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Quantum Key Distribution in the Holevo Limit
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A theorem by Shannon and the Holevo theorem impose that the efficiency of any protocol for quantum
key distribution, E , defined as the number of secret (i.e., allowing eavesdropping detection) bits per
transmitted bit plus qubit, is E # 1. The problem addressed here is whether the limit E � 1 can be
achieved. It is showed that it can be done by splitting the secret bits between several qubits and forcing
Eve to have only a sequential access to the qubits, as proposed by Goldenberg and Vaidman. A protocol
with E � 1 based on polarized photons and in which Bob’s state discrimination can be implemented
with linear optical elements is presented.

PACS numbers: 03.67.Dd, 03.67.Hk, 03.65.Bz
In information theory one of the most fundamental
questions is how efficiently can one transmit information
by means of a given set of resources. If this information
is classical (i.e., it can be expressed as a sequence of zeros
and ones, or “bits”) a crucial theorem of classical infor-
mation theory states that if a (classical) communication
channel has mutual information I�X:Y � between the input
signal X and the received output Y , then that channel can
be used to send up to, but no more than, I�X:Y � bits [1].
The mutual information is defined as

I�X:Y � � H�X� 2 H�X jY � , (1)

where H is the Shannon entropy, which is a function of the
probabilities p�xi� of the possible values of X, and is given
by H�X� � 2

P
i p�xi� log2p�xi�, where the sum is over

those i with p�xi� . 0. H�X jY � is the expected entropy
of X once one knows the value of Y , and is given by

H�X jY � �
X
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(2)

A simple application of the above theorem reveals that us-
ing a classical two-level system as a communication chan-
nel (i.e., if the input signal X can take only two values x0
and x1) one is allowed to send up to, but no more than, one
bit [and this occurs if p�x0� � p�x1� � 0.5].

On the other hand, suppose one wishes to convey
classical information using a quantum system as a com-
munication channel. The sender (Alice hereafter) prepares
the system in one of various quantum states ri with
a priori probabilities pi , so the input signal is represented
by the density matrix r �

P
i piri . The intended receiver

(Bob hereafter) makes a measurement on the quantum
system, and from its result he tries to infer which state
Alice prepared. A theorem stated by Gordon [2] and
Levitin [3], and first proved by Holevo [4], asserts that
if Bob is restricted to making separate measurements on
the received states, then the average information gain is
bounded by
0031-9007�00�85(26)�5635(4)$15.00
I�A:B� # S�r� 2
X

i

piS�ri� , (3)

where S is the von Neumann entropy, given by S�r� �
2Tr�r log2r�. The equality in (3) holds if, and only if,
all the transmitted states ri commute. Thus the amount of
information accessible to Bob is limited by the von Neu-
mann entropy of the ensemble of transmitted states. The
maximum von Neumann entropy of an ensemble of quan-
tum states in a Hilbert space of n dimensions is n, and can
be reached only if the “alphabet” defined by r is a mix-
ture with identical probabilities of n mutually orthogonal
pure quantum states (called “letter” states). Therefore, as
a simple application of the Holevo theorem reveals, the
maximum classical information accessible to Bob when
Alice sends a two-level quantum system (“qubit”) is one
bit. This is what we will refer to as the Holevo limit.
Achieving the Holevo limit requires noiseless quantum
channels and perfect detectors; therefore we will assume
so hereafter.

