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Abstract 

This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear 

spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is 

affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude 

of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are 

applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D 

system. The fixed points of this reduced system and their stability are carefully studied. We find the existence 

of a Hopf bifurcation which, to the authors’ knowledge, has not been addressed before in the literature. These 

analytical results are supported by numerical simulations. We also compare our approach and results with 

those published by other authors.   

Keywords Nonideal Interaction   Unbalanced Motor   Singular Perturbation Theory   Averaging Method 

1. Introduction

The motion of unbalanced rotors constitutes one of the most common vibration sources in mechanical 

engineering [1,2]. Vibrations due to unbalance may occur in any kind of rotating systems, such as turbines, 

flywheels, blowers or fans [3]. Actually, in practice, rotors can never be completely balanced because of 

manufacturing errors such as porosity in casting, non-uniform density of the material, manufacturing 

tolerances, etc. [4]. Even a subsequent balancing process will never be perfect due to the tolerances of the 

balancing machines. 

Usually, rotor unbalance has a harmful effect on rotating machinery, since vibration may damage critical 

parts of the machine, such as bearings, seals, gears and couplings [4]. However, there are applications where 
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unbalanced rotors are used to generate a desired vibration. Some examples are the feeding, conveying and 

screening of bulk materials, or the vibrocompaction of quartz agglomerates, which makes use of unbalanced 

motors to compact a quartz-resin mixture. Actually, our interest in this vibrocompaction process has been the 

motivation for the presented study. 

A simple model to analyse the dynamic response of a structure to the excitation produced by an 

unbalanced motor is sketched in Fig. 2. The simplest approach to this problem consists in assuming the rotor 

speed to be either constant or a prescribed function of time. In the constant speed case, the centrifugal force on 

the unbalance produces a harmonic excitation on the vibrating system, whose amplitude grows with the square 

of the rotating speed and whose frequency coincides with the rotating speed [3,5].  

Note that, with this approach, it is implicitly being assumed that the rotational motion of the motor is 

independent of the vibration of the structure. This property is what defines an ideal excitation: it remains 

unaffected by the vibrating system response. Thus, the amplitude and frequency of an ideal excitation are 

known a priori, before solving the vibration problem. Obviously, this notion of ideality is applicable to any 

kind of excitation, and not only to the one produced by an unbalanced motor. 

The ideality assumption is valid, with good approximation, in many real problems. However, there are 

situations where it is not. In 1904, Sommerfeld [6], whose pioneering work inspired many subsequent 

investigations, found experimentally kinds of behaviour which could not be explained upon the ideality 

hypothesis. He mounted an unbalanced electric motor on an elastically supported table and monitored the 

input power as well as the frequency and amplitude of the response [7]. The experiment consisted in 

increasing continuously the power input in order to make the rotor speed pass through the resonance 

frequency of the table, and then conduct the inverse process by decreasing the input power. The results 

obtained by Sommerfeld are qualitatively depicted in Fig. 1. When the rotor speed was close to resonance, an 

increment of the input power produced only a very slight increase of the rotor speed, while the oscillation 

amplitude increased considerably. This means that, in this part of the experiment, the increasing input power 

was not making the motor rotate faster, but was giving rise to larger oscillations. With further increasing of 

the input power, the rotor speed jumped abruptly to a frequency above resonance and, at the same time, the 

vibration amplitude jumped to a much smaller quantity than measured in the resonance region. When the 

process was reversed, by decreasing the motor input power, a jump phenomenon in the resonance region was 

also observed (see Fig. 1). However, this jump was found to be different to the one obtained for increasing 

rotor speed. This anomalous behaviour is usually referred to as ‘The Sommerfeld Effect’. An explanation for 

this phenomenon will be given in Section 4.1 of the present paper. 

In 1969 [8], Kononenko published a book entirely devoted to the study of nonideal excitations. He 

considered different configurations of vibrating systems excited by nonideal motors and applied the 

Averaging Method to the equations of motion. By taking into account the two-way interaction between the 

motor and the vibrating structure, he was able to explain the nonlinear phenomena found by Sommerfeld. 

According to Kononenko, the Sommerfeld effect is produced by the torque on the rotor due to vibration of the 

unbalanced mass. 



Rand et al. [9] reported the detrimental effect of a nonideal energy source in dual spin spacecrafts, which 

could endanger a particular manoeuvre of the spacecraft, once placed in orbit. 

Although most studies use averaging procedures to obtain approximate solutions to the equations of 

motion, Blekhman [10] proposed an alternative approach, based on the method of ‘Direct Separation of 

Motions’. 

Several authors, like El-Badawi [11] and Bolla et al. [12], analysed models where the vibrating system 

included an intrinsic cubic nonlinearity, in addition to the nonlinearity associated to the nonideal coupling 

between exciter and structure. Furthermore, Neimark-Sacker bifurcations were recently found in nonideal 

systems [13]. 

Balthazar et al. [14] published an extensive exposition of the state of the art concerning nonideal 

excitations. 

A significant portion of the research effort on nonideal excitations has been directed to the analytical 

resolution of the equations of motion by means of perturbation techniques, especially the Averaging Method. 

