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Abstract
The leaf area index (LAI) is a biophysical crop parameter of great interest for agronomists 
and plant breeders. Direct methods for measuring LAI are normally destructive, while indi-
rect methods are either costly or require long pre- and post-processing times. In this study, 
a novel deep learning-based (DL) model was developed using RGB nadir-view images 
taken from a high-throughput plant phenotyping platform for LAI estimation of maize. 
The study took place in a commercial maize breeding trial during two consecutive grow-
ing seasons. Ground-truth LAI values were obtained non-destructively using an allometric 
relationship that was derived to calculate the leaf area of individual leaves from their main 
leaf dimensions (length and maximum width). Three convolutional neural network (CNN)-
based DL model approaches were proposed using RGB images as input. One of the models 
tested is a classification model trained with a set of RGB images tagged with previously 
measured LAI values (classes). The second model provides LAI estimates from CNN-
based linear regression and the third one uses a combination of RGB images and numeri-
cal data as input of the CNN-based model (multi-input model). The results obtained from 
the three approaches were compared against ground-truth data and LAI estimations from a 
classic indirect method based on nadir-view image analysis and gap fraction theory. All DL 
approaches outperformed the classic indirect method. The multi-input_model showed the 
least error and explained the highest proportion of the observed LAI variance. This work 
represents a major advance for LAI estimation in maize breeding plots as compared to pre-
vious methods, in terms of processing time and equipment costs.
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Introduction

Global climate changes and population growth are demanding new strategies for enhanc-
ing yield potential of crops due to their great genetic diversity (Foley et al., 2011; Sharma 
et  al., 2015). However, the full potential of such strategies has not been reached due to 
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the technical difficulties encountered by plant breeders in evaluating new cultivars in dif-
ferent scenarios. This process has been improved with the emergence of aerial and ter-
restrial high-throughput plant phenotyping platforms (HTPPs), which can meet the needs 
of breeders (Phillips, 2010; Andrade-Sanchez et al., 2014; Araus & Cairns, 2014). Recent 
adavances in high-resolution remote sensing technologies and the development of HTPPs, 
have allowed breeders to obtain valuable crop information remotely (i.e., non-destruc-
tively), more quickly and cheaper than with traditional sampling methods (Fahlgren et al., 
2015; Pérez-Ruiz et al., 2020; Li et al., 2021).

The leaf area index (LAI) is a key biophysical parameter that has been extensively stud-
ied for years to characterize vegetation dynamics and crop productivity. According to Wat-
son (1947) LAI is defined as the photosynthetically active leaf area per unit of horizontal 
ground surface area, and has been related to crop development, crop water use, crop carbon 
uptake and yield (Asner et al., 2003; Kalisperakis et al., 2015; Yan et al., 2019). The LAI is 
therefore a relevant crop trait to be monitored with HTPPs in maize breeding programs to 
support breeders in the process of obtaining more productive cultivars.

From a literature review, there exist two widely used methods (direct and indirect) for 
retrieving LAI (Behera et al., 2010; Olivas et al., 2013). Direct methods are more accurate 
than indirect methods but their often destructive nature and the time required to process 
leaf samples at laboratory facilities (Stroppiana et al., 2006; Sonnentag et al., 2007) make 
them unsuitable for inclusion in the routine measurements undertaken by maize breeders. 
Indirect methods based on optical measurements provide fast LAI estimates but require 
costly equipment whereas the methods based on hemispheric/nadir-view RGB imagery and 
gap fraction theory provide more economical LAI estimates (Mougin et al., 2014; Sharifi, 
2018; Yan et al., 2019). Although hemispherical bottom-up RGB images have been tradi-
tionally used for indirectly estimating LAI (Jonckheere et al., 2004), nadir-view and bot-
tom-up hemispherical RGB images showed similar accuracies for LAI estimation (Mougin 
et  al., 2014). Despite their usefulness for LAI determination, these methodologies based 
on the use of affordable RGB images require the use of post-processing software, slowing 
down the process of obtaining LAI data (Jonckdheere et al., 2004).

