37:runtime <xsd:double>

po:duration <xsd:int>

po:actor <po:Person> dbp37:starring <dbp37:Actor>

po:director <po:Person> dbp37:director <dbp37:Director >

(b) Adapting BBC Programmes to DBpedia.

Figure 9.1: Real-world patterns of our benchmark.

These correspondences are visual hints to help readers understand each real-
world pattern [19]. We selected these three patterns to be part of our bench-
mark because they represent integration problems that are common in practice
in the context of Linked Open Data. We use some prefixes to denote different
ontologies, such as dbp32:, dbp36:, srv: or po:.
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prf:serviceName <xsd:string>

msm:Service

msm:hasOper <msm:Oper>

srv:presents <srv:ServiceProfile>

srv:Service

prf:Profile [srv:ServiceProfile ]

prf:textDescription <xsd :string>

rdfs:label <rdf:Literal>

rdfs:comment <rdf:Literal>

msm:Oper

gd:WsdlAtomicProcessGrounding

gd:wsdlOperation <gd:WsdlOpRef>

gd:WsdlOpRef

gd:operation <xsd:anyURI>

(c) Publishing OWL-S services as Linked Open Data.

Figure 9.1: Real-world patterns of our benchmark (Cont’d).

9.2.1 Evolution of an ontology

Usually, ontologies change in response to a certain need [38], including that
the domain of interest has changed, the perspective under which the domain
is viewed needs to be changed, or due to design flaws in the original ontology.
In this context, the source ontology is the ontology before changes are applied
and the target ontology is the ontology after changes are applied.

This pattern focuses on DBpedia [23], which comprises a number of dif-
ferent versions due to a number of changes in its conceptualisation. When a
new version of DBpedia is devised, the new ontology may be populated by
performing data exchange from a previous version to the new one. In this
pattern, we perform data exchange from a part of DBpedia 3.2 that focuses on
artists, actors, directors, and films to DBpedia 3.6 (see Figure 9.1(a)).

9.2.2 Vocabulary adaptation

It is not uncommon that two ontologies offer the same data structured ac-
cording to different vocabularies. Therefore, we wish to adapt the vocabulary
of a source ontology to the vocabulary of a target ontology.

This pattern focuses on the BBC Programmes and DBpedia ontologies. The
BBC [56] decided to adhere to the Linked Data principles a couple of years
ago. They provide ontologies that adhere to the these principles to publicise
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the music and programmes they broadcast in both radio and television. In this
pattern, which is shown in Figure 9.1(b), we perform data exchange from the
Programmes Ontology 2009, which describes programmes including brands,
series (seasons), and episodes, to a part of DBpedia 3.7 that models television
shows and episodes.

9.2.3 Publication of Linked Open Data

Before the success of the Linked Open Data initiative, there were a variety
of ontologies that publish their data without taking Linked Data principles
into account. Usually, there is a need to transform these ontologies into on-
tologies that publish their data using these principles.

This pattern focuses on publishing semantic web services as Linked Open
Data. OWL-S [54] is one of the main proposals for describing semantic
web services that defines an upper ontology in OWL. MSM (Minimal Ser-
vice Model) [81] is a web service ontology that allows to publish web ser-
vices as Linked Open Data. Furthermore, it provides a lightweight solution
to integrate service descriptions based on different ontologies, such as OWL-
S, WSMO, and others. In this pattern, which is shown in Figure 9.1(c), we
publish OWL-S 1.1 services as Linked Open Data by means of MSM 1.0.

9.3 Synthetic patterns

A synthetic data exchange pattern represents a common and relevant in-
tegration problem. Our benchmark provides a catalogue of seven synthetic
data exchange patterns; to design them, we have leveraged our experience
on current proposals in the ontology evolution context (and on our experi-
ence regarding real-world information integration problems in the context of
ontology evolution (DBpedia 3.2 and DBpedia 3.6), multimedia content (Pro-
grammes Ontology 2009 and DBpedia 3.7), and semantic web services (OWL-
S 1.1 and MSM 1.0). Each pattern represents an intention of change [38], i.e.,
each pattern represents a number of atomic changes that are applied to an
ontology in response to certain needs. In addition, each synthetic pattern is
instantiated into a variety of scenarios using a number of parameters (see Sec-
tion 9.4). Below, we present our synthetic patterns, which are illustrated in
Figure 9.2. Note that src: and tgt: prefixes are used for the source and target
ontologies, respectively.
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src:Person

src:name <xsd:string>

src:Author [src:Person]

src:birth <xsd:date>

tgt:Person

tgt:name <xsd:string>

tgt:birth <xsd:date>

tgt:Author [ tgt:Person]

(a) Lift Properties.
tgt:Person

tgt:name <xsd:string>

tgt:Author [tgt:Person]

tgt:birth <xsd :date>

src:Person

src:name <xsd:string>

src:birth <xsd:date>

src:Author [src:Person]

(b) Sink Properties.
src:Person

src:name <xsd:string>

tgt:Person

tgt:name <xsd:string>

src:paper <xsd:string> tgt:Author [tgt:Person]

tgt :paper <xsd:string>

(c) Extract Subclasses.
src:Author

src:name <xsd:string>

tgt :Person

tgt:name <xsd:string>

tgt :Author [tgt:Person]src:paper <xsd:string>

tgt:paper <xsd:string>

(d) Extract Superclasses.

Figure 9.2: Synthetic patterns of our benchmark.

9.3.1 Lift Properties

The intention of change is that the user wishes to extract common proper-
ties to a superclass in a taxonomy. Therefore, the data properties of a set of
subclasses are moved to a common superclass. In the example, src:name and
src:birth data properties are lifted to tgt:name and tgt:birth, respectively.

9.3.2 Sink Properties

The intention of change is that the user wishes to narrow the domain of a
number of properties. Therefore, the data properties of a superclass are moved
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to a number of subclasses. In the example, src:name and src:birth data prop-
erties are sunk to tgt:name and tgt:birth, respectively.

9.3.3 Extract Subclasses

The intention of change is that the user wishes to specialise a class. There-
fore, a source class is split into several subclasses and the domain of target data
properties is selected amongst the subclasses. In the example, every instance
of src:Person is transformed into an instance of tgt:Person. After perform-
ing data exchange in this example, all target instances are of type tgt:Person.
However, if the knowledge is made explicit, every instance of tgt:Person,
which is related to a data property instance of tgt:paper, is also an instance of
type tgt:Author.