Either a classical or quantum n-level system can convey
log2n bits at the most. In this sense, quantum communi-
cation is as efficient as classical communication. How-
ever, there is a task that cannot be achieved by classical
means: secure key distribution. Now suppose Alice wishes
to convey a sequence of random classical bits to Bob while
preventing that any third unauthorized party (Eve here-
after) acquires information without being detected. This
problem, known as the key distribution problem, was first
solved by Bennett and Brassard [5] using quantum me-
chanics. In recent years many different protocols for quan-
tum key distribution (QKD) have been proposed [6–12].
Most of them share the following features: (i) They need
two communication channels between Alice and Bob: a
classical channel which is assumed to be public but which
cannot be altered. Its tasks are to allow Alice and Bob
to share a code and information to prevent some kinds
of eavesdropping, to transmit the classical information re-
quired for each step of the protocol, and to check for possi-
ble eavesdropping. A quantum channel (usually an optical
fiber or free space), which must be a transmission medium
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that preserves the quantum signals (usually the phase or
the polarization of photons) by isolating them from un-
desirable interactions with the environment. It is an “in-
secure” channel in the sense that Eve can manipulate the
quantum signals. (ii) A sequence of m steps. A step is de-
fined as the minimum part of the protocol after which one
can compute the expected number of secret bits received
by Bob, bs. Each step consists of an interchange of a num-
ber qt of qubits (using the quantum channel) and a number
bt of bits (using the classical channel) between Alice and
Bob. (iii) A test for detecting eavesdropping. Alice and
Bob can detect Eve’s intervention by publicly comparing
(using the classical channel) a sufficiently large random
subset of their sequences of bits, which they subsequently
discard. If they find that the tested subset is identical, they
can infer that the remaining untested subset is also identi-
cal and secret. Only when eavesdropping is not found, the
transmission is assumed to be secure.

From the point of view of information theory, a natural
definition of efficiency of a QKD protocol, E is [13]

E �
bs

qt 1 bt
, (4)

where bs, qt , and bt were described above. This defi-
nition omits the classical information required for estab-
lishing the code or preventing and detecting eavesdrop-
ping, because it is assumed to be a constant, negligible
when compared with the number of transmitted secret bits,
mbs. The combination of classical information theory plus
the Holevo theorem imposes an upper limit to the effi-
ciency of any transmission of classical information (secret
or not) between Alice and Bob. In particular, they im-
ply that the efficiency of any QKD protocol is E # 1.
The problem addressed in this paper is whether the limit
E � 1 can be achieved. Or, more generally, how ef-
ficiently random classical information can be distributed
between Alice and Bob (who initially share no informa-
tion), while preventing Eve from acquiring information
without being detected. As a close inspection of some
of the most representative QKD protocols reveals, so far
none of them reaches the limit E � 1 (see Table I) [14].
A QKD protocol with E � 1 requires that Bob can iden-
tify with certainty n different states, where n is the di-
mensionality of the Hilbert space of the quantum channel,
Hn. Bob can only distinguish n states with certainty if
all of them are mutually orthogonal. Since there are no
n mutually orthogonal mixed states in Hn, then the let-
ter states will be necessarily an orthogonal basis of pure
states. If the quantum channel is a single quantum n-level
system, the requirements bt � 0 and bs � qt � log2n
are impossible to achieve, because then Eve could use the
cloning process [15,16] to find out the state sent by Alice
without being detected. This problem can be avoided if the
quantum channel is a composed quantum system. Then, as
was first discovered by Goldenberg and Vaidman [9], the
secret information can be split between the subsystems, so
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TABLE I. Efficiency E of different QKD protocols. In Gold-
enberg and Vaidman’s protocol, bt contains the sending time of
the qubits. In Ekert’s protocol the values refer to a more ef-
ficient version, suggested by Ekert to the authors of Ref. [8],
in which Alice tells Bob her choice before Bob’s measurement.
Both in Goldenberg and Vaidman’s, and in Koashi and Imoto’s
protocols, qt is taken to be 2 because their quantum channel is a
photonic state in two paths, which is a four-dimensional Hilbert
space, although their letter states do not span the whole Hilbert
space.

Scheme bs qt bt E

Bennett, 1992 [7] ,0.5 1 1 ,0.25
Bennett and Brassard, 1984 [5] 0.5 1 1 0.25
Goldenberg and Vaidman, 1995 [9] 1 2 $1 #0.33
Ekert, 1991 [6,8] 1 1 1 0.5
Koashi and Imoto, 1997 [10] 1 2 0 0.5
Cabello, 2000 [12] 2 2 1 0.67

that if Eve has no access to all the parts at the same time,
she cannot recover the information without being detected.
Goldenberg and Vaidman’s protocol was extended and im-
proved by Koashi and Imoto [10].