Allometric relationships are empirical functions that relate the leaf area to any other 
plant dimension, and they have also been widely studied to estimate LAI under different 
conditions and crops (McKee, 1964; Wiersma & Bailey, 1975; Aase, 1978). During the last 
2 decades, many studies have found that leaf dimensions (length and width) can provide 
accurate LAI estimates using straightforward allometric relationships (Soltani et al., 2006; 
Colaizzi et  al., 2017). Although allometric methods can be understood as indirect meth-
ods for LAI estimation, since they infer an LAI value from its relationship with other veg-
etation traits, they can also be considered direct methods because the allometric relations 
are obtained from leaves that were sampled and measured manually (Yan et al., 2019). In 
research or breeding trials where destructive sampling is not possible, allometric relation-
ships provide an excellent method to be used as ground-truths for the validation of other 
indirect methods for LAI estimation.

Artificial intelligence (AI) algorithms represent a new approach for indirect LAI estima-
tion from remotely-sensed data, including RGB imagery (Verrelst et al., 2012; Houborg & 
McCabe, 2018; Fang et al., 2019). In recent years, despite the widely recognized impor-
tance of LAI in various biophysical processes, only a few authors have published stud-
ies where remote sensing technologies along with convolutional neural networks (CNNs) 
based models have been used to estimate its value. A multi-feature learning method to 
quantify green fractional vegetation cover in wheat was suggested by Sadeghi-Tehran 
et al. (2017). The results were compared with actual LAI values, showing coefficients of 
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determination greater than 0.8. Over the same period, Jin et al. (2020a) proposed a deep 
learning-based algorithm for non-destructive estimation of 3D plant architecture for pre-
dicting at plot level maize biomass using terrestrial LiDAR. However, although the capa-
bility of LiDAR sensor to estimate phenotypic traits (i.e., leaf area) at individual plant level 
showed great potential, its cost is still a challenge for small plant breeding companies (Jin 
et al., 2021). Harnessing the success of drones in agriculture, Yamaguchi et al. (2021) eval-
uated the feasibility of combining CNN with RGB images taken from unmanned aerial 
vehicles (UAVs). The results demonstrated that the DL model developed could be an alter-
native for rice LAI estimation, as long as images are taken without blur effect caused by 
the UAV’s high-speed flight. A recent study conducted in wheat by Apolo–Apolo et  al. 
(2021) showed the feasibility of combining DL and RGB images obtained from a field 
HTPP platform (Pérez-Ruiz et al., 2020) to derive LAI values in wheat breeding plots. In 
the last decade, efforts have been made to develop methodologies for the determination 
of LAI in maize from optical sensors, including hyperspectral, multispectral, LiDAR and 
RGB sensors (Table 1). Among the methodologies employed by these authors to estimate 
maize LAI from images and optical data are empirical relationships with vegetation indices 
(Fei et al., 2012), the use of machine learning models such as deep neural networks (DNN), 
support vector regression (SVR) or partial least squares regression (PLSR) (Fei et  al., 
2012; Castro-Valdecantos et al., 2021; Liu et al., 2021), the use of look-up tables (LUT) 
(Fei et al., 2012; Duan et al., 2014; Richter et al., 2010; Zhao et al., 2018), or through the 
inversion of the PROSAIL canopy reflectance model. The coefficient of determination  (R2) 
obtained with the different methodologies for estimating LAI in maize ranged from 0.66 to 
0.87 (Table 1). In previous works conducted on other crop species, it has been shown that 
the development of DL models that fuse different data sources (e.g. RGB images and other 
crop features introduced in the form of numerical data) can significantly improve the DL 
model performance (Apolo-Apolo et al. 2021). The DL models developed to date for the 
determination of LAI in maize use a single source of data (Table 1), so it is necessary to 

Table 1  Performance and methodology used in previous studies for the estimation of LAI in maize

Sensor Platform Methods/Indices R2 RMSE References

Hyperspectral Hand-held spectro-
radiometer

NDVI 0.67 0.67 Fei et al. (2012)
EVI 0.79 0.54
PCA 0.81 0.50
DNN 0.69 0.71
PROSAIL 0.73 0.66
LUT 0.81 0.59

