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A B S T R A C T

Accurate and early estimation of citrus yields is important for both producers and agricultural cooperatives to be
competitive and make informed decisions when selling their products. Yield estimation is key for predicting
stock volumes, avoiding stock ruptures and planning harvesting operations. Visual yield estimations have tra-
ditionally been employed, resulting in inaccurate and misleading information. The main goal of this study was to
develop an automated image processing methodology to detect, count and estimate the size of citrus fruits on
individual trees using deep learning techniques. During 3 consecutive annual campaigns, a total of 20 trees from
a commercial citrus grove were monitored using images captured from an unmanned aerial vehicle (UAV). These
trees were harvested manually, and fruit sizes were measured. A Faster R-CNN Deep Learning model was trained
using a custom dataset to detect oranges in the obtained images. An average standard error (SE) of 6.59 % was
obtained between visual counting and the model’s fruit detection. Using the detected fruits, fruit size estimation
was also performed. The promising results obtained indicate that this size estimation method can be employed
for size discrimination prior to harvest. A model based on Long Short-term Memory (LSTM) was trained for yield
estimation per tree and for a total yield estimation. The actual and estimated yields per tree were compared,
resulting in an approximate error of SE = 4.53 % and a standard deviation of SD = 0.97 Kg. The actual total
yield, the estimated total yield and the total yield estimated by an expert technician were compared. The error in
the estimation by the technician was SE = 13.74 %, while the errors in the model were SE = 7.22 % and SD =
4083.58 Kg. These promising results demonstrate the potential of the present technique to provide yield esti-
mates for citrus fruits or even other types of fruit.

1. Introduction

Citrus fruits are one of the most important types of crops in the
Mediterranean productive area, with a harvested area of 513,602 ha, 57
% of which (295,000 ha) is located in Spain and approximately 30 % of
which (154,000 ha) is located in Italy. Therefore, the agro-industrial
citrus system is extremely important in Spain (Beltrán-Esteve and Reig-
Martínez, 2014). In this context, Spain is currently the largest producer
and exporter of fresh-market orange fruit in Europe despite the strong
market competitiveness of countries outside the European Union
(Cardeñosa et al., 2015; García-Tejero et al., 2010).

The harvest operations for fresh-market oranges are among the most
expensive tasks associated with Spanish citrus crops because such op-
erations are manually performed (Castro-Garcia et al., 2017; Torregrosa
et al., 2009). Fruit harvesting usually accounts for 25 % of the total
production costs and requires nearly 50 % of the crop labour because

mechanized harvesting is not yet widespread for this crop (Agustí
Fonfría, 2012; Castro-Garcia et al., 2019). In addition, choosing the
optimum harvest time depends on the maturity index, fruit colour and
size, estimation of juice content and market demands, among other
factors (Lado et al., 2014). However, although these parameters are
important, the major challenge with this type of crop for both in-
dividual farmers and producer organizations (i.e., cooperatives) is es-
timating the abundance and size of fruits as early as possible to predict
the volume of stock required at the supply chain level and to organize
harvesting operations (Chinchuluun et al., 2006). For citrus and many
other crops, fruit size is an important quality criterion (Gongal et al.,
2018). Currently, yield information and fruit size are available only
after the fruits are harvested, weighed and sorted using commercial
grading machines in processing centres (Bulanon et al., 2009). Manual
measurements of fruit traits are time-consuming and prone to mea-
surement and recording errors (Rahnemoonfar and Sheppard, 2017).
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Throughout history, estimates of crop yields have been based on the
agronomic conditions of the crop, historical crop yield data and visual
observations of the crop (Dorj et al., 2017). In Spanish orange orchards,
visual techniques are often used to estimate yields; however, these
methods are highly subjective because they depend on technician
knowledge and experience. An error between the actual yield and yield
prediction of 15–25% can occur (Castro-Garcia et al., 2019). Therefore,
developing a highly accurate method to estimate crop yield and fruit
size before harvest is the key to helping farmers make decisions.

In recent years, due to advances in computers, cameras and image
analysis techniques, a wide range of methodologies based on counting
fruits numbers have been developed to estimate crop yields (Gongal
et al., 2015). For example, some earlier studies regarding fruit re-
cognition were conducted on apples (Aggelopoulou et al., 2011; Gongal
et al., 2018; Zhou et al., 2012), citrus fruits (Blasco et al., 2003; Gong
et al., 2013; Kurtulmus et al., 2011; Lin et al., 2020, 2019a; Okamoto
and Lee, 2009), tomatoes (Yamamoto et al., 2014; Zhao et al., 2016)
and guava (Lin et al., 2019b). However, most of these techniques use
algorithms based on the spectral response among pixels as a unique
feature to detect and count fruits (Burnett and Blaschke, 2003). As
image pixels are very sensitive to illumination changes under un-
structured light conditions, using such algorithms can reduce the ac-
curacy of fruit detection (Lin et al., 2019a; Rosebrock, 2016).