A crucial point in these studies is the stability analysis of the stationary solutions near resonance. We find that, 

in some of these works, the assumptions made when applying perturbation methods can lead to inaccurate 

conclusions about stability. In view of this, a new analytical approach is proposed herein which includes the 

application of the Singular Perturbation Theory, besides the Averaging Method.  Clearly, these procedures are 

classical in the analysis of nonlinear systems, but the combination of both in the study of nonideal excitations 

is actually a novel approach to the problem. This analytical scheme allows finding conditions for the existence 

of Hopf bifurcations, which have not been reported before, to the best of the authors’ knowledge. 

The averaging methods constitute a very powerful tool which allows simplifying dynamical systems where 

one or more variables exhibit a small, fast oscillation superimposed on a slow variation of its mean value. The 

analytical procedure lies on neglecting the fast oscillations and looking for an asymptotic approximation to the 

slowly evolving average. The interested reader can refer to [15]. 

The Singular Perturbation Theory deals with dynamical systems where some state variables are fast and 

some are slow. Under certain conditions, the behaviour of the system in the phase space can be shown to be 

composed of two subsequent stages. During the first one, trajectories are rapidly attracted towards a particular 

surface, known as the Slow Manifold. In the second stage, the system slowly evolves along the Slow 

Manifold, with the fast variables being slaved to the slow ones. This peculiar behaviour allows the system 

dimension to be reduced during the second stage, for the fast variables can be expressed as functions of the 

slow ones. For a detailed treatment, see [16–18]. 

Hopf bifurcations constitute a common mechanism whereby a fixed point of a dynamical system loses 

stability. As it is well known, the stability of an equilibrium point is given by the real parts of the eigenvalues 

of the system jacobian matrix. A Hopf bifurcation occurs –with the exception of some degenerate cases– when 

two complex conjugate eigenvalues cross the imaginary axis. A very interesting feature of Hopf bifurcations 

is the appearance of limit cycles surrounding the bifurcating equilibrium point. Extensive analysis of this 

matter can be found in [19,20]. 



Finally, it is convenient to position the present work within the literature, showing its similarities and 

differences with respect to previous publications. 

First, it should be noted that the Hopf bifurcation found in this paper is conceptually different to that 

reported in [21]. The reason is that, while we investigate here the fixed points of an averaged system, 

representing stationary motions of the motor, Dantas et al. analyzed in [21] the fixed points of the original 

system of equations, corresponding to the motor at rest. 

It should also be stressed that the present article is mainly based on analytical results, which are validated 

by numerical simulations. This makes it substantially different to several other works where conclusions are 

directly drawn from numerical experiments [22–24]. 

The mechanical system analyzed in this paper is very similar to that studied by Fidlin in [25] and Sanders 

et al. in [15]. However, they considered the slope of the motor characteristic to be a small parameter, while 

our assumption is the opposite. In fact, the motor characteristic slope is a chief parameter of the problem. The 

system exhibits different behaviors and requires different mathematical approaches depending on the order of 

magnitude of this parameter. 

The mechanical system that we investigate is also akin to that studied by Rand et al. in [9,26]. However, 

they considered an undamped vibrating system and a motor driven by a constant torque. Due to these 

differences the analytical approach and the conclusions of this paper are significantly different to those 

reported in [9,26]. 

There are also published works where chaotic motions are found in systems excited by nonideal power 

sources [24,27,28]. However, as long as the assumptions specified in Section 2 hold, this kind of behavior is 

not possible for the particular system under study. The reason is that, as shown in Section 2, the reduced 

system has only 2 dimensions, while at least 3 dimensions are needed to find chaos. 

The paper is organized as follows. Section 2 poses the equations of motion of the system under study and 

specifies the assumptions on which our analysis is based. In Section 3, we make use of some perturbation 

techniques to transform the original 4D system into a simpler 2D reduced system. In Section 4, the fixed 

points of this reduced system are obtained and their stability is assessed. Under some conditions, we prove the 

existence of a Hopf bifurcation, which makes the unstable region larger than predicted by other theories. Thus, 

not taking it into account might be dangerous for real applications, since the system could exhibit unexpected 

instabilities. Section 5 presents the results of some numerical experiments in order to validate the analytical 

developments of Sections 3 and 4. Section 6 is intended to discuss our results and compare them with those of 

other authors. Finally, Section 7 summarises the main conclusions of our study. 

 

 

2. Problem statement and assumptions 

 

Consider the system depicted in Fig. 2. It consists of an unbalanced motor attached to a fixed frame by a 

nonlinear spring –whose force has linear and cubic components– and a linear damper. The cubic component 

of the spring gives the possibility to model a nonlinear behavior for the structure supporting the motor [29].   



The effect of gravity can be shown to have no relevance [30], so it will not be included in the model. 

Variable   stands for the linear motion,   is the angle of the rotor,    is the unbalanced mass with 

eccentricity  ,    is the rest of the vibrating mass,    is the rotor inertia (without including the unbalance),   

is the damping coefficient and   and   are, respectively, the linear and cubic coefficients of the spring. The 

equations of motion for the coupled 2– DOF system are [11] 

 

                     
             

                    
 (1) 

 

where        ,         
 . A dot represents differentiation with respect to time,  . 

