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AbstratThe optimization of airraft trajetories using the theory of singular optimal ontrol is stud-ied in this thesis. To desribe the airraft motion, a general nonlinear 3-degree-of-freedompoint-mass model is adopted, along with realisti aerodynami and propulsion models. Theontrolled motion of an airraft is modeled as a ontrol system whose performane an beoptimized aording to some performane index. This ontrol system exhibits di�erent dy-namis, onstraints and performane indies depending on the �ight phase onsidered, whihleads to a multiphase ontrol system formulation.An indiret optimization method is applied, in whih neessary onditions for optimalityare expliitly involved into the problem resolution. The method proposed in this thesisexploits the singular harater of the problem in order to provide analytial state-feedbakontrol laws. With this approah, assuming a presribed solution struture in terms of phasesequene and sequene of singular and bang ars within eah phase, the problem of �ndingthe optimal ontrol is transformed into the problem of �nding the values of some unknownssuh that the neessary onditions for optimality as well as the initial and �nal onditionsare satis�ed, that is, the problem of solving a nonlinear system of equations.Optimizing global trajetories implies not only addressing eah �ight phase, but alsotaking into aount the interations among them as well as looking for a global objetive.Therefore, an optimal global trajetory annot be obtained by simply pieing individuallyoptimized phases together, not even when eah phase is optimized with a performane indexsuitable for a global objetive. However, by hoosing appropriate performane indies, on-lusions regarding the optimal ontrol and optimal path struture for a single-phase optimaltrajetory also apply at eah phase of an optimal multiphase trajetory. As a onsequene,prior to applying this approah to the problem of multiphase trajetories of ommerial trans-port airraft providing minimum fuel onsumption, this approah is applied to three auxiliarysingle-phase problems.First, the problem of fuel-optimal �xed-rating airraft limb in the presene of altitude-dependent winds is analyzed. The limb is optimized to give minimum ontribution to theglobal-trajetory fuel onsumption. The optimal ontrol is of the bang-singular-bang type,and the optimal trajetories are formed by a singular ar and two minimum-path-angle arsjoining the singular ar with the given initial and �nal points. This analysis is used to assessthe optimality of a standard limb proedure de�ned by segments with onstant alibratedair speed and Mah number. Linear wind pro�les de�ned by two parameters, the averagewind and the wind shear, are onsidered. The e�ets of the wind pro�le and of the initialairraft weight on the results are studied. Comparison with the optimal results shows thatthe performane of the optimized standard limb, in terms of global variables suh as fuelxi



Abstratonsumption, �ight time and horizontal distane travelled, is very lose to optimal.Seond, minimum-fuel ruise at onstant altitude with the onstraint of a �xed arrivaltime is analyzed, inluding the e�ets of average horizontal winds. Again, the optimal ontrolis of the bang-singular-bang type, and the optimal trajetories are formed by a singular arand two minimum/maximum-thrust ars joining the singular ar with the given initial and�nal points. The e�ets of average horizontal winds on the optimal results are analyzed,both qualitatively and quantitatively. The in�uene of the initial airraft weight and thegiven ruise altitude is analyzed as well. Two appliations are studied: �rst, the ost ofmeeting the given arrival time under mismodeled winds, and seond, the ost of �ight delaysimposed on a nominal optimal path. The optimal results are used to assess the optimality ofruising at onstant speed; the results show that the standard onstant-Mah ruise is verylose to optimal.Third, unpowered desents of ommerial transport airraft are optimized in the preseneof altitude-dependent winds, with the objetive of maximizing range. The optimal problemand an optimized onstant-alibrated-airspeed proedure are analyzed. The optimal ontrol isof the bang-singular-bang type, and the optimal trajetories are formed by a singular ar andtwo maximum-path-angle ars joining the singular ar with the given initial and �nal points.Linear wind pro�les de�ned by two parameters, the average wind and the wind shear, areonsidered. The e�ets of both the average wind and the wind shear on the optimal results,as well as the e�ets of the airraft weight, are analyzed. The wind shear is shown to havea lear e�et on the maximum range. The omparison between the two sets of results showsthat the optimized onstant-alibrated-airspeed desent is very lose to optimal.One the auxiliary single-phase problems are solved, the problem of global trajetoriesof ommerial transport airraft providing minimum fuel onsumption is analyzed. Theglobal trajetories are onsidered to be omposed of three types of phases: limb, ruise,and unpowered desent. The optimal ontrol in every phase is of the bang-singular-bangtype, and the optimal limb, ruise and desent trajetories are formed by a singular arand two minimum/maximum-ontrol ars joining the singular ar with the given initial and�nal points. The optimal trajetories and ontrols, the minimum fuel onsumption and someinteresting global results are omputed for an airraft performing a limb-ruise-limb-ruise-desent trajetory. Linear wind pro�les de�ned by two parameters, the average wind and thewind shear, are onsidered. The in�uene of the airraft weight and the wind pro�le on theresults is analyzed.
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1 Introdution
1.1 MotivationAviation industry plays a key role in the soial and eonomi development of Nations, apartfrom being itself an indiator of the level of that development. A snapshot of air transportsetor in 2010 reveals that it supports 56.6 million jobs worldwide and 3.5% of global grossdomesti produt (GDP) 1. Both �gures take into aount diret, indiret, indued andtourism-atalyti impats, but do not inlude other eonomi bene�ts like the existene ofompanies or industries beause air travel makes them possible.Despite the global eonomi risis, air transport industry has not stopped growing. In2011, more than 2800 million passenger �ew, whih ompared to 1800 million passengers in2003 implies an average, sustained rate of inrease of 5.7% per year 2. Also in 2011, airlinesall over the world spent $176000 million in fuel, four times what they spent in 2003 ($44000million)3. Moreover, fuel relative impat on airlines operating osts has also experiened adramati inrease, raising from 14% in 2003 to 28% in 2011. Hene, it is inreasingly impor-tant for airlines to implement measures to improve e�ieny in fuel onsumption, not only forthe positive impat on ompanies' inome statements but also to redue the environmentalimpat. In fat, air transport industry is ommitted to redue the environmental impat,even though airline operations only aounts for the 2% of the total human CO2 emissions.The aviation industry agreed in 2008 upon a set of aggressive targets with the afore-mentioned two inentives: Reduing harbon dioxide emissions, and reduing operating ostsassoiated to the largest budget line in relative terms4. Thus, in this industry it is broadlyaepted that the following targets have to be sequentially satis�ed:1. To improve �eet fuel e�ieny by 1.5% per year between 2009 and 2020.2. To stabilize net CO2 emissions from aviation from 2020 through arbon-neutral growth.3. To redue net CO2 emissions from aviation by half by 2050, as ompared with 2005.1Soure: Air Transport Ation Group (ATAG),http://www.aviationbenefitsbeyondborders.org2Soure: International Air Transport Assoiation (IATA),http://www.iata.org/whatwedo/Douments/eonomis/Industry-Outlook-Presentation-De2012.pdf3Soure: International Air Transport Assoiation (IATA),http://www.iata.org/pressroom/fats_figures/fat_sheets/Douments/fuel-fat-sheet.pdf4Soure: Air Transport Ation Group (ATAG),http://www.atag.org/omponent/downloads/downloads/201.html 1
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1. IntrodutionIn order to ahieve these targets, ompanies aross the setor make use of a four-pillarstrategy: new tehnology, e�ient operations, improved infrastruture and eonomi mea-sures to �ll the remaining emissions gap. In this ontext, airraft trajetory optimization aswell as optimality assessment of standard �ight proedures are important tools to improvethe e�ieny of operations.The partiipation of Spain in the modernization of the air navigation systems is mainlyarried out by its partiipation in SESAR, but also national projets are promoted as, for ex-ample, the projets CENIT ATLANTIDA (Appliation of Leading Tehnologies to UnmannedAerial Vehiles for Researh and Development in ATM ) and CENIT SINTONIA (SIstemasNo Tripulados Orientados al Nulo Impato Ambiental). The �rst develops innovative on-epts for the automation in air-tra� management, testing them in high-�delity simulationsand experiments based on the use of UAVs (Unmanned Air Vehiles); whereas the seondtries to inrease the e�ieny and to redue the environmental impat of UAVs through theintrodution of improvements in the whole life yle, inluding the generation of optimaltrajetories.Sine 2005, the Department of Aerospae Engineering and Fluid Mehanis has ondutedseveral studies in the �elds of trajetory predition and optimization. In this ontext, theAerospae Engineering Group has partiipated in the following projets: IMPACT (AdvanedMulti-Purpose Infrastruture for Trajetory Computation), funded by Boeing Researh andTehnology Europe, for the development of trajetory alulators; CENIT ATLANTIDA, forthe development of on�it resolution algorithms in arrival air tra� in the terminal ma-neuvering area; CENIT SINTONIA, for the development of an automati optimal-trajetorygenerator for UAVs; and, nowadays, the group is the sienti� leader of the ComplexWorldnetwork established within the framework of SESAR, for the understanding and modeling ofthe behavior and evolution of the air-tra� management system.The thesis presented in this doument is the result of researh in airraft trajetoryoptimization. In the next setion, the main objetive of the thesis is desribed.1.2 ObjetiveThe main goal of this thesis is to study the optimization of global multiphase airraft tra-jetories omposed of limb, ruise and desent phases, by using the singular optimal ontroltheory (see Bell and Jaobson [4℄). With this approah, ontrol variables do not take a on-stant value (as in parametri optimization) but vary along time. To solve the singular ontrolproblem, an indiret method is proposed, in whih neessary onditions for optimality (ad-joint dynami equations, transversality onditions and Hamiltonian minimization ondition)are expliitly used to obtain the optimal trajetory, i.e., the optimal ontrol time funtion(or the optimal ontrol feedbak law) and the assoiate evolution of the states that optimizesome property derived from the trajetory (e.g., fuel onsumption, �ight time, range, et.).Optimizing global multiphase airraft trajetories implies not only addressing eah �ightphase, but also taking into aount the interations among them as well as looking for aglobal objetive. Nevertheless, it is onvenient to previously solve some related single-phaseproblems (optimal limb, optimal ruise and optimal desent), not only beause they areinteresting per se, but also beause their resolution provides some valuable insight into the2



1.2. Objetiveoptimization of global multiphase airraft trajetories (they at as auxiliary problems). Infat, as it will be seen latter, the optimal ontrol and optimal path struture for an optimalsingle-phase airraft trajetory also apply at eah phase of an optimal multiphase airrafttrajetory.Therefore, some intermediate goals of this thesis an be pointed out:� General formulation of multiphase airraft trajetory optimization problem as a singularoptimal ontrol problem.� Optimization of the �xed-rating airraft limb in the presene of altitude-dependentwinds.� Optimization of the ruise at onstant altitude with the onstraint of a �xed arrivaltime and in the presene of an average uniform wind.� Optimization of the unpowered desent in the presene of altitude-dependent winds.� Optimality assessment of standard �ight proedures ommonly used in pratie, suhas CAS/Mah limbs, onstant-Mah ruises and Mah/CAS desents.� Study of the e�ets of some fators, suh as wind speed distribution or the initial airraftweight, on the optimal trajetories.After having solved the three aforementioned auxiliary problems, the optimization ap-proah is applied to the study of minimum-fuel global trajetories in the presene of altitude-dependent winds, where the e�ets of the wind pro�le and of the initial airraft weight onthe results are analyzed as well.The employed optimization approah features the following advantages:1. It provides analytial state-feedbak ontrol laws, allowing for an easy implementation.2. It leads to more aurate results than those obtained by diret trajetory optimizationmethods.3. It allows for generating trajetories with the best performane whih, although thesemay not be �yable aording to present-day air-tra�-ontrol proedures and regula-tions, they an be used either as referenes to the design of improved �ight proedures,or to assess the optimality of standard �ight proedures ommonly used in pratie,suh as CAS/Mah limbs, onstant-Mah ruises and Mah/CAS desents.To desribe the airraft motion, a general nonlinear 3-degree-of-freedom point-mass model,along with realisti aerodynami and propulsion models, is adopted. This model is ommonlyused for trajetory predition. Plane Earth, rigid and symmetri airraft, symmetri �ight(there is no slip), and thrust parallel to the airraft aerodynami veloity are onsidered ashypothesis. These assumptions are appropriate for subsoni, transport airraft. 3



1. Introdution1.3 OutlineThis thesis is organized as follows.In Chapter 2, after a brief overview of referenes in optimal ontrol theory (inluding thespeial ases of singular optimal ontrol problems and swithed dynamial systems), a reviewof the state of the art in numerial methods for trajetory optimization as well as in airrafttrajetory optimization is presented.In Chapter 3 the formulation of an optimal ontrol problem is �rst presented, inludingthe neessary onditions for optimality and analyzing the speial ases of singular optimalontrol problems and ontrol problems of swithed ontrol systems; seond, the equationsgoverning the motion of an airraft under appropriate assumptions are inluded; and third,the proedure to ompute optimal airraft trajetories developed in this thesis is explained.In Chapter 4 the optimal ontrol formulation is applied to the optimization of a �xed-rating limb in the presene of altitude-dependent winds, with the objetive to give minimumontribution to the global-trajetory fuel onsumption.In Chapter 5 the formulation is used to analyze the minimum-fuel ruise at onstantaltitude with the onstraint of a �xed arrival time, inluding the e�ets of average horizontalwinds.In Chapter 6 the formulation is applied to the analysis of the maximum-range unpowereddesent in the presene of altitude-dependent winds.In Chapter 7 the problem of minimum-fuel global trajetories in the presene of altitude-dependent winds is analyzed by means of the previously developed formulation.Finally, some onlusions are presented in Chapter 8, and the future lines of researh aredrawn in Chapter 9.The nomenlature and the supplementary models used throughout this doument areinluded in Appendies A and B, respetively. The funtions whih desribe the optimalsingular ontrol during limb are de�ned in Appendix C. The optimized standard limb anddesent proedures are inluded in Appendix D.
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2 Literature ReviewDi�erent lassi�ations of optimization problems an be onsidered. Biegler and Gross-mann [8℄ propose a possible lassi�ation attending to the nature of the deision variables.In this sense, there are parametri optimization problems, ommonly referred to as program-ming problems (in whih eah variable an only have a single value from a given set), optimalontrol problems, ommonly referred to as trajetory optimization problems (whih usuallyorrespond to dynami systems in whih the deision variables are funtions of the inde-pendent variable, for instane, time), and stohasti optimization problems (in whih thevariables are de�ned by probability funtions). Airraft trajetory optimization an be on-sidered as an optimal ontrol problem in whih the ontrol variables are time varying. Asa onsequene, the present thesis is not addressing parametri nor stohasti optimizationproblems.In this hapter, an overview of referenes in optimal ontrol theory is �rst addressed,inluding works related to singular optimal ontrol problems and optimal ontrol for swithedontrol systems. Then, a review of the state of the art in numerial methods for trajetoryoptimization is inluded. Finally, a review in airraft trajetory optimization is presented.2.1 Optimal ControlMany authors agree on onsidering the optimal ontrol as an extension of the alulus ofvariations, among whih Sussman and Willems [72℄ and Bryson [16℄, both iting the work ofGoldstine [35℄, regarding the history of the alulus of variations from its beginnings to theChiago shool in the early 20th entury.Sussman and Willems [72℄ address the historial evolution of the optimal ontrol fromwhat they onsider its origin: the publiation of the solution to the Brahistohrone problemin 1697 by Johann Bernoulli. They defend that the early ontributions of Leibniz, JaobBernoulli, Tshirnhaus, L'H�pital and Newton paved the way for the optimal ontrol to beborn. They also remark, �rst, the key role performed by Euler, Lagrange and Legendre insetting up the lassial theory of the alulus of variations; seond, the advantages behindthe reformulation proposed by Hamilton; third, the important advanes made by Wierstrass;and �nally, the formal appearane of the optimal ontrol, thanks to the statement of theMaximum Priniple by Pontryagin and his group.Bryson [16℄ addresses optimal ontrol developments from 1950 to 1985. He points out thatoptimal ontrol has also roots in some other sienti� �elds (not only alulus of variations),suh as lassial ontrol theory, random proesses theory and parametri optimization theory5



2. Literature Review(linear and nonlinear programming).There exist plenty of books addressing optimal ontrol theory, from whih one an standout those from Athans and Falb [2℄, Bryson and Ho [15℄, Leitmann [41℄, Ben-Asher [6℄, Speyerand Jaobson [71℄, and Clarke [24℄.2.1.1 Singular Optimal ControlFollowing the de�nition from Ben-Asher [6℄, singular optimal ontrol problems are a sublassof optimal ontrol problems in whih the Hamiltonian minimization ondition (see Chapter3) does not yield a de�nite value for the ontrol. This type of problems arises, in partiular,when the Hamiltonian is linear on the ontrol variable. Bell and Jaobson [4℄ give insightinto the theory of singular optimal ontrol, addressing neessary onditions for optimality ofthis type of problems.Singular optimal ontrol theory has been used, among other works, to analyze maximum-range ruise at onstant altitude (Pargett and Ardema [51℄ and Rivas and Valenzuela [55℄),minimum fuel ruise at onstant altitude with �xed arrival time (Frano et al. [30℄ and Franoet al. [33℄, the latter in the presene of a onstant wind), minimum-ost ruise inluding boththe DOC and the arrival-error ost assoiated to not meeting the sheduled time of arrival(Frano and Rivas [31℄), maximum-range unpowered desents in the presene of altitudedependent winds (Frano et al. [32℄) and fuel-optimal �xed-rating limbs in the presene ofaltitude dependent winds (Frano et al. [34℄).2.1.2 Optimal Control for Swithed Dynamial SystemsIn this work the theory of optimal ontrol for swithed dynamial systems is applied. Optimalontrol problems of swithed dynamial systems are ontained into a broader lass of problemsalled hybrid optimal ontrol problems. Braniky et al. [12℄ propose a very general frameworkthat systematizes the notion of a hybrid system. They introdue a mathematial modelof hybrid systems as interating olletions of dynamial systems, evolving on ontinuous-variable state spaes and subjet to ontinuous ontrols and disrete transitions. Hybridsystems an be seen as a generalization of the onept of multiproesses, previously statedby Clarke and Vinter [23℄.Numerous authors (among whih Sussmann [73℄, Riedinger et al. [54℄, Caines et al. [19℄,and Shaikh and Caines [62℄), have developed neessary onditions for optimality, in the formof a maximum priniple for hybrid optimal ontrol problems. They address di�erent asessuh as �xed and variable time interval problems ([73, 54℄), and with and without pathwisestate onstraints ([19℄). Shaikh and Caines [62℄ also present algorithms for hybrid systemsoptimization. Dimitruk and Kaganovih [27℄ state that results in Sussmann [73℄ (and, byextension, the maximum priniple for hybrid optimal ontrol) annot be reognized as a newindependent result, but as a diret appliation of the original Pontryagin maximum prinipleto an appropriately transformed problem.As Xu and Antsaklis [83℄ pointed out, the feature distinguishing a swithed system froma general hybrid system is that its ontinuous state does not exhibit jumps at the swithinginstants. Suh a feature makes the omputation of ontinuous inputs amenable via the6



2.2. Numerial Methods for Trajetory Optimizationusage of onventional optimal ontrol methods, suh as those methods developed for singularoptimal ontrol problems.2.2 Numerial Methods for Trajetory OptimizationThere exist several tehniques for numerially solving trajetory optimization problems. A-ording to numerous authors (Von Stryk and Bulirsh [80℄, Betts [7℄ and Rao [53℄, amongmany others) the methods most widely used today an be lassi�ed into two broad ategories,indiret methods and diret methods depending on whether or not they expliitly onsiderthe neessary onditions for optimality. Diret and indiret methods an also be lassi�edinto shooting methods and transription methods (also alled olloation methods). On onehand, shooting methods are haraterized by performing an initial value problem (IVP) ateah iteration step and by de�ning, as deision variables, those needed to perform that IVP.On the other hand, transription or olloation methods de�ne, as deision variables, thevalues of ontinuous variables (state, ontrol and, eventually, adjoints) at some time instantsalled nodes, approximate these ontinuous variables by a pieewise ontinuous interpolantpolynomial and enfore the satisfation of the di�erential equations at some points betweeneah pair of ontiguous nodes.Some other methods suh as those based on dynami programming and diret searhhave been also developed, although these are generally not omputationally ompetitive withdiret and indiret methods. Betts [7℄ provides an exellent survey of numerial methodsfor trajetory optimization, fousing on diret and indiret methods, and inluding pratialexamples and main issues of them. Some remarkable aspets of the researh therein arehighlighted in the setions below.2.2.1 Diret MethodsDiret methods do not require an analytial expression for the neessary onditions for opti-mality and, hene, do not involve de�nitions of adjoint variables as well as initial guesses forthem. Instead, the dynami variables (state and ontrol) are adjusted to diretly optimizethe objetive funtion. All diret methods introdue some parametri representation for theontrol variables (and, possibly, for the sate variables). Hene, the original optimal ontrolproblem, whih an be seen as an in�nite dimensional optimization problem, is transformedinto a �nite dimensional optimization problem, whih in general is a nonlinear programming(NLP) problem.For simple shooting, the ontrol variables are de�ned by a relatively small number ofNLP variables. For diret multiple shooting and diret transription methods the numberof NLP variables used to desribe the ontrol inreases, ultimately inluding values at eahmesh point of the integration interval.Advantages and disadvantages of diret methods are the disadvantages and advantages,respetively, of the indiret methods explained in the following setion. 7



2. Literature Review2.2.2 Indiret MethodsIndiret methods are haraterized by expliitly onsidering the neessary onditions foroptimality, whih are stated in terms of the adjoint di�erential equations, the MaximumPriniple, and the transversality onditions. Hene, the dynami variables (state and ontrol)are adjusted to satisfy optimality onditions instead of to diretly optimize the objetivefuntion. In general, and depending on the optimal ontrol problem, the indiret approahan lead to stating a nonlinear two-point or multipoint boundary value problem, whih an besolved by a simple shooting, a multiple shooting or a transription method. Hene, to solvethe original optimal ontrol problem it is neessary to solve a system of nonlinear equations.On one hand, there are three main disadvantages of using indiret methods.First, in order to implement an indiret method it is neessary to previously derive analytiexpressions for the neessary onditions of optimality. This an be di�ult to perform andautomatize, speially when nonlinear systems with ompliated dynamis or onstraints areonsidered.Seond, when indiret methods are applied to problems with path inequalities or to singu-lar optimal ontrol problems one has to impose the sequene of onstrained and unonstrainedsubars or the sequene of bang and singular ars. Speial intuition regarding the partiularproblem being solved (for instane, based on previous piees of researh or on the results formapplying a diret method) is neessary, beause the solution struture is a priori unknown,in general.Third, the resolution of optimal ontrol problem by means of an indiret method implies,as previously mentioned, solving a system of nonlinear equations with, in most ases, pooronvergene properties. The region of onvergene is very small, speially when it is ne-essary to guess values for the adjoints variables, whih may not have an obvious physialinterpretation and whose dynamis exhibits an unstable behavior.On the other hand, there is an important advantage of using indiret methods: theauray of the solution is higher than with diret methods. In fat, sine the solutionstruture is diretly involved in the method, disontinuities in the ontrol funtion at juntionpoints (when entering or leaving a path onstraint or a singular ar) an be easily taken intoaount.2.2.3 Other MethodsMethods based on dynami programming, also alled extremal �eld methods, rely on a nees-sary ondition for optimality onsisting of a system of �rst-order partial di�erential equationsknown as the Hamilton-Jaobi-Bellman equation (see Bellman [5℄). Dynami programminghas been suessfully applied to disrete optimal ontrol problems, as well as to speial lassesof ontinuous optimal ontrol problems for whih there is an analytial solution of the HJBequation (linear systems with quadrati osts). However, for solving nonlinear ontinuousoptimal ontrol problems, dynami programming an hardly be used as the basis for a viablenumerial method due to the urse of dimensionality. This term means that, as the time,state and ontrol have to be sampled, the omputational omplexity inreases exponentiallywith the dimensions of the state and ontrol.8



2.3. Airraft Trajetory OptimizationMethods based on diret searh an be onsidered as a speial lass of diret methodsin whih the original optimal ontrol problem is transformed into a nonlinear programmingproblem (as in the rest of diret methods) but the resolution proposed do not make use ofderivatives. Instead, the basi notion of evolutionary algorithms (suh as geneti algorithmand partile swarm method), simulated annealing, tabu searh and Monte Carlo method is torandomly selet values for the unknown variables. When a su�iently high number of randomsamples have been taken, the best one is onsidered the solution. These methods are veryattrative beause they are very easy to apply. Nevertheless, sine less information about thefuntion being minimized is used (as they do not ompute gradients), methods based on diretsearh are not omputationally ompetitive with respet to diret and indiret methods.2.3 Airraft Trajetory OptimizationAirraft trajetory optimization is, from the operational point of view, a subjet of greatimportane in air tra� management (ATM), that aims at de�ning optimal �ight proeduresfor the given airraft mission that lead to energy-e�ient �ights and enable for optimalityassessment of standard �ight proedures.In order to optimize an airraft trajetory one must take into aount that it is omposedof di�erent �ight phases (see Torenbeek [75℄): take o�, limb, ruise, desent, loiter, approahand landing. In eah one, equations of motion an be di�erent from one another. In asu�iently simple but fairly general model, a global trajetory is formed by a limb phase,a ruise phase and a desent phase. The next step in omplexity ould be to split the ruisephase into two di�erent ones by adding an intermediate limb phase. In that ase the globaltrajetory would be formed by an initial limb phase, a �rst ruise phase, a limb betweenthe two ruise levels, a seond ruise phase and a desent. For any given solution struture(i.e., sequene of �ight phases), optimizing global trajetories implies not only addressingeah �ight phase (as many authors have already done), but also taking into aount theinterations among them as well as looking for a global objetive.In pratie, the airlines onsider a ost index (CI) and de�ne the diret operating ost(DOC) as the ombined ost of fuel onsumed and �ight time weighted by the CI. Their goalis to minimize the DOC of the global trajetory.2.3.1 Global Trajetory OptimizationBefore the seventies, there are not many works about global-trajetory optimization. Aspointed out by Shultz and Zagalsky [60℄, previous works fous on optimizing one trajetoryphase, with the exeption of Bryson et al. [14℄, who studied limb-desent trajetories byusing the energy-state approximation. This approah is haraterized by onsidering, on onehand, the spei� energy as a state variable and the speed as the ontrol variable, and, onthe other hand, that kineti and potential energy interhanges are instantaneous (leading todisontinuities in speed and altitude laws).From then on, di�erent authors have addressed minimum-DOC problem for global tra-jetories. Barman and Erzberger [3℄ and Erzberger and Lee [28℄ analyze minimum-DOCproblem for global trajetories (limb-ruise-desent), onsidering steady ruise and taking9



