
Proposed experiment for the quantum “Guess My Number” protocol

Adán Cabello* and Antonio J. López-Tarrida†

Departamento de Física Aplicada II, Universidad de Sevilla, 41012 Sevilla, Spain
sReceived 21 April 2004; published 4 February 2005d

An experimental realization of the entanglement-assisted “Guess My Number” protocol for the reduction of
communication complexity, introduced by Steane and van Dam, would require producing and detecting three-
qubit GHZ states with an efficiencyh.0.70, which would require single photon detectors of efficiencys

.0.89. We propose a modification of the protocol which can be translated into a real experiment using
present-day technology. In the proposed experiment, the quantum reduction of the multiparty communication
complexity would require an efficiencyh.0.05, achievable with detectors ofs.0.47, for four parties, and
h.0.17 ss.0.55d for three parties.
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One of the most impressive applications of quantum re-
sources for information processing is the reduction of the
communication complexity required for certain computations
f1–5g. Let us suppose that two or more separated parties need
to compute a function of a number of inputs distributed
among them. Using the best classical strategy, this would
require a certain minimum amount of classical communica-
tion to be transmitted between the parties. However, if the
parties initially shared some entangled states, then the
amount of classical communication required for the compu-
tation would be a great deal smaller than if no entanglement
were present. The quantum advantage usually grows with the
number of parties involvedf2g. Entanglement-assisted reduc-
tion of classical communication complexity has numerous
potential applications in computer networks, VLSI circuits,
and data structuresf6g.

A particularly attractive, thought-provoking, and stimulat-
ing way to show the quantum advantage was proposed by
Steane and van Dam as a method for always winning the
television contest “Guess My Number”sGMNd f5g. A team
of three contestantssAlice, Bob, and Charlied, each of them
isolated in a booth, is given an integer numbern=nA+nB
+nC of applesswhere nj =0, 1/2, 1, or 3/2d. One of the
contestants must guess whether the number is odd or even
just by receiving one bit from the other two contestants. The
best classical strategy would allow the contestants to win in
75% of the cases. However, they can win in 100% of the
cases if they initially share three-qubit Greenberger-Horne-
Zeilinger sGHZd statesf7,8g. The same game can be played
with four contestants and the quantum versus classical ad-
vantage is the same: 100% vs 75%. Steane and van Dam
stressed that “A laboratory demonstration of entanglement-
enhanced communication would bes…d a landmark in quan-
tum physics and quantum information science”f5g. So far,
however, the requirements for an experimental implementa-
tion of the quantum GMN protocol have impeded further
progress. Some progress has been reported on simpler
schemes of quantum reduction of classical communication

complexity. For instance, Xueet al. presented an experiment
on quantum reduction of two-party communication complex-
ity based on two-qubit entanglementf9g. Galvão proposed a
protocol requiring only one qubit and a detection efficiency
s.0.33 f10g. More recently, Brukner,Żukowski, and
Zeilinger have introduced a quantum reduction of two-party
communication complexity based on the entanglement be-
tween two qutritsf11g.

The main obstacle for an experimental realization of the
quantum GMN protocol is the high detection efficiency re-
quired. The required setup would consist of a source of GHZ
states, single qubit operations, and single qubit detectors. If
we define the overall efficiencyh as the number of three-
qubit sor four-qubitd joint detections corresponding to GHZ
states, divided by the number of three-qubitsor four-qubitd
systems emitted by the source, then, assuming that when no
joint detection occurs the probability of winning the game is
only 1/2, the experimental probability of winning the GMN
game using GHZ states is

Pexpshd = h + s1 − hd 1
2 . s1d

Therefore, the quantum advantage could be detected if an
overall efficiencyh.0.50 could be achieved. In the three-
qubit case, the experiment would require threefold coinci-
dences between detectors so that each individual detector
should have an efficiencys=0.79ssinces=h1/c, c being the
number of qubitsd. Moreover, in order to obtain an experi-
mental quantum probability of winning the GMN game 10%
higher than the best classical probability, we would needh
.0.70, which would require detectors of efficiencys
.0.89.