9.3.4 Extract Superclasses

The intention of change is that the user wishes to generalise a class. There-
fore, a class is split into several superclasses, and data properties are dis-
tributed amongst them. After performing data exchange in this example,
all target instances are of type tgt:Author, which are implicitly instances of
tgt:Person, too.

9.3.5 Extract Related Classes

The intention of change is that the user wishes to extract a number of
classes building on a single class. Therefore, the data properties that have
this single class as domain change their domains by the new classes, which
are related to the original one by a number of object properties. In the exam-
ple, the source class src:Paper is split into two target classes called tgt:Paper

and tgt:Author that are related by object property tgt:writtenBy. Instances
of tgt:Author are constructed by applying a user-defined function f to the
instances of src:Paper.

9.3.6 Simplify Specialisation

The intention of change is that the user wishes to remove a taxonomy of
classes. Thus, a set of specialised classes are flattened into a single class. In the
example, src:Person and src:Author, which is an specialisation of src:Person,
are simplified to tgt:Person.
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tgt:Paper

tgt:title <xsd:string>

tgt:Author

tgt:name <xsd:string>

tgt:writtenBy <tgt:Author>

src:Paper

src:title <xsd:string>

src:author <xsd:string>
f

(e) Extract Related Classes.

tgt:name <xsd:string>

tgt:Person

tgt:totalPapers <xsd:int>

src:Person

src:name <xsd:string>

src:Author [src:Person]

src:totalPapers <xsd:int>

(f) Simplify Specialisation.

src:Author

src:name <xsd:string>

src:Paper

src:writes <src:Paper >

tgt:Publication

src:title <xsd:string>

tgt:author <xsd:string>

tgt: title <xsd:string>

f

(g) Simplify Related Classes.

Figure 9.2: Synthetic patterns of our benchmark (Cont’d).

9.3.7 Simplify Related Classes

The intention of change is that the user wishes to join a set of classes that
are related by object properties. Therefore, several source classes are trans-
formed into one class that aggregates them all. In the example, for every two
instances of src:Author and src:Paper related by src:writes, a new instance
of tgt:Publication is constructed.

9.4 Parameters
Our benchmark takes a number of input parameters that allow to tune

the data of the source ontology in the real-world patterns, and both structure
and data of the source and/or the target ontologies in the synthetic patterns.
Thanks to them, a user is able to instantiate a scenario of a pattern.

The structure parameters are the following:
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• Levels of classes (L ∈ N): number of relationships (specialisations or
object properties) amongst one class and the rest of the classes in the
source or target ontologies. L allows to scale the structure of ontologies
in depth.

• Number of related classes (C ∈ N): number of classes related to each
class by specialisation or object properties. C allows to scale the structure
of ontologies in width.

• Number of data properties (D ∈ N): of the source and target ontologies.

Note that L and C may be applied to both source and target ontologies,
which is the case of the Lift Properties and Sink Properties patterns; to the tar-
get ontology only, i.e., the Extract Subclasses, Extract Superclasses and Extract
Related Classes patterns; or to the source ontology only, i.e., the Simplify Spe-
cialisation and Simplify Related Classes patterns. The total number of classes
an ontology comprises is computed by the following formula:

∑L
i=0 C i.

Figure 9.3(a) shows a sample instantiation of the Sink Properties pattern in
which L = 1, C = 3, D = 3. Structure parameters also have an effect on the
SPARQL queries constructed by our benchmark, since they vary depending
on the structure of the source and target ontologies. Figure 9.3(b) shows two
sample queries for the sample scenario of the Sink Properties pattern: Q1 is
responsible for reclassifying A0 in the source as A1 in the target, and Q2 is
responsible for both reclassifying A0 as A1 in the target, and exchanging the
value of src:d0 into tgt:d0.

Structure parameters can be tuned to construct realistic ontologies, e.g.,
ontologies in the context of life sciences usually comprise a large set of classes
that form a wide and/or deep taxonomy. For instance, the Gene Ontology [13]
comprises roughly 32, 000 classes with a dozen specialisation levels. There-
fore, to construct ontologies that resemble the Gene Ontology, we need to
specify the following parameters L = 14, C = 2.

Regarding data parameters, they are used to scale the instances of the
source ontology, and these parameters are the following:

• Number of individuals (I ∈ N \ {0}): number of instances of owl:Thing

that the source ontology shall have.

• Number of types (IT ∈ N): number of types that each individual shall
have.
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src:A0

src:d0 <xsd:string>

src:A1 [src:A0]

src:A2 [src:A0]

src:A3 [src:A0]

src:d1 <xsd:string>

src:d2 <xsd:string>

tgt :A0

tgt:d0 <xsd:string>

tgt :A1 [tgt:A0]

tgt :A2 [tgt:A0]

tgt :A3 [tgt:A0]

tgt:d1 <xsd:string>

tgt:d2 <xsd:string>

(a) Structure.

Q1: CONSTRUCT {
?a rdf:type tgt:A0.

} WHERE {

?a rdf:type src:A0. }

Q2: CONSTRUCT {

?a rdf:type tgt:A1.

?a tgt:d0 ?d.

} WHERE {

?a rdf:type src:A0.

?a src:d0 ?d. }

(b) Queries.

I0 [src:A0]

src:d0 Value0

I1 [src:A0]

src:d1 Value1

I2 [src:A0]

I3 [src:A0]

src:d2 Value2

src:d0 Value3

I0 [tgt :A0, tgt:A1]

tgt:d0 Value0

I1 [tgt :A0, tgt:A2]

tgt:d1 Value1

I2 [tgt :A0, tgt:A3]

I3 [tgt :A0, tgt:A1]

tgt:d2 Value2

tgt:d0 Value3

(c) Data.

Figure 9.3: Sample scenario of the Sink Properties pattern.

• Number of data properties (ID ∈ N): number of data property instances
for which a given individual is the subject.

• Number of object properties (IO ∈ N): number of object property in-
stances for which a given individual is the subject.

The actual types and instances may be randomly selected from the whole
set of classes, data properties and object properties of the ontology to be pop-
ulated. In our tool, we provide 44 statistical distributions to randomly select
them, including Uniform, Normal, Exponential, Zipf, Pareto and empirical
distributions, to mention a few. As a result, it is possible to use statistical dis-
tributions that model real-world ontologies.