2. Literature Reviewthe airraft mass as onstant. In partiular, Erzberger and Lee [28℄ onsider an altitude-dependent horizontal wind, although they do not take into aount the aeleration term inthe dynami equation, so that equations of motion are the same as with a onstant wind.Burrows [17℄ also analyzes minimum-DOC problem for global-trajetories, without the as-sumption of onstant mass, but with the assumption that the ruise phase takes plae in thestratosphere.Some other authors have studied minimum-fuel-onsumption global trajetories, whihan be thought of as a partiular ase of minimum-DOC global trajetories with CI equalszero. For example, Shultz and Zagalsky [60℄ address minimum-fuel-onsumption problemfor global trajetories onsidering steady ruise and onstant mass. Zagalsky et al. [84℄ ana-lyze minimum-fuel-onsumption problem for global trajetories onsidering the energy-stateapproximation and onstant mass. They �nd the veloity set to be nononvex, whih implies�rst that optimal ontrol solutions only ontain full-powered limbs and unpowered desents,and seond, that ertain suboptimal solutions ontaining a minimum-fuel ruise segment at-tain fuel eonomies superior to any optimal ontrol solution. Newman and Kreindler [49℄study minimum-fuel, three-dimensional �ight paths; non-turning paths (in a vertial plane)are onsidered as a partiular ase. Control variables are the thrust, the path angle and thebank angle. They show that for the most part of the trajetory the �ight path angle is asingular ontrol. The main simpli�ations are onstant airraft mass and onstant thrustfor eah power setting. Only short (up to 50 nmi), low-altitude (below 10000 ft) �ights areonsidered. Final values of altitude and speed are given, whereas the �nal time and the�nal horizontal distane travelled are unspei�ed. A omparison with non-optimal standardlimbs is also performed.Sorensen and Waters [68℄, Burrows [18℄, Chakravarty [21℄ and Williams [81℄ analyzeminimum-fuel-onsumption trajetories with �xed arrival time as minimum-DOC trajetorieswith free �nal time (the problem is to �nd the time ost for whih the orresponding free�nal time DOC-optimal trajetory arrives at the assigned time); the two last authors addressthe problem by onsidering a minimum-DOC steady ruise as the outer solution of a singularperturbation solution for the global trajetory. Burrows [18℄ onsiders a general point-massmodel and a onstant wind throughout the entire trajetory and, although a variable-massmodel is onsidered, only presents results for the onstant-mass ase. Chakravarty [21℄ on-siders a simpler model (by using the energy-state approximation), obtains as a result a quasi-steady ruise with altitude and speed varying as mass diminishes, and analyzes the e�etsof an altitude-dependent horizontal wind on ruise-desent trajetories (although, as in Ref.[28℄, the aeleration term in the dynami equation is negleted). Williams [81℄ also addressesthat problem, analyzing the e�ets of mismodeled onstant winds in a senario formed bythe �nal ruise and the desent phases, although wind e�ets on the whole ruise phase arenot onsidered.Chakravarty [22℄ and Liden [42℄ analyze minimum-ost global trajetories (limb-ruise-desent), onsidering not only the DOC but also the arrival-error ost whih takes into aountsome other fators suh as rew overtime ost, passenger dissatisfation ost and losses dueto missed onnetions. They also desribe proedures to selet the best CI based on whatthey all optimal �ight shedule, and onsider di�erent wind onditions.
10



2.3. Airraft Trajetory OptimizationReently, Soler et al. [67℄ address minimum-fuel-onsumption trajetories omposed ofseven �ight phases (takeo�, initial limb, limb, ruise, desent, approah and landing) byusing a hybrid optimal ontrol approah in whih the phase sequene is prede�ned but theswithing times are inluded as unknown variables. The resolution method employed isa diret olloation method or diret transription method, whih transforms the originaltrajetory optimization problem into a non-linear programming problem (that is, into aparametri optimization problem).Nevertheless, some authors have exlusively addressed a single �ight phase in the sensethat they have optimized one phase, not only without taking into aount the interationsamong the di�erent phases, but also onsidering di�erent performane indies.2.3.2 Climb Phase OptimizationIn the optimization of the limb �ight of ommerial airraft, the objetive is to minimize theeonomial and environmental impats, by de�ning the best �ight proedure for the givenairraft mission. Depending on the mission, di�erent performane indies an be onsidered(suh as minimum time, minimum fuel onsumption or minimum emissions).Minimum-time limb deserved great attention in the early works on trajetory optimiza-tion, espeially for supersoni airraft, see for example the works of Bryson and Denham [13℄and Vinent et al. [77, 78℄, in whih thrust is given and the angle of attak (or the lift o-e�ient) is taken as ontrol variable, and the work of Bryson et al. [14℄. In this work, theenergy-state approximation is used, with the speed as ontrol variable; the solution is formedby a entral path and, depending on the initial and �nal onditions, by zoom limbs or zoomdives with onstant energy (performed instantaneously). These works also review the earlywork (made in the 1950's) on trajetory optimization.Minimum-fuel limb in a vertial plane between two given points (given speed and altitude,
Vi, hi and Vf , hf ) has been analyzed by Miele [47℄ using a method based on Green's theorem, inthe ase of given thrust (depending both on speed and altitude), using the limiting onstraint
hi ≤ h ≤ hf , and with the simpli�ation of onstant airraft mass. The solution is formedby a entral limbing path and two aelerations at onstant altitude (at hi and hf ). Thisproblem is also analyzed by Bryson et al. [14℄ in the ase of supersoni airraft, using theenergy-state approximation, with the speed as ontrol variable; the solution struture is thesame (zoom-entral-zoom) as for the minimum-time problem, although the entral path isdi�erent.Some authors optimize the limb as part of a global limb-ruise-desent trajetory ina vertial plane (see for example the works of Shultz and Zagalsky [60℄, Barman andErzberger [3℄, Erzberger and Lee [28℄ and Burrows [17, 18℄), onsidering di�erent perfor-mane indies, suh as minimum diret operating ost and minimum fuel onsumption with�xed arrival time. In all these ases the �nal range is �xed, and thrust is used as a on-trol variable. In some of these works the formulation is simpli�ed by taking the airraftmass as onstant, or by taking the lift equal to the onstant weight in the alulation of theaerodynami drag. More reently, limb (and desent) optimization to redue noise at smallaltitudes has been given speial attention (see the works of Visser and Wijnen [79℄, Ho andClarke [37℄, Torres et al. [76℄), with the goal of de�ning noise abatement proedures. 11



2. Literature ReviewIn the previous works, wind e�ets are not taken into aount. Wu and Zhao [82℄ optimizelimb trajetories onsidering di�erent performane indies and wind e�ets; although thenominal wind is zero, sensitivities with respet to wind unertainties are analyzed. In thisanalysis, lift oe�ient and thrust are taken as ontrol variables, and the formulation issimpli�ed by onsidering onstant spei� fuel onsumption. The optimization is formulatedas a parameter optimal ontrol problem, in whih a prede�ned trajetory pro�le (formed bya series of pre-ordered �ight phases) is onsidered.2.3.3 Cruise Phase OptimizationSome authors have exlusively addressed optimal airraft ruise independently onsidered.Minimum-DOC ruise has been studied by di�erent authors. Bilimoria et al. [9℄ analyzethe minimum-DOC steady ruise as the outer solution when applying a singular perturbationapproah. They point out that non-onvexity in the fuel-�ow vs airspeed graph has theimportant onsequene of de�ning a veloity segment that is nonoptimal, whih leads to thesometime ourrene of time-shared operation between two altitude-airspeed ombinationsfor optimal steady ruise. Frano and Rivas [31℄ analyze minimum-ost ruise inluding boththe DOC and the arrival-error ost assoiated to not meeting the sheduled time of arrival.They obtain that, for some values of the parameters present in the problem, the solutionis obtained by �xing the �nal time to be the sheduled time of arrival, whereas for someother values of the parameters, the solution is obtained by solving a minimum-DOC problemwith free �nal time and a ost index di�erent from the original one. The related problemof �nding the minimum-fuel ruise at onstant altitude with �xed arrival time is analyzed,among others, by Frano et al. [30℄ and Frano et al. [33℄ (the latter in the presene of aonstant wind).The partiular ase of minimum-fuel ruise (CI equal to zero) has been onsidered byothers. For example, Speyer [69℄, Shultz [61℄, and Speyer [70℄ analyze the optimality of thesteady-state ruise, taking the airraft mass as onstant. For an airraft model where theontrol variables are thrust and �ight path angle, Speyer [69℄ shows that ruise ondition is adoubly singular ar whih is non-minimizing beause it fails to satisfy a neessary onditionfor optimality. For an airraft model where the ontrol variables are the thrust and the liftoe�ient, Shultz [61℄ onsiders that the ruise solution is a thrust-singular ar and showsthat, unlike with the energy state equations or with the intermediate model onsidered inRef. [69℄, the ruise is now a minimizing-ar. In response to Ref. [61℄, Speyer [70℄ appliesa frequeny domain version of the Jaobi test to the Goh's transformation of a point-mass-model, and shows that the steady-state ruise is nonoptimal over long ranges beause ofthe appearane of onjugate points. He also points out that a small-amplitude osillatoryruise an provide slight improvements in fuel onsumption with respet to steady-sate ruise.The equivalent problem of �nding the maximum-range ruise at onstant altitude for a �xedamount of fuel is analyzed, among others, by Pargett and Ardema [51℄, Rivas and Valenzuela[55℄, and Rivas et al. [56℄.Some authors have explored nononventional ruise, suh as hattering ruise, and optimalyli ruise with the objetive of minimizing fuel onsumption per range travelled or per �ighttime. Houlihan et al. [38℄ study the minimum-fuel hattering ruise as the outer solution of12



2.3. Airraft Trajetory Optimizationa singular perturbation solution, onsidering the energy-state approximation and a onstant-mass model. They obtain that, when the veloity set is not onvex, a hattering ruise onlyshows a substantial improvement with respet to steady ruise at low energy levels; therefore,from a pratial point of view, hattering ruise implies at best only a small advantage overonventional ruise. Sahs and Christodoulou [59℄ analyze the problem of �nding periodi�ight paths that maximize either the ratio of the horizontal yle range to the fuel onsumedin a yle, or the ratio of the yle time to the fuel onsumed in a yle. They onsidera onstant-mass model with the throttle parameter and the lift oe�ient as ontrols anda maximum altitude onstraint. Optimal yli paths are obtained, whih are bang-bangin the thrust and an be deomposed into two �ight segments, a maximum thrust segmentand a minimum thrust segment. For range maximization per fuel onsumed, importantimprovements with respet to steady-state ruise an be ahieved for low maximum altitudesand without onsidering ompressibility e�ets, whereas negligible improvements are obtainedif the admissible altitude is high enough and ompressible e�ets are taken into aount.Finally, Menon [46℄ performs an interesting survey of airraft ruise optimization and providesfurther insight into minimum-fuel osillatory ruise.2.3.4 Desent Phase OptimizationIn the optimization of the desent �ight of ommerial airraft, the objetive is to desend anddeelerate ontinuously, so that the eonomial and environmental impats are minimized,keeping thrust as low as possible for as long as possible. An example is the ontinuous desentapproah (CDA) proedure (see for instane Clarke et al. [25℄ where the design and �ighttest of a CDA as a noise abatement proedure is presented).Maximum-range glide between two given points (given speed and altitude, Vi, hi and
Vf , hf ) has been analyzed by di�erent authors using di�erent proedures. For instane,Miele [47℄ analyzes the problem using a method based on Green's theorem, using the limitingonstraint hf ≤ h ≤ hi; the solution is formed by a entral pattern and two deelerations atonstant altitude (hi and hf ). Bryson et al. [14℄ present an analysis using the energy-stateapproximation, with speed as ontrol variable; the solution struture is the same (zoom-entral-zoom) as for the limb problems. More reently, Shapira and Ben-Asher [64, 65℄use singular perturbation theory, onsidering two and three timesales, and obtain the innerand outer solutions using optimal ontrol theory; the inner (boundary layer) solution isharaterized by an inrease in altitude, a derease in speed, and large values of �ight-pathangle; the outer (slow) solution is a steady-state glide; these analyses are made for the simpleinompressible ase of a paraboli drag polar of onstant oe�ients. In all these works winde�ets are not taken into aount; however, some other authors have taken into aountwind e�ets when addressing desent trajetories within the ontext of global trajetoryoptimization (see Refs. [28, 18, 21℄).

13



This page intentionally left blank

14



3 Formulation of the Optimal ControlProblemIn this hapter, the singular optimal approah is applied to optimize airraft trajetories.For that purpose, the formulation of an optimal ontrol problem is �rst presented, inludingthe neessary onditions for optimality and analyzing the speial ases of singular optimalontrol problems and optimal ontrol problems of swithed systems. The expliit statementof the neessary onditions for optimality is needed beause an indiret numerial methodis onsidered. Then, the equations governing the motion of an airraft under appropriateassumptions are inluded. Finally, the proedure to ompute optimal airraft trajetoriesdeveloped in this thesis is explained.3.1 Optimal Control TheoryThe outline of this setion is as follows. First, a general formulation of an optimal ontrolproblem is presented, preeded by the de�nition of some standard terminology based on theworks of Bryson and Ho [15℄ and Clarke [24℄. Seond, neessary onditions for a solutionandidate to be optimal are inluded, with a formulation based on the works of Ross [58℄ andClarke [24℄. Third, partiular onsiderations regarding singular optimal ontrol problems areaddressed, inluding additional neessary onditions for suh a type of problems. Finally, anextension of the formulation of an optimal ontrol problem to swithed dynamial systems isperformed inluding, as well, additional neessary onditions for suh a type of problems.3.1.1 Optimal Control ProblemLet onsider a time interval [t0, tf ], the dynamis funtion f : [t0, tf ] × R
n × R

m 7→ R
n, andthe ontrol set U ⊂ R

m. A ontrol is an m-vetor funtion on [t0, tf ] with values in U ,whereas the state, or state trajetory, orresponding to the ontrol u refers to a solution y ofthe initial-value problem (IVP) given byẏ = f [t,y (t) ,u (t)] , ∀t ∈ [t0, tf ]y(t0) = y0 (3.1)where y0 ∈ R
n is a presribed initial ondition, t is the time, and the dot denotes derivationwith respet to t (i.e., ẏ =

dy
dt

). Hene, y : [t0, tf ] 7→ R
n is an n-vetor funtion withontinuous omponents. The ordinary di�erential equation (ODE) system (3.1) linking the15



3. Formulation of the Optimal Control Problemontrol u and the state y is referred to as the state equation. The ouple (f, U) is referred toas the ontrol system. A proess of the ontrol system (f, U) is the ouple (y,u) onsistingof an n-vetor funtion with ontinuous omponents y and an m-vetor funtion u whihsatisfy the state equation (3.1). The ost funtional J(y,u) is de�ned by
J(y,u) = φ [tf ,y(tf )] + ∫ tf

t0

l [t,y (t) ,u (t)] dt (3.2)were the running ost l and the terminal ost φ are given funtions. In some ases, one maybe interested in onstraining funtions of the terminal state to have presribed values, whihan be expressed as
ψ [tf ,y (tf )] = 0 (3.3)where the k-vetor funtion ψ : R × R

n 7→ R
k is the �nal-state-onstraint funtion. Thepartiular ase in whih some state variables are presribed at the �nal time is subsumed inthe more general ase addressed by Eq. (3.3).In summary, the optimal ontrol problem an be stated as follows:Minimize J(y,u) = φ [tf ,y(tf )] + ∫ tf

t0

l [t,y (t) ,u (t)] dtsubjet to ẏ = f [t,y (t) ,u (t)] , ∀t ∈ [t0, tf ]u(t) ∈ U, ∀t ∈ [t0, tf ]y(t0) = y0
ψ [tf ,y (tf )] = 0

(3.4)
An optimal proess, also alled an extremal, is a proess (y∗,u∗) de�ned on the interval

[t0, tf ] satisfying the onstraints of Eq. (3.4) and verifying J(y∗,u∗) ≤ J(y,u), for any otherproess (y,u) satisfying the aforementioned onstraints, as well as ‖y − y∗‖ ≤ ǫ, for some
ǫ > 0. In this de�nition, ‖z‖ means the relevant supremum norm, that is, sup

t∈[t0,tf ]
|z(t)|.Although an optimal ontrol problem stated as in Eq. (3.4) is quite general, additionalonsiderations an be made.First, the �nal time tf an be either spei�ed, that is, a given parameter, or unspei�ed,that is, an unknown parameter whose optimal value will result from solving the optimalontrol problem. Although it does not imply any hange in the problem formulation, it hasa diret impat in the statement of the neessary onditions for optimality. Moreover, inthe ase of tf unspei�ed, the de�nition of an optimal proess has to be slightly modi�edas follows. An optimal proess (equivalently, an extremal), is a proess (y∗,u∗) de�ned onthe interval [t0, tf ], satisfying the onstraints of Eq. (3.4) and verifying J(y∗,u∗) ≤ J(y,u),for any other proess (y,u) de�ned on the interval [t0, τf ] and satisfying the aforementionedonstraints, as well as |tf − τf | ≤ ǫ and ‖y− y∗‖ ≤ ǫ, for some ǫ > 0.Seond, onstraints that apply at intermediate points or over the whole path t ∈ [t0, tf ],rather than just at the end points, may also be onsidered. In partiular, one may haveintegral onstraints, equality or inequality onstraints of funtions of the ontrol and statevariables, interior point onstraints, and disontinuities in the dynamis funtion or variablesat interior points.16



3.1. Optimal Control Theory3.1.2 Neessary Conditions for OptimalityIn this setion, neessary onditions for a proess (y,u) to be the solution of the optimalontrol problem (3.4) are presented, with a formulation based on the works of Ross [58℄and Clarke [24℄. These onditions are known as Pontryagin Maximum Priniple, or simplyMaximum Priniple. In these thesis, su�ient onditions for optimality are not onsidered.The Maximum Priniple is a set of neessary onditions for optimality whih, as Hestenes[36℄ pointed out, is equivalent to the onditions of Euler-Lagrange, Weierstrass and Legendre-Clebsh in the lassial theory of the alulus of variations. Nevertheless, the MaximumPriniple extends those onditions in a twofold way, to optimal ontrol problems, and toproblems in whih the ontrol is onstrained to be in a spei�ed ontrol set (i.e., in thepresene of ontrol variable inequality onstraints).Let �rst de�ne the Hamiltonian and the endpoint Lagrangian of the problem (3.4) asfuntions Hη : [t0, tf ] × R
n × R

m × R
n 7→ R, and Eη : [t0, tf ] × R

n × R
k 7→ R, respetively,given by

Hη(t,y,u, λ) = ηl (t,y,u) + λT f (t,y,u) (3.5)and
Eη [tf ,y(tf ), ν] = ηφ [tf ,y(tf )] + νTψ [tf ,y (tf )] (3.6)Then, assuming lassial regularity of the funtions involved (see Clarke [24℄), the MaximumPriniple an be stated as follows:Let (y∗,u∗) be an optimal proess of the problem (3.4), where U is bounded. Then thereexist an n-vetor funtion with ontinuous omponents λ : [t0, tf ] 7→ R

n, a salar η ≥ 0, anda multipliers vetor ν ∈ R
k satisfying the following onditions:1) The non-triviality ondition, that is, (η, λ(t), ν) 6= 0, ∀t ∈ [t0, tf ].2) The adjoint dynamis equation, given by

λ̇(t) = −∂H
η

∂y [t,y∗(t),u∗(t), λ(t)] , ∀t ∈ [t0, tf ] (3.7)3) The Hamiltonian minimization ondition, whih states that for the ontrol to be opti-mal it must globally minimize the Hamiltonian, and heneu∗ [t,y∗(t), λ(t)] = argminu∈UHη [t,y∗(t),u, λ(t)] , ∀t ∈ [t0, tf ] (3.8)4) The transversality onditions, stated as
λ(tf ) =

∂Eη

∂y(tf ) [tf ,y∗(tf ), ν] (3.9)to whih one has to add, if the �nal time is unspei�ed, another transversality onditionalled the Hamiltonian value ondition and given by
Hη [tf ,y∗(tf ),u∗(tf ), λ(tf )] = −∂E

η

∂tf
[tf ,y∗(tf ), ν] (3.10)Furthermore, the minimized Hamiltonian Hη : [t0, tf ]× R

n × R
n 7→ R, de�ned as

Hη(t,y, λ) = minu∈UHη(t,y,u, λ) (3.11)17



3. Formulation of the Optimal Control Problemevolves aording to the Hamiltonian evolution equation, given by
Ḣη [t,y∗(t), λ(t)] = ∂Hη

∂t
[t,y∗(t),u∗(t), λ(t)] , ∀t ∈ [t0, tf ] (3.12)If the problem is autonomous, Eq. (3.12) redues to the Hamiltonian onstany onditionstating that, for some onstant H, one has

Hη [t,y∗(t),u∗(t), λ(t)] = H, ∀t ∈ [t0, tf ] (3.13)Moreover, if the �nal time is unspei�ed, the Hamiltonian value ondition provides H = 0.In these neessary onditions, λ is known as adjoint or ostate, whereas the omponentsof the onstant vetor ν are referred to as the �nal-state Lagrange multipliers. The ostmultiplier η is introdued to inlude the abnormal ase, in whih η = 0. The abnormal asearises when the onstraints are so restritive as to identify the optimal solution regardless ofthe running ost l [t,y (t) ,u (t)] and the terminal ost φ [y(tf ), tf ]. For the normal ase, theonstany and non-negativity of η leads to onsider η = 1 without loss of generality, as ηsimply sales the Hamiltonian; this is alled the normality ondition.The Hamiltonian minimization ondition, whose solution is symbolially stated in theform of Eq. (3.8), an be posed as a problem in itself, given by (see Ross [58℄)Minimize Hη (t,y,u, λ)subjet to u ∈ U
(3.14)for every t ∈ [t0, tf ].The onvexity ondition for problem (3.14) is given by

∂2Hη

∂u2
[t,y∗(t),u∗(t), λ(t)] ≥ 0, ∀t ∈ [t0, tf ] (3.15)whih is known as the Legendre-Clebsh ondition.Furthermore, when the optimal ontrol is interior to the set U (i.e. u∗(t) ∈ intU , ∀t ∈

[t0, tf ]), the stationarity ondition for problem (3.14) is given by
∂Hη

∂u [t,y∗(t),u∗(t), λ(t)] = 0, ∀t ∈ [t0, tf ] (3.16)whih is known as the Euler-Lagrange ondition. This equation allows for the determinationof u∗, provided that the Hessian of the Hamiltonian Hηuu (t,y,u, λ) is not singular. In a moregeneral ase in whih the ontrol onstraints may be ative in some portions of the optimalproess, (3.14) is a nonlinear programming problem. In partiular, when u is salar (namely
u) and the set U is given by U = {u ∈ R : umin ≤ u ≤ umax}, the Karush-Kuhn-Tukeronditions applied to the problem (3.14) provide:



























u∗(t) = umax if ∂Hη

∂u
[t,y∗(t), u∗(t), λ(t)] ≤ 0

∂Hη

∂u
[t,y∗(t), u∗(t), λ(t)] = 0 if umin < u∗ < umax

u∗(t) = umin if ∂Hη

∂u
[t,y∗(t), u∗(t), λ(t)] ≥ 0

(3.17)
18



3.1. Optimal Control Theoryfor every t ∈ [t0, tf ].Aording to the Maximum Priniple, one the optimal ontrol is obtained, then it an besubstituted into the state and adjoint di�erential equations, leading to a 2n system of ordinarydi�erential equations with boundary onditions given by the ombination of presribed initialstate, �nal-state onstraint and transversality onditions. Boundary onditions add up to
2n+k equations, but with k additional unknown �nal-state multipliers that an be eliminated(in priniple) form these, leading to 2n boundary onditions for a 2n system that, hene, anbe solved (again, in priniple) in order to obtain an extremal. Note that if the �nal time isunspei�ed one has an additional unknown tf and an additional transversality ondition (theHamiltonian value ondition), whih lead to 2n+1 boundary onditions for a 2n system with
1 unknown parameter.In the subsequent setions, only the normal ase is onsidered, and H and E are writtenfor H1 and E1, respetively.3.1.3 Singular Optimal ControlAording to Bell and Jaobson [4℄, a singular optimal proess is one for whih the Legendre-Clebsh neessary ondition (3.15) is not satis�ed with strit inequality, or equivalently, the
m×m determinant |Huu| vanishes at any point along it. In this thesis only the ase in whihthe Hamiltonian is a linear funtion on u is onsidered, as it is the most ommon ase in whihsingular optimal problems arise in appliations (see Bryson [15℄). In that ase, the derivative
Hu (t,y, λ), ommonly known as the swithing funtion S (t,y, λ), does not depend on u andrepresents the vetor of oe�ients of these linear terms. In this setion, a salar ontrol isonsidered (m = 1, u = u) and the set U is given by U = {u ∈ R : umin ≤ u ≤ umax}.In singular optimal ontrol problems, the swithing funtion may vanish over a �nitetime interval, that is, S (t,y, λ) = 0 for t ∈ [τ1, τ2] ⊆ [t0, tf ], de�ning a portion of theoptimal proess referred to as a singular ar. If that happens, the optimal ontrol along thesingular ar, known as singular ontrol using (t,y, λ), is not determined by the Hamiltonianminimization ondition. This an be understood by partiularizing Eq. (3.14) for a singularoptimal problem with a salar ontrol, whih gives
u∗ =











umax if S [t,y∗(t), λ(t)] < 0

using [t,y∗(t), λ(t)] if S [t,y∗(t), λ(t)] = 0 over a �nite time interval
umin if S [t,y∗(t), λ(t)] > 0

(3.18)for every t ∈ [t0, tf ]. The singular ontrol is determined, instead, by the requirement thatthe swithing funtion remains zero on the singular ar, whih implies that also the timederivatives of the swithing funtion must vanish.Thus, on one hand, there is one equation de�ning the singular ontrol
d2ξS

dt2ξ
(t,y, using, λ) = 0 (3.19)where ξ is the order of the singular ar. Note that, in general, the order of the singular aris ξ when the lowest-order time derivative in whih u appears expliitly is of order 2ξ, asde�ned in Ref. [4℄. Kelley et al. [40℄ demonstrate that u annot �rst appear in an odd-orderderivative; hene the order ξ is an integer number. 19