Function       is the driving torque produced by the motor –given by its static characteristic– minus the 

losses torque due to friction at the bearings, windage, etc. We assume this net torque to be a linear function of 

the rotor speed 

 

                  (2) 

 

where    is the linear natural frequency of the oscillator, given by        . More complex curves for the 

driving torque have been studied in [31]. Although       includes the damping of rotational motion, we will 

usually refer to it shortly as ‘the motor characteristic’. We further assume     –the driving torque 

decreases with the rotor speed–, as is usual for most kinds of motor. This assumption will prove to be of major 

importance.  

By defining 
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the equations of motion can be written in a more convenient dimensionless form 

 

                                 

                     
 (4) 

 

where a dot now represents differentiation with respect to dimensionless time,  . 

In order to apply perturbation techniques to system (4), some assumptions on the order of magnitude of the 

system parameters have to be made. Thus, the damping, the unbalance and the nonlinearity are assumed to be 



small. This is expressed by making the corresponding coefficients proportional to a sufficiently small, positive 

and dimensionless parameter  : 

 

                   (5) 

The torque generated by the motor at resonance        is also assumed to be sufficiently small:  

 

       (6) 

Finally, the slope of the motor characteristic is assumed to be of the order of unity, i.e. independent of  : 

 

      (7) 

 

This assumption corresponds to what we have called large slope characteristic. The case of small slope, 

with   proportional to  , is treated in [25]. It is worth noting that the case of small slope characteristic 

requires a different mathematical approach and displays substantially different dynamics.  

Taking the proposed scaling (5-7) into account and dropping the subscript ‘ ’ for convenience, (4) can be 

written as 

 

                                    

                        
 (8) 

 

 

3. Perturbation Approach: Derivation of the Reduced System 

 

Equations (8) constitute an autonomous dynamical system of dimension 4, with state variables            . 

In this Section we propose a perturbation approach intended to transform (8) into an approximate 2D system, 

much easier to analyze. 

First, it is convenient to perform a change of variables, from        to polar coordinates: 

 
           

              
 (9) 

 

This step does not include any approximation, since we are just replacing the pair of variables              

with the pair of amplitude–phase variables            .  

By differentiating the first of relations (9) we obtain 
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Comparing (10) with the second of relations (9) yields 
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On the other hand, if we introduce (9) into the first of equations (8), we have 
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Equations (11) and (12) together form a linear system for    and    that can be readily solved: 
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It is also suitable to define a new variable for the rotor speed: 
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Then, the dynamical system, written in terms of the new variables, becomes 
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where 

 

    
                         

                      
   (16) 

 

We have derived a new 4D autonomous dynamical system (15), with state variables          , which is 

fully equivalent to (8).  

Consider now a general set of initial conditions               and let us investigate how the variables 

evolve with time. In the next subsections, it will be shown that the dynamics of (15) is composed of three 

consecutive stages of time, with different qualitative behaviors. 

 

 

3.1. First stage 

 

Let us only consider, for the moment, the evolution equations for variables   and  . They can be written as 

 



           

               
 (17) 

 

Then, it is clear that, to first order of approximation, the evolution of   and   only depends on  . This first 

order approximation corresponds to neglecting the      terms in (17):   

 

      

          
 (18) 

 

The relation between exact system (17) and approximate system (18) is established by the Regular 

Perturbation Theory [15], which assures that solutions of (18) are     –approximations to solutions of (17), 

for       . Thus, we proceed to solve system (18): 
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with 

 

  
     

    

 
  (20) 

 

It is clear from (19) that both variables tend exponentially to constant values: 
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This is due to the assumption    , since, otherwise, the exponentials in (19) would be divergent. Taking 

into account the approximation made when transforming (17) into (18), we can state that, after a time interval 

      , we have 

 

    
                 (22) 

 

Once   and   are at an     –distance from   
  and  , respectively, the first stage of the motion is over. 

Note that, during this stage, the rotor speed evolves monotonically towards the resonance region.  

Throughout the first phase, variable   remains nearly constant. Since         –see (15)–, variable   

needs a time length          to evolve significantly. Thus, at the end of the first stage, we have  

 

           (23) 

 

In summary, the first stage corresponds to a time length       . It starts at     and it ends when   and 

  have reached an     –distance to   
  and  , respectively. 



3.2. Second stage 

 

At the beginning of the second stage, the rotor speed is already in the vicinity of resonance, so let us 

expand it as 
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If system (15) is written using variable   instead of  , we have 
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where 
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Notice that the closeness between the rotor speed and the natural frequency of the system has transformed 

  into a slow variable. 

With the aim of analyzing the second and third stages of the motion, the Averaging Method is applied to 

system (25).  

First, let us define the averaged variables as 
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with analogous definitions for    and   .  

Now, let us focus on the evolution of the averaged variables. The equations that govern their dynamics can 

be obtained by averaging system (25), i.e. applying to system (25) the operator defined in (27). After some 

manipulations, which are detailed in the Appendix, we arrive at the averaged system 
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where the overbars have been omitted for simplicity.  



