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An experimental realization of the entanglement-assisted “Guess My Number” protocol for the reduction of
communication complexity, introduced by Steane and van Dam, would require producing and detecting three-
qubit GHZ states with an efficiency>0.70, which would require single photon detectors of efficiency
>0.89. We propose a modification of the protocol which can be translated into a real experiment using
present-day technology. In the proposed experiment, the quantum reduction of the multiparty communication
complexity would require an efficiency>0.05, achievable with detectors af>0.47, for four parties, and
7>0.17 (o> 0.55 for three parties.

DOI: 10.1103/PhysRevA.71.020301 PACS nuntber03.67.Hk, 02.50.Le, 03.65.Ud, 03.65.Ta

One of the most impressive applications of quantum recomplexity. For instance, Xuet al. presented an experiment
sources for information processing is the reduction of theon quantum reduction of two-party communication complex-
communication complexity required for certain computationsity based on two-qubit entanglemdi®]. Galvao proposed a
[1-5]. Let us suppose that two or more separated parties negstotocol requiring only one qubit and a detection efficiency
to compute a function of a number of inputs distributed>0.33 [10]. More recently, Brukner,Zukowski, and
among them. Using the best classical strategy, this woulgeijlinger have introduced a quantum reduction of two-party
require a certain minimum amount of classical communicagommunication complexity based on the entanglement be-
tion to be transmitted between the parties. However, if thg,een two qutritd 11].
parties initially shared some entangled states, then the The main obstacle for an experimental realization of the
amount of classical communication requwgd for the ComMpUgyantum GMN protocol is the high detection efficiency re-
tation would be a great deal smaller than if no entanglementired. The required setup would consist of a source of GHZ
were present. The quantum advantage usually grows with thgates, single qubit operations, and single qubit detectors. If
number of parties involvef]. Entanglement-assisted reduc- e define the overall efficiency as the number of three-
tion of classical communication complexity has numerousyypit (or four-qubiy joint detections corresponding to GHZ
potential applications in computer networks, VLSI circuits, gtates. divided by the number of three-quait four-qubi
and data structurd$]. - . , systems emitted by the source, then, assuming that when no

A particularly attractive, thought-provoking, and stimulat- 5int detection occurs the probability of winning the game is

ing way to show the quantum advantage was proposed By, 1/2, the experimental probability of winning the GMN
Steane and van Dam as a method for always winning thﬁame using GHZ states is

television contest “Guess My NumbefGMN) [5]. A team
of three contestantlice, Bob, and Charlig each of them p =t (1= 1
isolated in a booth, is given an integer numlmern,+ng el ) =7+ (1= 7)3. @)

+nc of apples(wheren;=0, 1/2, 1, or 3/2 One of the  Tharefore, the quantum advantage could be detected if an
contestants must guess whether the number is odd or evefyera| efficiency,>0.50 could be achieved. In the three-
just by receiving one bit from the other two contestants. Th_equbit case, the experiment would require threefold coinci-

best classical strategy would allow the contestants o win ijences hetween detectors so that each individual detector
75% of the cases. However, they can win in 100% of theg,,1d have an efficienay=0.79 (sincea= 7*<, ¢ being the

cases if they initially share three-qubit Greenberger—Hornehumber of qubits Moreover, in order to obtain an experi-
zeilinger (GHZ) stateq[7,8]. The same game can be played yenta) quantum probability of winning the GMN game 10%

with four contestants and the quantum versus classical aq’ﬂgher than the best classical probability, we would need
vantage is the same: 100% vs 75%. Steane and van Damy 70 \which would require detectors of efficienay

stressed that “A laboratory demonstration of entanglements,  gg.

enhanced communication would be.) a landmark in quan- - ,antum optics provides the best way to produce qubits
tum physics and quantum information scien¢8l. So far, j, 5 GHz state and distribute them to various spacetime re-
however, the requirements for an experimental |mplementagions_ However, the first experiments producing three-
tion of the quantum GMN protocol have impeded f“therphoton polarization-entangled GHZ stati2,13 did not
progress. Some progress has been reported on SimpleLiis, the demands of the GMN protocol, because only a
schemes of quantum reduction of classical communicatiogy fraction of the ensemble of photon triplets was detected
[5]. Further experiments producing four-photon GHZ states
[14] yield a fourfold coincidence with a success probability 4
*Electronic address: adan@us.es times higher than that of previous three-photon experiments.
TElectronic address: tarrida@us.es Moreover, recent experimenf&5] report a fourfold coinci-
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dence rate 2 orders of magnitude brighter thaflid]. We TABLE I. The 19 integer combinations of 0, 1/2, 1, and 3/2,
shall show that in the very near future this technology couldand their corresponding 128 variations. In 64 of thapn;+ny