In this Letter we will present a protocol E � 1 based on
[9,10] and on the idea of using a larger alphabet that satu-
rates the capacity of the quantum channel. Suppose that
the quantum channel is composed of two qubits (1 and 2)
prepared with equal probabilities in one of four orthogonal
pure states �jci��, and that Eve cannot access qubit 2 while
she still holds qubit 1. To obtain this “sequential” access
for Eve, we can use the configuration in Fig. 1 [9,10]: there
are two paths between Alice and Bob, one for qubit 1 and
the other for qubit 2, and both have the same length L.
Alice sends out the two qubits at the same time. Qubit 1
flies to Bob while qubit 2 is still in a storage ring (protected
against Eve’s intervention) of length l . L�2. The aim
of this storage ring is to delay qubit 2 until qubit 1 has
reached the protected part of the channel near Bob. In that
protected part there is another storage ring of length l, so
both qubits arrive at the same time to Bob’s analyzer. To
guarantee that Eve has a true sequential access to the two
qubits, Alice and Bob (using the classical channel) must
know when qubit 1 of the first pair will arrive to Bob and
which will be the delay between pairs [10].

Any QKD protocol must fulfill the fact that Eve cannot
learn the bits without disturbing the system in a detectable
way. In addition, for practical purposes, it would be

State 
analyzer
(Fig. 2)

Alice Eve

Bob

SR1

SR2

qubit 1

qubit 2
State

preparation

FIG. 1. Scheme to force that Eve has only a sequential access
to the two qubits.
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interesting if Bob could easily read the letter states. In our
protocol, the choice of letter states will be strongly lim-
ited by these requirements. Let us denote as pnm those
orthogonal basis of letter states composed of p product
states, n nonmaximally entangled states, and m maximally
entangled states. It can be easily seen that the letter states
cannot be a 400 basis, because then Eve can learn at least
one bit without being detected. For instance, if the ba-
sis was �j00 �, j10 �, j11 �, j21 ��, then Eve can learn one
bit just by performing a local measurement on the second
qubit and allowing the first one to pass by. In addition, the
letter states cannot be a 004 basis, because then Eve can
learn the two bits without being detected just by preparing
a pair of ancillary qubits (3 and 4) in a maximally en-
tangled state, replacing qubit 1 with qubit 3, reading the
state of the combined system 1, 2 after receiving qubit 2,
and finally changing the maximally entangled state of the
combined system 3, 4 by a simple unitary transformation
on particle 4. Other possible strategies for eavesdropping
in the context of sequential access, like broadcasting [17],
have been investigated by Mor [18]. Mor’s requirement to
avoid eavesdropping (reduced density matrices of the first
subsystem must be nonorthogonal and nonidentical, and
reduced density matrices of the second subsystem must be
nonorthogonal [18]) applies to the case when two (pure or
mixed) letter states are used. As can be easily checked,
Mor’s condition is satisfied by at least two pairs of states
if one uses an orthogonal basis of four pure states differ-
ent than 400 and 004. This means that Eve must use at
least two different strategies to obtain information of the
key. If for a particular state she uses the wrong strategy,
Alice and Bob will have a high probability to detect Eve.
Therefore, we conclude that an orthogonal basis of a type
different than 400 or 004 can be used as letter states in
a QKD protocol with sequential access. However, these
bases present different advantages and disadvantages. On
one side, it will be interesting to use the higher dimension
of the quantum channel to improve the probability of de-
tecting Eve from those protocols using lower dimensional
quantum channels or smaller alphabets. For instance, in
a protocol based on two letters with the same probability
as [5], for each bit tested by Alice and Bob, the probabil-
ity of that test revealing Eve (given that she is present) is
1
4 . Thus, if N bits are tested, the probability of detecting
Eve is 1 2 � 3

4 �N . However, in a protocol using two qubits
as a quantum channel, if Alice and Bob compare a pair
of bits generated in the same step, the probability for that
test to reveal Eve can be 3