As an alternative to the above techniques, artificial intelligence (AI)
methods, especially artificial neural networks (ANNs), have been re-
cently used for yield estimation based on fruit detection (Kamilaris and
Prenafeta-Boldú, 2018; Sa et al., 2016; Zhu et al., 2018). These methods
have markedly improved over the past decade due to advances in
computer technology, which has led to remarkable results in different
areas, including agriculture (Krizhevsky et al., 2012; Lecun et al.,
2015). For instance, highly successful yield estimations for mango
(Kestur et al., 2019; Koirala et al., 2019; Wang et al., 2019), citrus
(Zhuang et al., 2018), tomato (Rahnemoonfar and Sheppard, 2017) and
apples (Cheng et al., 2017) have been achieved using ANNs. All these
tools are part of what experts define as deep learning (DL), a subset of
machine learning (ML), a non-linear information processing technique
based on feature extraction and pattern analysis (Deng & Yu, 2014). In
this scenario, scientists hope that these technologies can replace the
knowledge and intuition that farmers have always had (Wolfert et al.,
2017).

A previous literature review showed that while many algorithms
and ANNs have been developed to estimate the yields of different types
of crops, most of these methods use pictures taken at ground level, such
as the method presented by Koirala et al. (2019). Although these
methods obtained accurate yield results, some are time-consuming,
labour intensive, costly and unviable for orange orchards due the size of
the cultivated area. Unmanned aerial vehicles (UAVs), which have
previously been used successfully in precision farming, are an in-
expensive alternative that can be rapidly implemented (Martínez-
Guanter et al., 2019). The main advantages of these vehicles are their
flexibility, their low price and the repeatability of the results that they
can obtain (Martínez et al., 2017). Sensors onboard these vehicles can
generate a large amount of data, generally in the form of images or
videos (Csillik et al., 2018; Ziliani et al., 2018). In this context, the
combination of the imagery from UAVs with DL techniques provides
unique perspectives and information that would otherwise be either
impossible or very expensive to obtain using traditional techniques
involving human effort (Yin et al., 2018).

Regarding yield estimation, only 20 % of ANN applications are used
for this purpose in agricultural fields according to Liakos et al. (2018).
Moreover, Moltó et al. (1992) and Jiménez et al. (2000) suggested that
only approximately 60–70 % of crop production is visible from the
outside of a tree. Therefore, a challenge in this type of study is to
generate complex models that can address occluded fruits, changing
light conditions or different sizes, shapes and positions that may be
present in the field.

Thus, the main goal of this novel study was to develop and evaluate
the performance and robustness of an automated citrus fruit detection
and size estimation system using red-green-blue (RGB) images obtained
by flying a UAV in combination with a developed ANN model.
Moreover, a model based on the number of fruits detected to estimate
the full yield of a commercial citrus orchard was developed. With this
new tool to accurately estimate the yield and size of orange fruits, we
plan to reduce the error associated with visual methods. In this manner,
citrus producers can be assisted to increase their economic profitability
and reduce uncertainty.

2. Materials and methods

2.1. Field tests and UAV imagery acquisition

The research was conducted during three consecutive seasons
(2017, 2018 and 2019) and occurred over a 4-ha area of a commercial
citrus orchard (Citrus sinensis L. cv. Navelina) near Seville, in south-
western Spain (latitude: 37.512574; longitude: -5.956659) with a tree
spacing of 5.5 m × 4.5 m. Sampling was conducted from 20 individual
trees in groups of five in a row randomly selected from a total of 1654
trees. Two weeks before the harvesting, two pictures per tree, including
one for each face (left and right), were taken using a UAV (Fig. 1). A
total of 40 RGB high-resolution images were acquired for each season
under natural lighting conditions. The UAV used was a commercial
quadcopter DJI Phantom 3 Professional (DJI Technology Co., Ltd.,
Shenzhen, China). The onboard sensor used was the RGB Sony Exmor
1/2.3″ CMOS camera with a lens FOV of 94°, a focal length of 20 mm, a
focal ratio of f/2.8 f, and a focus to infinity. The image resolution of the
camera was 4000 × 3000 pixels (JPG format). The UAV was flown
between rows of trees at low altitude (between 5 and 6 m above the
crop canopy). The flight altitude was configured according to previous
experience such that the pixel size (0.26 cm/pixel) was suitable for fruit
detection. The manual flight option was used, with a constant preserved
distance for each image. A wooden ruler calibrated in centimetres (cm)
was placed next to each tree during image acquisition to serve as a scale
reference when determining the average fruit size.