Figure 9.3(c) shows an example of the data constructed to populate the
source ontology (left side) in Figure 9.3(a), in which the data parameters are
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the following: I = 4, IT = 1, ID = 1, IO = 0. Furthermore, this figure shows the
target instances (right side) that result from performing data exchange with
the SPARQL queries in Figure 9.3(b). We may compute the number of data
triples that a populated ontology comprises by means of the following for-
mula: I (1 + IT + ID + IO).

Data parameters can be tuned to populate ontologies that resemble realistic
ones, e.g., the SwetoDBLP [1] ontology models computer science publications.
It comprises roughly two million triples of individuals of a single type, four
million triples of data property instances, and seven million triples of object
property instances. To simulate this ontology, we have to set the following
values: I = 2 × 106, IT = 1 (the individuals are of a single type), ID = 2

(four million triples of data property instances divided by two million triples
of individuals), and IO = 4 (seven million triples of object properties divided
by two million triples of individuals).

9.5 Summary

In this chapter, we have presented our benchmark to test semantic data
exchange systems in the context of ontologies and query engines, which is
called MostoBM. We have introduced the real-world and synthetic data ex-
change patterns that our benchmark comprises. Furthermore, it provides a
number of parameters that allow to scale the previously described data ex-
change patterns.
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Chapter 10

Experimental Evaluation

I have devised seven separate explanations, each of which would cover
the facts as far as we know them. But which of these is correct

can only be determined by the fresh information
which we shall no doubt find waiting for us.

Sir Arthur Conan Doyle, T he Adventure of the Copper Beeches (1892)

W e validate our proposal by checking if our interpretation of
correspondences agrees with the interpretation of domain ex-
perts. Furthermore, we provide an evaluation methodology
that allows to compare semantic data exchange systems side

by side. The chapter is organised as follows: in Section 10.1, we intro-
duce it; Section 10.2 describes the validation of MostoDE using our bench-
mark; Section 10.3 presents an evaluation methodology to make informed and
statistically-sound decisions regarding semantic data exchange systems; Sec-
tions 10.4 and 10.5 present examples of how to apply the methodology to a
number of real-world and synthetic data exchange patterns; finally, we sum-
marise the chapter in Section 10.6.

101
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10.1 Introduction

Executable mappings encodes how correspondences between source and
target data models must be interpreted, i.e., how to perform data exchange.
Correspondences are inherently ambiguous since there can be many differ-
ent executable mappings that satisfy them, but generate different target data.
Therefore, it is mandatory to validate if the interpretation that our proposal
assumes is coherent with expected results by domain experts.

To perform this validation, we have devised a repository that comprises a
number of real-world and synthetic data exchange problems. The goal of this
repository is to provide a number of data exchange problems that should be
supported by every proposal that deals with SPARQL executable mappings.

In addition, we provide an evaluation methodology that allows to compare
semantic data exchange systems side by side. To the best of our knowledge,
this is the first such evaluation methodology in the literature. This methodol-
ogy helps software engineers make informed and statistically-sound decisions
based on rankings that focus on: 1) which semantic data exchange system per-
forms better; and 2) how the performance of systems is influenced by the pa-
rameters of MostoBM. This methodology is benchmark-agnostic, i.e., it can be
applied to any real-world or synthetic pattern, and technology-agnostic, i.e., it
can be applied to any system.

10.2 Validation of our proposal

Proving correctness implies that our proposal does not generate data that
do not satisfy the source constraints, the target constraints, or the correspon-
dences. Since an executable mapping encodes an interpretation of the corre-
spondences in a data exchange problem, it is then necessary to check if our
interpretation of correspondences agrees with the interpretation of domain
experts.

Unfortunately, there does not exist a standard repository of data exchange
problems on which different proposals can be tested and compared. To ad-
dress this problem, we have set up a repository using MostoBM. This reposi-
tory comprises four real-world data exchange problems, which have been con-
structed using the three real-world data exchange patterns of our benchmark
(see Section 9.2) and a fictitious ontology of movies (see below), and 3, 780

synthetic problems, which have been constructed using the seven synthetic
data exchange patterns of our benchmark (see Section 9.3).
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DBP O2M MO LP (540) SP (540)

Classes 12 72 9 [4 - 84] [4 - 84]

Data properties 4 41 8 [50 - 154] [50 - 154]

Object properties 5 90 8 0 0

Correspondences 9 11 10 [27 - 115] [27 - 115]

Source constraints 12 696 54 [26 - 489] [26 - 489]

Target constraints 49 118 58 [26 - 489] [26 - 489]

Triples 2,107,451 2,536,567 1,093,928 [871 - 18,564] [769 - 14,183]

Executable mappings 9 11 10 [27 - 115] [27 - 115]

Precision 1.0 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 1.0 1.0

Generation time (secs) 0.06 0.25 0.08 [0.02 - 0.11] [0.03 - 0.1]

Data exchange (secs) 2.95 55.2 20.62 [0.14 - 0.69] [0.14 - 0.72]

Table 10.1: Summary of our validation.

Regarding the real-world data exchange problems, we included the follow-
ing: (DBP) exchanging data from DBpedia 3.2 to DBPedia 3.6, (BBC) exchang-
ing data from Programmes Ontology 2009 to DBpedia 3.7, (O2M) exchanging
data from OWL-S 1.1 to MSM 1.0, and (MO) exchanging data from both DB-
pedia 3.6 and Review 2.0 into a fictitious Movies On-line ontology.

The synthetic problems included 540 problems of each of the following
synthetic data exchange patterns (see Section 9.3): (LP) Lifting properties, (SP)
Sinking properties, (ESB) Extracting subclasses, (ESP) Extracting superclasses,
(ERC) Extracting related classes, (SS) Simplifying specialisations, and (SRC)
Simplifying related classes.

We used our tool to create a set of executable mappings for each data ex-
change problem in the repository, and then ran them and compared the results
with the expected ones. The experiments were run on a computer that was
equipped with a single 2.66 GHz Core 2 Duo CPU and 4 GB RAM, Windows
XP Professional (SP3), JRE 1.6.0, Jena 2.6.4, and Oracle 11.2.0.1.0.