It is convenient to highlight the relation between the original and the averaged variables. In order to do so, 

observe from (25) that   and   are slow variables, while   is a fast variable. This implies that, in one 

averaging period of length   , variables   and   can only move an     –distance away from their averages. 

Conversely,   is able to move an     –distance away from   . This can be written as 

 
         

         

          

 (29) 

 

Observe that, even with an      error in  , we still know the rotor speed with      precision, since 

        . From now on, the overbars will be omitted, unless otherwise stated. 

The task now is to investigate system (28). As pointed out before, this is a fast–slow system, with two slow 

variables   and   and one fast variable  . This difference in the time scales allows exploiting the Singular 

Perturbation Theory (SPT) [16–18]. 

According to the SPT, a system with the form of (28) displays two qualitatively different behaviors at two 

sequential time scales, which correspond to the second and third stages of the original system (15). With the 

aim of studying the first of them –second stage of (15)–, consider a time interval        for system (28). 

Since   and   evolve with rate     , it is clear that we have 
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where we have taken into account that, at the beginning of stage 2,           and     
      . 

Then, the only variable that changes considerably during this stage is  . From a direct analysis of the last 

of equations (30), it can be deduced that   tends exponentially to the following value 
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which is the only fixed point for the last of equations (30). The assumption     guarantees that the fixed 

point is globally attracting. 

Expression (31), generalized to any values of   and  , gives what is called ‘the Slow Manifold’: 
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Thus, (31) can be rewritten as 
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Thereby, at this stage, the slow variables remain almost constant, while the fast variable evolves until 

reaching the vicinity of the slow manifold.  

Summing up, the second stage corresponds to a time length       , just as the first one. It ends once 

variable   has reached an     –distance to         
  . During this phase of the motion,   and   do not 

change significantly. 

 

3.3. Third stage 

 

The third stage of the original system (15) –which is the second stage of the averaged system (28)– occurs 

at a time scale         . This can be easily understood by noticing that, once the system is near the slow 

manifold, variable   becomes slow (introducing (32) in (28) leads to        ). Therefore, near the slow 

manifold, all variables are slow and, as a consequence, the system natural time scale is         . 

As a relevant step in the application of the SPT, the attractiveness of the slow manifold has to be 

guaranteed. Then, consider the fast subsystem, given by  
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with   and   fixed. Clearly, for any possible values of   and  , subsystem (34) is always attracted towards 

fixed point 

 

           
 

 
 

 

  
       (35) 

 

by virtue of the assumption    . Then, the slow manifold is attractive and, therefore, once the system is 

near the slow manifold, it remains in its neighborhood for all subsequent time [17,18,32]. 

By introducing the expression of the slow manifold in (28), the equations corresponding to the third phase 

of the motion are obtained: 
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As usual, we can eliminate higher order terms in (36), giving rise to an      approximation for a time 

length         : 
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It is convenient to observe that, although (37) contains three equations, only two of them are differential 

equations. Thus, (37) represents a 2D autonomous dynamical system. The evolution of   and   no longer 

depends on  , once   is written as a function of   and  . The last equation is written with the only purpose of 

tracking the evolution of variable  . 

In summary, the third stage corresponds to a time length         . At this phase of the motion, the 

averaged system evolves along the slow manifold given by (32). Variables  ,   and   obey equations (37), 

with      precision. 

Fig. 2 shows a schematic representation of the the three different stages of the system dynamics, summing 

up the results obtained in the present Section. Note that, in Fig. 2, we recover the use of overbars for the 

averaged variables. The most relevant result is that, once the initial transient corresponding to the first two 

stages has finished, the evolution of variables   and   is governed by equations (37) –within an      error–. 

From Fig. 2, it is clear that suitable initial conditions for system (37) are       
  . Recalling definition (20), 

this can be written as                 , where               is the set of initial conditions for system 

(15).  

However, we may be interested in a particular set of initial conditions for system (8), given as 

               . It is, then, convenient, to express the initial conditions for (37) as functions of the initial 

conditions for (8): 
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as can be readily deduced from relations (9),(14) and (20). 

Recapitulating, we have been able to eliminate variable   from the formulation by Averaging, and variable 

  by applying the Singular Perturbation Theory. It is also worth noting that, although some authors have 

found chaotic motions in nonideal systems [24,27], this kind of behavior is not possible for the particular case 

under study. The reason is that at least 3 dimensions are needed to have chaos, while our reduced system (37) 

is of dimension 2. 

 

 

4. Analysis of the Reduced System 

 

This Section focuses on the behaviour of system (37), once its solutions have been shown to be good 

approximations to those of the original system. 

Firstly, it is useful to make a comparison between the system under study and its ideal counterpart, where 

the rotor speed is constant. Clearly, for this ideal case, the equation of motion of the system shown in Fig. 2 is 

given by 

 



                    
       (39) 

 

with    fixed. Equation (39) describes a Duffing oscillator, subjected to harmonic excitation. This is a very 

well-known problem, which has been widely studied in the literature [7,25,33–35]. Under the assumptions of 

small damping, small nonlinearity, small unbalance and near–resonant excitation           , the 

Averaging Method can be applied to system (39), leading to 

 
              

          
    

 
 
 

 
     

 (40) 

 

where all the parameters and variables are defined as in Sections 2 and 3. It is easy to verify that system (40) 

is exactly the same as (37), with the only difference of replacing         by the constant value   . This is a 

clear illustration of the concept of nonideal excitation. In the ideal case, the rotor speed appears in equations 

(40) as a constant value   , externally imposed by the motor. However, in the nonideal case, the rotor speed 

enters equations (37) as a function of the system vibratory motion,        . 