The images acquired throughout the different campaigns by means
of the UAV included in many cases some non-targeted citrus trees.
Therefore, a delimitation of the region of interest (ROI) was performed
to isolate the study entities. To do this, a mask was generated on the
original image around the studied tree using a script developed with the
open-source computer vision library OpenCV. The first step was to
compute the centre of the image by dividing the width (4000 px) and
height (3000 px) by two; hence, the central pixel of the image could be
accessed by their (x, y) coordinates. Then, a white rectangle (width:
2200 px; height: 1650 px) was drawn using the OpenCV function
cv2.rectangle to focus only on the target tree. The remaining pixels were
turned off using the function cv2.bitwise and are shown as a black colour
on each image (Fig. 2).

2.2. Obtention of the ground truth for yield estimation

The sampled citrus trees were harvested manually during the three
seasons to quantify the actual yield in kilograms per tree (Yapt). The
fruit was picked and placed into picking sacks. Then, the fruit was
weighed and dumped from the picking sacks into boxes (20 kg per box),
which were manually loaded onto a field transport vehicle. A re-
presentative sample of 20 randomly selected fruits per tree was used to
estimate the average fruit size. A gauge calibrated in millimetres and a
balance with gram-level accuracy were used to measure the fruit sizes
and weights, respectively. Historical total actual yield (Tayield) data
after the harvest for the whole citrus orchard from 2011 to 2018 are
reported in Table 1.
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2.3. Building the image dataset

To properly train the developed DL model, a considerable amount of
orange images had to be obtained as a starting dataset. Without suffi-
cient and representative training data, the model cannot learn the un-
derlying discriminative patterns required to make robust classifications
of fruits (Sonka et al., 1993). In this case, the characteristics of the
oranges on the trees may dramatically differ (e.g., green fruits, fruits of
different sizes and shapes, fruits occluded by branches and leaves, and
overlapping fruits). Thus, additional flights were made over the rest of
the trees of the crop to acquire a sufficient number of images to train
the ANN. A total of 300 high-resolution images were taken from the
UAV during the studied years.

However, in practice, the formation of a custom model using a
single dataset is a difficult challenge because tens of thousands of
images are often needed (Chollet, 2017; Lecun et al., 2015) to achieve
high accuracy in object detection, but overfitting problems can occur.
Accordingly, some researchers apply data augmentation (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2015). This methodology con-
sists of increasing the size of a dataset using techniques to transform
pictures, such as rotation, adding filters, and changing colour channels,

among others (Ma et al., 2019). This process increases the network’s
ability to generalize and reduces overfitting (Rosebrock, 2018). In this
work, pictures were rotated by 90, 180 and 270 degrees and resized to
600 × 600 px using a Python script developed by the authors (Fig. 3).
Consequently, a dataset containing a total of 900 pictures was used to

Fig. 1. Workflow in the field tests (left) and process for UAV image acquisition on both sides of the trees (upper right); obtained citrus tree canopy image with a
wooden rule to scale the image (lower right).

Fig. 2. Original image of an orange tree (left) and a masked image (right) where the masked pixels with values greater than zero are shown.

Table 1
Historical yield data after the harvest of the
whole citrus orchard.

Season *Tayield (kg)

2011 156,564.00
2012 161,291.00
2013 173,412.00
2014 117,200.00
2015 141,980.00
2016 193,715.00
2017 179,549.00
2018 146,210.00
Mean 158,740.12

* Tayield = Total actual yield.
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train the CNN.

2.4. Deep learning architecture

An ANN model architecture was developed to identify the key fea-
tures of the input images and ultimately find orange fruits in them.
Among the entire range of existing ANNs, a convolutional neural net-
work (CNN) was used, with the intention of mimicking the human eye
in fruit detection and performing automatic fruit counting in the ac-
quired images. CNNs consider an image to be a matrix of pixels whose
size (kernel) is (height x width x depth), where the depth is the number
of image channels (3 for our RGB crop images). CNNs have several
specialized hidden layers with a hierarchical structure (Lecun et al.,
2015); the first layers can detect lines, corners and simple shapes,
whereas deeper layers can recognize complex shapes (Rosebrock,
2018). A common CNN architecture consists of three types of neural
layers: a convolutional layer, a pooling layer and a fully connected layer
(Fig. 4). Feature extraction, non-linearity operations and dimension
reduction were performed with this common architecture. Additionally,
a fully connected layer was used to classify data from images (Guo
et al., 2016) while a softmax function assigned the probability of

belonging to a class.
Despite the advances in computational processes and available

power offered by graphics processing unit (GPU), training a neural
network from scratch is still highly computationally expensive and re-
quires large datasets for learning. To overcome these obstacles, the
technique called transfer learning (Gu et al., 2018) was used. The main
objective of this technique to transfer the knowledge from one model
trained on a large dataset such as ImageNet (Deng et al., 2009) to an-
other model to solve a specific task (Talukdar et al., 2018). Several
popular pretrained networks using transfer learning, such as VGG-16,
ResNet 50, DeepNet and AlexNet Inception V2, are described in the
literature (Rosebrock, 2018).