allow an experimental demonstration of a quantum reductiortn; is an odd number while in the other 64 it is an even number.
of a genuine three or four-party communication complexity.
In this paper, we introduce a modified version of the quan-  {n;,n;,n,,n;} N+n;+ne+ny Number of variations
tum GMN protocol which is experimentally feasible with

current technology. We shall describe a quantum reduction of ~ {0.0.0.0 0 1
three-party(four-party)y communication complexity in which {0,003 1 4
the quantum advantage is clear, provided we can produce {0,0,1/2,1/2 1 6
three (four) qubits in a GHZ state and detect them all sepa- 15 0,1/2,3/2 2 12
rately with an overall efficiencyy>0.17, which would re- 0.0.1.3 2 6
quire detectors of efficiencyg>0.55 (>0.05 and o e
>0.47, for four qubits The main goal of this proposal is to {0,1/2,1/2,} 2 12
note that the absence of perfect sources and detectors doeid/2,1/2,1/2,1/2 2 1
not prevent us from performing an experimental demonstra- {0,0,3/2,3/2 3 6
tion of a quantum reduction of a genuine multiparty commu-  {0,1/2,1,3/2 3 24
nication complexity and to stimulate experimental work 0.1,1,1 3 4
along these lines. o

The modified GMN game preserves all the essential fea- {1/2,1/2,112,3/% 3 4
tures of the original game, but includes rules that relax the 1/2,112,1,3 3 6
detection requirements to experimentally show the quantum {0.1,3/2,3/2 4 12
advantage. The modified GMN game features one referee{1/2,1/2,3/2,3/2 4 6
(and a fourth contestant in tlee=4 version. We shall discuss {1/2,1,1,3/2 4 12
in detail the four-party version of the modified protocol; 1,1,1,2 4 1
similar rules apply to the three-party version. During the (1/2,3/2,3/2,3/2 5 4
game, each of four contestanfdlice, Bob, Charlie, and (1.1,3/2,3/2 5 6
David) is isolated in a booth. Before the game starts, they (3/2.312,312.3/2 6 1

can take anything they want with them into the booths, but
once they are in, they will not be able to communicate with
each other or with anybody else, save for the referee. Once . .
they are in the booths, the referee distributes among them %uaranteed when they do pléhis happens, at best, once in

randomly chosen integer numbeof apples in four portions, ?(;’5;3(;8320:]0%3%?552 %Vf;‘g?r’h(]: ié?gr? dogt(r:gttlegye\;%gligs
= + + + = ’ ’ —)
N=na*Ng+Nc+np, such than;=0, 1/2, 1, or 3/2. Then, the hen they are forced to play. It could be any of the best

referee asks each and everyone whether or not they are real) ical strategies of the oriainal GMN game. diving a.prob
to play the game; if all contestants say yes, then the refere‘é'ésfs' strategies rgi 9 » giving a prob-
ability of success of 3/4for instance, each contestant would

asks Bob, Charlie, and David to give him a bit. Then, thegive the referee a bit value 0 if she/he had receirge0 or
referee add$modulo 2 the three bits, and hands the resultllz, or a bit value 1 if she/he had receiveg:1 or 3/2.

over to Alice. The team wins if Alice ascertains whether the . T
total number of distributed apples is even or odd. If anyFrom all this follows that, for the modified GMN game, the

contestant refuses to play the game, then the referee distri?—eSt c_IassmaI _strateguéef Wh.'Ch ther_e are seve_baglve Ehe
utes a new numben’ =n}+nS+n.+ns of apples and asks ollowing maximum probability of_wmnlng foc=3 orc=4
the four contestants again whether or not they are ready tgontestants being forced to play in at lepstf the rounds,

play the game, etc. If the referee distributdsrounds of (1 - NP pN
apples, then the contestants are forced to play the game for ab (¢, p) = lim LE (j + 3pN) )
leastr rounds (hereafter referred as “the played rounds” N-—o 4pN (S

The contestants know=r/N before the game starts. In ad- ) N
dition, the referee must ensure that each of the 128 possible > (N ~PN+j - 1) + > _ﬂ)N—iﬂj<N)}
variations of applegsee Table )l occurs with the same fre- j i/
quency in the played rounds. 2

In the modified GMN game, if the referee forces the con-
testants to play im=pN of the N rounds, the contestants can \yhere
refuse to play between the first and tRer round, but then
they are forced to play in the remainimgrounds. If they 8
decide to play without being forced to do so then, every time K= 52c 3)
they play, they will postpone in one round the moment they
have to play compulsorily. The maximum classical probabil-For c=3 andc=4, this probability is represented as a func-
ity of winning is obtained by combining two strategies. Thetion of p in Fig. 1. In addition, Fig. 1 contains numerical
first one applies in the rounds in which they play withoutsimulations of the probability that the team witkr 3 andc
being forced to do so, and can be designed in a way such tha4 wins when using the best classical strategy for games of
the contestants know when they must play and success =100 rounds.