It is also important to observe that an ideal motor displays a vertical static characteristic, corresponding to 

the limit case     . The motor is, then, able to generate any torque for the same rotor speed. This suggests 

the idea that a real motor with a static characteristic of very large slope (in absolute value) is more likely to 

behave in an ideal manner than another one with a smaller slope. 

 

 

4.1. Fixed Points 

 

Going back to the objective of analyzing system (37), let us first look for its fixed points,              : 
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From the first of equations (41), we have 
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Combining (32), (41) and (42), we arrive at 

 

 
 

 
 

 

  
   
  

 

 
    

    
      

 

   
  

(43) 



 

Solutions of (43), for both values of  , give     for all the fixed points of (37). However, it is not 

straightforward to solve (43), for    , analytically. We propose an alternative procedure, which leads to the 

fixed points of (37) in a graphical way. In order to do so, let us rewrite the last of equations (37) as 
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where the definition (32) of         has been used. Now, recall the last of equations (28), which governs the 

evolution of the rotor speed for the averaged system: 
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In the light of (45) we can interpret (44) as an equilibrium between two torques on the rotor. The left hand 

term in (44) represents the driving torque produced by the motor, while the right hand term represents the 

resisting torque due to vibration. Thus, the fact that the averaged system is on the slow manifold –which is 

expressed in equation (44)– can be understood as a torque equilibrium condition. 

Equation (44), particularized for the fixed point               takes the form 

 

       
 

 
   
   (46) 

 

where (41) has been used. We now define the following functions: 

 
          

      
 

 
   

 (47) 

 

Clearly, according to the comments below equation (45),    represents the driving torque produced by the 

motor, while    corresponds to the resisting torque due to vibration. Then, equation (46) can be written as  

 

                 (48) 

 

which is the torque equilibrium condition, particularized for the fixed point. 

In order to solve (48) in a graphical way, we would like to write both torques explicitly in terms of    . 

However, this would in turn need explicitly writing     in terms of    , which is not straightforward. Thus, 

we resort to an implicit procedure for the graphical representation. Combining (41) and (42), we have 

 

               (49) 

 

where function         is defined as 



        
 

 
      

     

 
  (50) 

 

The proposed representation can be constructed as follows: first, graph,    versus   according to (47). 

Then, graph on the same plot the parametric curve given by                , for      and          . The 

fact that   is strictly positive comes from the definition of   as the radius of a polar coordinate transformation 

–see (9)–. On the other hand     cannot be greater than 1, according to the first of equations (41). 

The above procedure gives rise to a plot like that shown in Fig. 4. Considering equation (48), we can find 

the fixed points as the intersections of the two torque curves. In the particular case displayed in Fig. 4, there 

are three equilibrium points, marked with circles. Note that the curve associated to the vibration torque is 

composed of two branches, which collide at the maximum of the curve. They correspond to the two possible 

values of parameter  , as specified in Fig. 4. 

We note that the ‘Sommerfed effect’, which was described in the introduction and depicted in Fig. 1, can 

be readily explained by using the torque-speed curves. This explanation is graphically shown in Fig. 5. 

Suppose that the motor is controlled by displacing its characteristic parallel to itself. This is actually the case, 

for instance, in simplest control approach for an induction motor, known as the     control [36]. Then, for 

increasing (decrasing) input power, the motor curve is displaced upwards (downwards). Consider the first part 

of Sommerfeld’s experiment, where the input power is increased so as to make the rotor speed pass through 

the system natural frequency. As depicted in Fig. 5, when the system approaches resonance, the increase in 

the rotor speed is slowed down due to the presence of the resonance peak. This occurs until the motor curve 

becomes tangent to the vibration torque curve. At this point, the large-amplitude stationary motion disappears 

through a saddle-node bifurcation, as discussed by Kononenko [8], Dimentberg [30] and others [10,11,14]. 

The referred bifurcation makes the system jump towards the only remaining stationary motion, which is a 

post-resonant state with smaller vibration amplitude. A similar phenomenon takes place for decreasing 

frequency, although the jump is smaller in this case (see Fig. 5). This classical explanation is in accordance 

with the analyses given in [8,11,12,30]. 

Note that, in the above discussion, it is assumed that every fixed point between   and  , and between   

and  , is stable. If the fixed point lost its stability before the tangency point   or  , then the jump 

phenomenon would occur before than predicted in Fig. 5. A detailed stability analysis of the fixed points is 

presented below. 

 

 

4.2. Stability Analysis 

 

Once the fixed points of the reduced system have been obtained, we turn to the analysis of their stability. 