Table 10.1 summarises our results. The columns represent the data ex-
change problems, and the rows a number of measures; the first group of
measures provides an overall idea of the size of each data exchange prob-
lem, whereas the second group provides information about the number of exe-
cutable mappings, the precision an recall we attained when we executed them,
the time to generate them, and the time they took to execute, i.e., the time of
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ESB (540) ESP (540) ERC (540) SS (540) SRC (540)

Classes [3 - 45] [3 - 45] [3 - 45] [3 - 45] [3 - 45]

Data properties [50 - 154] [50 - 154] [50 - 154] [50 - 154] [50 - 154]

Object properties 0 0 [1 - 43] 0 [1 - 43]

Correspondences [26 - 76] [26 - 76] [27 - 115] [26 - 76] [26 - 76]

Source constraints [25 - 309] [25 - 309] [25 - 309] [26 - 489] [29 - 660]

Target constraints [26 - 489] [51 - 564] [29 - 660] [25 - 309] [25 - 309]

Triples [776 - 8,717] [776 - 8,717] [776 - 8,717] [872 - 18,591] [1355 - 17,400]

Executable mappings [26 - 76] [26 - 76] [27 - 115] [26 - 76] [26 - 76]

Precision 1.0 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 1.0 1.0

Generation time (secs) [0.02 - 0.06] [0.02 - 0.15] [0.02 - 0.34] [0.02 - 0.09] [0.02 - 0.34]

Data exchange (secs) [0.14 - 0.63] [0.14 - 0.63] [0.17 - 2.42] [0.14 - 0.44] [0.16 - 8.31]

Table 10.1: Summary of our validation (Cont’d).

performing the data exchange. In the case of synthetic problems, we provide
intervals that indicate the minimum and maximum value of each measure.

Our proposal is not able to deal with the BBC problem, since the Pro-
grammes Ontology 2009 comprises a single class that is superclass of all the
classes of the ontology and this is a limitation of our proposal (see Section 8.4).
Furthermore, our proposal achieved 100% precision and recall in all of our ex-
periments, which reveals that the interpretation of the correspondences that
we encode in our executable mappings captures the intuition behind them.

In the DBP problem, it is worth noting that BDpedia 3.6 provides more
data than DBpedia 3.2; in this case, recall and precision were measured on
the subset of DBpedia 3.6 that can be exchanged from DBpedia 3.2, since the
remaining data resulted, obviously, in blank nodes. Note, too, that the time
our proposal took to generate the mappings was less than one second in all
cases; since timings are imprecise in nature, we repeated each experiment 25

times and averaged the results after discarding roughly 0.01% outliers using
the well-known Chevischev’s inequality. We also measured the time our ex-
ecutable mappings took to execute. Although these timings depend largely
on the technology being used, i.e., the database used to persist triples and
the SPARQL engine used to query them, we think that presenting them is ap-
pealing insofar they prove that the queries we generate can be executed on
reasonably-large ontologies in a sensible time. In our experiments, we used
Jena 2.6.4 as the database and ARQ 2.8.8 as the query engine.
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Figure 10.1: Workflow of the evaluation methodology.

10.3 Evaluation Methodology
Having a catalogue of data exchange patterns is not enough to evaluate a

semantic data exchange system in practice. It is necessary to rely on a disci-
plined evaluation methodology if we wish to make informed and statistically-
sound decisions. We have devised such a methodology and present its work-
flow in Figure 10.1.

We refer to performing data exchange over a scenario as executing that
scenario. In the Initial Setup step, the user is responsible for selecting the se-
mantic data exchange systems to test, the patterns to test these systems, the
values of parameters, and a variable to measure the performance of these sys-
tems. The Scenario Execution step consists of executing scenarios of each pat-
tern using each system. After executing the scenarios, the results are used to
compute which system performs better (Performance Analysis step) and to
analyse the influence of parameters in their performance (Sensitivity Analysis
step). Finally, in the Decision Making step, the user is responsible for mak-
ing decisions based on the previous analysis. In the rest of this section, we
describe each of these steps in detail.

1. Initial Setup First, we need to select the study we are going to con-
duct. In this initial setup we are responsible for selecting the semantic data
exchange systems to test: M = {m1, . . . , ma}, a ≥ 2; the data exchange pat-
terns: P = {p1, . . . , pb}, b ≥ 1; the set of values for the parameters, and a per-
formance variable. Our methodology is devised to focus only on real-world
or synthetic patterns, but not both at the same time, since they entail the study
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of different sets of parameters: in the real-world patterns, we only study data
parameters since the structure of the source and target ontologies is fixed; in
the synthetic patterns, we study both the structure and data parameters. Re-
garding structure parameters, we refer to their sets as PL, PC, PD; regarding
the data parameters, we refer to their sets as PI, PIT , PID, PIO; in both cases, the
subindex refers to the corresponding parameter.

A configuration is a tuple that comprises a value for each parameter, we
denote the set of all possible configurations as: C. When dealing with real-
world patterns, C = PI×PIT×PID×PIO; when dealing with synthetic patterns,
C = PL × PC × PD × PI × PIT × PID × PIO. The combination of a pattern and a
configuration forms a scenario, we denote the set of all possible scenarios as:
X = P × C. In addition, a setting is a combination of a system and a pattern,
we denote the set of all possible settings as: S = M×P. Consequently, the total
number of scenarios for each pattern is |C|.

Regarding the performance variable, there are two types of variables that
we can select to measure performance of systems: context-sensitive or context-
insensitive. On the one hand, context-sensitive variables are affected by other
processes that are executed in parallel in the computer, such as antiviruses,
automatic updates, or backup processes. Therefore, it is mandatory to execute
the scenarios a number of times, usually 25–30 times, and compute the aver-
age of the performance variable, removing possible outliers. Some examples
of these performance variables are the following: user time, I/O time, or trans-
ferred bytes. On the other hand, context-insensitive variables are not affected
by other processes, so it is not needed to execute the scenarios more than once;
some examples of these performance variables are the following: CPU time,
number of target triples, or memory used.

2. Scenario Execution For each system m ∈ M and each pattern p ∈ P, we
need to execute the scenarios related to p using m, so we need to execute the
scenarios of all possible settings. Typical setups may involve the execution
a large number of scenarios, each of which may take hours or even days to
complete; this makes it necessary to use the Monte Carlo method to select
a subset of scenarios to execute randomly. The problem that remains is to
determine which the size of this subset must be.