3. Formulation of the Optimal Control ProblemOn the other hand, 2ξ equations have to be satis�ed along the singular ar
S [t,y∗(t), λ(t)] = 0

djS

dtj
[t,y∗(t), λ(t)] = 0 for j = 1, ..., 2ξ − 1

(3.20)for every t ∈ [τ1, τ2]. As a onsequene, singular ars are not possible at any point of the
(t,y, λ) spae of dimension 2n + 1, but they are restrited to a manifold, referred to as asingular surfae (see Bryson and Ho [15℄). The singular surfae is in fat the lous of possiblepoints in the aforementioned spae on whih optimal paths an lie, as well as a swithingboundary for the optimal ontrol (see Ben-Asher [6℄).For singular optimal problems of autonomous systems, a remark regarding the dimensionof the singular surfae an be made. The Hamiltonian onstany ondition adds, in general,an extra equation (whih makes 2ξ + 1 equations de�ning the singular ar) and an extraunknown parameter H. Thus, the singular surfae an be seen to belong to a uniparametrifamily of surfaes of dimension 2(n − ξ) − 1. If the �nal time is unspei�ed, there is nounknown, sine H = 0, so that one simply has a singular surfae of dimension 2(n − ξ)− 1.Hene, for n = 3 and ξ = 1, the previous analysis shows that, in general, the singular aris de�ned by three equations involving an unknown parameter, whih de�ne a uniparametrifamily of singular surfaes of dimension 3. As a onsequene, it may not be possible to de�nea singular surfae exlusively ontained in the state spae, but those three equations areenough to de�ne the three adjoints along the singular ar in terms of the state variables, andthus, in ombination with Eq. (3.19), one obtains a feedbak ontrol law (ontrol variableas funtion of the state variables) that an be diretly used to guide the airraft along theoptimal path.3.1.3.1 Additional Neessary Conditions for OptimalityA remarkable onsequene of the singularity of Huu is that additional neessary onditionsfor optimality must be satis�ed in order both, for a singular extremal to be minimizing, andfor the juntions between singular and nonsingular ars to be optimal.On one hand, the generalized Legendre-Clebsh ondition (see Kelley et al. [40℄), alsoknown as Kelley-Contensou test, establishes that for the singular ontrol to be optimal onemust have

(−1)ξ
∂

∂u

(

d2ξS

dt2ξ

)

≥ 0 (3.21)In partiular, when ξ = 1, this neessary ondition for the optimality of the singular ontrolredues to
− ∂S̈

∂u
≥ 0 (3.22)On the other hand, MDanell and Powers [45℄ prove that, for the optimality of juntionsbetween singular and nonsingular ars, the following neessary ondition must be satis�ed:the sum of the order of the singular ar (ξ) and the lowest-order time derivative of the ontrolwhih is disontinuous at the juntion (ζ) must be an odd integer if the strengthened gener-alized Legendre-Clebsh ondition is satis�ed at the juntion and if the ontrol is pieewiseanalyti in a neighborhood of the juntion. In partiular, this neessary ondition is satis�ed20



3.1. Optimal Control Theorywhen the order of the singular ar is ξ = 1, and the lowest-order time derivative of the ontrolwhih is disontinuous at the juntion is ζ = 0 (that is, the ontrol itself is disontinuous atthe juntion).Moreover, one has that at the juntions where the ontrol variable were disontinuous,the adjoint variables, the Hamiltonian and the swithing funtion should all be ontinuousin order for the Weierstrass-Erdman orner onditions to be satis�ed (see Ref. [15℄).3.1.4 Optimal Control for Swithed SystemsSwithed systems usually refer to the lass of hybrid systems in whih there are no dison-tinuities (jumps) in the state at the swithing times (see Xu and Antsaklis [83℄). Therefore,a swithed ontrol system onsists of an indexed set of dynamial ontrol subsystems, whoseelements are formed by the ouple (fq, Uq), and a set of onstraints in the endpoints of thestate trajetories (state ontinuity).In the previous de�nition, fq : [t0, tf ]×R
n × R

mq 7→ R
n and Uq ⊂ R

mq are the dynamisfuntion and the ontrol set, respetively, in the phase q ∈ Q, where Q is the set of possibledisrete phases.The input for a swithed ontrol system omprises the three following elements: thephase sequene (also referred to as the swithing sequene) σ = (q1, ..., qN ), where qj ∈ Qfor j = 1, ..., N and N is the number of phases onsidered; the sequene of swithing times
τ = (t0, ..., tN ), where tN = tf and the number of swithings is N − 1; and the sequeneof ontrol funtions at eah phase, uqj . If the phase sequene is σ = (q1, ..., qN ) and thesequene of swithing times is τ = (t0, ..., tN ), the dynamial ontrol subsystem qj is ativeduring the time interval [tj−1, tj ) ([tN−1, tN ] if j = N).Aording to Braniky et al. [12℄, the nature of the disrete phenomenon underlying theswithing law leads to de�ne di�erent types of swithings for hybrid systems: autonomousswithing, autonomous impulse, ontrolled swithing and ontrolled impulse. For swithedsystems, in whih state disontinuities are not allowed, only autonomous swithing and on-trolled swithing an happen. A swithing is said to be autonomous if it takes plae whenthe state enters a presribed manifold in the state spae, whereas it is said to be ontrolledif it takes plae in response to a ontrol ommand. In this thesis, only the ase in whihone is allow to pik among the set of ontrol subsystems is onsidered; hene, the subsequentformulation is restrited to ontrolled swithings.The ontrol in the phase qj is an mqj -vetor funtion on [tj−1, tj ) with values in Uqj ,whereas the state in the phase qj orresponding to the ontrol uqj refers to a solution yqj ofthe IVP given by ẏqj = fqj [t,yqj (t) ,uqj (t)], ∀t ∈ [tj−1, tj )yqj(tj−1) = yqj ,j−1

(3.23)The initial value yqj ,j−1 is given by yq1,0=̇y0 for j = 1, where y0 is the presribed initialvalue, and by yqj ,j−1 = lim
t→tj−1

yqj−1
(t) (3.24)for j = 2, ..., N . As a onsequene, the state y : [t0, tf ] 7→ R

n, de�ned as y(t) = yqj (t),21



3. Formulation of the Optimal Control Problem
∀t ∈ [tj−1, tj ) ([tN−1, tN ] if j = N) for j = 1, ..., N , is an n-vetor funtion with ontinuousomponents.The ost funtional J(y,u1, ...,uN ) is de�ned by

J(y,u1, ...,uN ) = φ [tf ,y(tf )] + N
∑

j=1

∫ tj

tj−1

lqj
[

t,y (t) ,uqj (t)
]

dt (3.25)were the running ost in the phase qj , lqj , and the terminal ost φ are given funtions. Notethat no swithing ost is onsidered in this thesis. A �nal-state onstraint as Eq. (3.3) analso be taken into aount.In this thesis, only multiphase optimal ontrol problems in the sense of Soler et al. [67℄are onsidered. These are optimal ontrol problems of swithed dynamial ontrol systemsin whih the number of swithings (equivalently the number of phases N) and the phasesequene σ (the sequene of ative dynamial subsystems) are prede�ned.In summary, the multiphase optimal ontrol problem an be stated as follows:Minimize J(y,u1, ...,uN ) = φ [tf ,y(tf )] + N
∑

j=1

∫ tj

tj−1

lqj
[

t,y (t) ,uqj (t)
]

dtsubjet to ẏ = fqj [t,yqj (t) ,uqj (t)], ∀t ∈ [tj−1, tj ) , j = 1, ..., Nuqj(t) ∈ Uqj , ∀t ∈ [tj−1, tj ) , j = 1, ..., Ny(t0) = y0
ψ [tf ,y (tf )] = 0for a given σ = (q1, ..., qN ), qj ∈ Q, j = 1, ..., N

(3.26)
The onept of optimal proess or extremal an be readily extended to multiphase opti-mal ontrol problems. An optimal multiproess is a multiproess (y∗,u∗

1, ...,u∗

N ) de�ned onthe interval [t0, tf ] satisfying the onstraints of Eq. (3.26) and verifying J(y∗,u∗

1, ...,u∗

N ) ≤
J(y,u1, ...,uN ), for any other multiproess (y,u1, ...,uN ) satisfying the aforementioned on-straints, as well as ‖y− y∗‖ ≤ ǫ, for some ǫ > 0.3.1.5 Neessary Conditions for Optimality in Swithed SystemsIn this setion, neessary onditions for a multiproess (y,u1, ...,uN ) to be the solution ofthe multiphase optimal ontrol problem (3.26) are presented, with a formulation based onthe previous one in 3.1.1. These onditions are known as Hybrid Maximum Priniple. In thisthesis, su�ient onditions for optimality are not onsidered.The Hybrid Maximum Priniple is a set of �rst order neessary onditions for optimalityrelating to how to selet ontinuous variables in a hybrid optimal ontrol problem in suha way that optimizes the ost funtion for a �xed hoie of the swithing sequene. Severalformulations of the Hybrid Maximum Priniple an be found in works of Sussmann [73℄,Riedinger [54℄, Caines [19℄ and Shaikh and Caines [62℄), among others. In this thesis, theHybrid Maximum Priniple is both, rewritten in terms of the formulation in Setion 3.1.1,and partiularized to multiphase optimal ontrol problems introdued in Setion 3.1.4, inorder to obtain a Multiphase Maximum Priniple.22



3.1. Optimal Control TheoryLet �rst de�ne the Hamiltonian at the phase qj ∈ Q of the problem (3.26) as a funtion
Hqj : [tj−1, tj )× R

n × R
mqj × R

n 7→ R, ([tN−1, tN ] if j = N) given by
Hqj(t,y,uqj , λ) = lqj

(

t,y,uqj

)

+ λT fqj (t,y,uqj

) (3.27)and seond, the end endpoint Lagrangian of the problem (3.26) as a funtion E : [t0, tf ] ×
R
n × R

k 7→ R given by
E [tf ,y(tf ), ν] = φ [tf ,y(tf )] + νTψ [tf ,y (tf )] (3.28)Note that the supersript η is no longer used beause only the normal ase is onsidered.Then, assuming lassial regularity of the funtions involved, the Multiphase Maximum Prin-iple an be stated as follows.Let (y∗,u∗

1, ...,u∗

N ) be an optimal multiproess of the problem (3.26), where Uq is boundedfor any q ∈ Q, the phase sequene is de�ned as σ = (q1, ..., qN ), with qj ∈ Q for j = 1, ..., N ,and N is the number of phases onsidered. Then there exist a pieewise ontinuous funtion
λ : [t0, tf ] 7→ R

n and a multipliers vetor ν ∈ R
k satisfying the following onditions:1) The non-triviality ondition, that is, (λ(t), ν) 6= 0, ∀t ∈ [t0, tf ].2) The adjoint dynamis equation, given by

λ̇(t) = −
∂Hqj

∂y [

t,y∗(t),u∗

qj(t), λ(t)
]

, ∀t ∈ [tj−1, tj ) (3.29)([tN−1, tN ] if j = N) for j = 1, ..., N .3) The swithing onditions regarding the adjoint variables, whih state that sine thestates are ontinuous at the swithing points tj , and only ontrolled swithings are onsidered,the adjoint funtion veri�es
λ(t−j ) = λ(t+j ) (3.30)for j = 1, ..., N − 1. Hene, λ is a ontinuous funtions for all t ∈ [0, tf ]. Note that someauthors lassify these onditions as transversality onditions at the swithing instants, beausethey are assoiated to the onstraints ensuring the state ontinuity at the swithing points.4) The Hamiltonian ontinuity ondition, whih states that, sine the transition times tjare not spei�ed, the Hamiltonian is ontinuous at the swithing instants tj :

Hqj

[

tj ,y∗ (tj) ,u∗

qj (tj) , λ (tj)
]

= Hqj+1

[

tj,y∗ (tj) ,u∗

qj+1
(tj) , λ (tj)

] (3.31)for j = 1, ..., N − 1, where the left-hand side is de�ned as
Hqj

[

tj ,y∗ (tj) ,u∗

qj (tj) , λ (tj)
]

= lim
t→tj

Hqj

[

t,y∗ (t) ,u∗

qj (t) , λ (t)
] (3.32)beause, with the formulation onsidered, Hqj is not de�ned for t = tj and j = 1, ..., N − 1.5) The Hamiltonian minimization ondition, whih states that for the ontrol to be opti-mal it must globally minimize the Hamiltonian, and heneu∗

qj [t,y∗(t), λ(t)] = arg minuqj
∈Uqj

Hqj

[

t,y∗(t),uqj , λ(t)
] (3.33)for j = 1, ..., N − 1. 23



3. Formulation of the Optimal Control Problem6) The transversality onditions, stated as Eq. (3.9)
λ(tf ) =

∂E

∂y(tf ) [tf ,y∗(tf ), ν] (3.34)to whih one has to add, if the �nal time is unspei�ed, the so alled Hamiltonian valueondition, given by
HqN

[

tf ,y∗(tf ),u∗

qN (tf ), λ(tf )
]

= −∂E
∂tf

[tf ,y∗(tf ), ν] (3.35)Furthermore, the minimized Hamiltonian at the phase qj ∈ Q,Hqj : [t0, tf ]×R
n×R

n 7→ R,de�ned as
Hqj(t,y, λ) = minuqj

∈Uqj

Hqj(t,y,uqj , λ) (3.36)evolves aording to the Hamiltonian evolution equation, given by
Ḣqj [t,y∗(t), λ(t)] = ∂Hqj

∂t

[

t,y∗(t),u∗

qj(t), λ(t)
]

, ∀t ∈ [tj−1, tj ) (3.37)([tN−1, tN ] if j = N). If the problem is autonomous, Eq. (3.37) redues to the Hamiltonianpieewise-onstany ondition stating that, for some onstant Hj , one has
Hqj

[

t,y∗(t),u∗

qj(t), λ(t)
]

= Hj , ∀t ∈ [tj−1, tj ) (3.38)([tN−1, tN ] if j = N) for j = 1, ..., N . Moreover, if the �nal time as well as the transitiontimes tj are unspei�ed, the Hamiltonian value ondition provides Hj = 0 for j = 1, ..., N .3.2 Equations of MotionTo desribe the airraft motion, the model adopted onsiders the airraft as a point-mass withthree degrees of freedom, ommonly used for trajetory predition, as indiated by Slatteryand Zhao [66℄. The equations desribe the movement of the airraft enter of mass, onsideredas a mass-varying body, and are unoupled from the rotational equations by assuming thatthe airraft rotational rates are small and the ontrol surfae de�etions do not a�et fores.The salar equations of motion are formulated based on the following general assumptions:1. The Earth is onsidered plane, non-rotating and an approximate inertial refereneframe. The aeleration of gravity is onstant and ating perpendiular to the sur-fae of the Earth. (Flat Earth model.)2. The airraft is a symmetri rigid body.3. The �ight takes plae in a vertial plane.4. The airraft performs a symmetri �ight (no sideslip) with all fores (thrust, aero-dynami fore and weight) ating at the enter of gravity and lying in the plane ofsymmetry.5. The wind veloity �eld is steady and ontained in the �ight plane.24



3.2. Equations of MotionThese assumptions are appropriate for subsoni, transport airraft. Under all these assump-tions the salar equations of motion are (see Miele et al. [48℄ and Jakson et al. [39℄):
V̇ =

T cos ǫ−D −mg sin γ

m
− (ẇx cos γ + ẇh sin γ)

γ̇ =
T sin ǫ+ L−mg

mV
+

1

V
(ẇx sin γ − ẇh cos γ)

ṁ = −cT
ḣ = V sin γ + wh

ẋ = V cos γ + wx

(3.39)
where

ẇx =
∂wx

∂x
(V cos γ + wx) +

∂wx

∂h
(V sin γ + wh)

ẇh =
∂wh

∂x
(V cos γ + wx) +

∂wh

∂h
(V sin γ + wh)

(3.40)In these equations, V is the aerodynami speed; γ is the aerodynami path angle (or veloitypith angle); m is the airraft mass; h is the altitude; x is the horizontal distane travelled;
g is the gravity aeleration; wx and wh are the horizontal and vertial wind veloities,respetively; D is the aerodynami drag; L is the aerodynami lift; T is the thrust; ǫ is thethrust angle-of-attak; c is the spei� fuel onsumption; and t is the time.In addition to the previous assumptions, some supplementary hypotheses are onsideredin the appliations of this thesis:1. The thrust is parallel to the aerodynami veloity, that is, ǫ = 0.2. An altitude-dependent, horizontal wind is onsidered, that is, wh = 0 and w = wx(h).3. The aerodynami path angle is very small, that is, γ ≪ 1, whih leads to sin γ ≈

γ, cos γ ≈ 1, sin2 γ ≈ 0.4. The normal aeleration V γ̇

g
is negligible.Under these supplementary assumptions, the salar equations of motion (3.39) beome

V̇ =
T −D

m
− gγ − V

dw

dh
γ

ṁ = −cT
ḣ = V γ

ẋ = V + w

(3.41)In these equations, the drag is a general known funtion D(V,m, h), whih takes into aountthe remaining equation of motion L = mg; the thrust T (V, h) is given by T (V, h) = πTM (V, h)where π models the throttle setting and TM (V, h) is a general known funtion; and the spei�fuel onsumption is also a general known funtion c(V, h). The aerodynami and propulsionmodels onsidered in this thesis, whih provide D(V,m, h), T (V, h) and c(V, h), are desribedin Appendix B, along with the Earth model providing gravity and atmosphere models. In25



3. Formulation of the Optimal Control Problempartiular, a general airraft performane model orresponding to a Boeing 767-300ER (atypial twin-engine, wide-body, transport airraft) is onsidered. In these equations, there isan independent variable, t; four states, V , m, h and x; and two ontrols, γ and π, both ofwhih are bounded (γmin ≤ γ ≤ γmax and 0 ≤ πmin ≤ π ≤ πmax = 1, respetively).Additional onstraints an be imposed to the airraft motion in order to model the exis-tene of di�erent �ight phases. A �ight phase is de�ned by one additional �ight onstraint.A hange from one �ight phase to another implies a swith in the struture of the dynamis,onstraints sets, et., governing the evolution of the ontinuous variables (states and on-trols). In partiular, three types of �ight phases are onsidered in this thesis: limb, ruise,and unpowered desent. During limb, one has the additional onstraint that π is a knownparameter π = πcl; hene, in this phase there are four states, V , m, h and x, and one ontrol,
γ. During ruise, one has the additional onstraint of �ying at onstant altitude (γ = 0),that is, the altitude is a parameter; thus, in this phase there are three states, V , m and x,and one ontrol, π. During unpowered desent, one has the additional onstraint that π = 0,that is, the mass is a parameter; hene, in this phase there are three states, V , h and x, andone ontrol, γ.Partiularization of the equations of motion for eah �ight phase (by taking into aountthe additional onstraint) leads to di�erent equations of motion and ontrol de�nition. How-ever, when hanging from one �ight phase to another the state remains ontinuous. Theseharateristis indiate that the ontrolled airraft motion in a trajetory omposed of limb,ruise and desent phases is a swithed ontrol system. Moreover, the optimization of theontrolled airraft motion in a trajetory omposed of a presribed series of limb, ruise anddesent phases is a multiphase optimal ontrol problem.3.3 Computation of Optimal Airraft TrajetoriesIn all the phases orresponding to a multiphase trajetory to be optimized, there is one ontrolvariable whih appears linearly in the equations of motion as well as in the performane indiesto be optimized (this is shown in the following hapters). As a onsequene, the Hamiltonianof the problem is also linear on the ontrol variable, whih leads to a singular optimal ontrolproblem.When addressing a �ight phase, it is assumed that the initial and �nal points of the pathare given. In that ase, the optimal path is expeted to be of the bang-singular-bang type,that is, formed by three ars: one initial bang ar (with the ontrol being at its maximum orminimum value) to go from the initial point to the singular ar, the singular ar, and a �nalbang ar (again, with the ontrol being at its maximum or minimum value) to go from thesingular ar to the �nal point.The remark regarding the dimension of the singular surfae with n = 3 and ξ = 1 appliesto all the problems to be solved, even to the optimization of a limb phase (in whih n = 4)beause neither the dynamis funtion nor the performane index depend on x, and the�nal value of x is not spei�ed. Therefore, in order to solve the singular optimal ontrolproblems onsidered in this thesis, an indiret numerial method is implemented, beauseit has the great advantage of providing feedbak ontrol laws, that an be diretly used toguide the airraft along the optimal path. This feedbak ontrol law and the expression of26



3.3. Computation of Optimal Airraft Trajetoriesthe singular surfae (in whih singular ars must lie) are obtained thanks to the appliationof the neessary onditions for optimality (as seen in Setion 3.1).As already mentioned, optimizing global trajetories implies not only addressing eah�ight phase, but also taking into aount the interations among them as well as lookingfor a global objetive. The aim for a global objetive is ahieved by onsidering a globalperformane index, whih is split into the ontributions of eah phase and partiularized tothe additional onstraint imposed at eah phase. The interations are taken into aountby appropriately imposing the transversality onditions and by enforing state and adjointontinuity at the swithing points.Therefore, an optimal global trajetory annot be obtained by simply pieing individuallyoptimized phases together, not even when eah phase is optimized with a performane indexsuitable for a global objetive, beause the transversality onditions do not provide the sameresults for the evolution of the adjoints. However, onlusions regarding the optimal ontroland optimal path struture for a single-phase optimal trajetory also apply at eah phase ofan optimal multiphase trajetory. As a onsequene, besides trajetories involving a series of�ight phases, trajetories involving only one �ight phase are also optimized. These are theauxiliary problems analyzed in Chapters 4, 5 and 6.In order to explain the numerial method developed in this thesis to ompute optimalairraft trajetories, the general ase in whih the trajetory is omposed of a prede�nedsequene of phases is onsidered throughout this setion. Note that the general ase inludesappliations in whih the trajetory only ontains one phase.3.3.1 Indiret Numerial MethodAssuming the ontrol law has already been obtained the optimization problem beomes a mul-tipoint boundary-value problem for whih a numerial resolution proedure must be de�ned.Knowing the struture of the solution allows one to de�ne an e�ient numerial proedure(see Maurer [44℄). In this thesis, an indiret multiple shooting method is implemented, whihinludes:1. The de�nition of some unknown parameters.2. A proedure to ompute the andidates for optimal trajetory phases for given valuesof that unknown parameters.3. An iterative proedure to �nd the value of the unknown parameters that satisfy somelosing equations.On one hand, the proedure to ompute the andidates for optimal trajetory phasesinludes, for eah phase, integration of the state equations with either u = umin or u = umaxfrom the initial point (with known initial values) until the singular ar is reahed (whihde�nes the �rst juntion point), integration of the state equations with u = using from the�rst juntion point until the seond one is reahed, and integration of the state equationswith either u = umin or u = umax from the seond juntion point until the �nal point(with known �nal values) is reahed (see Frano and Rivas [31℄). This proedure may alsoinlude integration of the adjoint equations along the trajetory phases in order to apply27



3. Formulation of the Optimal Control Problemsome neessary onditions for optimality (transversality onditions and ontinuity of theadjoints at the swithing instants). The omputation of the adjoints also allows, one theiterative method has onverged, to hek both, whether the assumed struture for the ontrolis orret, and whether the generalized Legendre-Clebsh ondition for the singular ar to beminimizing is satis�ed.To solve the IVP posed at any trajetory segment, the ODE systems are solved by usingMATLAB's ode45 (see Shampine and Reihelt [63℄), whih is a method based on a pair ofexpliit Runge-Kutta formulae, the Dormand-Prine pair. This method is suitable for non-sti� problems with medium to quite stringent integration toleranes, and is therefore themethod of hoie. The other odes for non-sti� problems in MATLAB's ODE suite, ode23and ode113, are not preferred in this thesis.On the other hand, to �nd the values of the unknown parameters, a set of nonlinear equa-tions must be solved, whih inludes those neessary onditions for optimality and terminalonstraints not expliitly imposed to obtain the andidates for optimal trajetory phases. Inthis thesis, the systems of nonlinear equations are solved by using MATLAB's fsolve, start-ing the iteration with appropriate initial values seleted spei�ally for eah appliation. Bydefault, MATLAB's fsolve applies a trust-region dogleg algorithm, whose implementation isbased on the dogleg method desribed by Powell [52℄.In summary, this thesis proposes a methodology for airraft trajetory optimization thatexploits the singular harater of the problem. With this approah, assuming a presribedsolution struture in terms of phase sequene and sequene of singular and bang ars withineah phase, the problem of �nding the optimal ontrol is transformed into the problem of�nding the values of some unknowns suh that the neessary onditions for optimality as wellas the initial and �nal onditions are satis�ed, that is, the problem of solving a nonlinearsystem of equations.
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4 Fuel-Optimal Climb
4.1 IntrodutionFor ommerial transport airraft, minimizing fuel onsumption is of prime importane, botheonomially and environmentally (beause CO2 emissions are diretly related to fuel burnt).In the ontext of minimum-fuel global trajetories (from take-o� to landing) the horizontaldistane travelled during the limb a�ets the ruise distane. Thus, to be able to omparedi�erent limb trajetories whih in general over di�erent horizontal distanes, the fuelonsumption up to a ommon referene distane ould be onsidered, for example by inludinga horizontal segment at the �nal altitude (as done in Ref. [82℄). However, in this hapter totake this point into onsideration, a di�erent approah is followed: only the limb segment isonsidered, and a performane index is de�ned in whih fuel onsumption is minimized, butpenalizing small values of the limb distane, so that the atual objetive is to minimize theontribution of the limb to the global-trajetory fuel onsumption (as done in Ref. [49℄).In this hapter this fuel-optimal limb problem is addressed in the ase of �xed enginerating and in the presene of altitude-dependent horizontal winds, so that wind-shear e�etsan be analyzed. The airraft mass is not taken as onstant but onsidered as a state variable,and a general airraft performane model is onsidered (general ompressible drag polar, andgeneral thrust and spei� fuel onsumption models dependent on speed and altitude). Thetwo main objetives of this hapter are: 1) to optimize the limb in the presene of altitude-dependent winds; and 2) to assess the optimality of the limb proedure, ommonly used inpratie, de�ned by segments with onstant alibrated air speed (CAS) and onstant Mahnumber (CAS/Mah limb).The optimization analysis is made using the theory of singular optimal ontrol, whih hasthe great advantage of providing feedbak ontrol laws (ontrol variables as funtions of thestate variables), that an be diretly used to guide the airraft along the optimal path. Theontrol variable is the aerodynami path angle (γ). The initial and �nal speeds and altitudesare given, so that the struture hosen for the optimal ontrol is of the bang-singular-bangtype, with the optimal paths formed by a singular ar and two minimum-γ ars joining thesingular ar with the given initial and �nal points. In the analysis of the limb made inthis hapter the singular ar annot be obtained in terms of the state variables alone, whihmakes the numerial proedure to solve the singular optimal ontrol problem more involvedthan in another appliations, suh as maximum-range or minimum-ost ruise at onstantaltitude and maximum-range unpowered desents.
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4. Fuel-Optimal ClimbDespite their theoretial interest, optimal solutions may not be �yable aording topresent-day air tra� proedures and regulations. However, they represent best performaneand an be used either as referenes to design improved �ight proedures or to assess theoptimality of �ight proedures ommonly used in pratie, as for example the CAS/Mahproedure. In Frano et al. [34℄, a CAS/Mah proedure, omposed of four segments (ini-tial and �nal horizontal aelerations, onstant-CAS limb and onstant-Mah limb), isoptimized using parametri optimization theory (see Flether [29℄), with the same objetiveof minimizing the ontribution of the limb to the global-trajetory fuel onsumption; theoptimization parameters are the limb CAS and Mah. In this hapter the optimality ofCAS/Mah limbs is analyzed by omparing results from Ref. [34℄ with the optimal ones.The omparison of the results with the optimal ones shows that the integral performane ofthe optimized CAS/Mah proedure is very lose to optimal, that is, the fuel onsumption,the �ight time, the horizontal distane travelled and, espeially, the minimum performaneindex are very lose to the optimum values.Results are presented for a model of a Boeing 767-300ER, for linear wind pro�les, hara-terized by two parameters: the average wind speed and the speed-pro�le slope or wind shear,and for γmin = 0 so that the initial and �nal ars are horizontal segments, as in the optimizedCAS/Mah proedure, with whih the optimum results are to be ompared. The in�ueneof the two wind parameters and of the initial airraft weight on the results is analyzed. Thestrong e�et of the wind shear is desribed.The outline of the hapter is as follows: the problem is formulated in Setion 4.2, inludingequations of motion, performane index, appliation of the neessary onditions for optimalityand obtention of the singular surfae and the singular ontrol; the numerial proedure isexplained in Setion 4.3; some results are presented in Setion 4.4, both for the optimal andthe optimized CAS/Mah proedure, along with the omparison between the two proedures;and �nally, a summary of the main results and onlusions is inluded in Setion 4.5.4.2 Problem FormulationIn this setion, the fuel-optimal limb problem is formulated. First, the optimal ontrolproblem is stated by de�ning the equations of motion (along with the initial and �nal ondi-tions) and the performane index onsidered. Seond, beause an indiret numerial methodis onsidered for the resolution of the problem, the neessary onditions for optimality areinluded. Then, the optimal trajetories are desribed, inluding the equations de�ning thesingular ar and the singular ontrol (whih is a feedbak ontrol law).4.2.1 Equations of MotionThe equations of motion (3.41) partiularized to a limb phase, in whih one has the additionalonstraint that π is a known parameter π = πcl, redue to
V̇ =