Hyperspectral UAV LUT-PROSAIL – 0.55 Duan et al. (2014)
LiDAR UAV Full-waveform

(point clouds)
0.72 0.45 Nie et al. (2016)

Multi-spectral Satellite LUT-PROSAIL – 0.42 Richter et al. (2010)
Multi-spectral Satellite LUT-PROSAIL 0.66 1.26 Zhao et al. (2018)
RGB UAV DNN 0.82 0.59 Liu et al. (2021)

PLSR 0.86 0.52
SVR 0.67 0.65
RFR 0.71 0.67

RGB HTPP DNN 0.78 0.52 Castro-Valdecantos et al. (2021)
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evaluate the potential of DL models that combine different data sources to estimate LAI in 
maize.

Based on the above, the objectives of this study were (1) to develop and evaluate three 
different DL-based models using RGB imagery taken from a field-based HTPP for maize 
LAI estimation, and (2) to examine their accuracy as compared to a traditional indirect LAI 
estimation method based on RGB imagery and gap fraction analysis.

Materials and methods

Experimental design

The experiment was performed at the facilities of a maize breeding company (Corteva 
Agrisciencies S.L.) located in La Rinconada, Sevilla, Spain (latitude: 37.4572° N; longi-
tude: 5.9811° W; datum WGS84). The study was carried out over two crop seasons (2018 
and 2019) in a maize breeding trial sown on 10th and 16th of April respectively, consisting 
of 20 hybrids, three replicates per cultivar and two irrigation treatments (well-watered and 
deficit irrigated) in a randomized block design (supplementary Fig. S1). Each plot con-
sisted of two 6 m long maize rows with a plant spacing of 0.75 m × 0.15 m. A total of 32 
maize plots, corresponding to two complete rows of plots from the well-watered block, 
were used in the experiment. During the two experimental seasons, the crops were man-
aged following the usual agronomic practices in the region.

RGB images were taken throughout the two growing seasons in the selected plots and 
used to develop three DL-based models for indirect LAI estimation. Additionally, the RGB 
images were also used to obtain LAI estimates with the CAN-EYE software (V6.4.91), 
which provides indirect LAI estimations by gap fraction analysis. The latter is a method 
traditionally used for indirect LAI estimation from RGB images, which has been used in 
this study to compare its performance with that of the three DL-based models developed 
in this work. The accuracy of all indirect LAI estimation methods was assessed through 
comparison with ground-truth LAI data obtained during the sampling days. The following 
sections describe the above methods in more detail.

LAI ground‑truth data

Direct LAI measurements were performed to be considered as ground-truth data for the 
validation of all indirect LAI estimation methods. Since leaf area measurements are often 
destructive and cannot be feasibly performed in breeding programs due to the error they 
would introduce in the final harvest, an allometric relationship similar to that proposed by 
other authors (Montgomery, 1911; McKee, 1964; Keating & Wafula, 1992; Birch et  al., 
1998) was developed to estimate the leaf area of individual maize leaves from their main 
dimensions (i.e., length and maximum width). By measuring the main dimensions of all 
the leaves of a plant, its total leaf area can thus be measured without destructive sam-
pling. To obtain the allometric relationship, over 70 maize leaves with different sizes were 
destructively sampled in 2018. The main dimensions of all sampled leaves (length, L, and 
maximum width, W) were measured manually in the laboratory with a millimetre-preci-
sion tape measure (Tylon Tape 8 m, Stanley, Japan). In addition, the unitary leaf area (LA) 
of each leaf was measured with a leaf area meter (model Li-Cor 3100, Li-Cor, Lincoln, 
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NE, USA). Using these variables, an allometric relationship was derived to estimate LA 
from the corresponding L and W measurements.

During the 2 years of experiments, two representative plants per plot were selected on 
each sampling date (three dates per growth cycle) and used for the direct estimation of the 
LAI to be used as ground-truth values. For each maize plot and sampling date, LAI was 
calculated as follows:

 where PLA denotes the total plant leaf area calculated by summing the individual LAs of 
all plant leaves obtained with the allometric relationship and PS denotes the plant spacing 
(estimated as the inverse of the plant density).