The Faster-R-CNN model was selected since this network can use
several architectures, such as ResNet, Inception and Atrous, thus in-
creasing the efficiency and precision of fruit detection (Dias et al.,
2018). The Faster R-CNN Inception Resnet V2 Atrous Coco (Ren et al.,
2017) pre-trained model with a TensorFlow object detection applica-
tion programming interface (API) was used. TensorFlow is an open-
source software library for numerical computations (Kamilaris and
Prenafeta-Boldú, 2018) and was used because of its flexibility and the
ability of deploy network computations in multiple central processing

Fig. 3. Dataset augmentation process; original images were rotated 90, 180 and 270 degrees and resized to 600 × 600 px for use as input data.

Fig. 4. CNN architecture for fruit detection.
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units (CPUs), GPUs and servers. The model comprises three steps: with
a citrus tree image as the input, Faster R-CNN extracts feature maps
from the image using a CNN and then passes these maps through a
region proposal network (RPN), which returns object proposals
(Rosebrock, 2018). Finally, these maps are classified and the bounding
boxes enclosing the orange fruits are predicted (Fig. 5).

The advantage of using pre-trained models is that these models are
trained on huge image datasets such as the Common Objects in Context
(COCO) dataset developed by Microsoft (Microsoft, Redmond, WA,
USA). This dataset contains 330,000 labelled images with 80 object
categories or classes in which the label “orange” can be found (Lin
et al., 2014). At this point, the model was able to automatically detect
oranges, but the dataset images were completely different from the
acquired UAV images. Therefore, the transfer learning technique can be
used to train a model to detect and count orange fruits in the UAV
images.

2.5. Training the deep learning model (Faster R-CNN)

A manual labelling process to identify where the fruits were located
in each image from the training dataset (900 images) was performed
(Fig. 6). The open-source tool LabelImg (Tzutalin, 2015) was used for
this process. Once all fruits were labelled, an Extensible Markup Lan-
guage (XML) file with label data and the coordinates of the bounding
rectangles for each fruit in the image was generated.

Once the labelling process was complete, the configuration details
about the model and labels were implemented in the TensorFlow API.
The computing hardware used for all the processes was a MacBook Pro
(MacOs High Sierra 10.13.4) with a 2.5 GHz Intel Core i7 processor, 16
GB of RAM and a Graphics AMD Radeon R9 M370 × 2048 MB Intel Iris
Pro 1536 MB. The Open-Source Computer Vision (OpenCV) library
(http://opencv.org/), which includes several hundred computer vision
algorithms, was used to process images (Rosebrock, 2016). The Keras
(Chollet, 2015) open-source library was used in combination with
TensorFlow backend tools to build and deploy the DL architecture. Fi-
nally, when the model was trained, the 40 images taken by the UAV

Fig. 5. The Faster R-CNN architecture.

Fig. 6. The labelling process for the test images (left) and different types of fruits labelled (right).
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over the 20 trees were used for fruit detection.

2.6. Modelling yield estimation based on fruit detection

Yield estimation from fruit counts is still a challenge. In production
systems with large tree crowns, it is assumed that the images do not
reflect the total yield but rather a percentage of it (Gongal et al., 2018).
Additionally, the yield can be affected by several factors (climate, fer-
tilization, diseases, etc.) and does not conform to a classical linear
model. Currently, neural networks such as Long Short-Term Memory
(LSTM) for recurrent neural networks can understand and recognize
complex patterns in data (Fischer and Krauss, 2018). In this work, a
model based on LSTM and encoding with Keras was used to estimate
yield based on the fruit count of each tree. To train the model, the total
number of fruits per tree (Nft) for each face with the actual yield per
tree (Yapt) and the total actual yield (Tayield) for each season were
analysed. The data were assembled in pairs of two years for training,
and the remaining one was used for testing. Finally, the model was
trained for yield estimation per tree (Yept) and for total yield estimation
(Teyield) separately.

2.7. Image processing to estimate the fruit size

Size determination of fruits in an image is similar to computing the
distance from a camera to an object; in both cases, a ratio that measures
the number of pixels per a given scale or area must be defined
(Rosebrock et al., 2016). In this project, together with the fruit detec-
tion and yield estimation using ANNs, fruit size estimation based on a
“calibration” process using a reference object (wood ruler) was per-
formed. The reference object has two important properties: (1) the di-
mensions (in terms of width and height) in a measurable unit (cm) are
known and (2) the reference is easy to find and identifiable either in
terms of the location of the object or its appearance.