T −D

m
− gγ − V

dw

dh
γ

ṁ = −cT
ḣ = V γ

ẋ = V + w

(4.1)
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4.2. Problem FormulationIn this problem there are four states, V , m, h and x, and one ontrol, γ. The initial values ofspeed, mass, altitude and distane (Vi,mi, hi, xi), and the �nal values of speed and altitude(Vf , hf ) are given. The �nal value of mass (mf ), distane (xf ), and �ight time (tf ) areunspei�ed.4.2.2 Performane IndexIn the study of minimum-fuel limbs in the ontext of the analysis of global trajetories (fromtake o� to landing), one must take into aount that the horizontal distane travelled duringthe limb a�ets the ruise distane and the assoiated fuel onsumption. If one ompares aminimum-fuel limb trajetory with another one less steep, in whih the horizontal distaneis larger, even though the fuel onsumption during the limb in the former ase is smaller,to have a fair omparison of fuel onsumption one should onsider the extra fuel onsumedto over the same distane as in the latter ase. To take this point into onsideration in theanalysis of limb performane, it is ommon in the literature (see for example Ref. [82℄) tode�ne a proedure in whih the limb to the given �nal altitude is followed by a horizontalsegment whih ends when an arbitrarily given horizontal distane is travelled.In this thesis a di�erent approah is followed. Only the limb phase is onsidered, andthe fuel onsumption during the limb is minimized but penalizing small values of the limbdistane. Hene the following performane index is onsidered
J=̇mF −Kxf = −

∫ mf

mi

dm−K

∫ xf

0
dx, (4.2)whih an be also written as follows, using the equations of motion (4.1),

J =

∫ tf

0
[cT −K(V + w)] dt, (4.3)where mF =̇mi −mf is the fuel onsumed during the limb, xf is the limb horizontal dis-tane, and the positive parameter K is a ost fator that de�nes the tradeo� between fuelonsumption and horizontal distane. Obviously, K = 0 orresponds to the minimum-fuelproblem, and K > 0 leads to optimal limbs with larger horizontal distane, but at theexpense of a larger fuel onsumption. One an see that this ost fator plays a role similarto the one played by the well-known ost index used by airlines, whih de�nes the tradeo�between fuel onsumption and �ight time.Although one ould onsider K just as a penalty fator and �x its value arbitrarily, inthis ahpter to hoose a value for K the following physial interpretation given in Ref. [49℄ isonsidered: if K is de�ned as an average fuel onsumption per unit distane in ruise �ight,and if two di�erent limbs with horizontal distanes xf1 and xf2 > xf1 are onsidered, then

K(xf2 − xf1) an be seen as an estimation of the derease in fuel onsumption during theruise due to the redution in ruise distane. Therefore, K is de�ned as follows
K=̇−

(

dm

dx

)

cr

(4.4)expression that must be evaluated at the start of the ruise phase, under some given refereneonditions.The optimal limb problem redues to minimize the performane index given by Eq. (4.3)subjet to the onstraints de�ned by the equations of motion (4.1). 31



4. Fuel-Optimal Climb4.2.3 Neessary Conditions for OptimalityThe Hamiltonian of this problem is given by
H = cT + λV

(

T −D

m
− gγ − V w′γ

)

− λmcT + λhV γ + (λx −K) (V + w) (4.5)where ()′ denotes derivative with respet to h, and λV , λm, λh and λx are the adjoint variables.Assuming that the normality and non-triviality onditions are satis�ed, the neessaryonditions for optimality are summarized next (see Chapter 3):1) The equations de�ning the adjoints:
λ̇V = −∂H

∂V
=− λV

m

(

∂T

∂V
− ∂D

∂V
−mγw′

)

− (1− λm)

(

T
∂c

∂V
+ c

∂T

∂V

)

− λhγ

+K − λx

λ̇m = −∂H
∂m

=
λV
m

(

T −D

m
+
∂D

∂m

)

λ̇h = −∂H
∂h

=− λV
m

(

∂T

∂h
− ∂D

∂h
− V mγw′′

)

− (1− λm)

(

T
∂c

∂h
+ c

∂T

∂h

)

+ w′ (K − λx)

λ̇x = −∂H
∂x

=0

(4.6)
The last equation leads to onstant λx.2) The transversality onditions: First, beause the �nal distane xf is not spei�ed, onehas

λx(tf ) = 0 (4.7)whih leads to
λx(t) = 0 (4.8)Seond, beause the �nal mass m(tf ) is not spei�ed,
λm(tf ) = 0 (4.9)Third, beause the �nal time is not spei�ed,
H(tf ) = 0 (4.10)3) The Hamiltonian minimization ondition: For the ontrol to be optimal it is neessarythat it globally minimize the Hamiltonian. The Hamiltonian is linear in γ, so that it an bewritten as
H = H + Sγ (4.11)with

H =
λV
m

(T −D) + (1− λm) cT −K(V +w)

S = λhV − λV (g + V w′)
(4.12)32



4.2. Problem Formulationwhere Eq. (4.8) has been taken into aount, and S is the swithing funtion. As a onse-quene, this is a singular optimal ontrol problem. The Hamiltonian minimization onditionfor singular optimal ontrol problems has a speial form given by Eq. (3.18), whih in thisase de�nes the optimal ontrol as follows
γ =











γmax if S < 0

γmin if S > 0

γsing if S = 0 over a �nite time interval (4.13)where γsing is the singular ontrol (yet to be determined), whih satis�es γmin < γsing < γmax.Trajetory segments de�ned by γsing are singular ars.As indiated in Chapter 3, in singular optimal ontrol problems there arise additionalonditions that must be satis�ed in order both, for a singular ar to be minimizing, andfor the juntions between singular and nonsingular ars to be optimal. These additionalneessary ondition for optimality are analyzed below in Setion 4.2.4.2.Finally, beause the Hamiltonian is not an expliit funtion of time (as the problem isautonomous), the Hamiltonian onstany ondition applies, and using Eq. (4.10) one gets
H(t) = 0 (4.14)along the optimal trajetory.4.2.4 Optimal TrajetoriesIn general the optimal trajetory will be omposed of singular ars (with γsing) and ars with

γmin or γmax, ommonly referred to as bangs; whether one has γmin or γmax is de�ned bythe sign of the swithing funtion S. In this problem the solution is expeted to be of thebang-singular-bang type, that is, a singular ar and two minimum/maximum-γ ars joiningthe singular ar with the given initial and �nal points. This bang-singular-bang strutureis suggested by the results in Miele [47℄, where it is shown that the minimum-fuel limb isde�ned by a entral path and two initial and �nal branhes to join that path with the initialand �nal onditions. Although the underlying aerodynami and propulsive models mighta�et the struture of the solution, for the smooth models onsidered in this thesis, the bang-singular-bang struture is plausible, and hene it is the one analyzed in this hapter. Sinethe initial and �nal speeds are given, there is a physial riterium to deide whether one has
γmin or γmax, just by omparing those speeds with the speeds that orrespond to the singularar for the initial and �nal altitudes and masses.Although alled optimal trajetories, they are in fat extremals, that is, trajetories thatsatisfy the neessary onditions for optimality.4.2.4.1 Singular ArThe singular ar is de�ned by the following three equations

H = 0, S = 0, Ṡ = 0 (4.15)33



4. Fuel-Optimal Climbwhere the funtion Ṡ is given by
Ṡ =

λV g

m

[

(1 +
V w′

g
)
∂T

∂V
− V

g

∂T

∂h
− (1 +

V w′

g
)
∂D

∂V
+
V

g

∂D

∂h
− w′

g
(T −D)

]

+ (1− λm) gcT

[

(1 +
V w′

g
)
1

T

∂T

∂V
− V

gT

∂T

∂h
+ (1 +

V w′

g
)
1

c

∂c

∂V
− V

gc

∂c

∂h

]

+
λh
m

(T −D)− gK

(4.16)(note that the terms in the ontrol variable γ have anelled out of this equation). Moreover,beause H = 0 one also has H = 0.Hene, the three equations that de�ne the singular ar (H = S = Ṡ = 0) lead to
λV
m

(T −D) + (1− λm) cT − (V +w)K = 0

λhV − λV g(1 +
V w′

g
) = 0

λV g

m

[

(1 +
V w′

g
)
∂T

∂V
− V

g

∂T

∂h
− (1 +

V w′

g
)
∂D

∂V
+
V

g

∂D

∂h
− w′

g
(T −D)
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+(1− λm) gcT
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)
1

T
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∂V
− V
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∂T

∂h
+ (1 +

V w′

g
)
1

c

∂c

∂V
− V

gc

∂c

∂h

]

+
λh
m

(T −D)− gK = 0

(4.17)
whih de�ne the three adjoints λV , λm and λh along the singular ar in terms of the statevariables, namely

λV = fV (V,m, h)

λm = fm(V,m, h)

λh = fh(V,m, h)

(4.18)Contrary to other ases (suh as ruise and desent problems), in this limb problem itis not possible to obtain an expression for the singular ar in terms of the state variablesalone. However, in the ase K = 0 it is possible, beause the system of equations (4.17) ishomogeneous, and, therefore, to have a nontrivial solution one must have
(

1 +
V w′

g

)(

V

T

∂T

∂V
− V

D

∂D

∂V

)

− V 2

g

(

1

T

∂T
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− 1

D
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)

+

(

T

D
− 1
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1−
(
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)

V

c

∂c

∂V
+
V 2

gc

∂c

∂h

]

= 0

(4.19)whih de�nes a singular surfae in the (V,m, h) spae, namely f(V,m, h) = 0.In the ase of no wind (w = 0), even in the ase of onstant wind (w′ = 0), Eq. (4.19)redues to
(

V

T

∂T

∂V
− V

D
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− V 2

g
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+
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− 1
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1− V

c
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+
V 2

gc

∂c

∂h

)

= 0 (4.20)whih is the same result obtained by Miele [47℄ for the ental pattern of his solution, eventhough it is obtained under the assumption of onstant airraft mass.34



4.3. Numerial Proedure4.2.4.2 Optimal Singular ControlBeause the funtion S̈ depends linearly on the ontrol variable γ (note that Ṡ does notdepend on γ), the order of the singular ar is ξ = 1. Let S̈ = A(V,m, h)+B(V,m, h)γ, where
A =

λV g

m2V 2
A1(V,m, h) +

λh
m2V

A2(V,m, h) +
(1− λm) gc

mV 2
A3(V,m, h)

+
Kg

mV
A4(V,m, h)

B =
λV g

2

mV 2
B1(V,m, h) +

λhg

mV
B2(V,m, h) +

(1− λm) g2c

V 2
B3(V,m, h)

(4.21)with known funtions A1, A2, A3, A4, B1, B2, and B3 (these funtions are inluded inAppendix C), and with the adjoints λV , λm, λh given by Eqs. (4.18). Therefore, beause onealso has S̈ = 0 (where S = Ṡ = 0), the singular ontrol is given by
γsing = −A(V,m, h)

B(V,m, h)
(4.22)The generalized Legendre-Clebsh ondition for the optimality of the singular ontrol,Eq. (3.21), redues in this ase (ξ = 1 and u = γ) to −∂S̈

∂γ
≥ 0, whih leads to

B(V,m, h) ≤ 0 (4.23)It an be shown numerially that B < 0 for all the ases onsidered in this Chapter, so thatthe strengthened generalized Legendre-Clebsh ondition (−∂S̈
∂γ

> 0) is satis�ed.The MDanell-Powers neessary ondition for the optimality of juntions between singularand nonsingular ars (see Chapter 3) is shown to be satis�ed, beause the order of the singularar is ξ = 1 and the lowest-order time derivative of the ontrol whih is disontinuous atthe juntion is ζ = 0 (that is, the ontrol itself is disontinuous at the juntion). Moreover,although the ontrol variable is disontinuous at the juntions, the Weierstrass-Erdman orneronditions are satis�ed beause the adjoint variables, the Hamiltonian and the swithingfuntion are all ontinuous.4.3 Numerial ProedureIn this setion the numerial proedure used to solve the optimal limb is desribed. In Fig. 4.1a sketh of the expeted optimal path (bang-singular-bang) is presented (the partiular aseof two γmin ars is depited). Knowing the struture of the solution allows one to de�ne ane�ient numerial proedure (see Maurer [44℄), as follows.The �rst bang starts with the initial values Vi, mi, hi and xi. Let λV,1 be the value ofthe adjoint λV at the beginning of the singular ar (point 1 in Fig. 4.1). If λV,1 were known,the state equations (4.1) ould be integrated until the singular ar were reahed, that is until
λV,1 = fV (V1,m1, h1) were satis�ed. Also, if the altitude at the end of the singular ar h2were known, the state equations ould be integrated along the singular ar (from point 1 topoint 2 in Fig. 4.1), and then, using Eqs. (4.18), λV , λm and λh ould be obtained at point35



4. Fuel-Optimal Climb2. Finally, the state equations and the adjoint equations (4.6) ould be integrated along theseond bang, whih starts at the singular ar (point 2) and ends when the value V = Vf isreahed. At the �nal point one has two additional onditions, h(tf ) = hf and λm(tf ) = 0,whih are to be used to de�ne λV,1 and h2; this task is performed by means of an iterativeproedure.
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Figure 4.1: Sketh of the optimal limb path.The iterative proedure must be started with an initial guess for the two unknowns.First, the initial guess for h2 is h[0]2 = hf , beause the seond bang ar has very small length.Seond, an initial guess for λV,1 an be obtained by onsidering λm,1 ≈ 0 in H = 0, whihgives λV,1 ≈ − m [cT −K (V +w)]
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. These initial guesses lead to onvergene in all asesonsidered in this hapter.4.3.1 Iterative ProedureThe following iterative proedure is used in the numerial resolution.Step 0. Guess values λ[n]V,1 and h[n]2 .Step 1. Integrate the state equations (4.1) with either γ = γmin or γ = γmax from theinitial point (with known initial values Vi,mi, hi, xi) until the singular ar is reahed (point1), that is, until V1, m1, h1 and λ[n]V,1 satisfy λ[n]V,1 = fV (V1,m1, h1); at that point one also has
x1. The value γmin or γmax is hosen depending on whether one has Vi < Va or Vi > Va, where
Va is de�ned by λ[n]V,1 = fV (Va,mi, hi), that is, the speed that orresponds in the singular arto the initial mass mi and altitude hi.Step 2. Integrate the state equations (4.1) with γ = γsing from point 1 (with knownstarting values V1,m1, h1, x1) until the altitude h[n]2 is reahed. At the end of the integration36



4.4. Resultsalong the singular ar one also has V2, m2 and x2; λV,2, λm,2 and λh,2 are obtained from Eqs.(4.18).Step 3. Integrate the state equations (4.1) and the adjoint equations (4.6) with either γ =

γmin or γ = γmax from point 2 (with known starting values V2,m2, h
[n]
2 , x2, λV,2, λm,2, λh,2)until the speed Vf is reahed. The value γmin or γmax is hosen depending on whether onehas Vf > V2 or Vf < V2. At the �nal point one also obtains the �nal values h[n]f and λ[n]m,f ,whih in general are di�erent from hf and 0, respetively; in suh ase, one must iterate onthe guessed values h[n]2 and λ[n]V,1, whih is done as desribed next.The proedure de�ned by steps 1 to 3 de�nes a funtion g : R2 7→ R

2, (h[n]2 , λ
[n]
V,1

)

7→
(

h
[n]
f , λ

[n]
m,f

), so that one searhes for the values h2 and λV,1 that satisfy g (h2, λV,1) = (hf , 0).If one de�nes the funtion G = g (h2, λV,1)− (hf , 0) one searhes for the zero of G (h2, λV,1).The resolution of this system of equations is performed using MATLAB's fsolve, startingthe iteration with the values h[0]2 and λ[0]V,1 de�ned above, and stopping when h[n]f = hf and
λ
[n]
m,f = 0 to within some presribed tolerane.One the problem is integrated, one has the �nal optimum values of the distane travelled
xf , the �ight time tf and the airraft mass mf whih de�nes the fuel onsumption mF =

mi −mf .4.3.2 Control Struture OptimalityIt still remains to hek whether the assumed struture for the ontrol (bang-singular-bang)is orret. That is, one must hek that S > 0 for γ = γmin and that S < 0 for γ =

γmax. This requires the omputation of S along the extremal path just omputed. Sine
S = λhV − λV (g + V w′), one must ompute λV and λh.Beause of the resolution proedure previously explained, λV and λh have already beenomputed along the �nal bang. To ompute them along the initial bang, one an integratebakwards the state equations (4.1) and the adjoint equations (4.6) from point 1 (with knownstarting values V1,m1, h1, x1, λV,1, λm,1, λh,1) until the initial point is reahed. Note that λV,1,
λm,1 and λh,1 are obtained from Eqs. (4.18).The numerial results show that the ontrol struture is orret in all ases presented inSetion 4.4.4.4 ResultsThe airraft model onsidered in this thesis for the numerial appliations (orresponding toa Boeing 767-300ER) is desribed in Appendix B, and the atmosphere model is the Interna-tional Standard Atmosphere (ISA).For the wind model, linear pro�les are onsidered, with the absolute value of the windspeed inreasing with altitude (see Ref. [50℄). The pro�les are de�ned as follows

w(h) = w̄ +∆w
h− h̄

hf − h̄
(4.24)where w̄ is the average wind, ∆w is the wind-shear parameter and h̄ = (hi + hf )/2 is the37



4. Fuel-Optimal Climbaverage altitude. For given values of hi and hf , ∆w de�nes the wind shear dw

dh
, and, inpartiular, ∆w = 0 de�nes a uniform wind pro�le. Note that the average wind speed w̄satis�es

w̄ =
1

hf − hi

∫ hf

hi

w(h)dh (4.25)and, also, sine the wind pro�les are linear, w̄ is the wind speed at the average altitude, thatis, w̄ = w(h̄). In the following, both tailwinds (TW) and headwinds (HW) are onsidered,with the linear pro�les de�ned as follows: for TW one has w̄ > 0 and ∆w ≥ 0, and for HW
w̄ < 0 and ∆w ≤ 0.Results are presented for the ase of initial and �nal γmin-ars, whih require that theinitial and �nal speeds be su�iently low and high, respetively. In partiular, γmin = 0 hasbeen onsidered so that the initial and �nal ars are horizontal segments, as in the optimizedCAS/Mah proedure, with whih the optimum results are ompared.The initial onditions (orresponding to a hypothetial departure �x) are CASi = 250 kt,
hi = 10000 ft, and the �nal onditions (orresponding to the initial ruise onditions) are
Mf = 0.80, hf = 33000 ft. The average altitude is h̄ = 21500 ft. The value of K followsfrom Eq. (4.4) evaluated at the �nal limb onditions (start of the ruise) Mf and hf ,for Wf = 1670 kN, without wind, and using a quasi-steady ruise formulation; the valueobtained is K = 6.27 kg/km. The throttle setting has been �xed to π = 0.75, so that typialperformane is obtained for the range of parameters onsidered in the appliation.To analyze the wind e�ets on the optimal trajetories, the initial airraft weight is
Wi = 1700 kN, the average wind ranges from −30 kt to 30 kt, and the absolute value ofthe wind-shear parameter ranges from 0 to 20 kt. In the analysis of the e�et of the initialairraft weight on the results, no wind is onsidered, andWi ranges from 1650 kN to 1750 kN.Results from Frano et al. [34℄ orresponding to optimized CAS/Mah limbs for the sameperformane index, airraft and atmosphere models, wind model, as well as initial and �nalonditions are reprodued here. For ompleteness, a detailed desription of this CAS/Mahlimb proedure is inluded in Appendix D.The outline of this setion is as follows: the e�ets of the average wind speed (Setion4.4.1), the wind-shear parameter (Setion 4.4.2), and the airraft weight (Setion 4.4.3) onthe optimal and optimized trajetories as well as on the optimal ontrol and the aerodynamipath angle are analyzed; then, the optimal and optimized limbs are ompared in terms ofglobal variables, whih are also analyzed in Setion 6.4.2.4.4.1 E�et of the Average Wind SpeedThe optimal and optimized CAS/Mah speed pro�les V (h) are represented in Fig. 4.2, fordi�erent values of the average wind speed (w̄ ranging from −30 kt to 30 kt) and for a wind-shear parameter ∆w = 0. The limb trajetories start and end with horizontal aelerations.In the optimal limbs, these horizontal segments orrespond to the γmin-ars, from the giveninitial point to the singular ar, and from the singular ar to the given �nal point; and in theoptimized CAS/Mah limbs, they orrespond to the initial and �nal horizontal aelerationsfrom the given initial speed to the optimum CASc, and from the optimum Mc to the �nalspeed. In the optimal limbs, along the singular ar the speed inreases, reahes a maximum38



4.4. Resultsand then slowly dereases; and in the optimized CAS/Mah limbs, the speed inreases duringthe CAS segment and dereases during the Mah segment, as expeted. Qualitatively onehas the same behavior in both ases. The in�uene of w̄ is lear: as w̄ inreases, the speeddereases, so that for TW one has speeds smaller than for HW.
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(b)Figure 4.2: Speed pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a) Optimallimbs, (b) Optimized CAS/Mah limbs.The CAS and Mah pro�les, CAS(h) and M(h), are represented in Figs. 4.3 and 4.4.One an see that the �rst part of the optimal trajetory is not at onstant CAS, but ratherthe CAS dereases, and as a onsequene the inrease of the aerodynami speed during theonstant-CAS segment is stronger than during the �rst part of the optimal trajetory (seeFig. 4.2). On the other hand, during the last part of the optimal trajetory the variationof the Mah number is small, so that the onstant-Mah segment is somewhat lose to theoptimal trajetory (loser than the onstant-CAS segment).
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4. Fuel-Optimal Climb
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(b)Figure 4.4: Mah-number pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a)Optimal limbs, (b) Optimized CAS/Mah limbs.The optimal ontrol and the aerodynami path angle in the CAS/Mah limbs γ(h) arerepresented in Fig. 4.5 for the same values of w̄ as before and ∆w = 0. It is disontinuous: forthe optimal trajetories, one has the two ars with γmin = 0 (hardly seen in the �gure) andthe singular ar, and for the optimized CAS/Mah trajetories, one has the four onstitutivesegments (the initial and �nal ones hardly seen). Note that in the CAS/Mah limbs thereis an inrease in γ at the transition altitude between the segments with onstant CAS andonstant Mah, as required to deelerate the airraft. As one an see, the average wind speedhas very little in�uene both on the singular optimal ontrol (exept near the �nal bang) andon the path angle of the optimized CAS/Mah limbs.
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4.4. Results
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(b)Figure 4.6: Flight paths for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a) Optimallimbs, (b) Optimized CAS/Mah limbs.The �ight paths h(x) are represented in Fig. 4.6, where one an see that there is abig qualitative agreement between the optimal and optimized CAS/Mah limbs. Note theslope disontinuity at the transition altitude between the onstant-CAS and onstant-Mahsegments.4.4.2 E�et of the Wind ShearThe optimal and optimized CAS/Mah speed pro�les V (h) are represented in Fig. 4.7, fordi�erent values of the wind-shear parameter (|∆w| ranging from 0 kt to 20 kt), and for twovalues of the average wind (w̄ = 30 kt TW and w̄ = −30 kt HW).
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4. Fuel-Optimal ClimbAs before, the speed inreases, reahes a maximum and then slowly dereases; in theoptimal trajetories the speed derease is very weak for HW and quite strong for TW. Thein�uene of ∆w on the pro�les is relatively small, exept with TW at higher altitudes, whenthe speed dereases. The e�et of ∆w an be seen as a reinforement of the average winde�ets: as ∆w inreases, the speed dereases (note that, for HW, when ∆w inreases |∆w|dereases). The behavior of the CAS and Mah pro�les in this ase follows the same trendsalready shown in Figs. 4.3 and 4.4, and are not represented for that reason.The optimal ontrol and the aerodynami path angle in the CAS/Mah limbs γ(h) arerepresented in Fig. 4.8 for the same values of w̄ and ∆w as before. They show the samedisontinuities as before. The wind shear has a small in�uene on γ, although somewhatlarger than the in�uene of the average wind speed.
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(b)Figure 4.8: Path-angle pro�les for TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt) and HW(w̄ = −30 kt,∆w = 0, −5, −10, −15, −20 kt). (a) Optimal limbs, (b) Optimized CAS/Mahlimbs.The orresponding �ight paths are shown in Fig. 4.9, where again there is a big qualitativeagreement between the optimal and optimized CAS/Mah limbs, exept in the ase of TWat high altitudes.4.4.3 E�et of the Initial Airraft WeightThe optimal and optimized CAS/Mah speed pro�les V (h) are represented in Fig. 4.10, fordi�erent values of the initial airraft weight (Wi ranging from 1650 kN to 1750 kN) and forno wind (w̄ = 0 and ∆w = 0). The optimal and optimized CAS/Mah pro�les have the samestruture as before: the speed inreases, reahes a maximum and then slowly dereases. Thein�uene ofWi on the pro�les is lear: as the initial airraft weight inreases, the speed alongthe singular ar and the onstant-CAS and onstant-Mah segments slightly inreases. Asbefore, the CAS and Mah pro�les in this ase are not represented.42



4.4. Results
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(b)Figure 4.9: Flight paths for TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt) and HW (w̄ = −30 kt,
∆w = 0, −5, −10, −15, −20 kt). (a) Optimal limbs, (b) Optimized CAS/Mah limbs.