The measured LAI values were used as ground-truth data for the DL-based models 
training/validation as well as to assess the reliability of the indirect LAI estimates made by 
the CAN-EYE software.

Image acquisition

In this study, a smartphone iPhone X (Apple Inc, Cupertino, CA, USA), whose techni-
cal characteristics are shown in supplementary Table S1, was suspended at the front of an 
HTPP platform to take nadir-view images of maize canopy. Considering that the camera 
was centered in the interrow spacing of the plots, placed 1 m above the maize canopies 
and that its field of view is 60.983 (Table S1), it is very unlikely that leaves from adjacent 
treatment plants are interfering the LAI measurements. The device was used for recording 
RGB videos in QuickTime Movie (MOV) format across all the selected plots. The platform 
speed was set at 0.6 m  s−1, which allowed a video to be recorded in an average of 10 s per 
plot.

The videos were disassembled into JPEG image frames with an automated script based 
on Python (Python programming language, v. 3.7) and OpenCV computer vision library 
(Open Source Computer Vision Library, v. 3.2.0). As a result, an average of 300 frames per 
plot were produced. Approximately 250 out of 300 images per plot were taken for the final 
analysis to avoid the border effect. The images were taken over six sampling dates, three 
belonging to the 2018 growing season, days of year (DOY) 143 (phenological period V8), 
157 (V11) and 169 (V13), and the other three belonging to the 2019 growing season, DOY 
151 (V9), 163 (V12) and 177 (VT). The platform was operated from 11:00 a.m. to 1:00 
p.m. under diverse but dry weather conditions during the two growing seasons.

Deep learning (DL) models description

Three DL models were developed to estimate LAI from RGB images, termed (i) classifica-
tion model, (ii) regression model and (iii) multi-input model. Although the three models 
are based on CNNs, the classification model predicts discrete LAI values (classes) whereas 
the regression and multi-input models predict any LAI value in a given range. The classifi-
cation model was trained with a set of RGB images labelled with ground-truth LAI values 
(classes), whereas the regression and multi-input models use RGB images and numerical 
data, including ground-truth LAI values, for model training. The RGB images taken over 
the six sampling dates in 16 out of 32 plots were used as the training dataset, which was 

(1)LAI =
PLA

(

m
2
)

PS
(

m2
)
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further split into a training set and a validation set with 80% and 20% of images, respec-
tively. The images from the remaining 16 plots comprised the testing dataset, i.e. a com-
pletely independent set of images that were not used during the model fine-tuning process 
and that provides an unbiased evaluation of the models, avoiding the possibility of model 
overfitting or pre-learning, masking the actual performance of the model (Kuhn & John-
son, 2013).

The Keras application programming interface (API) (https:// keras. io) and the open-
source library TensorFlow as the backend (Abadi et  al., 2015), were used to define the 
model architecture since this API is able to define a model that can take different data 
inputs, such as numerical, categorical and image data, as well as their combination. Thus, 
the Keras sequential approach was used for the classification CNN model and a functional 
approach was used for the regression and multi-input CNN models.