The wood ruler used as a reference object has a known width (5 cm)
and height (100 cm), with a total area of 500 cm2. This object was
measured in pixels in each image using a Python script with OpenCV.
The script performs an exhaustive process from an RGB image to be able
to measure fruit size. The first step is converting the image to greyscale
since with this transformation, only eight bits are required to store and
resolve image segmentation problems (Saravanan, 2010). Then, a
Gaussian smoothing and a median blur filter using a kernel with a size
of 5 × 5 pixels were used to remove the noise in the images. Next, a list
of boundaries in the RGB colour was defined since OpenCV represents
images as NumPy arrays in reverse order. Each entry in the list was
defined as a range with two values: a list of lower limits and a list of
upper limits. The lower and upper limits for both fruits and wood ruler
were [(57, 125, 126), (119, 214, 236)] and [(131, 126, 117), (255, 255,
255)], respectively. These values allowed detection of the different
colour ranges for each fruit on the canopy. Finally, once the limits were
defined, the cv2.inRange built-in function was used. This method returns
a binary image (mask), specifying which pixels fall into the specified
upper and lower ranges (Fig. 7).

With the mask as an input, a process to identify the contours of the
objects was carried out (Fig. 8). These contours were automatically
examined using the cv2.findContours function. If the contour was not
sufficiently large, the region was presumed to be noise left over from
the previous segmentation process and discarded. Once contours were
detected, the bounding box for each object in the image was computed
using the cv2.boxPoints function. This function assign coordinates in
top-left, top-right, bottom-right, and bottom-left order for each object
detected. Knowing the coordinates for each corner of the bounding box,
the midpoint (M) between any two points was calculated using Eq. (1):

= ⎛
⎝

+ + ⎞
⎠

M x x y y
2

,
2

,1 2 1 2
(1)

where (x1, y1) and (x2, y2) are the coordinate values for a given line

segment.
In the output image, an outline of the object detected in green

colour with the vertices as small red circles and the values in pixels for
both the width and length of the bounding box, with two purple lines
connecting the midpoints, is shown (Fig. 8c). A width of 50.50± 1.43
pixels and a height of 747.06± 3.81 pixels for the wood ruler were
obtained based on the associated bounding box (Fig. 8b). Thus, there
were approximately 37,753.80 pixels per every 500 cm2 in each image.

On the other hand, a fruit is a relatively circular object, and the total
area (A) can be calculated based on the fruit diameter (D) using the
expression =A πD

4

2
. Hence, considering the diameter of a circle and the

dimensions mentioned above, the fruit size (Fz) can be approximated
using Eq. (2):

=F
x xA

π
4 0.013

z
p

(2)

where the value 0.013 is the relationship between the actual dimen-
sions of the wood ruler and the average value of the dimension in
pixels.

2.8. Statistical analysis for model performance evaluation

The total number of fruits per tree (Nft) in each of the acquired
pictures was manually counted using the Photoshop count tool (Adobe
Systems Inc., San Jose, United States) as suggested by Payne et al.
(2014). Therefore, with these data, the precision (P), recall (R) and F1-
score were used as the evaluation metrics for fruit detection. These
model evaluation metrics are defined as follows:

=
+

=
+

=Precision P TP
TP FP

Recall R TP
TP FN

F Score P R
P R

( ) ( ) 2·( ·
·

)1

where TP corresponds to true positives, i.e., when the algorithm cor-
rectly detected a fruit with a bounding box, FP indicates false positives,
i.e., when a box is computed in a location where a fruit is not located,
and FN denotes false negatives, i.e. when a target fruit is not detected.

To assess the suitability of the method proposed, all fruit sizes were
clustered into categories according to the Codex Standard for Oranges
(CODEX STAN 245-2004) and compared with manual fruits size mea-
surements. The set of categories in which oranges with a minimum
dimension of less than 53 mm are excluded is reported in Table 2.

Finally, the actual yield per tree (Tapt) and the yield estimated per
tree (Yept) were compared. Then, the actual total yield (Tayield), the total
estimated yield (Teyield) and the estimates obtained by an expert tech-
nician were compared. The standard error (SE) and standard deviation
(SD) were calculated to determine the accuracy of the model’s esti-
mates.

3. Results and discussion

3.1. Accuracy of the model in fruit detection

Achieving a high accuracy in fruit detection is crucial for good yield
estimation. In this study, the 900 images labelled for orange detection
were sufficient to explain the wide variability in the dataset. The
workflow from an input image until the fruits are detected is shown in
Fig. 9. Over each detected orange fruit, a red bounding box with the
probability of containing the fruits is shown. The number of fruits de-
tected was high, presumably due to the application of data augmenta-
tion, which helped to overcome the common problems in object de-
tection caused by illumination conditions, the distance to the fruit, and
fruit clustering, among other reasons, as suggested by Voulodimos et al.
(2018).

In many cases, due to outdoor conditions, the pictures taken suf-
fered notable changes in colour, thus causing difficulties in object de-
tection. Therefore, in Table 3, an analysis of the precision of fruit
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detection is presented. Overall, the values for each one of the metrics
used to assess obtained results greater than 90 % in terms of precision
(P). False positives were observed in the pictures in which the number
of immature fruits (green) and the brightness of sunlight were slightly
greater. These results can be significantly improved by taking pictures
at several times throughout the day, as suggested by Ma et al. (2019).
Finally, the F1-score (F1) exhibited values greater than 89 %, indicating
the high robustness of the trained model.