For a 2D system, this reduces to calculating the trace and determinant of the jacobian matrix, evaluated at the 

equilibrium point of interest. In order to obtain this jacobian, consider the reduced system (37), which can be 

written as 

 



 

              

     
 

 
 

 

  
       

    

 
 
 

 
    

   (51) 

 

Note that the only difference between (37) and (51) is that expression (35) for         has been 

introduced. The jacobian matrix of system (51), at the equilibrium point of interest, is obtained by partially 

differentiating each equation with respect to   and  , and particularizing for          . Making use of 

expressions (41) and (42), the obtained matrix is 
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where     stands for       
 . The conditions for a fixed point to be asymptotically stable are 

 

                 (53) 

                   (54) 

 

After some algebra, these conditions can be expressed as 
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where   denotes the slope of the    curve at the considered equilibrium point, and has expression 

 
 

 
  

  

    
    

 
  

  
  (57) 

as can be deduced from (47), (50). 

We now apply conditions (55) and (56) to evaluate stability regions in different scenarios. The procedure is 

as follows. Consider parameters       fixed, so that the    curve –see Fig. 4– is fixed too. Consider a pair of 

values       which gives a particular curve       . The intersections between the two curves represent the 

equilibrium points of the system. Select one of them –if there are more than one– and let parameters       

vary in such a way that the selected equilibrium point remains an equilibrium point. In other words, let 

parameters       vary so as to make the curve       rotate around the selected equilibrium point, satisfying 

restriction    . Finally, use conditions (55) and (56) to analyze how the stability of the fixed point is 

affected by the slope   of the motor characteristic. 



Fig. 6 displays the outcome of applying the above procedure for a fixed point located at the left branch of 

the vibration torque curve       . Two scenarios are considered, depending on the sign of slope  , 

evaluated at the fixed point under consideration. It is observed that a change of stability occurs when both 

torque curves become tangent      . This can be shown to correspond to a transcritical bifurcation. 

Fig. 7 shows analogous results for a fixed point located at the right branch of the vibration torque curve 

     . The system behavior is richer in this case, since stability may change in two different ways, 

depending on the comparison     . 

We define critical slope    as the value of   which makes          . Recall that the stability condition 

          was written as (55). Therefore,    takes the form 

 

             
       

  
  (58) 

 

Let us consider the different possibilities for    .  

If     (Fig. 7a), condition C2 is never fulfilled, so the fixed point is unstable regardless the value of 

slope  .  

If        (Fig. 7b.1), the critical condition –i.e. the one which produces the stability change– is C2. 

In this case, a transcritical bifurcation can be shown to occur when both torque curves are tangent      . 

Note that this result is analogous to that obtained for the left branch (Fig. 6). 

If        (Fig. 7b.2), the critical condition is C1. In this case, the stability change occurs at      

through a Hopf bifurcation, after which we named parameter   .  

 

To better understand the nature of the different bifurcations, notice the following correspondence between 

conditions C1 and C2, and the eigenvalues of    , according to (53), (54): 

 

- C1 is the critical condition   
         

          
  both eigenvalues of    , being complex conjugates, 

cross the imaginary axis. 

- C2 is the critical condition   
         

          
  a single, real eigenvalue of     crosses the imaginary 

axis. 

 

It should be stressed that most of the literature on nonideal excitations maintains that stability changes 

when the torque curves become tangent [7,8,10,30]. This is consistent with the results of the present paper, 

with the important exception of case            (Fig. 7b.2). Thus, one of the main contributions of 

this paper consists in having found a case where the usual rule of thumb for stability is not valid. In this 

scenario, the stable region is in fact smaller than predicted by usual theories (see Fig. 7b.2). Not taking this 

into account may be dangerous in real applications, since it could lead to unexpected instabilities.  



Finally, let us investigate in more detail the conditions for the existence of a Hopf bifurcation, in the linear 

case      . As stated above, a Hopf bifurcation exists if 

 

            (59) 

 

By substituting expressions (57) and (58) in (59), for    , we have 

 

     
       

  
  

    
    
 

    (60) 

 

Simplifying (60) yields 

 

             (61) 

 

Therefore, if the system under study has no structural nonlinearity      , it is particularly easy to predict 

the existence of a Hopf bifurcation, by simply checking condition (61).  

 

 

5. Numerical Simulations 

 

In this Section, some numerical experiments are performed in order to validate the analytical developments 

of Sections 3 and 4. 

We analyse a system with the following parameter values: 

 

             (62) 

 

Two different situations are considered, corresponding to two different motor characteristics,     and    . 

Both of them intersect the vibration torque curve at point   and at two more points, as shown in Fig. 8. 

Consequently, the system exhibits three fixed points for any of the considered motor characteristics. These 

two curves are given by  

 

                       (63) 

 

with 

 

                     (64) 

 

                      (65) 

 

On the other hand, point   can be shown to correspond to  



 
                

                            
 (66) 

 

Note that the system under consideration has no structural nonlinearity      . Thus, by comparing (66) 

with (61), it can be stated that the stability of point   will change through a Hopf bifurcation when the motor 

characteristic is made to rotate around  . 

Let us calculate the value of    at  . By using equation (58) we obtain 

 

           (67) 

 

Observe that    and    are smaller and greater than   , respectively, as clearly shown in Fig. 8. Thus, 

according to the stability diagram in Fig. 7b.2, we expect fixed point   to be stable for       , and 

unstable for       . In addition, based on the stability diagrams in Fig. 6a and Fig. 7b, we can state that 

points    and    are stable, while    and    are unstable. 