Our evaluation methodology comprises a sensitivity analysis for which we
use a regression method. This imposes an additional constraint on the number
of scenarios to execute, since it is known that the ratio of scenarios to param-
eters must be at least 10 [67]. As a conclusion, when dealing with real-world
patterns, we should execute at least 40 scenarios, since they involve four data
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parameters, and when dealing with synthetic patterns, we should execute at
least 70 scenarios, since they involve three structure and four data parameters.
To provide a more precise figure on the number of scenarios to execute, we can
use an iterative method that relies on Cochran’s formula [31], which is based
on the variance of this variable.

In this iterative method, we introduce a threshold to limit the total num-
ber of scenarios to execute: µ ∈ R, 0 < µ ≤ 1, since, in the worst case, this
number is equal to |C|, which means that the variance being studied is so high
that it is not possible to calculate an average at confidence level 95% with an
estimated error less than 3% (the standard values of Cochran’s formula). The
same occurs with the number of iterations of this method, i.e., a large num-
ber of iterations of this method means that the variance being studied is high;
therefore, we introduce another threshold regarding the number of iterations:
δ ∈ N, δ > 0. We describe the iterative method below:

i. For each setting si, we select 40 or 70 scenarios to execute using the
Monte Carlo method.

ii. We execute the selected scenarios.

iii. We use Cochran’s formula to compute the new number of scenarios to
execute using the variance of the performance variable, which is com-
puted from the scenarios previously executed.

iv. Let e be the new number of scenarios to be executed, let k be the current
number of iterations, and w the number of scenarios already executed,
we have the following possibilities: 1) e < w and δ ≤ k: we stop execut-
ing more scenarios and continue with the next step of the methodology;
2) µ |C| > e > w and δ ≤ k: we select e − w scenarios using the Monte
Carlo method and return to the second step of this method; 3) e > µ |C|

or δ > k: we discard si since it is not possible to make informed and
statistically-sound decisions about this setting.

At the end of this step, we have results of the performance variable for
each setting, i.e., a set of tuples of the form (s, c, v), where s is a setting, c is a
configuration, and v the corresponding value of the performance variable.

3.1. Performance Analysis To compute which system performs better, we
need a method to compare the values of the performance variable we gathered
in the previous step. We can consider them as samples of an unknown random
variable, which implies that we need to rely on statistical inference.
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We apply Kruskal-Wallis’s H test [50] to the results of each pattern in iso-
lation, and to all of the results. The goal of this test is to determine if there
are statistically significant differences amongst the performance variable for
the systems under test. If the result is that there is no difference amongst the
systems, it means that they all behave statistically identically with respect to
the performance variable.

If the result of Kruskal-Wallis’s H test is that there are statistically sig-
nificant differences amongst the performance variable for the systems, we
then use Wilcoxon’s Signed Rank test to compute a rank amongst these sys-
tems [50]. This test outputs a p-value for each pair of systems, but it should
not be interpreted as usual, but using Bonferroni’s correction [68]. According
to this correction, the p-value must not be compared with α, the confidence
level, usually 0.05, but α/β, where β denotes the number of parameters, i.e.,
β = 4 when dealing with real-world patterns, and β = 7 when dealing with
synthetic patterns. In other words, given systems m1 and m2, if Wilcoxon’s
Signed Rank test returns a p-value that is less than α/β, then the conclusion
is that there is not enough evidence in our experiments to reject the hypothe-
sis that m1 performs better than m2 regarding the performance variable being
studied.

As a conclusion, the result of this step is a number of rankings of systems
for each individual pattern and for all of them, i.e., a set of tuples of the form
(P, r), in which P ⊆ P is a subset of patterns, and r is a ranking of systems.

3.2. Sensitivity Analysis In this step, we need a method to analyse the in-
fluence of parameters in the performance of systems. For each setting s, we
use ReliefF to rank the influence of the parameters on the performance vari-
able [99]. ReliefF is a general parameter estimator based on regression, which
detects conditional dependencies amongst parameters and the performance
variable. As a result, it outputs a number of numerical coefficients for each
parameter, a lower value of these coefficients means that the parameter influ-
ences less on the performance variable.

Before using ReliefF, we need to normalise the values of the performance
variable that we have measured in our scenarios, since ReliefF coefficients are
not comparable. To perform this normalisation, we take the minimum and
maximum values of the performance variable in the execution of scenarios
for each setting, vm and vM, respectively, and we use the following formula:
v ′i = (vi − vm)/vM, where vi is the value of the performance variable in each
scenario and v ′i is the normalised value.
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After applying ReliefF to our results, we obtain a ranking of the influence
of parameters on the performance variable for each setting. Then, it is possi-
ble to rank the influence of parameters by clustering systems and/or patterns.
Both types of rankings are computed by means of the Majoritarian Compro-
mise method [105], which transforms a number of individual rankings into a
single global ranking. To rank the influence by system, we take the individ-
ual rankings of each system and use the Majoritarian Compromise method
to compute the global ranking. Similarly, to rank the influence by pattern,
we compute the global ranking taking the individual rankings of each pattern
into account.

At the end of this step, we have a number of rankings on the influence
of parameters for each setting, for each system and every pattern, and for
each pattern and every system, i.e., tuples of the form (m,p, rx), (m,P, ry) and
(M,p, rz), respectively, where m denotes a system, p denotes a pattern, P ⊆ P
denotes a subset of patterns, M ⊆ M denotes a subset of systems, and rx, ry

and rz denote rankings on the influence of parameters.

4. Decision Making In this step, the user can make an informed and
statistically-sound decision on which the best system is regarding the patterns
and the performance variable that have been analysed.

10.4 Example with real-world patterns
To perform this example of our evaluation methodology, we used a tool

implemented using Java that allows to execute the scenarios on several se-
mantic data exchange systems. The tool was run on a virtual computer that
was equipped with a four-threaded Intel Xeon 3.00 GHz CPU and 16 GB
RAM, running on Windows Server 2008 (64-bits), JRE 1.6.0, Oracle 11.2.0.1.0,
Jena 2.6.4, ARQ 2.8.7, TDB 0.8.7, Pellet 2.2.2, and OWLIM 4.2. Regarding the
execution of scenarios, between each scenario execution, we forced our bench-
mark to wait for ten seconds to ensure that the Java garbage collector had fin-
ished collecting old objects from memory. Furthermore, we dropped and cre-
ated the Oracle’s tablespace in which we store the ontologies in each scenario
execution.