j=pN+1
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P FIG. 1. Exact and numerical
simulations of the probability of the
contestants winning the modified
GMN game using the best classical
strategy, as a function of the mini-
mum percentage of rounds the ref-
eree forces them to play, for the
three-contestant  game (black
squares and four-contestant game
(white squares In the numerical
simulations the referee distributes
N=100 rounds. The exact probabili-
ties are given by Eq(2). Interest-
ingly, for c=3 contestants forced to
play in at leastp=0.17 of the
rounds, the best classical probability
of winning is only Pc=0.92. Forc
=4 contestants forced to play in at
leastp=0.05 of the rounds, the best

p classical probability of winning is
only Pc=0.90.

0.95}

0.9}

0.85|

Note that, in both cases, if the referee forces the team to R(na) ® R(ng) ® R(nc) ® R(np)|GHZ)

lay all the rounds, the probability of winning by using the . .
pay P Y gy g {|GHZ) if ny+nNg+nc+np is even,

|GHZ*) if ny+ng+nc+np is odd,

best classical strategy is 3/4 while, if the referee forces them —

= (6)

to play in at least one of every 100 rounds, then the prob-

ability of success using the best classical strategy is approx{fvhere|GHZ} and |GHZY) can be reliably distinguished by

mately 1. local ts in th tational basis:
Let us now see what the probabilities of winning are when 0¢&! Measurements in the computational basis.
using the best entanglement-assisted strategy. The contes- 1
tants will always win if they use the following method. |GHZ) = ﬁﬂooo@ +(0013) +[0103 +|0110 +|100)
(1) Each contestant carries a qubit belonging to a four- v
qubit system initially prepared in the GHZ state +(1010 +|1100 +(1111), (7)
- 1
|GHZ) = ,—15(\0000>+ 11111)), (4) IGHZL>=E(\0001>+ /0010 +{0100 +[011D +|1000
v v
+(1011) + 1101 +(1110). (8)

where |0020>:|0>§|O>®|O>®|0>, where [0)=(1/v2)(|0) Assuming that, when all four contestants obtain a result,
+[1)) and|1)=(1/v2)(|0)~|1)). this corresponds to a GHZ stdiee., assuming that any error
(2) Each contestarjt applies to her/his qubit the rotation in the preparation is negligiblethen having an experimental
efficiency » allows the team to play the modified GMN
game withp=%. Now let us go back to the probabilities

R(ny) =[0)0[ +€"7[1)(1], ) llustrated in Fig. 1. In the first place we shall compare the
experimental requirements for the original GMN game with
wheren; is her/his number of apples. three qubits to those of the modified protocol. The most im-
(3) Then, each contestant measures her/his qubit in thportant point is that, while in the original GMN protocol the
computational basif0),|1)}. difference between the quantum and classical probabilities of

(4) If, due to the inefficiency of the detectors, a contestantvinning could be detected only if the experimental setup has
does not obtain a result, then she/he will tell the referee thadn overall efficiency»>0.50 (that is, a single qubit detec-
she/he will not play the game, and the referee will thereforeion efficiencyo=0.79, in the modified protocol the differ-
abort that round. Note that, in the aborted rounds, Alice doesnce between the quantum and classical probabittesbe
not receive any bits from the referee. If all contestants coneetected for almost any efficiendfloreover, as seen above,
sent to play that round, then Bob, Charlie, and David willto obtain an experimental quantum probability of winning
give their outcomes to the referee, who will add them up, and.0% higher than the best classical probability in the original
give the result to Alice. GMN protocol, the setup would need to haye-0.70 (that

In this case Alice can give the correct answer with prob-is, a single qubit detection efficieney> 0.89. However, to
ability 1 because stai@) has the following property: for any obtain a difference between the quantum and classical prob-
Na+Ng+Nnc+np integer(wheren;=0, 1/2, 1, or 3/2, abilities of winning higher than 7.7% in the modified proto-
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TABLE II. Examples of single photon detection efficiency re- ting three(or four) polarization-entangled photons in a GHZ
quirements for the modified GMN protocat. is the number of  state generated in a parametric-down conversion process
parties,Pq—Pc is the difference between the quantum and classicaf1 4,15, coupled into thredfour) single mode optical fibers
Emt;]ab'"t'esb(’f W;””'”g"? IS the,””g‘ger ﬁflo'”t detec:iz”s divided \yhich distribute the photons to different regions, where each

y the number of systems emitted by the source, ansithe cor- ) 10n guffers a randomly chosen rotation of the tye
responding single photon detection efficiency. . . . .
and a linear polarization measuremémypically the horizon-
tal and vertical states represent the computational bdsis

¢ Po~Pe " 7 all photons are detected, then tWibree of the contestants

3 0.250 1 1 send their result to the referee who adds them up and sends

4 0.250 1 1 the result to the thirdfourth) contestant, who adds it to her

3 ~0.214 ~0.50 ~0.79 result and gives the answer.