2000 4000 6000 8000 10000 12000
140

160

180

200

220

240

260

h [m]

V
[m

/
s]

Wi

(a) 2000 4000 6000 8000 10000 12000
140

160

180

200

220

240

260

h [m]

V
[m

/
s]

Wi

(b)Figure 4.10: Speed pro�les forWi = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal limbs,(b) Optimized CAS/Mah limbs.
The optimal ontrol and the aerodynami path angle in the CAS/Mah limbs γ(h) arerepresented in Fig. 4.11 for the same values of the initial airraft weight as before and nowind, showing the same disontinuities as before. The initial airraft weight has a learin�uene on γ: as Wi inreases, the ontrol slightly dereases.The orresponding �ight paths are shown in Fig. 4.12, where again there is a big qualita-tive agreement between the optimal and optimized CAS/Mah limbs.
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4. Fuel-Optimal Climb
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(b)Figure 4.11: Path-angle pro�les for Wi = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimallimbs, (b) Optimized CAS/Mah limbs.
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(b)Figure 4.12: Flight paths for Wi = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal limbs,(b) Optimized CAS/Mah limbs.4.4.4 Comparison and Analysis of Global VariablesBesides the omparison made between the �ight pro�les in the previous setions, now theoptimized CAS/Mah limbs are ompared with the optimal limbs in terms of fuel onsump-tion, �ight time and range, global variables whih are also analyzed in this setion, along withthe minimum performane index.In Figs. 4.13, 4.14, 4.15 and 4.16, the fuel onsumption, the �ight time, the range andthe minimum performane index for both problems are represented, �rst, as funtions of thewind-shear parameter for two values of the average wind (w̄ = 30 kt TW and w̄ = −30 ktHW) and Wi = 1700 kN, and, seond, as funtions of the average wind for di�erent values ofthe initial airraft weight (Wi ranging from 1675 to 1750 kN) and ∆w = 0. One an see thatthe di�erenes between both sets of results are very small in all ases (less than 88 kg in fuelonsumption, less than 1.1 min in �ight time, less than 15 km in range and less than 3.1 kgin performane index). Hene, it an be onluded that the performane of the CAS/Mah44



4.4. Resultsproedure is very lose to optimal, provided that the optimum values of CASc and Mc areused in the limb.Next the global variables are analyzed. Some numerial values are given in Table 4.1.The results show the following: 1) the stronger the wind shear for TW, the larger the fuelonsumption, the �ight time, the range and the minimum performane index, although thisindex is roughly onstant; 2) the stronger the wind shear for HW (in absolute value), thesmaller the fuel onsumption, the �ight time, the range and the minimum performane index;3) the higher the average wind speed, the higher the fuel onsumption, the �ight time andthe range, and the lower the minimum performane index; and 4) the heavier the airraft,the larger the fuel onsumption, the �ight time, the range and the minimum performaneindex. These trends are now quanti�ed (using the values given in Table 4.1).Table 4.1: Flight variables for di�erent winds and initial airraft weights (optimum values)
Wi = 1700 kN

w̄ = −30 kt (HW) w̄ = 30 kt (TW)
∆w = −20 kt ∆w = 0 kt ∆w = 0 kt ∆w = 20 kt

mF [kg℄ 2650.6 2825.3 2992.9 3433.3
tf [min℄ 19.06 20.63 23.18 28.12
xf [km℄ 243.82 264.59 331.08 399.97
J [kg℄ 1121.8 1166.3 917.0 925.5

∆w = 0 kt
w̄ = −30 kt (HW) w̄ = 30 kt (TW)

Wi = 1650 kN Wi = 1750 kN Wi = 1650 kN Wi = 1750 kN
mF [kg℄ 2576.7 3165.9 2735.8 3338.4
tf [min℄ 18.70 23.43 21.20 25.99
xf [km℄ 237.97 302.83 299.57 375.25
J [kg℄ 1084.7 1267.2 857.5 985.6

The e�et of the average wind speed on the fuel onsumption, the �ight time, the rangeand the minimum performane index is quite large, espeially the e�et on xf . When w̄inreases from −30 kt to 30 kt, the inreases inmF , tf and xf (for∆w = 0 andWi = 1700 kN)are 167.6 kg, 2.55 min and 66.49 km, respetively, that is 5.93%, 12.4%, 25.1%, and thederease in J is 249.3 kg, that is 21.4%.The e�et of the wind shear onmF , tf and xf in the ase of TW (w̄ = 30 kt) is quite large,although its e�et on J is quite small; when ∆w inreases from 0 to 20 kt, the inreases in
mF , tf and xf are 440.4 kg, 4.94 min and 68.89 km, respetively, that is 14.7%, 21.3%, 20.8%,whereas the inrease in J is of just 8.5 kg, that is 0.93%. In the ase of HW (w̄ = −30 kt) thee�et on mF , tf and xf is not so large, and the e�et on J is also small although larger thanfor TW; when ∆w inreases from −20 kt to 0, the inreases in mF , tf and xf are 174.7 kg,1.57 min and 20.77 km, respetively, that is 6.59%, 8.24%, 8.52%, whereas the inrease in Jis of 44.5 kg, that is 3.97%. 45



4. Fuel-Optimal ClimbThe e�et of the initial airraft weight, an be quanti�ed as follows: for w̄ = −30 kt HW,when Wi inreases from 1650 kN to 1750 kN, the inreases in mF , tf , xf and J are 589.2 kg,4.73 min, 64.86 km and 182.5 kg, respetively, that is 22.9%, 25.3%, 27.3%, 16.8%; and for
w̄ = 30 kt TW, the inreases are 602.6 kg, 4.79 min, 75.68 km and 128.1 kg, respetively,that is 22.0%, 22.6%, 25.3%, 14.9%.In summary, the in�uene of the wind pro�le and of the initial airraft weight is in generalquite large.
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(b)Figure 4.13: Fuel onsumption: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), forWi = 1700 kN; (b) vs. average wind speed forWi = 1650, 1675, 1700, 1725and 1750 kN, for ∆w = 0. Solid lines: optimal limbs. Dashed lines: optimized CAS/Mahlimbs.
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(b)Figure 4.14: Flight time: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1650, 1675, 1700,
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4.4. Results
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(b)Figure 4.15: Range: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW (w̄ = −30 kt),for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1650, 1675, 1700, 1725 and 1750 kN,for ∆w = 0. Solid lines: optimal limbs. Dashed lines: optimized CAS/Mah limbs.
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(b)Figure 4.16: Minimum performane index: (a) vs. wind-shear parameter for TW (w̄ = 30 kt)and HW (w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1650, 1675,
1700, 1725 and 1750 kN, for ∆w = 0. Solid lines: optimal limbs. Dashed lines: optimizedCAS/Mah limbs.
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4. Fuel-Optimal Climb4.5 SummaryAn analysis of fuel-optimal, �xed-rating limb in the presene of altitude-dependent windshas been made, using the theory of singular optimal ontrol. The limb has been optimized togive minimum ontribution to the global-trajetory fuel onsumption, by means of penalizingsmall values of the limb distane. The optimal ontrol is of the bang-singular-bang type, andthe optimal paths are formed by a singular ar and two minimum/maximum-γ ars joiningthe singular ar with the given initial and �nal points. Results have been presented for thease of initial and �nal γmin-ars, in the partiular ase of γmin = 0, whih lead to two shorthorizontal aeleration segments at the beginning and end of the optimal trajetory. Thisanalysis has been used to assess the optimality of a CAS/Mah limb proedure omposed byfour segments (limbs with onstant CAS and onstant Mah, and initial and �nal horizontalaelerations), whih is de�ned and optimized in Ref. [34℄.This study has been quite general, in the sense that it has been made for a general airraftmodel and a general horizontal wind pro�le, although results have been presented for linearpro�les. In the numerial appliations, the linear wind pro�les have been de�ned by twoparameters: the average wind and the wind shear. The in�uene of these two parameters onthe results and the in�uene of the initial airraft weight have been analyzed.The results have shown that as the average wind inreases, the fuel onsumption, the �ighttime and the range inrease, being the inrease of range quite strong. The result that tailwindslead to values of fuel onsumption and �ight time larger than the values for headwinds is notwhat one usually has, but note that in this hapter the objetive has been to minimize theontribution of the limb to the global-trajetory fuel onsumption, and that is obtained by�ying large horizontal distanes (with the orresponding inrease in fuel onsumption and�ight time). The performane index does derease as the average wind inreases, and, hene,one has that tailwinds lead to fuel ontributions to the global trajetory smaller than thoseof headwinds, as one would expet.Of partiular importane in this hapter has been the analysis of the in�uene of thewind shear on the limb performane. The in�uene of the wind shear on fuel onsumption,�ight time and horizontal distane is quite large, espeially in the ase of tailwinds, in�ueneomparable to that of the average wind, and even larger in the ases of fuel onsumptionand �ight time; in these ases the wind shear reinfores the e�ets of the average wind. Theoverall e�et of the wind shear on the performane index is however not so large.The omparison between both sets of results leads to the onlusion that the performaneof the optimized CAS/Mah proedure, in terms of global variables suh as fuel onsumption,�ight time and range, is very lose to optimal, although the onstant-CAS segment is not loseto optimal. Clearly, the optimum CAS value represents an average speed that approximatesvery well, in global terms, the optimal speed law during the �rst part of the limb. Moreover,the �ight paths (altitude vs horizontal distane) also show a very good agreement. Fromthe operational point of view, one an onlude that the use of the CAS/Mah limb inoperational pratie is justi�ed by the very lose omparison with the optimal results.
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5 Minimum-Fuel Cruise with FixedArrival Time
5.1 IntrodutionAn important problem in air tra� management (ATM) is the design of airraft trajetoriesthat meet ertain arrival time onstraints at given waypoints, for instane at the top ofdesent, at the initial approah �x, or at the runway threshold (estimated time of arrival). The�nal-time onstraint may be de�ned, for example, by a �ight delay imposed on the nominal(preferred) trajetory. These are four-dimensional (4D) trajetories, whih are a key elementin the trajetory-based-operations (TBO) onept proposed by SESAR and NextGen for thefuture ATM system (for example, Bilimoria and Lee [11℄ analyze airraft on�it resolutionwith an arrival time onstraint at a downstream waypoint). Also important in ATM is thedesign of optimal �ight proedures that lead to energy-e�ient �ights. In pratie, the airlinesonsider a ost index (CI) and de�ne the diret operating ost (DOC) as the ombined ostof fuel onsumed and �ight time, weighted by the CI; their goal is to minimize the DOC.When the �ight time is �xed, the objetive is to minimize fuel onsumption.In the analysis of airraft trajetories with �xed �ight time, wind e�ets are of primaryimportane, beause hanges in wind speed modify the �ight time (over a given range), andtherefore lead to hanges in the speed pro�les required to keep the �nal-time onstraint. Inthis hapter, an analysis of mimimum-fuel ruise with �xed arrival time, at onstant altitude,in the presene of horizontal winds, is presented. The problem is unsteady, with variableairraft mass.The optimization analysis is made using the theory of singular optimal ontrol, whih hasthe great advantage of providing feedbak ontrol laws (ontrol variables as funtions of thestate variables), that an be diretly used to guide the airraft along the optimal path. Theinitial and �nal speeds are given, so that the struture hosen for the optimal ontrol is bang-singular-bang, with the optimal paths formed by a singular ar and two minimum/maximum-thrust ars joining the singular ar with the given initial and �nal points. The singular arin the ase of no winds is studied in Frano et al. [30℄.The main objetive of this hapter is to present a quantitative analysis of the e�ets ofaverage horizontal winds on the optimal trajetories and ontrol laws that lead to minimumfuel onsumption while meeting the �nal-time onstraint. The in�uene of the initial airraftweight and the given ruise altitude on the optimal results is also analyzed. From the op-erational point of view, two appliations are studied: �rst, the fuel penalties assoiated to49



5. Minimum-Fuel Cruise with Fixed Arrival Timemismodeled winds are estimated, that is, the ost of meeting the given time of arrival undermismodeled winds is quanti�ed; and, seond, the ost of �ight delays imposed on a nominaloptimal path is quanti�ed as well.The optimal trajetories de�ne speed laws in whih the Mah number varies along thesingular ar. These optimal solutions, whih are a referene for optimal performane, are usedto assess the optimality of the standard onstant-Mah ruise proedure ommonly used inpratie (aording to air tra� regulations). The omparison with optimal results showsthat the performane of the onstant-Mah ruise is very lose to optimal.Results are presented for a model of a Boeing 767-300ER, with a general airraft per-formane model (general ompressible drag polar, and general thrust and spei� fuel on-sumption models dependent on speed and altitude), and for onstant winds, whih representaverage winds along the ruise.The outline of the hapter is as follows: the problem is formulated in Setion 5.2, inludingoptimal ontrol problem statement, appliation of the neessary onditions for optimalityand obtention of the singular surfae and the singular ontrol; the numerial proedure isexplained in Setion 5.3; some results are presented in Setion 5.4, both for the optimal andthe onstant-Mah problems, along with the omparison between the two proedures; and�nally, a summary of the main results and onlusions is inluded in Setion 5.5.5.2 Problem FormulationIn this setion, the problem of minimum-fuel ruise with �xed arrival time is formulated.First, the optimal ontrol problem is stated by de�ning the equations of motion (along withthe initial and �nal onditions) and the performane index onsidered. Seond, beause anindiret numerial method is onsidered for the resolution of the problem, the neessaryonditions for optimality are inluded. Then, the optimal trajetories are desribe, inludingequations de�ning the singular ar (a uniparametri family of surfaes in the state spae) andthe singular ontrol (whih is a feedbak ontrol law).5.2.1 Optimal Control ProblemThe equations of motion (3.41) partiularized to a ruise phase, in whih one has the addi-tional onstraint of �ying at onstant altitude (γ = 0), redues to
V̇ =

T −D

m

ṁ = −cT
ẋ = V + w

(5.1)In this problem there are three states, V , m and x, and one ontrol, π. The initial valuesof speed, mass and distane (Vi,mi, xi), and the �nal values of speed and distane (Vf , xf )are given. The �nal value of airraft mass (mf ) is unspei�ed, whereas the �ight time (tf ) is�xed. The altitude h, whih plays the role of a parameter, is a given onstant.The objetive is to minimize the fuel onsumption for a given range, that is, to minimize50



5.2. Problem Formulationthe following performane index
J =

∫ tf

0
cT dt (5.2)The optimal ruise problem onsidered redues to minimize the performane index givenby Eq. (5.2) subjet to the onstraints de�ned by the equations of motion (5.1).5.2.2 Neessary Conditions for OptimalityThe Hamiltonian of this problem is given by

H = cπTM +
λV
m

(πTM −D)− λmcπTM + λx(V + w) (5.3)where λV , λm and λx are the adjoint variables. Note that H is linear in the ontrol variable,so that it an be written as
H = H + Sπ (5.4)where H and the swithing funtion S are given by

H = −λV
D

m
+ λx(V +w)

S =

[

λV
m

− (λm − 1)c

]

TM

(5.5)As a onsequene, this is a singular optimal ontrol problem.Assuming that the normality and non-triviality onditions are satis�ed, the neessaryonditions for optimality are summarized next (see Chapter 3):1) The equations de�ning the adjoints:
λ̇V = −∂H

∂V
= −λx +

λV
m

∂D

∂V
−
[

λV
m

− (λm − 1)c

]

π
dTM
dV

+ (λm − 1)
dc

dV
πTM

λ̇m = −∂H
∂m

=
λV
m

[

πTM −D

m
+
∂D

∂m

]

λ̇x = −∂H
∂x

= 0

(5.6)Note that the last equation leads to onstant λx.2) The transversality ondition (assoiated to mf being unspei�ed):
λm(tf ) = 0 (5.7)3) The Hamiltonian minimization ondition: For the ontrol to be optimal it is neessarythat it globally minimize the Hamiltonian. The Hamiltonian minimization ondition forsingular optimal ontrol problems has a speial form given by Eq. (3.18), whih in this asede�nes the optimal ontrol as follows

π =











πmax if S < 0

πmin if S > 0

πsing if S = 0 over a �nite time interval (5.8)51



5. Minimum-Fuel Cruise with Fixed Arrival Timewhere πsing is the singular ontrol (yet to be determined), whih satis�es πmin < πsing <

πmax. Trajetory segments de�ned by πsing are singular ars.As indiated in Chapter 3, in singular optimal ontrol problems there arise additionalonditions that must be satis�ed in order both, for a singular ar to be minimizing, andfor the juntions between singular and nonsingular ars to be optimal. These additionalneessary ondition for optimality are analyzed below in Setion 5.2.3.2.Finally, beause the Hamiltonian is not an expliit funtion of time (as the problem isautonomous), the Hamiltonian onstany ondition applies
H(t) = H (5.9)where the onstant H is unknown.5.2.3 Optimal TrajetoriesIn general the optimal trajetory will be omposed of singular ars (with πsing) and arswith πmin or πmax; whether one has πmin or πmax is de�ned by the sign of the swithingfuntion S. In this problem the solution is expeted to be of the bang-singular-bang type,as suggested by the results obtained by Bilimoria and Cli� [10℄, where, using a redued-order model with di�erent time sales, the trajetory is deomposed into 3 parts: an initialtransient, the ruise-dash ar and a terminal transient. Although the underlying aerodynamiand propulsive models might a�et the struture of the solution, for the smooth modelsonsidered in this thesis, the bang-singular-bang struture is plausible, and hene it is theone analyzed in this hapter. Sine the initial and �nal speeds are �xed, there is a physialriterium to deide whether one has πmin or πmax, just by omparing those speeds with thespeeds that orrespond to the singular ar.Although alled optimal trajetories, they are in fat extremals, that is, trajetories thatsatisfy the neessary onditions for optimality.5.2.3.1 Singular ArThe singular ar is de�ned by the following three equations

H = H, S = 0, Ṡ = 0 (5.10)where the funtion Ṡ is given by
Ṡ =−

[

λV
m

− (λm − 1)c

]

D

m

dTM
dV

+

[

λV
m

(

∂D

∂V
+ cD −mc

∂D

∂m

)

− λx + (λm − 1)D
dc

dV

]

TM
m

(5.11)(note that the terms in the ontrol variable π have anelled out of this equation).52



5.2. Problem FormulationHene, the three equations that de�ne the singular ar (5.10) lead to
−λV

D

m
+ λx(V + w) = H

λV
m

− (λm − 1)c = 0

λV
m

(

∂D

∂V
+ cD −mc

∂D

∂m

)

− λx + (λm − 1)D
dc

dV
= 0

(5.12)The singular ar is obtained after eliminating the adjoints, λV and λm, from these equations.One obtains the following expression
D

(

1

Ω + V
− c− 1

c

dc

dV

)

− ∂D

∂V
+ cm

∂D

∂m
= 0 (5.13)whih is a family of singular ars de�ned by the family parameter

Ω = w − H
λx

(5.14)This family an be written as f(m,V,Ω) = 0. This is the same family obtained by Franoet al. [30℄ in the ase of no wind, but for a di�erent family parameter. The value of Ωis determined by imposing the �nal time to be tf (the numerial proedure is desribed inSetion 5.3). One Ω is determined, Eq. (5.13) de�nes a singular line in the (V,m) spae.5.2.3.2 Optimal Singular ControlBeause the funtion S̈ depends linearly on the ontrol variable π (note that Ṡ does notdepend on γ), the order of the singular ar is ξ = 1. Let S̈ = A(V,m) +B(V,m)π, therefore,beause one also has S̈ = 0 (where S = Ṡ = 0), the singular ontrol is obtained from
A(V,m) +B(V,m)π = 0; one gets the following

πsing =
D

TM

(

1 + V c
A1(V,m)

B1(V,m)

) (5.15)where A1(V,m) and B1(V,m) are given by
A1(V,m) = m

∂2D

∂m∂V
−m2c

∂2D

∂m2
− m

D

∂D

∂m

(

cD +
∂D

∂V
−mc

∂D

∂m

)

B1(V,m) = DV

(

c2 + 3
dc

dV
+

1

c

d2c

dV 2

)

+ 2
∂D

∂V

(

V c+
V

c

dc

dV

)

−mV

(

c2 + 3
dc

dV

)

∂D

∂m
+ V

∂2D

∂V 2
+m2c2V

∂2D

∂m2
− 2V cm

∂2D

∂m∂V

(5.16)This expression for the optimal singular ontrol depends impliitly on the parameter of thefamily of singular ars, beause V and m are related by the singular ar equation (5.13) whihinludes the dependene on Ω.The generalized Legendre-Clebsh ondition for the optimality of the singular ontrol,Eq. (3.21), redues in this ase (ξ = 1 and u = π) to −∂S̈
∂π

≥ 0, whih leads to
B(V,m) ≤ 0 (5.17)53



5. Minimum-Fuel Cruise with Fixed Arrival TimeIt an be shown numerially that the strengthened generalized Legendre-Clebsh ondition(−∂S̈
∂π

> 0) is satis�ed for all the ases onsidered in this Chapter.The MDanell-Powers neessary ondition for the optimality of juntions between singularand nonsingular ars (see Chapter 3) is shown to be satis�ed, beause the order of the singularar is ξ = 1 and the lowest-order time derivative of the ontrol whih is disontinuous atthe juntion is ζ = 0 (that is, the ontrol itself is disontinuous at the juntion). Moreover,although the ontrol variable is disontinuous at the juntions, the Weierstrass-Erdman orneronditions are satis�ed beause the adjoint variables, the Hamiltonian and the swithingfuntion are all ontinuous.5.3 Numerial ProedureThe de�nition of an e�ient numerial proedure to obtain the optimal path is failitated bythe knowledge of the struture of the solution (see Maurer [44℄). In this ase the expetedoptimal path is of the bang-singular-bang type, as skethed in Fig. 5.1. Based on this typeof path, a proedure is de�ned to obtain the optimal trajetory.
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Vi

Vf
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0
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f

Figure 5.1: Sketh of the optimal ruise path.The �rst bang starts with the initial values Vi, mi, and xi. Let x12 be the distanetraveled along the singular ar (between points 1 and 2 in Fig. 5.1). If Ω were known,the state equations (5.1) ould be integrated until the singular ar were reahed, that isuntil f(m1, V1, Ω) = 0 were satis�ed. Also, if x12 were known, the state equations ould beintegrated along the singular ar until the distane x[n]12 is traveled (from point 1 to point 2in Fig. 5.1). Finally, the state equations ould be integrated along the seond bang, whihstarts at the singular ar (point 2) and ends when the value V = Vf is reahed. At the �nalpoint one has two additional onditions, x = xf and t = tf , whih are to be used to de�ne
Ω and x12; this task is performed by means of an iterative proedure.54



5.3. Numerial ProedureThe iterative proedure must be started with an initial guess for the two unknowns. First,the initial guess for Ω is Ω[0] = w, beause for tf unspei�ed one has H = 0. Seond, aninitial guess for x12 is x[0]12 = xf , beause the two bang ars have very small length. Theseinitial guesses lead to onvergene in all ases onsidered in this hapter.5.3.1 Iterative ProedureThe following iterative proedure is used in the numerial resolution.Step 0. Guess values Ω[n] and x[n]12 .Step 1. Integrate the state equations (5.1) with either π = πmin or π = πmax from theinitial point (with known initial values Vi,mi, xi) until the singular ar is reahed (point 1),that is, until V1 and m1 satisfy f(m1, V1, Ω
[n]) = 0; at that point one also has x1. The value

πmin or πmax is hosen depending on whether one has Vi > V0 or Vi < V0, where V0 is de�nedby f(mi, V0, Ω
[n]) = 0, that is, the speed that orresponds in the singular ar to the initialmass mi (point 0 in Fig. 5.1).Step 2. Integrate the state equations (5.1) with π = πsing from point 1 (with known initialvalues V1,m1, x1) until the distane x[n]12 is traveled. At the end of the integration along thesingular ar one has V2, m2, and x2 (point 2).Step 3. Integrate the state equations (5.1) with either π = πmin or π = πmax from point2 (with known initial values V2,m2, x2) until V = Vf . The value πmin or πmax is hosendepending on whether one has Vf < V2 or Vf > V2. At the �nal point one obtains the �nalvalues x[n]f and t[n]f , whih in general are di�erent from xf and tf ; in suh a ase, one mustiterate on the guessed values x[n]12 and Ω[n], whih is done as desribed next.The proedure de�ned by steps 1 to 3 de�nes a funtion g : R2 7→ R

2, (x[n]12 , Ω
[n]) 7→

(x
[n]
f , t

[n]
f ), so that one searhes for the values x12 and Ω that satisfy g (x12, Ω) = (xf , tf ).If one de�nes the funtion G = g(x12, Ω) − (xf , tf ), one searhes for the zero of G. Theresolution of G(x12, Ω) = 0 is performed using MATLAB's fsolve, starting the iteration withthe values (x