The models based on object detection for fruit detection have lim-
itations since these models cannot detect invisible fruits that are oc-
cluded by foliage or other fruits (Kamilaris and Prenafeta-Boldú, 2018).
Fruits (oranges) are perceived within a tree canopy on the basis of
colour, texture and contours, which are highly variable. Therefore, the
model cannot detect all the fruits, but it can detect most of the visible
fruit. In Table 4, the fruits manually counted and those detected by the
model are reported. Considering manual counting to be the most reli-
able method, an error of approximately SE = 11 % was obtained. The
errors between manual counts and object detection were similar to
those obtained by Rolim et al. (2015). These results demonstrate that
the use of simple data augmentation techniques such as image rotation
and transfer learning can facilitate building tools with high potential for
yield estimation.

3.2. Yield estimation

As previously discussed, most studies focused on fruit detection
have tried to detect the number of fruits per tree as a means to estimate
yields (Gongal et al., 2015), but this method is not sufficient to build a
model that can predict the total yield of a commercial citrus orchard.

Hence, in Table 5, the actual yield per tree (Yapt) and the estimated
yield per tree (Tept) are reported. The errors (SE values) obtained for
each year are less than 3%, indicating good accuracy of the prediction.
The errors with greater values occurred in 2018, probably because the
actual yield for that year was less than expected in an average year.

According to the actual historical data (2011–2018) for the com-
mercial citrus orchard, the yield can vary by approximately 11.5 %
12,530 kg between years, which is a high volume of production. In
other words, farmers may experience profit or loss depending on the
yield estimations. In this context, accurate yield estimations are chal-
lenging for both farmers and expert technicians. In Table 6, the

Fig. 7. Flowchart of the previous image processing steps in Python. The original RGB image (a) is first transformed into a greyscale image (b). Then, taking the lower
and upper limits for both for fruits and the wood ruler, a binary image is obtained (c).

Fig. 8. Process to determine the number of pixels of each object from a mask (a). Objects detected with the bounding box and the number of pixels for both the width
and height (b). Extended details of the bounding box for a fruit with its actual RGB values (c).

Table 2
Fruit categories according to CODEX STAN 245-2004.

Min (mm) Max (mm) Category

53 60 13
56 63 12
58 66 11
60 68 10
62 70 9
64 73 8
67 76 7
70 80 6
73 84 5
77 88 4
81 92 3
84 96 2
87 100 1
92 110 0
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estimations for each year assessed are reported. The greatest error (SE
= 11.52 %) occurred during 2016, probably due to a major volume of
production, in contrast to the other years in which the error was greater
than 5%. The best result (SE = 4.34 %) occurred for 2017 with the
training data for (2016–2018), presumably because of the substantial
differences in the volume of production. These differences cause a
better learning by the model in the training process, which leads to
more accurate estimation. However, the most important result is the
estimate for all years, which had a mean error of 7.22 %. The error for
the expert technician was 13.74 %. Although these results are slightly

dissimilar, they may help to farmers in make better decisions.
As was discussed in the introduction, yield estimates with high ac-

curacy are invaluable, especially to small farmers, since these data give
to farmer negotiating power during the sale of their products. In many
cases, exporters penalized farmers when the difference between the
actual and yield estimate is high. Consequently, farmers lose money and
sometimes need to find other buyers for their products or even face the
risk of loss of the harvest. According to the Observatory for Prices and
Markets of Andalusia the prices that farmers received for their orange
production during 2016, 2017 and 2018 were 0.30, 0.28 and 0.26

Fig. 9. (A) Original RGB image taken from an UAV; (B) orange fruits automatically detected and bounding boxes; (C) detail of the fruit detection and probabilities
obtained by the Mask-R CNN model.

Table 3
Fruit detection analyses for each tree during the three seasons analysed.