1. Initial Setup For this example, we selected ten semantic data exchange
systems to test (recall that a system comprises an RDF store, a reasoner, and a
query engine). The selected systems were the following, namely: m1 = Jena &
ARQ & Jena Reasoner; m2 = Jena & ARQ & Pellet; m3 = Jena & ARQ & Oracle
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Pattern
System Size Ratio Iter. Accept
m1 3908 39,08% 1 �
m2 4939 49,39% 1 �
m3 64 0,00% 2 �
m4 276 0,03% 4 �
m5 4957 49,57% 1 �
m6 184 0,02% 3 �
m7 584 0,06% 2 �
m8 4964 49,64% 1 �
m9 50 0,00% 2 �
m10 2174 21,74% 4 �

p1

Table 10.2: Results of the iterative method (real-world patterns).

Patterns Rankings

{p1} m10 > m7 > m4 > m6 > m3 > m9

Table 10.3: Results of the performance analysis (real-world patterns).

Reasoner; m4 = Jena & ARQ & OWLIM Reasoner; m5 = TDB & ARQ & Pellet;
m6 = TDB & ARQ & Oracle Reasoner; m7 = TDB & ARQ & OWLIM Reasoner;
m8 = Oracle & Oracle & Pellet; m9 = Oracle & Oracle & Oracle Reasoner; m10

= Oracle & Oracle & OWLIM Reasoner. Furthermore, we selected one real-
world pattern to test them: p1 = Publication of Linked Open Data. We also
selected the following values: PI = {1, 250, 500, 750, 1000}; PIT = PID = PIO =

{1, 2, 3, 4, 5}, which amounts to 10, 000 scenarios for the pattern. Finally, we
selected CPU time as the performance variable.

2. Scenario Execution We selected the following thresholds: µ = 0.25, δ = 5.
Then, for each system and pattern, we used our iterative method to execute the
scenarios. Table 10.2 shows our results for each system and pattern; the first
column indicates the number of scenarios to execute according to Cochran’s
formula, the second column shows the ratio between the scenarios that we
should execute and the total number of scenarios, the third column indicates
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Systems Patterns Rankings

{m3} {p1} I > IT > IO > ID

{m4} {p1} I > IT > ID > IO

{m6} {p1} I > IT > IO > ID

{m7} {p1} I > IT > IO > ID

{m9} {p1} I > IT > IO > ID

{m10} {p1} I > IT > IO > ID

{m3, m4, m6, m7, m9, m10} {p1} I > IT > IO > ID

Table 10.4: Results of the sensitivity analysis (real-world patterns).

the number of iterations using our method, and the fourth column indicates if
we accept or discard a particular system.

Taking these results into account, we discarded a semantic data exchange
system if the ratio were greater than 25% (µ = 0.25), or the iterations of the
method were greater than five (δ = 5). Therefore, we discarded the following
systems: m1, m2, m5, and m8. Note also that, in Table 10.2, the ratio between
executed scenarios and parameters for the remaining systems does not fall
below ten, i.e., all of them are greater than 40.

3.1. Performance Analysis We took the result times of the previous step,
and we first used Kruskal-Wallis’s H test to compute if there were significant
differences amongst the systems regarding pattern p1. Kruskal-Wallis’s H test
outputted: p-value = 0.000, which is less than 0.05/4 = 0.0125. This guar-
antees that there are significant differences amongst the systems. Then, we
used Wilcoxon’s Signed Rank test to compute pair ranks amongst the seman-
tic data exchange systems, and we combined the results, which are shown in
Table 10.3.

3.2. Sensitivity Analysis We first normalised the times of the previous step.
Then, we used ReliefF to compute a ranking of parameters by setting, and the
Majoritarian Compromise method to combine these rankings. The results are
shown in Table 10.4.

4. Decision Making In this step, we used the previous results to make in-
formed and statistically-sound decisions about the selected pattern and sys-
tems. Regarding the performance analysis, these decisions may be as follows:
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• It is appealing to use m9 since it spent the shortest CPU time in perform-
ing data exchange in the selected real-world pattern.

• It is not appealing to use m10 since it spent the longest CPU time in per-
forming data exchange.

Regarding the sensitivity analysis, these decisions may be as follows:

• If we expect data exchange problems similar to p1 and the number of
individuals (I) is going to scale, all systems are much affected by the
scaling of I.

10.5 Example with synthetic patterns
In this example, we used the same tool, virtual computer and software as

in Section 10.4.

1. Initial Setup For this example, we selected the same ten semantic data
exchange systems to test as in Section 10.4. Furthermore, we selected two syn-
thetic patterns to test them: p2 = Sink Properties; p3 = Simplify Specialisation.
We also selected the following values: PL = PC = PIT = PID = {1, 2, 3, 4, 5};
PD = {25, 50, 75, 100, 125}; PI = {1, 250, 500, 750, 1000}; PIO = {0}, which
amounts to 15, 625 scenarios for each pattern. Finally, we selected CPU time
as the performance variable.

2. Scenario Execution We selected the following thresholds: µ = 0.25, δ = 5,
and we used our iterative method to execute the scenarios for each system and
pattern. Table 10.5 shows our results. Note that we discarded a system if the
ratio were greater than 25% (µ = 0.25), or the iterations of the method were
greater than five (δ = 5). Therefore, we discarded the following systems in
both patterns: m1, m2, m5, m8, and m10. Note also that, in Table 10.5, the ratio
between executed scenarios and parameters for the remaining systems does
not fall below ten, i.e., all of them are greater than 70.

3.1. Performance Analysis In this step, we used Kruskal-Wallis’s H test to
compute if there were significant differences amongst the systems regarding
patterns p2, p3 and {p2, p3}. Kruskal-Wallis’s H test outputted the following
p-values: for pattern p2: p-value = 2.381 10−275; for pattern p3: p-value =

3.926 10−142; for patterns {p2, p3}: p-value = 0.000. All of these p-values are less
than 0.05/7 = 0.007, which guarantees that there are significant differences
amongst the systems. Then, we used Wilcoxon’s Signed Rank test to compute
pair ranks amongst the systems, and then we combined the results. The final
results are shown in Table 10.6.
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Pattern
System Size Ratio Iter. Accept Size Ratio Iter. Accept
m1 7812 49,99% 1 � 7805 49,95% 1 �
m2 7755 49,63% 1 � 7622 48,78% 1 �
m3 492 3,15% 3 � 128 0,82% 2 �
m4 775 5,08% 3 � 286 1,83% 2 �
m5 7736 49,50% 1 � 7628 48,82% 1 �
m6 1455 9,32% 2 � 610 3,90% 3 �
m7 1739 11,14% 3 � 128 0,82% 2 �
m8 7644 48,92% 1 � 7648 48,95% 1 �
m9 3777 24,17% 4 � 905 5,79% 3 �
m10 6374 40,79% 1 � 4670 29,88% 1 �

p2 p3

Table 10.5: Results of the iterative method (synthetic patterns).