[0]
12 , Ω

[0]) de�ned above, and stopping when x
[n]
f = xf and t

[n]
f = tf to withinsome presribed tolerane.One the problem is integrated, one has the �nal optimal value of airraft mass, mf ,whih de�nes the minimum fuel onsumption mF = mi −mf , for the given values of rangeand �ight time. Note that this proedure for the omputation of the optimal path does notrequire the integration of the adjoint equations.5.3.2 Control Struture OptimalityIt still remains to hek whether the assumed struture for the ontrol (bang-singular-bang) isorret. That is, one must hek that S > 0 for π = πmin and that S < 0 for π = πmax. Thisrequires the omputation of S along the extremal path. Sine S =

[

λV
m

− (λm − 1)c

]

TM ,one must ompute λV and λm.First, to obtain λV and λm along the �nal bang it is neessary to solve a two-pointboundary value problem de�ned by the orresponding adjoint equations (5.6), in whih λxis a parametri unknown, with boundary onditions H(t2) = H, S(t2) = 0 and λm(tf ) = 0.55



5. Minimum-Fuel Cruise with Fixed Arrival TimeThese boundary onditions an be rewritten in terms of λV and λm, as follows
λV (t2) =

m2λx
D2

(V2 +Ω)

λm(t2) = 1 +
λx
c2D2

(V2 +Ω)

λm(tf ) = 0

(5.18)where Ω has been already omputed. The resolution of this two-point boundary value prob-lem is performed using MATLAB's bvp4, starting the iteration with the parameter λx andthe onstant distributions of λV and λm that satisfy Eqs. (5.18), namely
(λm)0 = 0

(λx)
0 = − c2D2

V2 +Ω

(λV )
0 = −c2m2

(5.19)One the �nal bang is integrated, λV and λm at any point of the singular ar follow from
H = H and S = 0, that is,

λV (t) =
mλx
D

(V +Ω)

λm(t) = 1 +
λx
cD

(V +Ω)

(5.20)Finally, λV and λm along the initial bang are obtained integrating bakwards the �rst twoEqs. (5.6) from point 1 to point i, with initial onditions λV (t1), λm(t1) de�ned by Eqs.(5.20).The numerial results show that the ontrol struture is orret in all ases presented inSetion 5.4.5.4 ResultsThe aerodynami model onsidered in this thesis for the numerial appliations (orrespond-ing to a Boeing 767-300ER) is desribed in Appendix B, and the atmosphere model is theInternational Standard Atmosphere.Results are presented for a ruise �ight de�ned by a range xf = 8000 km, and by initialand �nal speeds Vi = 240 m/s and Vf = 180 m/s, orresponding to hypothetial onditions atthe end of the limb and the start of the desent (the same values in all ases studied below).Di�erent values of headwind (HW) and tailwind (TW) are onsidered, orresponding tonegative and positive values of w respetively, ranging from −15 to +15 m/s; the ase of nowind (NW) is inluded. The �ight times range from 8.67 to 10.50 h. The nominal initialairraft weight is taken to be Wi = 1600 kN. In the analysis of the e�ets of Wi, results arepresented for a referene ase de�ned by w = 0, tf = 9.5 h and h = 10000 m. The nominalruise altitude is taken to be h = 10000 m. In the analysis of the e�ets of h, results arepresented now for a referene ase de�ned by w = 0, tf = 9.5 h and Wi = 1600 kN.In the analysis of the e�ets of ruise altitude on the optimal results, one an take intoaount the altitude dependene of the wind. For example, in Ref. [21℄ a linear wind pro�le56



5.4. Resultsis onsidered. The theoretial analysis made in this hapter is general and valid for any windpro�le, so that results ould be presented for any hoie of pro�le. For simpliity, a onstantpro�le is onsidered (as in Ref. [81℄).The outline of this setion is as follows: the optimal trajetories are analyzed in Setion5.4.1 and the minimum fuel onsumption in Setion 5.4.2; then, two appliations are onsid-ered: the ost of mismodeled winds is studied in Setion 5.4.3, and the ost of �ight delays inSetion 5.4.4; and, �nally, the optimality of the onstant-Mah ruise proedure is assessedin Setion 5.4.5. Besides the analysis of the wind e�ets on the optimal results, whih is themain objetive of this hapter, as already indiated, the e�ets of the initial airraft weightand of the ruise altitude are analyzed as well.5.4.1 Optimal Trajetories and Optimal ControlThe optimal trajetories (Mah number as a funtion of �own distane) are shown in Fig. 5.2afor tf = 9.5 h, h = 10000 m, Wi = 1600 kN and di�erent values of wind speed (rangingfrom −15 to 15 m/s). The orresponding optimal ontrols are shown in Fig. 5.2b. Thestruture is minimum-thrust ar, singular ar, minimum-thrust ar, in all ases shown exeptfor w = −10,−15 m/s, in whih ases the optimal trajetory start with a maximum-thrustar, required to aelerate the airraft to the high initial singular-ar speed.
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(b)Figure 5.2: Optimal trajetories and optimal ontrol for w = −15, −10, −5, 0, 5, 10, 15 m/s(tf = 9.5 h, h = 10000 m, Wi = 1600 kN). (a) Optimal trajetories, (b) Optimal ontrol.The results show that, to meet the given arrival time, the optimal Mah number dereasesas the wind speed inreases (the optimal ruise speed is larger for HWs than for TWs, asexpeted); for example, for a HW w = −10 m/s the optimal Mah number is M ≈ 0.815,whereas for a TW w = 10 m/s it ranges from 0.756 to 0.732. In general, the optimaltrajetory alls for a variation of the Mah number along the ruise (for a given tf , one hasthe largest variations of M along the singular ar for the strongest TWs). However, for agiven �ight time, there is always a range of wind speeds for whih the optimal trajetory57



5. Minimum-Fuel Cruise with Fixed Arrival Timealong the singular ar is M ≈ const; for example, as shown in Fig. 5.2a, for tf = 9.5 h and
w = −5 m/s one has M ≈ 0.798. The singular ontrol dereases along the singular ar, andits variation with the wind speed is weak.To analyze the in�uene of the arrival time, the optimal trajetories for HW w = −10 m/sand TW w = 10 m/s, and di�erent arrival times (ranging from 9.17 to 10 h) are shown inFig. 5.3 for h = 10000 m and Wi = 1600 kN. The orresponding optimal ontrols are shownin Fig. 5.4.
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(b)Figure 5.3: Optimal trajetories for tf = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m,
Wi = 1600 kN). (a) HW w = −10 m/s, (b) TW w = 10 m/s.
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5.4. ResultsAs expeted, the optimal Mah number dereases as the arrival time inreases; and, forthe same arrival time, the optimal Mah number is larger in the ase of HW. The resultsalso show that the variation of the singular ontrol with the �ight time is very small inthe ase of TW, and somewhat larger in the ase of HW. In fat, the results show that forlarge speeds (say, Mah numbers larger than 0.8) the dependene of the singular ontrolon speed is large, inreasing as M inreases, whereas for smaller speeds the dependene isvery week (this behavior an be seen also in Fig. 5.2b). The reason for this behavior isthat the variation of π with M is very shallow at low M (say 0.7< M <0.8) and inreasesstrongly for M >0.8, following the same trend as the aerodynami drag; note that, as a �rstapproximation, π ≈ D/TM (as given by Eq. 5.15), and that the variation of TM with M athigh M is not as strong as the variation of D.Now, to study the in�uene of the initial airraft weight, the optimal trajetories fordi�erent values of Wi (ranging from 1500 to 1700 kN) are shown in Fig. 5.5a, for tf = 9.5 h,
w = 0 and h = 10000 m. The orresponding optimal ontrols are shown in Fig. 5.5b. Inthis problem in whih the �nal distane and �nal time are �xed, the speed is so onstrainedthat the in�uene of the initial airraft weight on the speed pro�les is very small (almostnegligible). However, the singular ontrol inreases as Wi inreases.
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(b)Figure 5.5: Optimal trajetories and optimal ontrol for Wi = 1500, 1550, 1600, 1650,
1700 kN (tf = 9.5 h, w = 0, h = 10000 m). (a) Optimal trajetories, (b) Optimal ontrol.

Finally, to analyze the in�uene of the ruise altitude, the optimal trajetories for di�erentvalues of h (h = 9000, 10000, 11000 m) are shown in Fig. 5.6a, for tf = 9.5 h, w = 0 and
Wi = 1600 kN. The orresponding optimal ontrols are shown in Fig. 5.6b. One an see that,as the ruise altitude inreases, the optimal Mah number inreases (result that is related tothe orresponding derease of the speed of sound). The results also show that the singularontrol inreases signi�antly as the ruise altitude inreases.
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5. Minimum-Fuel Cruise with Fixed Arrival Time
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(b)Figure 5.6: Optimal trajetories and optimal ontrol for h = 9000, 10000, 11000m (tf = 9.5 h,
w = 0, Wi = 1600 kN). (a) Optimal trajetories, (b) Optimal ontrol.5.4.2 Minimum Fuel ConsumptionThe minimum fuel onsumption as a funtion of the �ight time is shown in Fig. 5.7 for
h = 10000 m, Wi = 1600 kN and di�erent wind speeds (ranging from −15 to 15 m/s).For onretion, some numerial values are given in Table 5.1. As expeted, HWs requirelarger values of fuel onsumption, as ompared to TWs. This e�et an be quanti�ed now,for example, for a �ight time of 9.5 h, in the nominal ase of no wind the minimum fuelonsumption is 39838 kg (see Table 5.1), whereas for a HW w = −10 m/s it is 43029 kg andfor a TW w = 10 m/s it is 38265 kg; hene, one has a di�erene of 4764 kg between HW andTW, that is an inrease of about 12%.
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5.4. ResultsTable 5.1: Minimum fuel onsumption for di�erent �ight times and wind speeds (h =

10000 m, Wi = 1600 kN).
mF [kg℄

w [m/s℄ −15 −10 −5 0 5 10 15

tf [h℄
8.67 - - - - - - 38727

8.83 - - - - - 39438 37955

9.00 - - - - 40217 38669 37613

9.17 - - - 41068 39430 38318 37520

9.33 - - 42001 40243 39058 38212 37587

9.50 - 43029 41115 39838 38933 38265 37761

9.67 44172 42056 40664 39684 38966 38424 -
9.83 43080 41543 40473 39693 39108 - -

10.00 42486 41305 40452 39813 - - -
10.17 42189 41246 40546 - - - -
10.33 42084 41309 - - - - -
10.50 42110 - - - - - -

All urves in Fig. 5.7 present a minimum. These minima are the solutions of the minimum-fuel problem with free �nal time, that orresponds to H = 0, i.e., Ω = w (in this ase onehas H(t) = 0, beause there is an additional neessary ondition for optimality that statesthat H(tf ) = 0, see Ref. [15℄). The numerial values are given in Table 5.2 (where mF,0 is theminimum fuel and tf,0 the orresponding optimal �ight time). As before, HWs give largervalues of minimum fuel onsumption, and larger values of �ight time, as ompared to TWs.For example, for this ase of free �nal time, the di�erene in minimum fuel onsumptionbetween a HW w = −10 m/s and a TW w = 10 m/s is 3034 kg, and the orrespondingdi�erene in �ight time is 48 min.Table 5.2: Minimum fuel onsumption and optimal �ight time for the free-�nal-time problem,for di�erent wind speeds (h = 10000 m, Wi = 1600 kN).
w [m/s℄ −15 −10 −5 0 5 10 15

mF,0 [kg℄ 42080 41246 40444 39672 38928 38212 37520

tf,0 [h℄ 10.38 10.15 9.94 9.74 9.54 9.35 9.17

The e�et of the initial airraft weight on the minimum fuel onsumption is shown inFig. 5.8, for di�erent pairs of �ight time and wind speeds. In partiular three ases areonsidered: TW (tf = 9.17 h and w = 10 m/s), NW (tf = 9.5 h and w = 0), and HW(tf = 10 h and w = −10 m/s). Even though the in�uene of the initial airraft weight onthe speed pro�les is almost negligible (as shown in Fig. 5.5a), for the fuel onsumption the61



5. Minimum-Fuel Cruise with Fixed Arrival Timebehaviour is di�erent: one has larger fuel onsumption for larger values of Wi, as expeted.The minimum fuel onsumption inreases almost linearly when Wi inreases: going from
38781 to 44040 kg for HW, from 37399 to 42489 kg for NW, and from 35942 to 40894 kg forTW, when Wi inreases from 1500 to 1700 kN, that is, inreases of 5259, 5090, and 4952 kg,respetively (13.56%, 13.61%, and 13.77%); the results give an approximately onstant rateof inrease of about 2500 kg for eah 100 kN.
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5.4. ResultsNow, the e�et of the ruise altitude on the minimum fuel onsumption is shown inFig. 5.9, for the same pairs of �ight time and wind speeds as before: TW (tf = 9.17 h and
w = 10 m/s), NW (tf = 9.5 h and w = 0), and HW (tf = 10 h and w = −10 m/s). Ineah ase there is a best altitude that provides lowest minimum fuel onsumption. Hene,appropriate seletion of ruise altitude implies a redution in minimum fuel onsumptionduring ruise. For example, in the three ases represented in Fig. 5.9 (HW, NW, TW),ruising at h = 11000 m instead of at the best altitudes (9784, 9721 and 9705 m) givesinreases in minimum fuel onsumption of 996, 1141 and 1064 kg, respetively (2.4%, 2.8%,and 2.7%).5.4.3 Cost of Mismodeled WindsIn the presene of mismodeled winds, the optimal results are useful in giving an estimation ofthe fuel penalty that one might have, that is, an estimation of the ost of meeting the giventime of arrival under mismodeled winds. The fuel penalty is de�ned as the di�erene in fuelonsumption between the ases orresponding to the real wind w + δw and the mismodeledwind w, that is, ∆mF,w = mF (w + δw) − mF (w). The ase of negative values of δw isonsidered, whih means HWs stronger (larger in modulus) than expeted, and TWs smallerthan expeted. In the following, the nominal path is that of minimum fuel onsumption inthe ase of free �nal time: namely, mF,0, with �ight time tf,0 (see Table 5.2); this �ight timeis to be maintained under the mismodeled wind. The fuel penalty is represented in Fig. 5.10as a funtion of δw for di�erent values of wind speed. One has that mismodeled HWs havefuel penalties larger than mismodeled TWs for the same wind speed error (it an be as largeas ∆mF,w ≈ 2400 kg for w = −15 m/s and δw = −10 m/s); this same result is obtained inRef. [81℄, whih is explained by the ompressible drag inrease at the high Mah numbersrequired to meet the arrival-time onstraint in the ase of strong HWs.
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5. Minimum-Fuel Cruise with Fixed Arrival Time5.4.4 Cost of Flight DelaysThe optimal results are also useful in quantifying the ost of a �ight delay ∆tf > 0 imposedon a nominal optimal path with a nominal average wind. Again, the nominal path is that ofminimum fuel onsumption in the ase of free �nal time: namely, mF,0, with �ight time tf,0.Note that mF,0 and tf,0 depend on the wind speed (see Table 5.2). The ost of the �ight delayis de�ned as the di�erene in minimum fuel onsumption between the ases orresponding tothe path for tf = tf,0 +∆tf and the nominal path, that is, ∆mF,t = mF (tf,0 +∆tf )−mF,0.The delay ost is represented in Fig. 5.11 as a funtion of ∆tf for diferent values of windspeed. Obviously, the larger the delay, the larger the ost; for instane, the ost of absorbinga �ight delay of 30 minutes in the presene of a TW w = 15 m/s is around 500 kg. Moreover,the ost of absorbing a given �ight delay is larger in the presene of TWs than in the preseneof HWs (the ost inreases as w inreases); this same result is obtained in Ref. [21℄, whereit is explained by the larger perentage of the nominal �ight time that the �ight delay ∆tfrepresents in the ase of tailwinds (beause in this ase the �ight times are smaller).
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Figure 5.11: Inrease in minimum fuel onsumption vs �ight delay for w = −15, −10, −5, 0,
5, 10, 15 m/s (h = 10000 m, Wi = 1600 kN).
5.4.5 Optimality of Constant-Mah CruiseIn Setion 5.4.1 it is shown that the optimal solutions de�ne variable-Mah ruise proedures.Even though these proedures may not be �yable (aording to ommon air tra� ontrolpratie), they are a referene for optimum performane, and, therefore, an be used toanalyze the optimality of standard �ight proedures.In this setion, the optimality of the onstant-Mah ruise proedure is analyzed, pro-edure whih is desribed next. Let Mc be the ruise Mah, hene the ruise speed is
Vc = Mca(h) where a(h) is the speed of sound at the given altitude h. The proedure64



5.4. Resultsonsidered is formed by three segments, all of them at onstant altitude: 1) an initial a-eleration/deeleration segment from the given initial speed Vi to the ruise speed Vc, withmaximum ruise/idle engine rating, 2) a main ruise segment with onstant speed Vc, and 3)a �nal aeleration/deeleration segment from Vc to the given �nal speed Vf , with maximumruise/idle engine rating.For the initial segment, the equations of motion (5.1) are integrated with initial onditions
Vi, mi and xi until V = Vc; at the end of the segment one has m1 and x1. For the ruisesegment, beause the speed is onstant, the equations of motion (5.1) redue to

ṁ = −c(Vc, h)D(Vc,m, h)

ẋ = Vc + w(h)
(5.21)whih are integrated with initial onditions m1 and x1 until the distane x12 is �own; at theend of the segment one has m2 and x2. For the �nal segment, Eqs. (5.1) are integrated withinitial onditions Vc, m2 and x2 until V = Vf ; at the end of the segment one has the �nalvalues of airraft mass, horizontal distane and time, m3, x3 and t3.The �ight distane and the �ight time are in general di�erent from xf and tf . Hene,one must iterate on the two free variables Vc and x12 until x3 = xf and t3 = tf to withinsome presribed tolerane. The iteration is started with the initial guess Vc =

xf
tf

− w and
x12 = xf . Finally, the fuel onsumption is mF = mi −m3.The omparison between the optimal and the onstant-Mah proedure in the ase TW
w = 15 m/s, tf = 9.5 h, h = 10000 m and Wi = 1600 kN, is represented in Fig. 5.12, wherethe initial and �nal deelerations are not ompletely represented in order to better ompareboth trajetories. The onstant Mah number obtained in this ase is Mc = 0.7311, and theorresponding fuel onsumption is (mF )c = 37784 kg, value that one an see is very lose tothe optimal value mF = 37761 kg.
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5. Minimum-Fuel Cruise with Fixed Arrival TimeThe onstant Mah numberMc is represented in Fig. 5.13 as a funtion of the wind speedfor di�erent values of �ight time (ranging from 9.17 to 10 h). One has that Mc dereases as
w inreases and as tf inreases. The in�uene of the initial airraft weight on Mc is foundto be negligible, as distane �own and �ight time are given. And the in�uene of the ruisealtitude is shown in Fig. 5.14, where Mc is represented as a funtion of ruise altitude forthe same pairs of �ight time and wind speeds as above: TW (tf = 9.17 h and w = 10 m/s),NW (tf = 9.5 h and w = 0), and HW (tf = 10 h and w = −10 m/s); one has that Mcinreases as h inreases (result that is related to the orresponding derease of the speed ofsound). Note that if the initial and �nal deelerations are not onsidered, Mc is given by thefollowing relation

Mc =
1

a(h)

(

xf
tf

− w

) (5.22)whih gives a very good approximation, beause the e�et of those deelerations in the globalproblem is small.
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Figure 5.13: Mc vs wind speed for tf = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m,
Wi = 1600 kN).The di�erene in fuel onsumption ∆mF,c = (mF )c −mF between the optimal and theonstant-Mah proedures is represented in Fig. 5.15 as a funtion of wind speed, for di�erentvalues of �ight time (ranging from 9.17 to 10 h). For onretion, some numerial values aregiven in Table 5.3. One an see that the di�erenes are always very small (almost negligiblein some ases, learly in those in whih the optimal M is almost onstant). Hene, one anonlude that the performane of the onstant-Mah ruise is always very lose to optimal,giving fuel onsumptions larger than the optimum by less than 25 kg in all ases onsidered.As already indiated, for a given tf (or for a given w) there is always a range of values of w(or tf ) in whih the optimal trajetory is M ≈ const; in these ases the di�erene betweenboth proedures is negligible (∆mF,c < 1 kg). The same trends are obtained for di�erentvalues of Wi and h.66



5.4. Results
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5. Minimum-Fuel Cruise with Fixed Arrival TimeTable 5.3: Inrease in minimum fuel onsumption for di�erent �ight times and wind speeds(h = 10000 m, Wi = 1600 kN).
∆mF,c [kg℄

w [m/s℄ −15 −10 −5 0 5 10 15

tf [h℄
8.67 - - - - - - 1.7

8.83 - - - - - 1.9 0.2

9.00 - - - - 2.1 0.3 2.3

9.17 - - - 2.6 0.3 2.2 7.3

9.33 - - 3.2 0.3 1.9 7.1 14.5

9.50 - 4.1 0.5 1.5 6.5 14.1 23.4

9.67 5.3 0.9 1.1 5.8 13.4 22.9 -
9.83 1.5 0.7 4.9 12.4 22.0 - -
10.00 0.5 3.9 11.1 20.7 - - -
10.17 2.7 9.5 19.1 - - - -
10.33 7.8 17.1 - - - - -
10.50 14.8 - - - - - -5.5 SummaryThe problem of minimum-fuel ruise with �xed arrival time have been analyzed, for onstant-altitude �ight. The analysis of this four-dimensional problem has been made using the theoryof singular optimal ontrol. The struture of the optimal ontrol onsidered has been bang-singular-bang, whih is what one expets in this ase in whih the initial and �nal valuesof the speed are given; the optimal trajetories then are formed by a singular ar and twominimum/maximum-thrust ars that join the singular ar with the given initial and �nalpoints. This study has been quite general, in the sense that it has been made for a generalairraft model and a general horizontal wind pro�le, although results have been presentedfor onstant pro�les.The main objetive of this hapter has been the analysis of the e�ets of average horizontalwinds on the optimal problem, both qualitative and quantitatively. The analysis has given,�rst, the optimal ruise speed and the optimal ontrol required to meet the given �ighttime in the presene of a given average wind, and seond, the orresponding minimum fuelonsumption. The in�uene of the initial airraft weight and the given ruise altitude on theoptimal results has been analyzed as well.From the operational point of view, if one onsiders a referene senario with a given�ight time and a nominal average wind, the analysis has allowed to quantify, �rst, the hangein ruise speed required in the ase of having a di�erent wind, and seond, the fuel penaltyassoiated, that is, the ost of meeting the given �ight time under the mismodeled wind. Theresults have shown that mismodeled headwinds have fuel penalties larger than mismodeledtailwinds for the same wind speed error.As a seond appliation, the ost of absorbing a �ight delay imposed on a nominal optimalpath with a nominal average wind has been also quanti�ed: it has been shown that, for a68



5.5. Summarygiven delay, the ost in the presene of tailwinds is larger than in the presene of headwinds.Although results have been presented for uniform wind pro�les, the analysis has been general,and any other altitude-dependent wind pro�le ould be onsidered as well.Despite their theoretial interest, the optimal variable-Mah solutions may not be �yable(aording to ommon air tra� ontrol pratie), however, they are a referene for optimalperformane and, hene, have been used to assess the optimality of the standard proedureof ruising at onstant speed. The results have shown that the performane of this standardonstant-Mah proedure is very lose to optimal for all values of �ight time, wind, airraftweight and altitude onsidered in the analysis (in fat, it has been shown that in some asesoptimality is obtained by �ying at Mah approximately onstant).
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6 Maximum-Range UnpoweredDesent
6.1 IntrodutionAs indiated in Chapter 2, in the optimization of the desent �ight of ommerial airraft, theobjetive is to desend and deelerate ontinuously, so that the eonomial and environmentalimpats are minimized, keeping thrust as low as possible for as long as possible.In this hapter, an optimization analysis of the desent �ight in the presene of altitude-dependent winds, in the ase of zero thrust, is presented. The objetive is to maximizethe airraft range, so that the unpowered desent an be initiated as far in advane aspossible. In this problem the initial and �nal values of altitude and speed are given; the initialvalues orrespond to ruise onditions, and the �nal values orrespond to the onditions at ahypothetial approah �x within the terminal maneuvering area (TMA). Horizontal altitude-dependent winds are onsidered, with the aeleration term inluded in the formulation, sothat wind-shear e�ets an be analyzed. A general ompressible drag polar is onsidered, andno limiting onstraint on altitude is imposed. The two main objetives of this hapter are:1) to optimize the desent in the presene of altitude-dependent winds; and 2) to assess theoptimality of a desent proedure, ommonly used in pratie (a onstant-alibrated-airspeeddesent).The analysis is made using the theory of singular optimal ontrol, whih has the greatadvantage of providing feedbak ontrol laws (ontrol variables as funtions of the statevariables), that an be diretly used to guide the airraft along the optimal path. Theontrol variable is the aerodynami path angle (γ). The initial and �nal speeds and altitudesare given, so that the struture hosen for the optimal ontrol is of the bang-singular-bangtype, with the optimal paths formed by a singular ar and two minimum-γ ars joining thesingular ar with the given initial and �nal points. For typial ruise and TMA onditionsand for γmax > 0, the initial and �nal bang ars orrespond to two short limbs, as reportedby Rivas et al. [57℄ in the ase of no wind, whih is in aordane with the results presentedby Bryson et al. [14℄, and Shapira and Ben-Asher [64, 65℄.Despite their theoretial interest, optimal solutions may not be �yable aording topresent-day air tra� proedures and regulations. However, they represent best performaneand an be used either as referenes to design improved �ight proedures or to assess the opti-mality of �ight proedures ommonly used in pratie, as for example the ase of idle-thrust,onstant-alibrated-airspeed (CAS) desents onsidered by Oseguera and Williams [50℄. In71