The classification CNN model proposed (Fig.  1), was a small version of the well-
known VGGNet network introduced by Simonyan & Zisserman (2014). These kind of 
models are used to predict a class (categorical or discrete variable) for a given input 
(e.g., image). The model was developed using a dataset consisting of 24,473 origi-
nal RGB images (1920 × 1080 pixels each) divided into 96 LAI classes, which corre-
sponded to the measured LAI ground-truth values of each plot and day of measurement 
(16 plots and 6 sampling dates). The classes were completely mutually exclusive, and 
there was no overlap between them. It is well-known that overfitting can occur with 
small training datasets (Cogswell et al., 2015). Thus, data augmentation and the drop-
out technique were implemented to supply sufficient robustness to the model, since this 
approach generates and regularizes additional training data from an existing dataset 
(Srivastava et al., 2014). Since the shapes of the input images needed to be arranged for 
the first convolutional layer, the original RGB images were resized into 180 × 180 pixel 
RGB images (depth = 3) to reduce the computational cost of the model and to standard-
ize the input images to an acceptable set of dimensions for training (Rosebrock, 2018). 
The CNN model consisted of three convolution blocks placed in a sequential manner 
(Fig. 1). Firstly, a 2D convolutional neural network contained the main portion of the 
network´s computational load. Next, a rectified linear unit (ReLU) activation function 
is used, where the threshold was set to zero each time. Finally, a max-pooling layer was 
used to reduce the spatial size of the representation, decreasing the number of compu-
tational cycles and weights. After that, a dropout was applied to the next layer to ran-
domly reduce (20%) the number of output units by disconnecting nodes from the current 
layer and inputting them into the next layer. Finally, the next layer was flattened, and a 
fully connected layer was specified by the dense function (128) with ReLU function to 
round out the output of each class (96) label probability.

The regression and multi-input models were developed using a dataset consisting of 
RGB images and numerical data. The image dataset used as model input consists of 384 
original RGB images with an image resolution of 1920 × 1080 pixels, which are tiled in a 
unique montage of 4 RGB images randomly selected per plot covering approximately two-
thirds of the plot surface, 6 sampling dates and 16 plots. The new tiled image was com-
pressed to 180 × 180 pixels as described in the previous classification model. The numeri-
cal data input was processed by a simple multilayer perceptron (MLP), and was defined by 
the measured LAI values (allometric relationship), plant height, number of days after sow-
ing and cover fraction, since those four parameters were shown to be suitable as data inputs 
for this DL method (Apolo-Apolo et al., 2021). Cover fraction values were calculated for 
each image using a Python-based image segmentation method previously described in 
Apolo-Apolo et al. (2021).

https://keras.io
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Fig. 2  Schematic diagram showing the structure of the deep learning regression model for estimating LAI 
values. The inputs are described as an unique montage of 4 RGB tiled images randomly selected per plot, 
with 180 × 180 pixels (px) dimension for one branch and a multi layer perceptron (MLP) for the numerical 
data. Convolutional layers (CONV), followed by rectified Linear Unit activation (ReLU), a batch-normali-
zation layer and a MaxPooling2D were implemented
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Fig. 3  Schematic diagram showing the structure of the deep learning multi-input (CNN + MLP) model. 
The inputs are described as an unique montage of 4 RGB tiled images randomly selected per plot, with 
180 × 180 pixels (px) dimension for one branch and a multi layer perceptron (MLP) for the numerical data 
(LAI, fraction of vegetation cover -FC-, plant height and days after sowing). Convolutional layers (CONV), 
followed by rectified Linear Unit activation (ReLU), a batch-normalization layer and a MaxPooling2D were 
implemented. Unlike the regression model (Fig. 2), the multi-input model uses RGB images and numerical 
data also for LAI predictions
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The regression model architecture (Fig.  2) was based on RGB images and numerical 
data. It was composed of three convolutional layers with a kernel of (3, 3). Each convolu-
tion layer was followed by an activation function (ReLU), a batch-normalization layer and 
a MaxPooling2D with a pool size of (2, 2). Then, the next layer was flattened and two 
fully-connected layers with batch-normalization and dropout were added. Finally, another 
fully connected layer was applied to match with the numerical data. Finally, the final out-
put variable is the LAI value of the plot, which is defined as a numerical (or continuous) 
variable. Unlike the multi-input model, the regression model requires only RGB images for 
predicting LAI.