Patterns Rankings

{p2} m7 = m9 > m4 > m6 > m3

{p3} m7 > m6 > m9 > m4 > m3 

{p2, p3} m7 = m9 > m4 > m6 > m3

Table 10.6: Results of the performance analysis (synthetic patterns).

3.2. Sensitivity Analysis We normalised the times of the previous step, and
used ReliefF to compute a ranking of parameters by setting, and the Majoritar-
ian Compromise method to combine these rankings by systems and patterns.
The final results are shown in Table 10.7.

4. Decision Making We used the previous results to make informed and
statistically-sound decisions about the selected patterns and systems. Regard-
ing the performance analysis, these decisions may be as follows:

• It is appealing to use m3 since it spent the shortest CPU time in perform-
ing data exchange in all selected patterns.

• It is not appealing to use m7 since it spent the longest CPU time in per-
forming data exchange.
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Systems Patterns Rankings

{m3} {p2} L > C > I > IO > ID > IT > D

{m4} {p2} I > L > C > IO > IT > D > ID

{m6} {p2} L > C > I > IO > IT > ID > D

{m7} {p2} I > D > L > IT > C > ID > IO 

{m9} {p2} L > C > I > IO > ID > D > IT

{m3} {p3} I > ID > IO > D > L > I T > C

{m4} {p3} I > D > IO > L > ID > C > IT

{m6} {p3} I > ID > IO > C > L > D > I T

{m7} {p3} I > ID > IO > D > L > C > I T

{m9} {p3} I > L > C > IO > D > ID > IT

{m3} {p2, p3} I > L > IO > ID > C > D > IT

{m4} {p2, p3} I > L > IO > D > C > IT > ID

{m6} {p2, p3} I > L > C > IO > ID > IT > D

{m7} {p2, p3} I > D > L > ID > IO > IT > C

{m9} {p2, p3} L > I > C > IO > ID > D > IT

{m3, m4, m6, m7, m9} {p2} L > I > C > IO > IT > D > ID

{m3, m4, m6, m7, m9} {p3} I > IO > ID > L > D > C > I T

{m3, m4, m6, m7, m9} {p2, p3} I > IO > ID > L > D > C > I T

Table 10.7: Results of the sensitivity analysis (synthetic patterns).

Regarding the sensitivity analysis, these decisions may be as follows:

• If we expect data exchange problems similar to p2 and the number of
individuals (I) is going to scale, it is better to use systems m3, m6 or m9

since they are not much affected by the scaling of I.

• If we expect data exchange problems similar to p3 and the number of
individuals (I) is going to scale, the CPU time shall be affected since all
systems are much affected by the scaling of I.

10.6 Summary
In this chapter, we have presented the validation of our proposal to auto-

matically generate SPARQL executable mappings, which is based on a repos-
itory that comprises four real-world and 3, 780 synthetic data exchange prob-
lems. Furthermore, we have described an evaluation methodology that helps
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software engineers make informed and statistically-sound decisions regarding
semantic data exchange systems.
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Chapter 11

Conclusions

I have seen too much not to know that the impression
of a woman may be more valuable than the

conclusion of an analytical reasoner.
Sir Arthur Conan Doyle, T he Man with the Twisted Lip (1891)

In this dissertation, we present MostoDE, a proposal to automatically gen-
erate SPARQL executable mappings in the context of ontologies that are rep-
resented in quite a complete subset of the OWL Lite profile. These mappings
are executed over a source ontology using a SPARQL query engine, and the
source data are exchanged into data of a target ontology.

Our proposal takes a data exchange problem as input, which comprises a
source ontology, a target ontology, and a number of correspondences between
them, and it outputs a SPARQL executable mapping for each correspondence
of the data exchange problem. These SPARQL executable mappings are gen-
erated by means of kernels, each of which describes the structure of a subset
of data in the source ontology that needs to be exchanged as a whole, and the
structure of a subset of data in the target ontology that needs to be created
as a whole: if more or less data are considered, then the exchange would be
incoherent.

Correspondences are inherently ambiguous since there can be many differ-
ent executable mappings that satisfy them, but generate different target data.
We have validated our proposal using four real-world and seven synthetic

119
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data exchange patterns, in which we check that the interpretation of corre-
spondences that it encodes is coherent with expected results. This validation
relies on a repository that has been constructed using MostoBM, a benchmark
that is also described in this dissertation. This repository comprises 3, 784

data exchange scenarios in which the time to execute our algorithms never ex-
ceeded one second, and precision and recall were 100% in all cases except one,
in which our proposal does not exchange data correctly. These results sug-
gest that our proposal seems promising enough for real-world data exchange
problems, that it is very efficient in practice, and that the interpretation of cor-
respondences that our executable mappings encode is appropriate.

In addition to data exchange, our executable mappings have more poten-
tial uses in other fields, and it is our plan to research on them as future work:
in the context of data integration, our executable mappings can be used to re-
formulate a target query into a single query over source data models [45]; in
the context of query answering, which consists of retrieving appropriate data
as a response to a query that is posed over a target data model that is physi-
cally divided into different sources, our executable mappings can be used to
answer target queries [57, 88]; in the context of web service composition, our
executable mappings can be used to combine the data of a number of existing
web services [113].
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Appendix A

Subset of the OWL 2 Lite profile

O
ur proposal is based on the OWL 2 Lite profile specification, which
provides 43 constructs that are classified into the following groups:
RDF Schema features, equality, restricted cardinality, property
characteristics, general property restrictions, class intersection, and

meta information. In this appendix, we analyse these groups and describe the
ones with which our proposal cannot deal. The appendix is organised as fol-
lows: in Section A.1, we introduce it; Section A.2 presents the RDF features
group; Section A.3 describes the equalities and inequalities; Section A.4 deals
with the constructs regarding restrictions of cardinalities; in Section A.5, we
describe characteristics of properties; Section A.6 presents general property re-
strictions; Section A.7 describes the constructs that deal with the intersection
of classes; in Section A.8, we present the constructs that deal with defining
meta information; finally, we summarise the appendix in Section A.9.
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A.1 Introduction
The OWL 2 Lite profile specification provides a number of constructs that

are classified into the following groups [14]: RDF Schema features, equality,
restricted cardinality, property characteristics, general property restrictions,
class intersection, and meta information. We analyse them in the following
sections. The conclusion is that the only constructs with which our proposal
cannot deal are zero-cardinality restrictions, general property restrictions, and
intersection of restrictions. This amounts to three out of 43 constructs.