Year 2016 Year 2017 Year 2018

Tree TP FP FN P R F1 TP FP FN P R F1 TP FP FN P R F1

1 61 2 2 0.97 0.97 0.97 52 1 1 0.98 0.98 0.98 37 1 2 0.97 0.95 0.96
1 35 1 3 0.97 0.91 0.94 77 2 5 0.97 0.94 0.96 128 7 5 0.95 0.96 0.95
1 37 1 1 0.97 0.98 0.98 92 4 8 0.96 0.92 0.94 66 0 2 1.00 0.97 0.98
1 66 3 5 0.96 0.93 0.94 66 1 1 0.98 0.98 0.98 104 6 4 0.95 0.96 0.95
1 54 1 7 0.98 0.89 0.93 57 2 5 0.97 0.92 0.94 113 8 2 0.93 0.98 0.96
1 58 2 1 0.97 0.98 0.97 110 5 11 0.96 0.91 0.93 35 2 3 0.95 0.92 0.93
1 64 3 6 0.96 0.91 0.93 107 3 4 0.97 0.96 0.97 51 3 3 0.94 0.94 0.94
1 60 2 5 0.97 0.92 0.94 95 3 12 0.97 0.89 0.93 57 4 7 0.93 0.89 0.91
1 60 1 7 0.98 0.89 0.93 64 2 5 0.97 0.93 0.95 113 8 7 0.93 0.94 0.94
1 58 1 6 0.98 0.90 0.94 57 1 7 0.98 0.89 0.93 40 3 1 0.93 0.97 0.95
1 56 2 7 0.97 0.89 0.93 48 3 6 0.94 0.89 0.91 77 2 9 0.97 0.90 0.94
1 30 1 1 0.97 0.97 0.97 80 1 8 0.99 0.91 0.95 43 1 2 0.98 0.96 0.97
1 46 4 3 0.92 0.94 0.93 60 2 8 0.97 0.88 0.92 78 4 4 0.95 0.95 0.95
1 39 1 4 0.97 0.90 0.94 98 3 10 0.97 0.91 0.94 39 2 1 0.95 0.98 0.97
1 41 2 4 0.95 0.91 0.93 53 2 5 0.96 0.92 0.94 33 1 3 0.97 0.93 0.95
1 26 2 2 0.93 0.92 0.92 46 2 3 0.96 0.93 0.94 88 2 6 0.98 0.94 0.96
1 36 3 1 0.92 0.97 0.95 51 3 2 0.94 0.97 0.96 88 2 9 0.98 0.91 0.94
1 51 1 2 0.98 0.96 0.97 26 1 2 0.96 0.94 0.95 68 5 4 0.93 0.94 0.94
1 32 1 4 0.97 0.90 0.93 83 2 4 0.98 0.95 0.96 62 2 7 0.97 0.90 0.93
20 45 1 3 0.98 0.94 0.96 44 5 1 0.90 0.98 0.94 102 5 7 0.95 0.94 0.95
Mean 47.75 1.75 3.70 0.96 0.93 0.95 68.30 2.40 5.40 0.96 0.93 0.95 71.10 3.40 4.40 0.96 0.94 0.95

TP = true positives, FP = false positives, FN = false negatives, P = precision, R = recall, F1 = F1-score.
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euros/kg respectively. Hence, considering the average selling price and
the error made by the technician, an amount of 6582.43 euros/season
was lost. However, by employing the proposed yield estimation tech-
nique based on LSTM, the farmer would save approximately 2979.91
euros/season.

3.3. Fruit size estimation

As an important parameter to determine fruit quality, market price
and optimal time for harvesting (Gongal et al., 2018), fruit size was
estimated throughout the three seasons by means of the automated
image analysis method presented in Section 2. Fig. 10 presents the
distributions of the actual fruit sizes and estimated fruit sizes. Most of
the actual fruit sizes measured over the two years used as ground-truth

Table 4
The number of fruits manually counted and the number of fruits detected with the model.

Year 2016 Year 2017 Year 2018

Tree Nft TP Error (%) Nft TP Error (%) Nft TP Error (%)

1 63 61 3.17 53 52 1.89 39 37 5.13
2 38 35 7.89 82 77 6.10 133 128 3.76
3 38 37 2.63 100 92 8.00 68 66 2.94
4 71 66 7.04 67 66 1.49 108 104 3.70
5 61 54 11.48 62 57 8.06 115 113 1.74
6 59 58 1.69 121 110 9.09 38 35 7.89
7 70 64 8.57 111 107 3.60 54 51 5.56
8 65 60 7.69 107 95 11.21 64 57 10.94
9 67 60 10.45 69 64 7.25 120 113 5.83
10 64 58 9.38 64 57 10.94 41 40 2.44
11 63 56 11.11 54 48 11.11 85 77 9.41
12 31 30 3.23 88 80 9.09 45 43 4.44
13 49 46 6.12 68 60 11.76 82 78 4.88
14 43 39 9.30 108 98 9.26 40 39 2.50
15 45 41 8.89 58 53 8.62 36 33 8.33
16 28 26 7.14 49 46 6.12 94 88 6.38
17 37 36 2.70 53 51 3.77 97 88 9.28
18 53 51 3.77 28 26 7.14 72 68 5.56
19 35 32 8.57 87 83 4.60 69 62 10.14
20 48 45 6.25 45 44 2.22 109 102 6.42
Mean 51.40 47.75 6.85 73.70 68.30 7.07 75.45 71.10 5.86

TP = true positives, Nft = the number of fruits per tree counted manually.

Table 5
Actual weights after harvesting for each tree in the three years.