The multi-input model architecture (Fig. 3), was based on two branches to handle each 
type of data, with the first branch set for image processing and the second branch set for 
numerical data processing. These branches operate independently of each other until they 
are concatenated. The first branch of the model was based on three convolutional layers 
placed in a sequential manner with a 2D convolutional neural network followed by batch 
normalization, ReLU activation and max-pooling, and a dropout rate of 50% was added at 
the end. Then, another set of one 2D convolutional neural network followed by a flattened, 
dense and dropout layers was added. The second branch with numerical data as input was 
processed by MLP composed of two fully-connected (dense and hidden) input layers both 
with ReLU activation. Finally, both outputs (from the two branches) were concatenated and 
used for the final step of the network, which comprissed a fully connected layer with two 
dense layers, where an activation regression function (linear) was added. The final output 
of the model is the predicted LAI value of the plot, which is defined as numerical (or con-
tinuous) variable. In addition to RGB images, the multi-input model requires plant height, 
number of days after sowing and cover fraction for predicting LAI.

The classification model was compiled using “sparse categorical cross-entropy” loss 
function, whereas the regression and multi-input models used the “mean absolute percent-
age error” for their loss functions. All the models used the Adam optimization algorithm 
(Kingma & Ba, 2014) as the optimizer, a learning rate of 0.001 and a batch size of 16, 100 
and 300. In addition, 100 epochs were used with the classification model and 500 epochs 
were used with the regression and multi-input model due to their dual structure of images 
and numerical data. A weight decay factor of 0.001/2500 and 0.001/500 were utilized for 
the regression and multi-input models, respectively.

Indirect LAI estimation using the CAN‑EYE software

Maize LAI was also estimated with a classical indirect method based on RGB imagery 
and gap fraction theory using the CAN-EYE software (developed by the French National 
Institute of Agronomic Research–INRA). Three equal batches of 10 random images were 
selected from each plot and sampling date to be analysed with the software. The software 
uses a series of images processed simultaneously to estimate the LAI (Demarez et  al., 
2008), so the 10-image batches were processed at one time, and the LAI averages per plot 
were calculated by averaging the LAI values derived from each batch of 10 images. Before 
analysing the images, they were preprocessed following the software instructions. Image 
processing followed a segmentation step, in which all pixels were classified into two cat-
egories established by the software, defined as the background (soil) and foreground (veg-
etation). The software also provided estimates of the leaf clumping index (Chen & Black, 
1992), which is computed based on the assumption that vegetation elements are locally 
assumed randomly distributed, so true LAI values could be determined and used in this 
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work. To compare the different indirect methods, only the images used as test dataset in the 
DL-based models (n = 96) were used to estimate LAI with the CAN-EYE software.

Statistical analysis

Linear regressions were used to compare the estimated LAI values by CAN-EYE software 
and the three DL models against the ground-truth LAI values. The mean absolute error 
(MAE) and the root mean square error (RMSE) values were calculated with RStudio team 
(2020; Version 1.3.959) to analyse the predictive performance of the CAN-EYE software 
and the DL models.

Results

Figure 4 shows the allometric relationship obtained to estimate the area of individual maize 
leaves from their corresponding main dimensions (length and maximum width). The rela-
tionship explained 96% of the observed LA variability, with a slope of 0.78  cm2  cm−2 and 
an intercept of + 4.21  cm2. The relationship was used to determine the ground-truth LAI 
values for each plot and sampling date.

Fig. 4  Allometric relationship between each unitary leaf area and the corresponding main leaf dimensions 
(L: length, W: maximum width). Each symbol represents an individual leaf. The solid line depicts the 
regression line, whereas the dashed line depicts the 1:1 line

Table 2  Training and validation 
accuracy and loss values 
obtained for each DL model

Model Epochs Accuracy Loss %

Training Validation Training Validation

Classification 100 0.95 0.95 0.12 0.12
Regression 500 12.8 20.3
Multi-input 500 1.36 1.89
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The accuracy and loss values of the three DL-based models that were obtained during 
model training and validation are shown in Table 2. After 100 epochs, the accuracy and 
loss values of the classification model were approximately 0.95 and 0.12%, respectively, 
in both the training and validation sets, indicating the high level of performance achieved 
by the model. After 500 epochs, the mean absolute percentage errors (loss function) of 
the regression model were approximately 12.8% and 20.3% for the training and valida-
tion datasets, respectively. The multi-input model showed, after 500 epochs, loss values of 
approximately 1.36% and 1.89% for the training and validation sets, respectively.