A.2 RDF Schema Features
This group includes the following constructs, namely: owl:Individual,

owl:Class, rdfs:subClassOf, rdf:Property, rdfs:subPropertyOf, rdfs:range,
and rdfs:domain. The unique construct that our proposal ignores is
owl:Individual, since individuals are retrieved or constructed by means of
the executable mappings we generate, but needs not be dealt with explicitly
in our proposal.

A.3 Equality and Inequality
In this group, we distinguish two subgroups. On the one hand, the first

subgroup comprises the following constructs, namely: owl:equivalentClass,
and owl:equivalentProperty. These two constructs need not be dealt with
explicitly, since they are actually abbreviations. If an ontology contains a triple
of the form (c1, owl:equivalentClass, c2), it can be replaced by the following
triples, with which we can deal natively:

(c1, rdfs:subClassOf, c2)

(c2, rdfs:subClassOf, c1)

Similarly, if a triple of the form (p1, owl:equivalentProperty, p2) is con-
tained in an ontology, we may replace it by the following triples, with which
we can also deal natively:

(p1, rdfs:subPropertyOf, p2)

(p2, rdfs:subPropertyOf, p1)

On the other hand, the second subgroup comprises the following con-
structs, namely: owl:sameAs, owl:differentFrom, owl:AllDifferent, and
owl:distinctMembers. The constructs in this second subgroup deal with in-
dividuals; thus we may ignore them for data exchange purposes.
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A.4 Restricted Cardinality

The constructs in this group allow to restrict the cardinality of a property,
namely: owl:minCardinality, owl:maxCardinality, and owl:cardinality.

The owl:minCardinality construct can restrict the minimum cardinality
of a property p with respect to a class c to be zero as follows:

(c, rdfs:subClassOf, _:x)

(_:x, rdf:type, owl:Restriction)

(_:x, owl:minCardinality, “0”^^xsd:int)

(_:x, owl:onProperty, p)

Note that, by default, all data and object properties have a minimum car-
dinality of zero. Therefore, it does not require any special treatment. Simi-
larly, construct owl:minCardinality can restrict the minimum cardinality of
a property p with respect to a class c to be one as follows:

(c, rdfs:subClassOf, _:x)

(_:x, rdf:type, owl:Restriction)

(_:x, owl:minCardinality, “1”^^xsd:int)

(_:x, owl:onProperty, p)

The previous set of triples can be replaced by (c,mosto:strongDomain, p),
if property p has class c as domain, or by (c,mosto:strongRange, p), if prop-
erty p has class c as range.

Construct owl:maxCardinality can be used to restrict the maximum car-
dinality of a property to zero or one. In the former case, the property is annu-
lated, which is a case with which our proposal cannot deal; we, however, have
not found this a practical limitation since it is not common at all to annulate a
property. The later case is the default in the OWL 2 Lite profile; thus, it does
not require any special treatment.

Construct owl:cardinality is a shorthand to combine the previous con-
structs; thus, neither does it require special treatment.

A.5 Property Characteristics

Constructs owl:ObjectProperty and owl:DatatypeProperty are included
in this group, with which we deal natively; owl:TransitiveProperty must
actually be dealt with by a semantic-web reasoner, i.e., we can assume that
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their semantics have been made explicit before using our proposal; the rest of
constructs are shorthands, namely: owl:inverseOf, owl:SymmetricProperty,
owl:FunctionalProperty, and owl:InverseFunctionalProperty.

If an ontology contains a subset of triples of the form:

(p1, rdfs:domain, c1)

(p1, rdfs:range, c2)

(p1, owl:inverseOf, p2)

we can transform them into the following triples, with which we can deal
natively:

(p2, rdfs:domain, c2)

(p2, rdfs:range, c1)

Furthermore, we can transform (p, rdf:type, owl:SymmetricProperty)

into a triple of the form (p, owl:inverseOf, p). Similarly, we can transform
a triple of the form (p, rdf:type, owl:FunctionalProperty) into the following
triples before using our proposal:

(_:x, rdf:type, owl:Restriction)

(_:x, owl:minCardinality, “0”^^xsd:int)

(_:x, owl:maxCardinality, “1”^^xsd:int)

(_:x, onProperty, p)

Finally, if we find a subset of triples of the form:

(p1, owl:inverseOf, p2)

(p2, rdf:type, owl:InverseFunctionalProperty)

we can transform it into the following triples before applying our proposal:

(p1, rdf:type, owl:FunctionalProperty)

(p2, rdf:type, owl:FunctionalProperty)

A.6 General Property Restrictions
This group includes a number of constructors that allow to express gen-

eral constraints on properties, namely: owl:Restriction, owl:onProperty,
owl:allValuesFrom, and owl:someValuesFrom. We cannot deal with these
constructs in a general problem, but only in the cases that we have mentioned
in the previous sections, i.e., functional properties and cardinality restrictions.
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A.7 Class Intersection

This group includes a single construct: owl:intersectionOf. Since it deals
with the individuals of a class, our proposal does not need to pay attention to
the triples that include this construct.

A.8 Meta Information

This category comprises three groups of constructs in the OWL 2 Lite pro-
file, namely: header information, versioning, and annotation types. They
include constructs like owl:Ontology, owl:imports, owl:versionInfo, or
owl:backwardCompatibleWith, to mention a few. They provide meta in-
formation about an ontology, which make them irrelevant for data exchange
purposes.

A.9 Summary

In this appendix, we have analysed the 43 constructs provided by the
OWL 2 Lite profile specification. The main conclusion is that our proposal
cannot deal with zero-cardinality restrictions, general property restrictions,
and intersection of restrictions.
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