4 ~0218 ~0.20 <067 To sum up, while testing th_e advantage _of the original
guantum GMN protocol involving three parties would re-

3 >0.107 =0.20 >0.58 quire detectors of an efficiencgt least o>0.79 (or o

4 >0.177 >0.10 >0.56 >0.89 to obtain an experimental quantum probability of

3 >0.077 >0.17 >0.55 winning 10% higher than the best classical probabilitye

4 >0.097 >0.05 >0.47 have introduced a modified quantum GMN protocol involv-

ing three or four parties and preserving all the essential fea-
tures of the original one, but with the remarkable property

col, the setup would only requirg>0.17 (that is, detectors 4t the quantum vs classical advantage is detectablerfpr

of efficiency o> 0.55. On the other hand, si.nce sources of o. To be specifico>0.55 would allow us to obtain an ex-
four-photon GHZ states4) are currently availablgl4,13,  perimental quantum probability of winning at least 7.7%
then it is interesting to note that, fae=4 contestants and an pigher than the best classical probability in the three-party
_expe_nmental setup W'Fh_ an overall ef_ﬂmenqb 0.05 (that case, andr>0.47 would allow us to obtain an experimental
is, with detectors of efficiency > 0.47), it would be possible uantum probability of winning at least 9.7% higher than the

to obtain a difference betwef)en the quantum and classicglegt classical probability in the four-party case. Our hope is
probabilities higher than 9.7%. Photodetectorsoot 0.47 a4 this proposal will stimulate experimental work to detect

are currently avail_able. Other examples_ for different valuegy,o quantum reduction of a genuine multiparty communica-
of o can be found in Table II. An interesting advantage of all;, complexity.

these experiments is that the expected quantum probabilities

are 1, which implies that the error of the experimental re- The authors thank M. Bourennane, E. F. Galvdo, C. Serra,

sults, given by the standard deviatigRP(1-P)/r, wherer is  and H. Weinfurter for useful discussions and comments. This

the number of coincidencdge., played rounds should be  work was supported by the Spanish Ministerio de Ciencia y

very low. Tecnologia Project BFM2002-02815 and the Junta de An-
The proposed experiment would consist of a source emitdalucia Project FQM-239.

[1] R. Cleve and H. Buhrman, Phys. Rev. %6, 1201(1997). [8] D. M. Greenberger, M. A. Horne, A. Shimony, and A.
[2] H. Buhrman, R. Cleve, and A. Wigderson, froceedings of Zeilinger, Am. J. Phys58, 1131(1990.
the 30th Annual ACM Symposium on the Theory of Computing[9] P. Xue, Y.-F. Huang, Y.-S. Zhang, C.-F. Li, and G.-C. Guo,
(ACM Press, New York, 1998 p. 63. Phys. Rev. A64, 032304(2001).
[3] H. Buhrman, W. van Dam, P. Hayer, and A. Tapp, Phys. ReV{]_O] E. F. Galvdo, Phys. Rev. A5, 012318(2002.
A 60, 2737(1999. [11] €. Brukner, M.Zukowski, and A. Zeilinger, Phys. Rev. Lett.

[4] R. Raz, inProceedings of the 31st Annual ACM Symposium on 89, 197901(2002.

the Theory of ComputingACM Press, New York, 1999p.  [12] p. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A.

358. Zeilinger, Phys. Rev. Lett82, 1345(1999.
[5] A. M. Ste_an(_a and W. van I?am, Phys. quﬁ@_(Z), 35 (2000'_ [13] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A.
[6] E. Kushilevitz and N. Nisan,Communication Complexity Zeilinger, Nature(London 403 515 (2000

(Cambridge University Press, Cambridge, England, 1997 [14] J.-W. Pa;n M. Daniell, S. Gasparoni .G Weihs. and A
[7] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell's Zeilinger, Phys. Rev. Lett86, 4435(2000).

Theorem, Quantum Theory, and Conceptions of the Uniyerse[15 7 7hao. T. Y V-A Chen A-N. Zh NMiukowski. and
edited by M. Kafatos(Kluwer Academic, Dordrecht, 1989 | Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, OwsKl, an

D. 69 J.-W. Pan, Phys. Rev. Letf@1, 180401(2003.

020301-4