The relationships between ground-truth LAI and LAI estimated with the CAN-EYE 
software and the three DL-based models are shown in Fig. 5. An independent set of 96 
images corresponding to 16 plots out of 32 and 6 sampling dates was used to test all the 
indirect LAI estimation methods. The CAN-EYE LAI estimations explained 67% of the 
observed LAI variability, with a slope of 0.82 and an intercept of + 1.56 (Fig.  5a). The 

Fig. 5  Relationship between measured ground-truth LAI values and LAI values estimated with the CAN-
EYE software (a), the DL-based classification model (b), the DL-based regression model (c) and the DL-
based multi-input model (d). Each symbol represents an individual RGB image selected from each plot and 
sampling date. The solid line depicts the regression line, whereas the dashed line depicts the 1:1 line

Table 3  Summary of the 
statistical indicators obtained 
with the four LAI estimation 
methods evaluated: the CAN-
EYE software, classification 
model, regression model and 
multi-input model

Method R2 MAE RMSE

CAN-EYE software 0.67 1.23 1.41
DL-based classification model 0.78 0.39 0.52
DL-based regression model 0.89 0.30 0.35
DL-based multi-input model 0.97 0.13 0.19
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CAN-EYE method tended to overestimate the LAI and presented MAE and RMSE values 
of 1.23 and 1.41, respectively (Table 3).

The DL-based classification model explained 78% of the observed LAI variability 
(Fig.  5b). The regression line between measured and estimated LAI values had a slope 
of 0.76 and an intercept of + 0.44, denoting a certain degree of model overestimation 
and underestimation for LAI values lower and greater than 2, respectively. Compared to 
the CAN-EYE method, the classification model exhibited higher accuracy for predicting 
maize LAI, with MAE and RMSE values notably lower (MAE = 0.39, RMSE = 0.52) than 
those observed with the CAN-EYE software (MAE = 1.23, RMSE = 1.41) (Table 3). The 
relationship between the LAI values estimated by the DL-based regression model and the 
measured LAI showed a slope of 0.81 and an intercept of + 0.45 (Fig. 5c). The relationship 
showed much lower scattering  (R2 = 0.89) than those obtained with the CAN-EYE soft-
ware and the DL-based classification model. The MAE (0.3) and RMSE (0.35) obtained 
with the regression model were somewhat lower than those obtained with the classification 
model (Table 3). As with the classification model, the regression model tended to over-esti-
mate and under-estimate LAI values lower than 2 and higher than 3, respectively. The rela-
tionship between measured LAI and LAI values estimated with the DL-based multi-input 
model showed a slope of 0.96 and an intercept of + 0.08 (Fig. 5d). The relationship showed 
much lower scattering  (R2 = 0.97) than those obtained with the CAN-EYE software and the 
other DL-based (classification and regression) models. The multi-input model error was 
also lower than that obtained with the classification and regression models, with MAE and 
RMSE values of 0.13 and 0.19, respectively (Table 3).

Discussion

The reliability and accuracy of three deep learning based models that utilize nadir-view 
RGB images to estimate the LAI of maize breeding microplots has been evaluated and 
compared with that of a traditional image-based indirect method for LAI estimation. One 
of the main advantages of using DL-based models over traditional image-based indirect 
methods for LAI estimation is the absence of the image post-processing steps required by 
other methodologies, such as the CAN-EYE software. As for indirect methods that esti-
mate LAI from diffuse radiation intercepted by vegetation at different zenith and azimuth 
angles (e.g. LI-2200 C PCA, Li-COR, Nebraska, USA), the use of DL models sourced with 
RGB images allows estimating LAI in a more affordable way and without the limitation of 
having to perform the measurements under diffuse solar radiation conditions, as is the case 
of the aforementioned instrument.