4 . Thus if n pairs (N � 2n bits)
are tested, the probability of Eve’s detection is 1 2 � 1

2 �N .
However, this improvement is possible only if Eve cannot
use the same strategy to (try to) read two of the four states.
This scenario can be achieved with bases such as 121, 130,
or 040. However, using these bases has a bigger (from an
experimental point of view) disadvantage: as the analy-
sis of some particular cases suggests, if the qubits are po-
larized photons, then Bob cannot discriminate with 100%
success a basis such as 121, 130, or 040, using an analyzer
with only linear elements (such as beam splitters, phase
shifters, etc.) [19]. A general proof of this statement for
any kind of basis is still an open problem. Such proof
exists for the 004 bases [20,21]. However, bases such as
202 or 220, although they do not improve the probabil-
ity of Eve detection, can be used for QKD in the Holevo
limit, and allow Bob to completely discriminate between
the four states without requiring conditional logical gates,
like CNOT gates between the two qubits, or even electronics
to control conditional measurements on the second qubit
depending on the result of the measurement on the first
qubit. I will present an example of a QKD protocol in
the Holevo limit of this last case. Consider the following
202 basis:

jc0 � � jHH � , (5)

jc1 � �
1
p

2
�jHV � 1 jVH �� , (6)

jc2 � �
1
p

2
�jHV � 2 jVH �� , (7)

jc3 � � jVV � , (8)

where jH �i means photon i linearly polarized along a
horizontal axis, and jV �i means photon i linearly polar-
ized along a vertical axis, and symmetrization is not writ-
ten explicitly [for instance, jHV � means 1

p
2
�jH �1jV �2 1

jV �1jH �2�]. Alice prepares one of the four states (5)–(8)
and sends them out to Bob using a setup to guarantee Eve’s
sequential access (Fig. 1). The two qubits arrive at Bob’s
state analyzer at the same time. In the case of the four
photon polarization states (5)–(8), Bob’s analyzer to dis-
criminate with 100% (theoretical) success between the four
states can be realized in a laboratory using a 50�50 beam
splitter, followed by two polarization beam splitters (which
transmit horizontal polarized photons and reflect vertical
polarized photons), and four detectors [22,23]; see Fig. 2.
After the polarization beam splitters, as a simple calcula-
tion (up to irrelevant phases) reveals, the four states (5)–(8)
have evolved into

jc0 � ! 1
p

2
�jD1D1 � 2 jD3D3 �� , (9)

jc1 � ! 1
p

2
�jD1D2 � 2 jD3D4 �� , (10)

jc2 � ! 1
p

2
�jD2D3 � 2 jD1D4 �� , (11)

jc3� ! 1
p

2
�jD2D2� 2 jD4D4�� , (12)

where jDiDj� means one photon in detector Di and
the other photon in detector Dj , again symmetrization
is not written explicitly [for instance, jD1D2 � means
1
p

2
�jD1 �1jD2 �2 1 jD2 �1jD1 �2�]. Thus, a single click on

detectors D1 or D3 (D2 or D4) signifies detection of jc0 �
(jc3 �), while two clicks, one on D1 and the other on D2,
or one on D3 and the other on D4 (one on D2 and the
5637
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FIG. 2. Scheme of Bob’s analyzer to discriminate unambigu-
ously between the four states (5)– (8).

other on D3, or one on D1 and other on D4) signifies
detection of jc1 � (jc2 �).

Long storage rings have a low efficiency for the trans-
mission of polarized photons, so other methods to achieve
sequential access must be developed in order to perform
QKD in the Holevo limit for long distances. For instance,
Weinfurter has suggested [24] using momentum-time en-
tangled photons and a Franson-type device [25]. On the
other hand, QKD protocols with E � 1 can be extended
to quantum channels composed of n $ 2 subsystems with
m $ 2 levels, supposing Eve has only a sequential access
to the subsystems. If nm $ 6 Alice could use even a ba-
sis with only product states [26], although then Bob would
need some quantum interaction between the subsystems
in order to achieve a complete discrimination of the letter
states [27].
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