Year 2016 Year 2017 Year 2018

Tree Yapt Yept Stdev Error (%) Yapt Yept Stdev Error (%) Yapt Yept Stdev Error (%)

1 135.70 130.24 1.11 4.02 164.50 155.70 1.69 5.65 53.10 51.17 0.21 3.64
2 101.30 97.95 0.95 3.31 128.30 121.08 2.49 5.97 100.30 96.82 0.21 3.47
3 101.00 96.99 0.75 3.97 174.10 163.89 1.92 6.23 8.70 8.39 0.01 3.53
4 68.60 65.99 0.19 3.80 105.00 99.90 2.25 5.10 133.40 128.68 0.31 3.54
5 129.90 124.56 0.25 4.11 180.20 169.63 1.98 6.23 162.20 156.50 0.73 3.51
6 101.20 97.49 0.81 3.67 142.80 136.89 1.54 4.32 97.30 94.03 0.32 3.36
7 105.90 101.77 0.85 3.90 153.30 144.69 2.29 5.95 117.00 112.69 0.33 3.69
8 114.40 110.70 1.06 3.23 108.20 102.87 1.48 5.18 73.80 71.15 0.23 3.59
9 91.40 88.38 0.58 3.30 116.00 108.99 1.16 6.44 91.20 88.05 0.28 3.45
10 92.40 88.60 1.03 4.11 168.10 158.62 2.92 5.98 36.40 35.03 0.16 3.77
11 121.10 117.22 1.14 3.20 116.30 112.02 0.96 3.82 125.40 120.35 0.21 4.03
12 129.80 124.76 0.41 3.88 137.40 130.79 0.67 5.06 124.80 120.41 0.42 3.52
13 82.00 79.11 0.56 3.53 126.30 119.59 0.99 5.61 31.50 30.33 0.03 3.73
14 128.10 123.85 0.79 3.32 132.40 127.05 1.51 4.21 57.30 55.13 0.15 3.79
15 109.30 105.52 0.86 3.46 80.60 76.97 0.88 4.72 155.80 149.97 0.64 3.74
16 70.20 67.34 0.66 4.07 112.80 107.17 1.63 5.26 125.90 121.15 0.33 3.77
17 125.40 121.19 1.03 3.36 146.40 138.45 1.43 5.75 61.10 58.89 0.19 3.62
18 121.70 116.73 0.64 4.08 85.70 81.40 1.74 5.28 97.90 94.47 0.36 3.50
19 121.00 116.85 0.41 3.43 145.20 136.16 1.15 6.64 95.80 92.12 0.27 3.84
20 *** *** *** *** 110.10 104.73 2.43 5.13 69.20 66.74 0.28 3.55
Mean *** *** *** *** 131.69 124.83 1.66 5.43 90.91 87.60 0.28 3.63

*** The Yapt in tree number 20 in 2016 was missed during the harvest.

Table 6
Yield estimation for each year.

Yield estimation using LSTM

Year Tayield Technical
estimation

Error (%) Teyield Stdev Error (%)

2016 193715 220000 13.57 171400.06 7795.95 11.52
2017 179549 200000 11.39 171750.59 2861.67 4.34
2018 146210 170000 16.27 137724.95 1593.11 5.8
Mean 173158 196666.67 13.74 160291.87 4083.58 7.22

Tayield = total actual yield, Teyield = total estimated yield.
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(2016-17 and 2017-18) were between categories 4 and 6. However, the
fruit sizes estimated in the third season (2018-19) were approximately
between categories 7 and 9. These differences are presumably due to
the number of fruits analysed in each case. In other words, for the ac-
tual fruit sizes, only 20 fruits per tree were measured, while for fruit
size estimation, all detected fruits whose surface were completely
visible were used. Therefore, although this method only provides ap-
proximate values, the results can be applied to orange fruit manage-
ment to optimize the resources required to harvest, transport, store,
and, manufacture oranges as needed.

4. Conclusions

The results of this project in terms of the number of fruits and fruit
size are promising. The fruit size data indicate that the average size can
be effectively estimated; however, this approach is generic in nature
because the sizes of all fruits detected cannot be computed. For ex-
ample, some fruits are covered by leaves, branches and other elements
of the orange tree canopy. Nevertheless, these results confirm that the
developed model can be used to estimate the fruit sizes in an orange
orchard.

The yield estimates were very accurate because the model results
were closer to the actual yield than the results of visual estimations by a
professional technician. These results support the development of an-
other model to estimate the yields with even greater accuracy. With a
system that generates adjusted results in this manner, using flight
platforms such as UAVs represents a leap towards the implementation
of this type of model covering increasingly larger areas and at a low
cost. The flexibility and ease of handling and imaging of this equipment
makes them a tool with great potential for close detection of fruits and
analysis of crops. Future works will involve detection in real time from
UAV videos, which can reduce the processing time required to obtain
accurate results. Moreover, a new dataset with more images can be
built to achieve more accurate performance in fruit size estimation.

In productive systems with large crown trees such as the one stu-
died, fruit detection is greatly influenced by the presence of foliage and
the structure of the crop itself. In the coming years, production systems
will probably have to adapt to geometries that allow the majority of
fruits to be visible from the outside. This is already happening, with a
significant increase in trellised crops and narrow rows. In this manner,
the automation of tasks such as detection will greatly benefit.
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