In terms of model accuracy, the three DL-based models evaluated showed substantially 
lower LAI estimation errors than that obtained with the CAN-EYE software, as well as 
less data scattering (Table  3). In fact, the CAN-EYE method provided LAI estimations 
with similar accuracy to that of previous works that used either spectral indices (Fei et al., 
2012) or machine learning algorithms, such as SVR, DNN or RFR (Fei et al., 2012; Liu 
et  al., 2021), for maize LAI estimation (Table 1). Of the three DL models assessed, the 
regression and multi-input models reduced data scattering significantly with respect to 
the classification model, being the multi-input model the one that showed the lowest LAI 
estimation errors (MAE = 0.13, RMSE = 0.19) (Table  3). The errors observed with the 
regression and multi-input models are notably lower than those found in previous works 
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where maize LAI was estimated from remotely sensed dada and various types of models 
(Table 1). Only Richter et al. (2010) obtained error values within the same order of mag-
nitude (RMSE = 0.42) by estimating maize LAI through PROSAIL model inversion and 
look-up tables (Table  1). The reason why these two models (regression and multi-input 
models) outperformed the classification model may be due to the fact that they can predict 
continuous LAI values within the range of LAI values used for model training, whereas 
the LAI predictions made by the classification model must match one of the LAI classes 
used in the training dataset. Although both models (regression and multi-input) use two 
sources of information (images and numerical data) for model training, the fact that the 
multi-input model also requires both types of data sources to make LAI predictions may 
explain its better performance (Apolo-Apolo et al., 2021; Yamaguchi et al., 2021). On the 
other hand, although the performance of the regression model is slightly poorer than that of 
the multi-input model, the fact that it uses numerical data only during model training and 
that reasonably accurate LAI predictions are obtained from RGB images alone, makes it a 
very promising method in terms of simplicity. Although the multi-input model can achieve 
much higher accuracies than those previously observed with other methods (Table 1), the 
fact that it requires fusing different data sources (i.e. crop height from LiDAR point cloud 
processing, RGB imagery, etc.) makes it a more complex method for breeders to adopt.

Deep learning has already been considered as a promising tool for solving different 
kinds of problems in agriculture (Kamilaris and Prenafeta-Boldu, 2018; Zhu et al., 2018; 
Zheng et al., 2019). However, despite the excellent performance of the DL models tested in 
this study and the growing number of available DL-based applications in agriculture, there 
is still room for models improvement by, for example, enhancing the training dataset of 
images by using tools such as flipping or changing the brightness of each image (Yamagu-
chi et al., 2021). The suitability of estimating LAI from spectral indices derived from opti-
cal devices has been successfully evaluated in the past and recent years (Fei et al., 2012; 
Liu et al., 2021), but these approaches normally use costly equipment (e.g. hyperspectral 
and multi-spectral cameras on-board UAVs or HTPPs) or provide spatial resolutions (e.g., 
satellite-based applications) that are not suitable for use in some agricultural applications 
(Richter et  al., 2010; Zhao et  al., 2018), such as LAI monitoring in breeding trials with 
very small plot sizes (Gitelson et al., 2003; Jin et al., 2020b). For the latter practical appli-
cation, the multi-input model developed in this work offers higher accuracies than those 
observed by Liu et al. (2021) with various machine learning models based on the use of 
RGB images captured from drones (Table 1). The use of data sources of different nature 
in DL-based models seems, therefore, to be a way to increase their predictive potential as 
compared to models that rely exclusively on RGB images.

The DL-based models developed in this work offer, therefore, an accurate, affordable 
and fast alternative for LAI estimation in maize. The deep learning models also have the 
advantage of being able to continue to be trained with new images that are incorporated 
into the dataset, allowing a progressive increase in their predictive potential.

Conclusions

In this research, it was studied whether DL-based models using down-facing RGB images 
as input could be an alternative to existing semi-automated approaches for the indirect 
estimation of LAI in maize. It was observed that the developed DL models outperformed 
a classical indirect method for LAI estimation based on gap fraction analysis and RGB 
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imagery. In addition, among the three DL models developed, the multi-input model pre-
sented less data scattering and less prediction error than the classification and regression 
models. Future work includes improving the model through re-training with new images to 
be incorporated into the training dataset, and incorporating the model into the workflow of 
an HTPP for real-time determination of LAI in maize breeding plots.
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