We have numerically solved equations (37), using embedded Runge–Kutta formulae of orders 4 and 5, for 

a number of initial conditions. In order to represent the phase plane, we consider   and   as polar coordinates, 

by defining 

 

 
       
       

   (68) 

 

The resulting phase portraits are shown in Fig. 9. 

We find that    and    are stable nodes,    and    are saddle points and   is a stable (unstable) focus for 

               . Thus, numerical results confirm the stability properties that had been analytically 

deduced. 

Now, we conduct some additional numerical experiments in order to compare the solutions of the reduced 

system (37) to those of the original system (8). Three different simulations –S1, S2 and S3– are carried out. 

Table 1 displays the initial conditions for system (8) at each simulation, as well as the chosen motor 

characteristic. The initial conditions for system (37), at each simulation, are computed according to (38).  

 

Table 1  

Initial Conditions and Motor Characteristic for each Simulation 

 

S1 S2 S3 
      

       
     
    

     

 

      

       
     
    

       

 

      

        
     
    

     

 

 



Fig. 10-12 show the results for the three cases. They exhibit a remarkably good accordance between the 

solutions of both systems (original and reduced).  

On the other hand, the coexistence of two stable equilibria for        is demonstrated in Fig. 10 and 

Fig. 11. Depending on the initial conditions, the system evolves towards point   (S1) or point   (S2).  

Case S3 is particularly interesting, for it shows that the Hopf bifurcation found in the reduced system 

occurs in the original one too. If relations (38) are applied to compute the initial conditions for the reduced 

system in case S3, we obtain 

 

          
      (69) 

 

This point is quite close to equilibrium   –see (66)–, and, consequently, it can be used to check whether   

attracts or repels nearby trajectories. We already knew, from Fig. 9, that   is an unstable focus of the reduced 

system, for       . Fig. 12 further shows this is also true for the original system. Thus, we have been able 

to prove analytically the existence of a Hopf bifurcation, and also to demonstrate it by numerically solving the 

original equations of motion. 

 
 

6. Discussion 

 

6.1. Time Validity 

 

A crucial point in any perturbation analysis is the time scale for which the obtained approximate solution is 

valid. It has been shown in Section 3 that the solution given by the reduced system is valid, at least, for a time 

scale          –see Fig. 2–. 

However, the situation is even better than that. From the Averaging Theory, it is known [15] that a solution 

of the averaged system which tends to an asymptotically stable fixed point is valid for all      . Note 

that this is the case for all the numerical solutions obtained in the last section. 

 

 

6.2. Comparison with other authors’ results 

 

In this subsection, the presented approach and results are compared to some proposed by other authors. 

First of all, as far as the authors know, there has been no attempt in the literature to use the SPT for the 

analysis of nonideally excited systems. Thus, the analytical procedure addressed in this paper appears to be a 

novel approach to the problem. 

On the other hand, we have addressed the possibility of a Hopf bifurcation on the right branch of the vibration 

torque curve (Fig. 7b.2). An important implication of this result is that the stability of the stationary solutions 

near resonance does not only depends on the comparison between the slopes of the two torque curves    

  , as commonly stated in the literature [7,8,10,30]. Let us try to explain this divergence in the results. 



Kononenko’s book [8] is one of the most relevant references in the subject. He considered several linear 

and nonlinear systems excited by nonideal motors. By using the averaging method, he was able to find an 

analytical solution to the equations of motion.  

Considering the rotor speed to be in the vicinity of resonance, he expanded it as 

 

             (70) 

 

Thus, he found equations of the following form 

 
       

           

       

       

 (71) 

 

which is a system analogous to (25). From the form of these equations, he deduced that variables  ,   and   

evolve with rate     . Then, he interpreted (71) as a 4D dynamical system, with three slow state variables ( , 

  and  ) and one fast state variable  . Finally, he applied an averaging procedure in order to make the 

evolution of the slow variables independent of  , transforming the system into a 3D one. 

From our point of view, the above procedure may not be accurate enough, for the following reason. If 

system (71) was a 4D autonomous dynamical system, with state variables          , then the r.h.s. of (71) 

would depend only on          . Note, however, that also variable   appears in the r.h.s. of (71). Therefore, 

a differential equation describing the evolution of variable   needs to be added to the system: 

 
       

           

       

       

       

 (72) 

 

System (72) underscores the presence of two fast variables in the system –  and  –, of which Kononenko 

only considered one. This is probably the reason of the difference between his results and ours.  

While several authors followed Kononenko’s approach [7,30], Blekhman proposed a completely different 

one, based on the ‘method of direct separation of motions’ [10]. With this procedure, he came to the 

conclusion that the system dynamics is governed by equation 

 

                (73) 

 

where dimensional variables have been used. In (73),       represents the torque on the rotor due to vibration. 

Based on this equation, Blekhman deduced the same result as Kononenko regarding the stability of stationary 



solutions, namely, that stability changes when the driving torque curve and the vibration torque curve are 

tangent. 