6. Maximum-Range Unpowered DesentFrano et al. [32℄, a onstant-CAS unpowered-desent proedure, omposed of three segments(initial and �nal horizontal deelerations, and desent with onstant CAS), is optimized togive maximum range in the presene of altitude-dependent winds using parametri optimiza-tion theory (see Flether [29℄); the optimization parameter is the desent CAS. In this hapterthe optimality of onstant-CAS unpowered-desents is analyzed by omparing results fromRef. [32℄ with the optimal ones. The omparison shows that the optimized onstant-CASdesent is very lose to optimal for all wind pro�les onsidered (this result was shown to holdin the ase of no wind by Rivas et al. [57℄).Results are presented for a model of a Boeing 767-300ER, for linear wind pro�les (har-aterized by two parameters, namely, the average wind speed and the pro�le slope or windshear), and for γmax = 0 (so that the initial and �nal short limbs reported by Rivas et al [57℄beome horizontal �ight segments, as in the onstant-CAS proedure with whih the optimalresults are ompared). The in�uene of the two wind parameters and of the initial airraftweight on the results is analyzed. For the wind pro�les onsidered, it is shown that the windshear has a lear e�et on the optimal performane, modifying the maximum range in about4%: inreasing for tailwinds and dereasing for headwinds.The outline of the hapter is as follows: in Setion 6.2 the optimal problem is formulated,inluding equations of motion, performane index, appliation of the neessary onditionsfor optimality and obtention of the singular surfae and the singular ontrol; the numerialproedure to solve the optimal problem is desribed in Setion 6.3; some results are presentedin Setion 6.4, both for the optimal and the optimized onstant-CAS problems, along withthe omparison between the two proedures and the analysis of the e�et of the airraftweight on the results; and �nally, a summary of the main results and onlusions is inludedin Setion 6.5.6.2 Problem FormulationIn this setion, the problem of maximum-range unpowered desent is formulated. First, theoptimal ontrol problem is stated by de�ning the equations of motion (along with the initialand �nal onditions) and the performane index onsidered. Seond, beause an indiretnumerial method is onsidered for the resolution of the problem, the neessary onditionsfor optimality are inluded. Then, the optimal trajetories are desribe, inluding equationsde�ning the singular ar (a surfae in the state spae) and the singular ontrol (whih is afeedbak ontrol law).6.2.1 Optimal Control ProblemThe equations of motion (3.41) partiularized to a desent phase, in whih one has theadditional onstraint that π = 0, redues to
V̇ = −D

m
− gγ − V

dw

dh
γ

ḣ = V γ

ẋ = V + w

(6.1)72



6.2. Problem FormulationIn this problem there are three states, V , h and x, and one ontrol, γ. The initial values ofspeed, altitude and distane (Vi, hi, xi), and the �nal values of speed and altitude (Vf , hf ) aregiven. The �nal value of distane (xf ) and the �ight time (tf ) are unspei�ed. The airraftmass m, whih plays the role of a parameter, is a given onstant.The objetive in this problem is to maximize range, that is, to minimize the followingperformane index
J = −

∫ tf

0
(V + w) dt (6.2)The optimal desent problem onsidered redues to minimize the performane index givenby Eq. (6.2) subjet to the onstraints de�ned by the equations of motion (6.1).6.2.2 Neessary Conditions for OptimalityThe Hamiltonian of this problem is given by

H = −(V + w)− λV

(

D

m
+ gγ + V w′γ

)

+ λhV γ + λx(V + w) (6.3)where ()′ denotes derivative with respet to h; and λV , λh and λx are the adjoint variables.Assuming that the normality and non-triviality onditions are satis�ed, the neessaryonditions for optimality are summarized next (see Chapter 3):1) The equations de�ning the adjoints:
λ̇V = −∂H

∂V
= 1 + λV

(

1

m

∂D

∂V
+ w′γ

)

− λhγ − λx

λ̇h = −∂H
∂h

= w′ + λV

(

1

m

∂D

∂h
+ V w′′γ

)

− λxw
′

λ̇x = −∂H
∂x

= 0

(6.4)The last equation leads to onstant λx.2) The transversality onditions: First, beause the �nal distane xf is not spei�ed, onehas
λx(tf ) = 0 (6.5)whih leads, together with the last Eq. (6.4), to
λx(t) = 0 (6.6)Seond, beause the �nal time is not spei�ed, one has
H(tf ) = 0 (6.7)3) The Hamiltonian minimization ondition: For the ontrol to be optimal, it is neessarythat it globally minimize the Hamiltonian. The Hamiltonian is linear in γ, so that it an bewritten as
H = H + Sγ (6.8)73



6. Maximum-Range Unpowered Desentwith
H = −

(

V + w + λV
D

m

)

S = λhV − λV (g + V w′)

(6.9)where equation (6.6) has been taken into aount. S is the swithing funtion. As a onse-quene, this is a singular optimal ontrol problem. The Hamiltonian minimization onditionfor singular optimal ontrol problems has a speial form given by equation (3.18), whih inthis ase de�nes the optimal ontrol as follows
γ =











γmax if S < 0

γmin if S > 0

γsing if S = 0 over a �nite time interval (6.10)where γsing is the singular ontrol (yet to be determined), whih satis�es γmin < γsing < γmax.The trajetory segments de�ned by γsing are singular ars.As indiated in Chapter 3, in singular optimal ontrol problems there arise additionalonditions that must be satis�ed in order both, for a singular ar to be minimizing, andfor the juntions between singular and nonsingular ars to be optimal. These additionalneessary ondition for optimality are analyzed below in Setion 6.2.3.2.Finally, beause the Hamiltonian is not an expliit funtion of time (as the problem isautonomous), the Hamiltonian onstany ondition applies, and using Eq. (6.7) one gets
H(t) = 0 (6.11)along the optimal trajetory.6.2.3 Optimal TrajetoriesIn general the optimal trajetory will be omposed of singular ars (with γsing) and ars with

γmin or γmax; whether one has γmin or γmax is de�ned by the sign of the swithing funtion
S. In this problem the solution is expeted to be of the bang-singular-bang type, as suggestedby the results obtained by Miele [47℄, Bryson et al. [14℄, and Shapira and Ben-Asher [64, 65℄,where it is shown that the maximum-range glide is de�ned by a entral path and two initialand �nal branhes joining that path with the initial and �nal onditions. Although theunderlying aerodynami and propulsive models might a�et the struture of the solution, forthe smooth models onsidered in this thesis, the bang-singular-bang struture is plausible,and hene it is the one analyzed in this hapter. Sine the initial and �nal speeds are given,there is a physial riterium to deide whether one has γmin or γmax, just by omparing thosespeeds with the speeds that orrespond to the singular ar for the initial and �nal altitudes.Although alled optimal trajetories, they are in fat extremals, that is, trajetories thatsatisfy the neessary onditions for optimality.6.2.3.1 Singular ArThe singular ar is de�ned by the following three equations

H = 0, S = 0, Ṡ = 0 (6.12)74



6.2. Problem Formulationwhere the funtion Ṡ is given by
Ṡ =

λV
m

[

V
∂D

∂h
− g

∂D

∂V
+ w′

(

D − V
∂D

∂V

)]

− λh
D

m
− g (6.13)(note that the terms in the ontrol variable γ have anelled out of this equation). Moreover,beause H = 0 one also has H = 0.Hene, the three equations (6.12) that de�ne the singular ar lead to

V + w + λV
D

m
= 0

λhV − λV (g + V w′) = 0

λV
m

[

V
∂D

∂h
− g

∂D

∂V
+ w′

(

D − V
∂D

∂V

)]

− λh
D

m
− g = 0

(6.14)The singular ar is obtained after eliminating the adjoints, λV and λh, from these equations.One obtains the following expression
V
∂D

∂h
− (g + V w′)

∂D

∂V
− g

w

V + w

D

V
= 0 (6.15)whih de�nes a singular line in the (V, h) spae, namely f(V, h) = 0.Miele [47℄ obtains, for the ase of no wind (w = 0), the same expression in equation (6.15)for the entral pattern of his solution. Note that, for w = 0, if one onsiders the spei� energy

E = gh+ 1
2V

2, and makes a hange of variables in the problem (V, h) → (V,E), then one has
∂D

∂V
|
E
=
∂D

∂V
− V

g

∂D

∂h
(6.16)so that one an write the expression for the singular ar, given in equation (6.15), as

∂D

∂V
|
E
= 0 (6.17)as shown by Rivas et al. [57℄, whih is the result obtained by Bryson et al. [14℄ for the entralpart of the maximum-range glide path.6.2.3.2 Optimal Singular ControlBeause the funtion S̈ depends linearly on the ontrol variable γ, the order of the singularar is ξ = 1. Let S̈ = A(V,m, h) +B(V,m, h)γ, where

A(V, h) = A1(V, h) + wA2(V, h) +w′A3(V, h)

B(V, h) = B1(V, h) + wB2(V, h) + w′B3(V, h) + (w′)2B4(V, h) + w′′B5(V, h)
(6.18)75



6. Maximum-Range Unpowered Desentwith
A1(V, h) =

V

m

(

∂D

∂h
+ V

∂2D

∂V ∂h
− g

∂2D

∂V 2

)

A2(V, h) =
1

m

(

2g
D

V 2
+ V

∂2D

∂V ∂h
− g

∂2D

∂V 2

)

A3(V, h) = −V
m

[

∂D

∂V
+ (V + w)

∂2D

∂V 2

]

B1(V, h) = −V
D

(

V 2∂
2D

∂h2
− 2gV

∂2D

∂V ∂h
− g

∂D

∂h
+ g2

∂2D

∂V 2

)

B2(V, h) =
1

D

(

2g2
D

V 2
+ g

∂D

∂h
+ 2gV

∂2D

∂V ∂h
− g2

∂2D

∂V 2
− V 2 ∂

2D

∂h2

)

B3(V, h) =
V +w

D

[

g

V

(

D − V
∂D

∂V

)

+ V

(

∂D

∂h
− 2g

∂2D

∂V 2
+ 2V

∂2D

∂V ∂h

)]

B4(V, h) = −V + w

D
V

(

∂D

∂V
+ V

∂2D

∂V 2

)

B5(V, h) =
V +w

D
V 2 ∂D

∂V

(6.19)
Therefore, beause one also has S̈ = 0 (where S = Ṡ = 0), the singular ontrol is given by

γsing = −A(V, h)
B(V, h)

(6.20)The generalized Legendre-Clebsh ondition for the optimality of the singular ontrol,equation (3.21), redues in this ase (ξ = 1 and u = γ) to −∂S̈
∂γ

≥ 0, whih leads to
B(V, h) ≤ 0 (6.21)It an be shown numerially that B < 0 for all the ases onsidered in this hapter, so thatthe strengthened generalized Legendre-Clebsh ondition (−∂S̈

∂γ
> 0) is satis�ed.For the ase of no wind (w = 0), the singular ontrol is given by

γsing = −A1(V, h)

B1(V, h)
(6.22)and the generalized Legendre-Clebsh ondition by

B1(V, h) ≤ 0 (6.23)and, in terms of the variables (V,E), it redues to
∂2D

∂V 2
|
E
≥ 0 (6.24)as shown by Rivas et al. [57℄.The MDanell-Powers neessary ondition for the optimality of juntions between singularand nonsingular ars (see Chapter 3) is shown to be satis�ed, beause the order of the singularar is ξ = 1 and the lowest-order time derivative of the ontrol whih is disontinuous atthe juntion is ζ = 0 (that is, the ontrol itself is disontinuous at the juntion). Moreover,although the ontrol variable is disontinuous at the juntions, the Weierstrass-Erdman orneronditions are satis�ed beause the adjoint variables, the Hamiltonian and the swithingfuntion are all ontinuous.76



6.3. Numerial Proedure6.3 Numerial ProedureIn this setion the numerial proedure used to solve the optimal problem is desribed. In Fig.6.1 a sketh of the expeted optimal path (bang-singular-bang) is presented (the partiularase of two γmax ars is depited). Knowing the struture of the solution allows one to de�nean e�ient numerial proedure (see Maurer [44℄).
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hf hi
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Figure 6.1: Sketh of the optimal desent path.The following proedure is used in the numerial resolution:Step 1. Integrate the state equations (6.1) with either γ = γmin or γ = γmax from theinitial point (with known initial values Vi, hi, and xi) until the singular ar is reahed (point1 in Fig. 6.1), that is, until V1 and h1 satisfy the singular-ar equation f(V1, h1) = 0; atthat point one also has x1. The value γmin or γmax is hosen depending on whether one has
Vi < Va or Vi > Va, where Va is de�ned by f(Va, hi) = 0, that is, the speed that orrespondsin the singular ar to the initial altitude hi (point a in Fig. 6.1).Step 2. Integrate bakwards the state equations (6.1) with either γ = γmin or γ = γmaxfrom the �nal point (with known starting values Vf , hf and an arbitrary value of x, whihan be taken as zero), until the singular ar is reahed (point 2 in Fig. 6.1), that is, until
V2 and h2 satisfy f(V2, h2) = 0; at that point one also has the distane travelled ∆x. Thevalue γmin or γmax is hosen depending on whether one has Vf > Vb or Vf < Vb, where Vb isde�ned by f(Vb, hf ) = 0, that is, the speed that orresponds in the singular ar to the �nalaltitude hf (point b in Fig. 6.1).Step 3. Integrate the state equations (6.1) with γ = γsing from point 1 (with knownstarting values V1, h1, and x1) until the altitude h2 is reahed. At the end of the integrationalong the singular ar one also has x2.One the problem is integrated, one has the �nal optimum value of distane xf = x2+∆x,that is, the maximum range. Note that this proedure for the omputation of the optimalpath does not require the integration of the adjoint equations. 77



6. Maximum-Range Unpowered Desent6.3.1 Control Struture OptimalityIt still remains to hek whether the assumed struture for the ontrol (bang-singular-bang)is orret. That is, one must hek that S > 0 for γ = γmin and that S < 0 for γ =

γmax. This requires the omputation of S along the extremal path just omputed. Sine
S = λhV − λV (g + V w′), one must ompute λV and λh. From Eqs. (6.3), (6.6), and (6.11)one has

λV
m

=
λhV γ − (V + w)

D +m(g + V w′)γ
(6.25)and therefore, from Eqs. (6.4), and (6.6)

λ̇h = w′ +
λhV γ − (V + w)

D +m(g + V w′)γ

(

∂D

∂h
+mV w′′γ

) (6.26)Along the �rst and �nal bangs, λh is obtained integrating Eq. (6.26) bakwards frompoint 1 and forward from point 2, respetively, starting with the known values, obtainedfrom the �rst and the seond Eqs. (6.14)
λh1

= −m
[

1 +
w(h1)

V1

]

g + V1w
′(h1)

D(V1, h1)

λh2
= −m

[

1 +
w(h2)

V2

]

g + V2w
′(h2)

D(V2, h2)

(6.27)One λh is obtained, λV follows from Eq. (6.25).The numerial results show that the ontrol struture is orret in all ases presented inSetion 6.4.6.4 ResultsThe aerodynami model onsidered in this thesis for the numerial appliations (orrespond-ing to a Boeing 767-300ER) is desribed in Appendix B, and the atmosphere model is theInternational Standard Atmosphere.For the wind model, linear pro�les are onsidered, with the absolute value of the windspeed inreasing with altitude (see Ref. [50℄). The pro�les are de�ned as follows
w(h) = w̄ +∆w

h− h̄

hi − h̄
(6.28)where w̄ is the average wind, ∆w is the wind-shear parameter and h̄ = (hi + hf )/2 is theaverage altitude. For given values of hi and hf , ∆w de�nes the wind shear dw

dh
, and, inpartiular, ∆w = 0 de�nes a uniform wind pro�le. Note that the average wind speed w̄satis�es

w̄ =
1

hi − hf

∫ hi

hf

w(h)dh (6.29)and, also, sine the wind pro�les are linear, w̄ is the wind speed at the average altitude, thatis, w̄ = w(h̄). In the following, both tailwinds (TW) and headwinds (HW) are onsidered,with the linear pro�les de�ned as follows: for TW one has w̄ > 0 and ∆w ≥ 0, and for HW
w̄ < 0 and ∆w ≤ 0.78



6.4. ResultsIn this setion, besides the state and ontrol variables, the ground path angle γg is alsoanalyzed, whih is de�ned (for γ, γg ≪ 1) by
γg = γ

V

V + w
(6.30)Results are presented for the ase of initial and �nal γmax-ars, whih require that theinitial and �nal speeds be su�iently high and low respetively, as it is the ase in ommonpratie. In partiular, γmax = 0 is onsidered, so that the initial and �nal ars are horizontaldeelerations, as in the optimized onstant-CAS proedure, with whih the optimum resultsare to be ompared. (Results for γmax > 0 are reported in Ref. [57℄ in the ase of no wind.)The initial onditions (orresponding to the �nal ruise onditions) are Mi = 0.8, hi =

33000 ft, and the �nal onditions (orresponding to a hypothetial approah �x within theTMA) are CASf = 210 kt, hf = 9000 ft. The average altitude is then h̄ = 21000 ft. Toanalyze the wind e�ets on the optimal trajetories, the average wind ranges from −30 kt to
30 kt, and the wind-shear parameter ranges from 0 to 20 kt. In the analysis of the e�et ofthe airraft weight on the results, W ranges from 1100 kN to 1300 kN.Results from Frano et al. [32℄ orresponding to optimized onstant-CAS desents forthe same performane index, airraft and atmosphere models, wind model, as well as initialand �nal onditions are reprodued here. For ompleteness, a detailed desription of thisonstant-CAS desent proedure is inluded in Appendix D.The outline of this setion is as follows. The e�ets of the average wind speed and thewind-shear parameter on the optimal trajetories as well as on the optimal ontrol is �rstanalyzed in Setion 6.4.1; then, the optimal and optimized desent are ompared in termsof global variables, whih are also analyzed in Setion 6.4.2; �nally, the e�ets of the initialairraft weight on the optimal and optimized results are studied in Setion 6.4.3.6.4.1 Optimal Trajetories and Optimal ControlIn this setion, the e�ets of the wind pro�le on the optimal trajetories are analyzed; �rst,the e�et of the average wind speed, and seond, the e�et of the wind shear. In all asesthe airraft weight is W = 1200 kN.6.4.1.1 E�et of the Average WindThe optimal speed and altitude pro�les V (x) and h(x) are represented in Fig. 6.2 for di�erentvalues of the average wind (w̄ ranging from −30 to 30 kt) and for a wind-shear parameter
∆w = 0. The speed ontinuously dereases. Note that for the di�erent values of w̄, thesepro�les end at di�erent values of x; the large in�uene of w̄ on the horizontal distane �ownis analyzed in more detail in Setion 6.4.2.The optimal ontrol γ(x) and the ground path angle γg(x) are represented in Fig. 6.3for the same values of the average wind as before and for ∆w = 0. They are disontinuous(one has the two ars with γmax = 0, and the singular ar). The results show that both theoptimal ontrol and the ground path angle slightly derease (|γ| and |γg| inrease) along thesingular ar. The average wind w̄ has very little in�uene on the singular optimal ontrol,exept that it importantly a�ets the bang-singular and singular-bang swithing times. On79



6. Maximum-Range Unpowered Desentthe ontrary, the in�uene on the ground path angle is larger; as w̄ inreases, the groundpath angle signi�antly inreases (|γg| dereases, orresponding to �atter pro�les), whih isalso seen in Fig. 6.2b.
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(b)Figure 6.2: Optimal speed and altitude pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt, and
∆w = 0 (W = 1200 kN). (a) V (x), (b) h(x).
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(b)Figure 6.3: Optimal ontrol γ(x) and ground path angle γg(x) for w̄ = −30, −20, −10, 0,
10, 20, 30 kt, and ∆w = 0 (W = 1200 kN). (a)γ(x), (b)γg(x).
6.4.1.2 E�et of the Wind ShearThe optimal speed and altitude pro�les V (x) and h(x) are represented in Fig. 6.4 now fordi�erent values of the wind-shear parameter (|∆w| ranging from 0 to 20 kt) and for twovalues of the average wind (w̄ = 30 kt, TW, and w̄ = −30 kt, HW). The in�uene of ∆w onthe optimal pro�les is relatively small.80



6.4. Results
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(b)Figure 6.4: Optimal speed and altitude pro�les for TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt)and HW (w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt) (W = 1200 kN). (a) V (x), (b) h(x).
The optimal ontrol γ(x) and the ground path angle γg(x) are represented in Fig. 6.5 forthe same values of ∆w and w̄ (TW and HW) as before. The results show again that both theoptimal ontrol and the ground path angle slightly derease (|γ| and |γg| inrease) along thesingular ar. As the wind-shear parameter inreases, both γ(x) and γg(x) slightly inrease(|γ| and |γg| derease). The in�uene of ∆w on γ is somewhat larger than the in�uene of

w̄. On the ontrary, the in�uene on γg is smaller. The in�uene of ∆w on the bang-singularand singular-bang swithing times is also smaller than the in�uene of w̄.
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(b)Figure 6.5: Optimal ontrol γ(x) and ground path angle γg(x) for TW (w̄ = 30 kt, ∆w = 0,
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81



6. Maximum-Range Unpowered Desent6.4.2 Comparison of Optimal and Optimized Constant-Calibrated-AirspeedDesentsIn this setion the optimized onstant-CAS unpowered desents are ompared with the opti-mal desents. The omparison is made in terms of the maximum range and the orresponding�ight time, global variables whih are also analyzed in this setion. In all ases the airraftweight is W = 1200 kN.The maximum range and the �ight time for both problems are represented as funtionsof the average wind for a wind-shear parameter ∆w = 0 in Fig. 6.6, and as funtions of thewind-shear parameter for two values of the average wind (w̄ = 30 kt, TW, and w̄ = −30 kt,HW) in Fig. 6.7. One an see that the di�erenes between both sets of results are almostnegligible in all ases (less than 45 m in maximum range and less than 0.5 s in �ight time).In the following setion, where the e�et of the airraft weight is analyzed, results forspeed, altitude, and aerodynami path angle pro�les are presented for optimal and optimizedonstant-CAS desents, so that the omparison between both sets of results is pursued further.Again the di�erenes are almost negligible. Hene, it an be onluded that the onstant-CAS proedure is very lose to optimal, provided that the optimum value of CASd is usedin the desent.The results (Fig. 6.6) show that the maximum range inreases as the average wind speedinreases, as expeted, going from 167.79 km for w̄ = −30 kt (HW) to 201.70 km for w̄ = 30 kt(TW); that is, an inrease of 33.91 km (20.2%) when the average wind hanges from HWto TW at |w̄| = 30 kt. One an also see that the rate of inrease of the maximum rangeis approximately onstant: about 0.56 km/kt. On the other hand, the �ight time is lesssensitive than the maximum range to hanges in w̄, inreasing from 18.03 min to 18.54 minfor the same inrease in average wind speed as before; that is, an inrease of just 0.51 min(2.8%).
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(b)Figure 6.6: Maximum range and �ight time vs. average wind for ∆w = 0 (W = 1200 kN).Solid lines: optimal desents. Dashed lines: optimized onstant-CAS desents.
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6.4. ResultsThe in�uene of the wind shear on the maximum range is analyzed next (see Fig. 6.7a).For w̄ = 30 kt (TW), the maximum range inreases when ∆w inreases: going from 201.70 kmto 209.10 km when ∆w inreases from 0 to 20 kt (an inrease of 7.40 km, that is 3.67%),with an approximately onstant rate of inrease of about 0.37 km/kt. On the other hand,for w̄ = −30 kt (HW), the maximum range dereases when ∆w dereases (that is, when
|∆w| inreases): going from 167.79 km to 161.67 km when ∆w dereases from 0 to −20 kt(a derease of 6.12 km, that is 3.65%), with an approximately onstant rate of derease ofabout 0.31 km/kt.
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(b)Figure 6.7: Maximum range and �ight time vs. wind-shear parameter for TW (w̄ = 30 kt) andHW (w̄ = −30 kt) (W = 1200 kN). Solid lines: optimal desents. Dashed lines: optimizedonstant-CAS desents.
Now the in�uene of the wind shear on the �ight time is studied (see Fig. 6.7b). Thetrends are analogous to the ase of the maximum range. For w̄ = 30 kt (TW), the �ight timeinreases as ∆w inreases: going from 18.54 min for ∆w = 0 to 19.20 min for ∆w = 20 kt(an inrease of 0.66 min, that is 3.56%), with an approximately onstant rate of inrease ofabout 1.99 s/kt. On the other hand, for w̄ = −30 kt (HW), the �ight time dereases when

∆w dereases (that is, when |∆w| inreases): going from 18.03 min for ∆w = 0 to 17.35 minfor ∆w = −20 kt (a derease of 0.68 min, that is 3.78%), with an approximately onstantrate of derease of about 2.04 s/kt.Comparatively, the wind shear a�ets equally the maximum range and the �ight time.Hene, one an onlude �rst that the stronger the TW and the wind shear are, the largerthe maximum range and the �ight time are, and seond that the stronger the HW and thewind shear are, the smaller the maximum range and the �ight time are. The maximum rangeinreases from 161.67 km for (w̄,∆w) = (−30,−20) kt (HW) to 209.10 km for (w̄,∆w) =

(30, 20) kt (TW); that is, an inrease of 47.43 km (29.3%). And the �ight time inreasesfrom 17.35 min to 19.20 min for the same winds as before; that is, an inrease of 1.85 min(10.7%). 83