Quantum optics provides the best way to produce qubits
in a GHZ state and distribute them to various spacetime re-
gions. However, the first experiments producing three-
photon polarization-entangled GHZ statesf12,13g did not
satisfy the demands of the GMN protocol, because only a
tiny fraction of the ensemble of photon triplets was detected
f5g. Further experiments producing four-photon GHZ states
f14g yield a fourfold coincidence with a success probability 4
times higher than that of previous three-photon experiments.
Moreover, recent experimentsf15g report a fourfold coinci-
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dence rate 2 orders of magnitude brighter than inf14g. We
shall show that in the very near future this technology could
allow an experimental demonstration of a quantum reduction
of a genuine three or four-party communication complexity.
In this paper, we introduce a modified version of the quan-
tum GMN protocol which is experimentally feasible with
current technology. We shall describe a quantum reduction of
three-partysfour-partyd communication complexity in which
the quantum advantage is clear, provided we can produce
threesfourd qubits in a GHZ state and detect them all sepa-
rately with an overall efficiencyh.0.17, which would re-
quire detectors of efficiencys.0.55 sh.0.05 and s
.0.47, for four qubitsd. The main goal of this proposal is to
note that the absence of perfect sources and detectors does
not prevent us from performing an experimental demonstra-
tion of a quantum reduction of a genuine multiparty commu-
nication complexity and to stimulate experimental work
along these lines.

The modified GMN game preserves all the essential fea-
tures of the original game, but includes rules that relax the
detection requirements to experimentally show the quantum
advantage. The modified GMN game features one referee
sand a fourth contestant in thec=4 versiond. We shall discuss
in detail the four-party version of the modified protocol;
similar rules apply to the three-party version. During the
game, each of four contestantssAlice, Bob, Charlie, and
Davidd is isolated in a booth. Before the game starts, they
can take anything they want with them into the booths, but
once they are in, they will not be able to communicate with
each other or with anybody else, save for the referee. Once
they are in the booths, the referee distributes among them a
randomly chosen integer numbern of apples in four portions,
n=nA+nB+nC+nD, such thatnj =0, 1/2, 1, or 3/2. Then, the
referee asks each and everyone whether or not they are ready
to play the game; if all contestants say yes, then the referee
asks Bob, Charlie, and David to give him a bit. Then, the
referee addssmodulo 2d the three bits, and hands the result
over to Alice. The team wins if Alice ascertains whether the
total number of distributed apples is even or odd. If any
contestant refuses to play the game, then the referee distrib-
utes a new numbern8=nA8 +nB8 +nC8 +nD8 of apples and asks
the four contestants again whether or not they are ready to
play the game, etc. If the referee distributesN rounds of
apples, then the contestants are forced to play the game for at
least r rounds shereafter referred as “the played rounds”d.
The contestants knowp=r /N before the game starts. In ad-
dition, the referee must ensure that each of the 128 possible
variations of applesssee Table Id occurs with the same fre-
quency in the played rounds.

In the modified GMN game, if the referee forces the con-
testants to play inr =pN of theN rounds, the contestants can
refuse to play between the first and theN−r round, but then
they are forced to play in the remainingr rounds. If they
decide to play without being forced to do so then, every time
they play, they will postpone in one round the moment they
have to play compulsorily. The maximum classical probabil-
ity of winning is obtained by combining two strategies. The
first one applies in the rounds in which they play without
being forced to do so, and can be designed in a way such that
the contestants know when they must play and success is

guaranteed when they do playsthis happens, at best, once in
every 32 rounds, on average, ifc=4, and once in every 8
rounds, on average, ifc=3d. The second strategy applies
when they are forced to play. It could be any of the best
classical strategies of the original GMN game, giving a prob-
ability of success of 3/4sfor instance, each contestant would
give the referee a bit value 0 if she/he had receivednj =0 or
1/2, or a bit value 1 if she/he had receivednj =1 or 3/2d.
From all this follows that, for the modified GMN game, the
best classical strategiessof which there are severald give the
following maximum probability of winning forc=3 or c=4
contestants being forced to play in at leastp of the rounds,

PCsc,pd = lim
N→`

F s1 − mdN−pN

4pN
o
j=0

pN

s j + 3pNdm j

3 SN − pN+ j − 1

j
D + o

j=pN+1

N

s1 − mdN−jm jSN

j
DG ,

s2d

where

m =
8

22c . s3d

For c=3 andc=4, this probability is represented as a func-
tion of p in Fig. 1. In addition, Fig. 1 contains numerical
simulations of the probability that the team withc=3 andc
=4 wins when using the best classical strategy for games of
N=100 rounds.