We also find that Blekhman’s approach may not be accurate enough. The reason is that, in general, the 

torque on the rotor due to vibration depends on the horizontal motion of the system, namely on variables    , 

as shown in the last of equations (28). This torque may only be written as a function of the rotor speed,      , 

once   and   are particularized for a stationary solution of the system. This means that, using (73) to assess 

the stability of solutions implies neglecting the dynamics associated to variables   and  . 

More recently, Bolla et al. [12] used the Multiple Scales method to solve the same problem studied in this 

paper, under the same assumptions. However, after obtaining system (28), they conducted the stability 

analysis considering only the first two equations in (28) and taking   as a fixed parameter. As explained at the 

beginning of Section 4, this corresponds to studying the ideal case, where the rotor speed is externally 

imposed. Consequently, they did not find the Hopf bifurcations that have been identified within this work. In 

fact, Bolla et al. explicitly stated the impossibility of Hopf bifurcations: ‘This fact eliminates the possibility of 

a pair eigenvalue pure imaginary, so this eliminates Hopf bifurcation kind’. Thus, the present article can be 

envisaged as an extension of [12], where new bifurcations are encountered due to the nonideal interaction 

between motor and vibrating system. 

 

 

7. Conclusions 

 

The present paper is concerned with the analytical and numerical analysis of a nonlinear vibrating system, 

excited by an unbalanced motor. The main contributions of this work are summarized as follows: 

- A novel analytical approach to the problem, which combines an averaging procedure with the SPT, 

has been proposed. It is worth stressing that, although both the SPT and the Averaging Method are 

actually classical in nonlinear dynamics, they had not been used together before in the context of 

nonideal excitations. Thanks to this novel combination of perturbation techniques, the original 4D 

system is asymptotically approximated by a reduced 2D system, which is much easier to analyse. 

- The conditions for stability of equilibria of the reduced system have been analytically derived. 

Transcritical and Hopf bifurcations have been found. The Hopf bifurcation is particularly relevant, for 

it gives rise to a smaller stable region than predicted by conventional theories. Consequently, not 

taking it into account may be perilous for real applications, since unexpected instabilities could occur. 

- The analytical developments presented here have been validated by comparing numerical solutions of 

the original and reduced systems. In particular, the Hopf bifurcation existence has been numerically 

proved, not only for the reduced system, but, more importantly, also for the original system of 

equations. 
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Appendix: Derivation of the Averaged System 

 

The transformation of system (25) into (28) is justified below. 

System (25) has the form 

 

                   

                      

                   

          

 (A1) 

 

where functions  ,   and   are   –periodic in  .  

We would like to apply the averaging method to system (A1), in order to eliminate the angular variable   

and obtain a simpler 3D system. In general, for the method to be applicable, we would need variables  ,   and 

  to be slow. Since we observe that   is a fast variable, it may be thought that the averaging procedure cannot 

be applied in this case. 

Fortunately, system (A1) has the particularity that fast variable   only appears linearly on the r.h.s. of the 

equations. We will show that this feature allows for an averaging procedure.  



Averaging system (A1) yields 

 

              

                  

                

 (A2) 

 

where we have used the fact that the average, defined in (27), is a linear operator. The remaining task consists 

in finding the averaged functions   ,    and   . Since the calculation is analogous for the three of them, we will 

focus on   . Applying definition (27), we have 

 

      
 

  
                    

   

   

  (A3) 

  

By using relations (29), we write (A3) as 

 

      
 

  
                      

   

   

       (A4) 

 

Let us now change the integration variable: 

 

      
 

  
                   

      

      

       (A5) 

 

where we have used          . This can be rewritten as 

 

      
 

  
                   

      

      

       (A6) 

 

Using the property that   is   –periodic in  , we have 

 

      
 

  
                   

  

 

       (A7) 

 

By simply applying expression (A7) to functions  ,   and  , we arrive at 

 



                              

       
          

     
 
 

 
            

        
 

 
                     

 (A8) 

 

Finally, introducing (A8) into (A2) yields the averaged system (28). 
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Fig. 1 Sommerfeld Effect 
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Fig. 2 Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Overview of the system dynamics. 

   and    solution of system (37), with appropriate initial conditions 
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Fig. 4 Fixed points of (37) 

 

 

 

 

 

 

 

Fig. 5 Explanation of the Sommerfeld Effect 
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Fig. 6 Stability regions for     . S and U label the stable and unstable regions, respectively. 
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Fig. 7 Stability regions for    . S and U label the stable and unstable regions, respectively. 
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Fig. 8 Torque curves 

The dashed straight line corresponds to the bifurcation point      

 

 

 

 

 

 

 

Fig. 9 Phase portrait for 
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Fig. 10 Results of Simulation S1 with        

(a) Displacement 

(b) Rotor Speed (Full view) 

(c) Rotor Speed (Close-up around resonance) 
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Fig. 11  Results of Simulation S2 with        

(a) Displacement 

(b) Rotor Speed (Full view) 

(c) Rotor Speed (Close-up around resonance) 

 

 

 

 

Fig. 12 Results of Simulation S3 with        

(a) Displacement 

(b) Rotor Speed 
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