TABLE I. The 19 integer combinations of 0, 1/2, 1, and 3/2,
and their corresponding 128 variations. In 64 of themni +nj +nk

+nl is an odd number while in the other 64 it is an even number.

hni ,nj ,nk,nlj ni +nj +nk+nl Number of variations

h0,0,0,0j 0 1

h0,0,0,1j 1 4

h0,0,1/2,1/2j 1 6

h0,0,1/2,3/2j 2 12

h0,0,1,1j 2 6

h0,1/2,1/2,1j 2 12

h1/2,1/2,1/2,1/2j 2 1

h0,0,3/2,3/2j 3 6

h0,1/2,1,3/2j 3 24

h0,1,1,1j 3 4

h1/2,1/2,1/2,3/2j 3 4

h1/2,1/2,1,1j 3 6

h0,1,3/2,3/2j 4 12

h1/2,1/2,3/2,3/2j 4 6

h1/2,1,1,3/2j 4 12

h1,1,1,1j 4 1

h1/2,3/2,3/2,3/2j 5 4

h1,1,3/2,3/2j 5 6

h3/2,3/2,3/2,3/2j 6 1
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Note that, in both cases, if the referee forces the team to
play all the rounds, the probability of winning by using the
best classical strategy is 3/4 while, if the referee forces them
to play in at least one of every 100 rounds, then the prob-
ability of success using the best classical strategy is approxi-
mately 1.

Let us now see what the probabilities of winning are when
using the best entanglement-assisted strategy. The contes-
tants will always win if they use the following method.

s1d Each contestant carries a qubit belonging to a four-
qubit system initially prepared in the GHZ state

uGHZl =
1
Î2

su0̄0̄0̄0̄l + u1̄1̄1̄1̄ld, s4d

where u0̄0̄0̄0̄l= u0̄l ^ u0̄l ^ u0̄l ^ u0̄l, where u0̄l=s1/Î2dsu0l
+ u1ld and u1̄l=s1/Î2dsu0l− u1ld.

s2d Each contestantj applies to her/his qubit the rotation

Rsnjd = u0̄lk0̄u + einjpu1̄lk1̄u, s5d

wherenj is her/his number of apples.
s3d Then, each contestant measures her/his qubit in the

computational basishu0l,u1lj.
s4d If, due to the inefficiency of the detectors, a contestant

does not obtain a result, then she/he will tell the referee that
she/he will not play the game, and the referee will therefore
abort that round. Note that, in the aborted rounds, Alice does
not receive any bits from the referee. If all contestants con-
sent to play that round, then Bob, Charlie, and David will
give their outcomes to the referee, who will add them up, and
give the result to Alice.

In this case Alice can give the correct answer with prob-
ability 1 because states4d has the following property: for any
nA+nB+nC+nD integerswherenj =0, 1/2, 1, or 3/2d,

RsnAd ^ RsnBd ^ RsnCd ^ RsnDduGHZl

= HuGHZl if nA + nB + nC + nD is even,

uGHZ'l if nA + nB + nC + nD is odd,
J s6d

where uGHZl and uGHZ'l can be reliably distinguished by
local measurements in the computational basis:

uGHZl =
1

2Î2
su0000l + u0011l + u0101l + u0110l + u1001l

+ u1010l + u1100l + u1111ld, s7d

uGHZ'l =
1

2Î2
su0001l + u0010l + u0100l + u0111l + u1000l

+ u1011l + u1101l + u1110ld. s8d

Assuming that, when all four contestants obtain a result,
this corresponds to a GHZ statesi.e., assuming that any error
in the preparation is negligibled, then having an experimental
efficiency h allows the team to play the modified GMN
game with p=h. Now let us go back to the probabilities
illustrated in Fig. 1. In the first place we shall compare the
experimental requirements for the original GMN game with
three qubits to those of the modified protocol. The most im-
portant point is that, while in the original GMN protocol the
difference between the quantum and classical probabilities of
winning could be detected only if the experimental setup has
an overall efficiencyh.0.50 sthat is, a single qubit detec-
tion efficiencys=0.79d, in the modified protocol the differ-
ence between the quantum and classical probabilitiescan be
detected for almost any efficiency. Moreover, as seen above,
to obtain an experimental quantum probability of winning
10% higher than the best classical probability in the original
GMN protocol, the setup would need to haveh.0.70 sthat
is, a single qubit detection efficiencys.0.89d. However, to
obtain a difference between the quantum and classical prob-
abilities of winning higher than 7.7% in the modified proto-

FIG. 1. Exact and numerical
simulations of the probability of the
contestants winning the modified
GMN game using the best classical
strategy, as a function of the mini-
mum percentage of rounds the ref-
eree forces them to play, for the
three-contestant game sblack
squaresd and four-contestant game
swhite squaresd. In the numerical
simulations the referee distributes
N=100 rounds. The exact probabili-
ties are given by Eq.s2d. Interest-
ingly, for c=3 contestants forced to
play in at least p=0.17 of the
rounds, the best classical probability
of winning is only PC=0.92. Forc
=4 contestants forced to play in at
leastp=0.05 of the rounds, the best
classical probability of winning is
only PC=0.90.
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col, the setup would only requireh.0.17 sthat is, detectors
of efficiency s.0.55d. On the other hand, since sources of
four-photon GHZ statess4d are currently availablef14,15g,
then it is interesting to note that, forc=4 contestants and an
experimental setup with an overall efficiencyh.0.05 sthat
is, with detectors of efficiencys.0.47d, it would be possible
to obtain a difference between the quantum and classical
probabilities higher than 9.7%. Photodetectors ofs.0.47
are currently available. Other examples for different values
of s can be found in Table II. An interesting advantage of all
these experiments is that the expected quantum probabilities
are 1, which implies that the error of the experimental re-
sults, given by the standard deviationÎPs1−Pd / r, wherer is
the number of coincidencessi.e., played roundsd, should be
very low.

The proposed experiment would consist of a source emit-

ting threesor fourd polarization-entangled photons in a GHZ
state generated in a parametric-down conversion process
f14,15g, coupled into threesfourd single mode optical fibers
which distribute the photons to different regions, where each
photon suffers a randomly chosen rotation of the types5d,
and a linear polarization measurementstypically the horizon-
tal and vertical states represent the computational basisd. If
all photons are detected, then twosthreed of the contestants
send their result to the referee who adds them up and sends
the result to the thirdsfourthd contestant, who adds it to her
result and gives the answer.

To sum up, while testing the advantage of the original
quantum GMN protocol involving three parties would re-
quire detectors of an efficiencyat least s.0.79 sor s
.0.89 to obtain an experimental quantum probability of
winning 10% higher than the best classical probabilityd, we
have introduced a modified quantum GMN protocol involv-
ing three or four parties and preserving all the essential fea-
tures of the original one, but with the remarkable property
that the quantum vs classical advantage is detectable forany
s. To be specific,s.0.55 would allow us to obtain an ex-
perimental quantum probability of winning at least 7.7%
higher than the best classical probability in the three-party
case, ands.0.47 would allow us to obtain an experimental
quantum probability of winning at least 9.7% higher than the
best classical probability in the four-party case. Our hope is
that this proposal will stimulate experimental work to detect
the quantum reduction of a genuine multiparty communica-
tion complexity.
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TABLE II. Examples of single photon detection efficiency re-
quirements for the modified GMN protocol.c is the number of
parties,PQ−PC is the difference between the quantum and classical
probabilities of winning,h is the number of joint detections divided
by the number of systems emitted by the source, ands is the cor-
responding single photon detection efficiency.

c PQ−PC h s

3 0.250 1 1

4 0.250 1 1

3 .0.214 .0.50 .0.79

4 .0.218 .0.20 .0.67

3 .0.107 .0.20 .0.58

4 .0.177 .0.10 .0.56

3 .0.077 .0.17 .0.55

4 .0.097 .0.05 .0.47
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