6. Maximum-Range Unpowered Desent6.4.3 E�ets of the Airraft Weight on the ResultsIn this setion, the e�ets of the airraft weight on the results are analyzed, with W rangingfrom 1100 kN to 1300 kN.6.4.3.1 E�ets on the State and Control VariablesThe speed, altitude and aerodynami path angle pro�les (V (x), h(x), and γ(x)) that orre-spond to the optimal and the optimized onstant-CAS desents are presented in Figs. 6.8,6.9, and 6.10, respetively, for di�erent values of W , for two values of the average wind(w̄ = 30 kt, TW, and w̄ = −30 kt, HW), and for ∆w = 0.
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(b)Figure 6.8: Speed pro�les for ∆w = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solid lines:optimal desents. Dashed lines: optimized onstant-CAS desents. a) TW (w̄ = 30 kt), b)HW (w̄ = −30 kt).
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(b)Figure 6.9: Altitude pro�les for ∆w = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solidlines: optimal desents. Dashed lines: optimized onstant-CAS desents. a) TW (w̄ = 30 kt),b) HW (w̄ = −30 kt).
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6.4. Results
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(b)Figure 6.10: Path angle γ(x) for ∆w = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solidlines: optimal desents. Dashed lines: optimized onstant-CAS desents. a) TW (w̄ = 30 kt),b) HW (w̄ = −30 kt).
One an see that as the airraft weight inreases, 1) the speed during the singular arinreases, 2) the altitude slightly dereases, and 3) the airraft weight has very little in�ueneon the singular optimal ontrol. The in�uene on the ground path angle is not representedgraphially beause the dependene is very small, as an be inferred from Fig. 6.9.As it was advaned in the previous setion, the di�erenes between the pro�les for the op-timal and the optimized onstant-CAS desents are almost negligible for all weights, showingagain that the onstant-CAS proedure is very lose to optimal.6.4.3.2 E�ets on the Maximum Range and Flight TimeThe maximum range and the orresponding �ight time for the optimal and for the optimizedonstant-CAS desents are represented as funtions of the airraft weight in Fig. 6.11 forthree values of the average wind (w̄ = 30 kt, TW; no wind, NW; and w̄ = −30 kt, HW) andfor di�erent values of the wind-shear parameter (|∆w| from 0 to 20 kt, in the ases of TWand HW).The in�uene of W on the maximum range is very small, for all wind pro�les onsidered.However, the in�uene of W on the �ight time is larger: as the airraft weight inreases, the�ight time dereases in an almost linear way. The rate of derease is roughly independent ofthe wind ondition: about 75 s when W inreases from 1100 kN to 1300 kN.Again, the di�erenes between the optimized onstant-CAS results and the optimal resultsare almost negligible for all weights and wind onditions (less than 30 m in maximum rangeand less than 0.5 s in �ight time).
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6. Maximum-Range Unpowered Desent
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−20 kt). Solid lines: optimal desents. Dashed lines: optimized onstant-CAS desents.6.5 SummaryAn analysis of maximum-range, unpowered desent in the presene of altitude-dependentwinds has been made, using the theory of singular optimal ontrol. The optimal ontrol isof the bang-singular-bang type, and the optimal paths are formed by a singular ar and twominimum/maximum-γ ars joining the singular ar with the given initial and �nal points.Results have been presented for the ase of initial and �nal γmax-ars, in the partiular aseof γmax = 0, whih lead to two short horizontal deeleration segments at the beginning andat the end of the optimal trajetory. This analysis has been used to assess the optimalityof a onstant-CAS, unpowered desent proedure de�ned by three segments (desent withonstant CAS and initial and �nal horizontal deelerations), whih is de�ned and optimizedin Ref. [32℄.This study has been quite general, in the sense that it has been made for a general airraftmodel and a general horizontal wind pro�le, although results have been presented for linearpro�les. In the numerial appliations, the linear wind pro�les have been de�ned by twoparameters: the average wind and the wind shear. The in�uene of these two parameters onthe results and the in�uene of the initial airraft weight have been analyzed.The results have shown that the average wind a�ets strongly the maximum range, asexpeted, inreasing for tailwinds and dereasing for headwinds. Its e�et on the �ight timeis muh weaker. The in�uene of the wind shear has been shown to be moderately large,presenting the same trends as the average wind, that is, inreasing the maximum rangeand the �ight time in the ase of tailwinds and dereasing them in the ase of headwinds.Comparatively, the wind shear a�ets the �ight time more strongly than the average wind;on the ontrary, its e�et on the maximum range is weaker, but nonetheless important.The e�et of the airraft weight on the results has been analyzed as well. Its e�et on themaximum range is very small, and on the �ight time is onsiderably larger, dereasing as theairraft weight inreases.86



6.5. SummaryFrom the operational point of view, a main onlusion an be drawn: the use of theonstant-CAS desent in operational pratie, when one aims at starting the unpowereddesent as far in advane as possible, is justi�ed by the very lose omparison with theoptimal results for all wind pro�les and airraft weights onsidered; that is, the performaneof the optimized onstant-CAS proedure is expeted to be very lose to optimal.
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7 Minimum-Fuel Global Trajetory
7.1 IntrodutionAs indiated in Chapter 2, trajetory optimization is a subjet of great importane in air traf-� management (ATM). In fat, for ommerial transport airraft, minimizing fuel onsump-tion is of prime importane, both eonomially and environmentally (beause CO2 emissionsare diretly related to fuel burnt).In this hapter, the minimum-fuel global-trajetory problem is analyzed, taking into a-ount altitude-dependent horizontal winds, so that wind-shear e�ets an be analyzed. Theairraft mass is not taken as onstant but onsidered as a state variable, and a general air-raft performane model is onsidered (general ompressible drag polar, and general thrustand spei� fuel onsumption models dependent on speed and altitude). Trajetories areonsidered to be deomposed into several phases of three di�erent types: limb, ruise anddesent.The analysis is made by applying the theory of singular optimal ontrol to a switheddynamial system. This approah has the great advantage of providing feedbak ontrol laws(ontrol variables as funtions of the state variables), that an be diretly used to guide theairraft along the optimal path. The ontrol variable is the aerodynami path angle (γ) forlimb and desent phases, and the throttle setting (π) for the ruise phase. As in Chapters 4,5 and 6, the struture hosen for the optimal ontrol in every phase is of the bang-singular-bang type, with the optimal paths formed by a singular ar and two minimum/maximumars joining the singular ar with the initial and �nal swithing points.Results are presented for a model of a Boeing 767-300ER performing a limb-ruise-limb-ruise-desent trajetory, and for linear wind pro�les, haraterized by two parameters: theaverage wind speed and the speed-pro�le slope or wind shear. The in�uene of the two windparameters and of the initial airraft weight on the results is analyzed. The strong e�et ofthe wind shear is desribed.The outline of the hapter is as follows: the problem is formulated in Setion 7.2, inludingequations of motion, performane index, appliation of the neessary onditions for optimalityand desription of the optimal trajetories; the implemented numerial method is explainedin Setion 7.3; the partiular appliation onsidered is de�ned in Setion 7.4; and �nally,some results are presented in Setion 7.5.
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7. Minimum-Fuel Global Trajetory7.2 Problem FormulationIn this setion, the problem of minimum-fuel global trajetory is formulated. First, thetrajetory optimization problem (onsisting of the performane index, the equations of motionand the initial and �nal onditions) is ategorized as a multiphase optimal ontrol problemwhose phases are also de�ned. Seond, beause an indiret numerial method is onsidered forthe resolution of the swithed optimal ontrol problem, the neessary onditions for optimalityare inluded. Then, the optimal �ight phases are desribed, inluding the equations de�ningthe singular ar and the singular ontrol at eah phase. These equations oinide with thoseobtained for the previous appliations in whih a single phase is optimized (although in someases additional onsiderations must be made).7.2.1 Optimal Control ProblemUnder appropriate assumptions, the equations of motion for a �ight in a vertial plane subjetto an altitude-dependent horizontal wind w(h) are Eqs. (3.41), whih are reprodued herefor ompleteness:
V̇ =

T −D

m
− gγ − V

dw

dh
γ

ṁ = −cT
ḣ = V γ

ẋ = V + w

(7.1)In this problem there are four states, V , m, h and x, and two ontrols, γ and π. Theinitial values of speed, mass, altitude and distane (Vi, mi, hi, xi), and the �nal values ofspeed, altitude and distane (Vf , hf , xf ) are given. The �nal value of mass (mf ), and �ighttime (tf ) are unspei�ed. Without loss of generality, ti = 0 and xi = 0 are onsidered.In this hapter, minimum-fuel global trajetories with �xed range are analyzed. However,it turns out to be more onvenient to onsider the equivalent problem of minimizing thefollowing performane index
J=̇ (mi −mf )−Kx (tf ) =

∫ tf

0
[cT −K (V + w)] dt, (7.2)with x (tf ) unspei�ed. For both problems to be equivalent, one has to �nd the unknownparameter K for whih the free-range optimal trajetory travels the assigned �nal range

xf , as proven next. Let z be a state variable spei�ed at an unspei�ed �nal time. Thetransversality ondition of the assoiated adjoint λz is given by λz (tf ) = νz, where νz maybe regarded as a ontrol parameter that makes the terminal value of z take the spei�ed value(see Bryson and Ho [15℄). If now the �nal value of that state, z (tf ), were unspei�ed anda linear terminal ost funtion −Kz (tf ) were onsidered, the transversality ondition on λzwould be λz (tf ) = −K, and the remaining neessary onditions for optimality would remainunhanged. Hene, both problems are equivalent if K = −νz is hosen, that is, if the ostfator K is hosen so that the terminal value of z is the spei�ed one.Therefore, the problem an be written as in Eq. (3.4), where y = (V,m, h, x) is thestate vetor, u = (γ, π) is the ontrol vetor, l(y,u) = cT − K (V +w) is the running90



7.2. Problem Formulationost, no terminal ost is onsidered, U = {(γ, π) ∈ R
2 : γmin ≤ γ ≤ γmax and 0 ≤

πmin ≤ π ≤ πmax = 1} is the ontrol set, ti = 0, yi = (Vi,mi, hi, 0), ψ [tf ,y (tf )] =

(V (tf ), h(tf )) − (Vf , hf ) is the �nal-state-onstraint funtion, and tf is unspei�ed. Notethat the initial and �nal values of the states are the same as before, exept for the �nal valueof the distane x (tf ), whih is now unspei�ed.The global trajetory onsidered in this hapter is omposed of limb, ruise and desentphases in a prespei�ed phase sequene σ = (q1, ..., qN ). Aording to Setion 3.2, this allowsfor the optimization of the ontrolled airraft motion to be onsidered as a multiphase optimalontrol problem. Hene, the problem an be stated as in Eq. (3.26) with some onsiderations:the running osts lqj at eah phase qj are partiularizations of l aording to the type of phaseorresponding to qj ; no terminal ost is onsidered; Q=̇ {cl, cr, d} is the set of types of phases,where cl, cr, and d stand for limb, ruise and desent, respetively; and the values of thestates at the swithing instants (Vj , mj , hj , xj) and the swithing instants themselves (tj)for j = 1, ..., N − 1 are unspei�ed. Again, the initial and �nal values of the states are thesame as before, with x (tf ) being unspei�ed.In the next subsetions, the dynami state equations ẏ = fq (y, uq), the ontrol variable uq,the ontrol onstraints uqmin
≤ uq ≤ uqmax, the running ost lq (y, uq), and the Hamiltonian

Hq (y, uq, λ) = lq (y, uq) + λT fq (y, uq), where λ ∈ R
4 is the adjoint vetor, are de�ned foreah q ∈ Q. The Hamiltonian is needed to apply the neessary onditions for optimality,whih is done in Setion 7.2.2.7.2.1.1 Climb PhaseDuring limb (q = cl), the additional onstraint that π is a known parameter (π = πcl) isonsidered in this thesis. The equations of motion in this phase are Eqs. (4.1), whih arereprodued here for ompleteness:

V̇ =
πclTM −D

m
− gγ − V

dw

dh
γ

ṁ = −cπclTM
ḣ = V γ

ẋ = V + w

(7.3)Now, there is only one ontrol, the aerodynami path angle ucl = γ, whih is bounded(γmin,cl ≤ γ ≤ γmax,cl). The running ost for the limb phase is lcl(y, γ) = cπclTM −
K (V + w), whereas the Hamiltonian is given by
Hcl = λV

(

πclTM −D

m
− gγ − V w′γ

)

+ (1− λm)cπclTM + λhV γ + (λx −K) (V +w) (7.4)where ()′ denotes derivative with respet to h, and λV , λm, λh and λx are the adjoint variables.Note that Hcl is linear on the ontrol variable, so that it an be written as Hcl = Hcl +Sclγ,where Hcl and the limb swithing funtion Scl are given by
Hcl =

λV
m

(πclTM −D) + (1− λm) cπclTM + (λx −K) (V + w)

Scl = λhV − λV (g + V w′)
(7.5)91



7. Minimum-Fuel Global Trajetory7.2.1.2 Cruise PhaseDuring ruise (q = cr), the additional onstraint of �ying at onstant altitude (γ = 0) isonsidered in this thesis. The equations of motion in this phase are Eqs. (5.1), whih arereprodued here for ompleteness:
V̇ =

πTM −D

m

ḣ = 0

ṁ = −cπTM
ẋ = V + w

(7.6)where the dynami equation for altitude has been maintained for the sake of onsisteny,although the altitude is now a onstant parameter.Again, there is only one ontrol, the throttle setting ucr = π, whih is bounded (0 <
πmin ≤ π ≤ πmax = 1). The running ost for the ruise phase is lcr(y, π) = cπTM −
K (V + w), whereas the Hamiltonian is given by

Hcr =
λV
m

(πTM −D) + (1− λm)cπTM + (λx −K) (V + w) (7.7)where λV , λm and λx are the adjoint variables. Note that Hcr is linear on the ontrol variable,so that it an be written as Hcr = Hcr + Scrπ, where Hcr and the ruise swithing funtion
Scr are given by

Hcr = −λV
D

m
+ (λx −K) (V + w)

Scr =

[

λV
m

+ (1− λm)c

]

TM

(7.8)7.2.1.3 Desent PhaseDuring desent (q = d), the additional onstraint of �ying unpowered (π = 0) is onsideredin this thesis. The equations of motion in this phase are Eqs. (6.1):
V̇ = −D

m
− gγ − V

dw

dh
γ

ḣ = V γ

ṁ = 0

ẋ = V + w

(7.9)where dynami equation for airraft mass has been maintained for the sake of onsisteny,although the mass is now a onstant parameter.There is only one ontrol, the aerodynami path angle ud = γ, whih is bounded (γmin,d ≤
γ ≤ γmax,d). The running ost for the desent phase is ld(y, γ) = −K (V + w), whereas theHamiltonian is given by

Hd = −λV
(

D

m
+ gγ + V w′γ

)

+ λhV γ + (λx −K) (V + w) (7.10)92



7.2. Problem Formulationwhere λV , λh and λx are the adjoint variables. Note that Hd is linear on the ontrol variable,so that it an be written as Hd = Hd + Sdγ, where Hd and the desent swithing funtion
Sd are given by

Hd = −λVD
m

+ (λx −K) (V + w)

Sd = λhV − λV (g + V w′)
(7.11)7.2.2 Neessary Conditions for OptimalityAssuming that the normality and non-triviality onditions are satis�ed, and for a givenswithing sequene σ = (q1, ..., qN ), with qj ∈ Q for j = 1, ..., N , the neessary onditions foroptimality are summarized next (see Chapter 3):1) The adjoints are pieewise ontinuous funtions satisfying the following dynami equa-tions:

λ̇V = −
∂Hqj

∂V

λ̇m = −
∂Hqj

∂m

λ̇h = −∂Hqj

∂h

λ̇x = −
∂Hqj

∂x

(7.12)
along eah phase of the optimal trajetory, that is, ∀t ∈ [tj−1, tj ) ([tN−1, tN ] if j = N) for
j = 1, ..., N . Beause Hqj does not depend on x (that is, ∂Hqj

∂x
= 0, ∀qj), λx is a pieewiseonstant funtion.2) Beause the states are ontinuous at the swithing points tj , and only ontrolledswithings are onsidered, the adjoint variables satisfy the following swithing onditions:

λV (t
−

j ) = λV (t
+
j )

λh(t
−

j ) = λh(t
+
j )

λm(t−j ) = λm(t+j )

λx(t
−

j ) = λx(t
+
j )

(7.13)for j = 1, ..., N − 1. Hene, the adjoints are ontinuous funtions for all t ∈ [0, tf ]. Inpartiular, the last equation (7.13) implies that λx is onstant. Note that some authorslassify these onditions as transversality onditions at the swithing instants.3) The Hamiltonian ontinuity ondition states that, sine the transition times tj are notspei�ed, then the Hamiltonians for the two phases ontiguous at tj satisfy the followingequation:
Hqj(tj) = Hqj+1

(tj) (7.14)for j = 1, ..., N −1. Again, some authors lassify these onditions as transversality onditionsat the swithing instants. 93



7. Minimum-Fuel Global Trajetory4) The Hamiltonian minimization ondition states that for the ontrol to be optimal it isneessary that it minimize the Hamiltonian. In all �ight phases onsidered, the Hamiltonianis linear on the ontrol variable and the ontrol is bounded, that is, Hqj = Hqj + Sqjuqj and
uqj ,min ≤ uqj ≤ uqj ,max, ∀qj . Hene, the minimization of Hqj with respet to uqj de�nes theoptimal ontrol as follows

uqj =











uqj ,max if Sqj < 0

uqj ,min if Sqj > 0

uqj ,sing if Sqj = 0 over a �nite time interval (7.15)for j = 1, ..., N , where uqj ,sing is the singular ontrol (yet to be determined), whih satis�es
uqj ,min ≤ uqj ,sing ≤ uqj ,max. Trajetory segments de�ned by uqj ,sing are alled singular ars,whereas trajetory segments de�ned by uqj ,min or uqj ,max are alled bangs.6) The transversality onditions are the following: First, sine the �nal distane x(tf ) isnot spei�ed, one has

λx(tf ) = 0 (7.16)whih, along with the result that λx is a onstant, leads to
λx(t) = 0 (7.17)along the entire optimal trajetory. Seond, as the �nal mass m(tf ) is not spei�ed, one has
λm(tf ) = 0 (7.18)Third, sine the �nal time tf is not spei�ed, one has
HqN (tf ) = 0 (7.19)Moreover, sine the Hamiltonian is not an expliit funtion of time, one has the �rstintegral that it is onstant along eah phase of the optimal trajetory, that is,
Hqj(t) = Hj (7.20)for j = 1, ..., N , where Hj are unknown onstant values. This �rst integral, along withEqs. (7.19) and (7.14), leads to
Hqj(t) = 0 (7.21)for j = 1, ..., N .As indiated in Chapter 3, in singular optimal ontrol problems there arise additionalonditions that must be satis�ed in order both, for a singular ar to be minimizing, andfor the juntions between singular and nonsingular ars to be optimal. These additionalneessary ondition for optimality are analyzed below in Setion 7.2.3 for eah phase.7.2.3 Optimal Flight PhasesThe optimal global trajetory is built up by linking the optimized phases together. Althoughalled optimal trajetories, they are in fat extremals, that is, trajetories that satisfy theneessary onditions for optimality.94



7.2. Problem FormulationIn general, eah optimal phase q ∈ Q will be omposed of singular ars (with uq,sing)and ars with uq,min or uq,max; whether one has uq,min or uq,max is de�ned by the sign ofthe swithing funtion Sq. In this problem, eah optimal phase is expeted to be of thebang-singular-bang type, that is, a singular ar and two minimum/maximum-uq ars joiningthe singular ar with the initial and �nal points. Although the underlying aerodynami andpropulsive models might a�et the struture of the solution, for the smooth models onsideredin this thesis, the bang-singular-bang struture is plausible, and hene it is the one analyzedin this hapter.In the next subsetions, the singular ar as well as the singular ontrol are analyzed forthe three types of optimal phases onsidered in this hapter.7.2.3.1 Singular Ar at a Climb PhaseThe singular ontrol is obtained when the swithing funtion is zero (Scl = 0) on an intervalof time; hene, sine Hcl = 0, one also has Hcl = 0. On that interval of time one has Ṡcl = 0as well. The singular ar is de�ned by the three equations:
Hcl = 0, Scl = 0, Ṡcl = 0 (7.22)In Chapter 4, the optimization problem of a limb subjet to the same equations ofmotion and onsidering the same running ost cπclTM −K (V + w) is analyzed. Hene, theHamiltonian and the adjoints dynami equations are also the same and, as a onsequene,the results in Chapter 4 de�ning the singular ar and the singular ontrol γsing,cl(V,m, h)apply here.On one hand, it is not possible to obtain an expression for the singular ar in terms of thestate variables alone. Instead, the three Eqs. (4.17) de�ne the adjoints λV , λm and λh alongthe singular ar in the terms of the state variables. On the other hand, the singular feedbakontrol law γsing,cl(V,m, h) is obtained from S̈cl = 0 after eliminating the three adjoints withthe equations de�ning the singular ar; its expression is given by Eq. (4.22).The generalized Legendre-Clebsh ondition for the optimality of the singular ontrol,Eq. (3.21), redues in this ase (ξcl = 1 and ucl = γ) to −∂S̈cl

∂γ
≥ 0, whih leads to thesame expression as in Chapter 4, that is, Eq. (4.23). It an be shown numerially that thestrengthened generalized Legendre-Clebsh ondition (−∂S̈cl

∂γ
> 0) is satis�ed in all the asesonsidered in this hapter.The MDanell-Powers neessary ondition for the optimality of juntions between singularand nonsingular ars (see Chapter 3) is shown to be satis�ed, beause the order of the singularar is ξcl = 1 and the lowest-order time derivative of the ontrol whih is disontinuous atthe juntion is ζcl = 0 (that is, the ontrol itself is disontinuous at the juntion). Moreover,although the ontrol variable is disontinuous at the juntions, the Weierstrass-Erdman orneronditions are satis�ed beause the adjoint variables, the Hamiltonian and the swithingfuntion are all ontinuous. 95



7. Minimum-Fuel Global Trajetory7.2.3.2 Singular Ar at a Cruise PhaseThe singular ontrol is obtained when the swithing funtion is zero (Scr = 0) on an intervalof time; hene, sine Hcr = 0, one also has Hcr = 0. On that interval of time one has Ṡcr = 0as well. The singular ar is de�ned by the three equations:
Hcr = 0, Scr = 0, Ṡcr = 0 (7.23)In Chapter 5, the optimization problem of a ruise subjet to the same equations ofmotion is analyzed, but a di�erent running ost is onsidered (namely, cπTM ) and the �naldistane and �nal time are �xed. However, as it has already been shown, a problem with�xed �nal distane is equivalent to a problem with free �nal distane and an additional ost

−Kx(tf ) just by imposing λx(tf ) = −K. By doing so the Hamiltonian and the adjointsdynami equations are the same, just by additionally imposing that the onstant value ofthe Hamiltonian equals zero, that is H = 0. With this modi�ation, the results in Chapter 5de�ning the singular ar and the singular ontrol πsing(V,m, h) apply here.On one hand, the singular ar is de�ned by the Eq. (5.13), with Ω = w, that is,
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= 0 (7.24)On the other hand, the singular feedbak ontrol law is obtained from S̈cr = 0, after elimi-nating the adjoints with the Eqs. (7.23) de�ning the singular ar; its expression is given byEq. (5.15).The generalized Legendre-Clebsh ondition for the optimality of the singular ontrol,Eq. (3.21), redues in this ase (ξcl = 1 and ucr = π) to −∂S̈cr

∂π
≥ 0, whih leads to thesame expression as in Chapter 5, that is, Eq. (5.17). It an be shown numerially that thestrengthened generalized Legendre-Clebsh ondition (−∂S̈cr

∂π
> 0) is satis�ed in all the asesonsidered in this hapter.The MDanell-Powers neessary ondition for the optimality of juntions between singularand nonsingular ars (see Chapter 3) is shown to be satis�ed, beause the order of the singularar is ξcr = 1 and the lowest-order time derivative of the ontrol whih is disontinuous atthe juntion is ζcr = 0 (that is, the ontrol itself is disontinuous at the juntion). Moreover,although the ontrol variable is disontinuous at the juntions, the Weierstrass-Erdman orneronditions are satis�ed beause the adjoint variables, the Hamiltonian and the swithingfuntion are all ontinuous.7.2.3.3 Singular Ar at a Desent PhaseThe singular ontrol is obtained when the swithing funtion is zero (Sd = 0) on an intervalof time; hene, sine Hd = 0, one also has Hd = 0. On that interval of time one has Ṡd = 0as well. The singular ar is de�ned by the three equations:

Hd = 0, Sd = 0, Ṡd = 0 (7.25)In Chapter 5, the optimization problem of an unpowered desent subjet to the sameequations of motion is analyzed, but a di�erent running ost − (V + w) is onsidered. That96



7.3. Numerial Proedurerunning ost is similar to ld exept for a saling fator K. Therefore, exept for that fator K,the Hamiltonian and the adjoints dynami equations are also the same and, as a onsequene,the results in Chapter 6 de�ning the singular ar and the singular ontrol γsing,d(V,m, h)apply here.On one hand, the singular ar is de�ned by the Eq. (6.15). On the other hand, thesingular feedbak ontrol law is obtained from S̈d = 0 after eliminating the three adjointswith the Eqs. (7.25); its expression is given by Eq. (6.20).The generalized Legendre-Clebsh ondition for the optimality of the singular ontrol,Eq. (3.21), redues in this ase (ξd = 1 and ud = γ) to −∂S̈d
∂γ

≥ 0, whih leads to thesame expression as in Chapter 6, that is, Eq. (6.21). It an be shown numerially that thestrengthened generalized Legendre-Clebsh ondition (−∂S̈d
∂γ

> 0) is satis�ed in all the asesonsidered in this hapter.The MDanell-Powers neessary ondition for the optimality of juntions between singularand nonsingular ars (see Chapter 3) is shown to be satis�ed, beause the order of the singularar is ξd = 1 and the lowest-order time derivative of the ontrol whih is disontinuous atthe juntion is ζd = 0 (that is, the ontrol itself is disontinuous at the juntion). Moreover,although the ontrol variable is disontinuous at the juntions, the Weierstrass-Erdman orneronditions are satis�ed beause the adjoint variables, the Hamiltonian and the swithingfuntion are all ontinuous.7.3 Numerial ProedureIn this setion the numerial proedure used to solve the problem is desribed. Knowing thestruture of the solution allows one to de�ne an e�ient numerial proedure (see Maurer[44℄).The numerial proedure is based on three di�erent phase algorithms intended to obtaina andidate for optimal phase. To apply these phase algorithms one has to guess the valuesof some unknown parameters. The phase algorithms an be interpreted as bloks that haveto be sequentially pieed together, aording to the given phase sequene σ, in order toobtain a andidate for optimal trajetory. Finally, the numerial proedure has to iterateon the unknown parameters in order for some neessary onditions for optimality to besatis�ed. Note that the numerial proedure also has to obtain the value of K for whih theorresponding �nal value of the horizontal distane travelled x(tf ) is equal to the spei�edone, xf .7.3.1 Algorithm for Optimal ClimbIf the phase onsidered is a limb (that is, qj = cl), the numerial proedure is as follows.The �rst bang starts with the following initial values at the point j − 1: V (tj−1) = Vj−1,
m(tj−1) = mj−1, h(tj−1) = hj−1, and x(tj−1) = xj−1. These initial values are known eitherbeause the trajetory at the previous phase has already been obtained (for the general ase
j 6= 1), or beause they are the given initial values (for the partiular ase j = 1). Let λV,aj ,97



7. Minimum-Fuel Global Trajetory
hbj , and Vj be the values of the adjoint λV at the beginning of the singular ar (point aj),the altitude at the end of the singular ar (point bj), and the speed at the end of the limb(point j), respetively. If λV,aj were known, the state equations (7.3) ould be integrateduntil the singular ar were reahed, that is, until λV,aj = fV (Vaj ,maj , haj ) were satis�ed (seeEqs. 4.18). Then, using Eqs. (7.22), λm and λh ould be obtained at aj , so that the adjointequations (7.12) ould be integrated bakwards along the �rst bang. Also, if the altitude hbjwere known, the state equations ould be integrated along the singular ar (from point aj topoint bj), and then, using Eqs. (7.22), λV , λm and λh ould be obtained. Finally, if Vj wereknown, the state equations and the adjoint equations ould be integrated along the seondbang, whih starts at the singular ar (point bj) and ends when the value V = Vj is reahed.At the end (point j) one has the following �nal values: V (tj) = Vj , m(tj) = mj , h(tj) =
hj , x(tj) = xj , λV (t−j ), λh(t−j ), and λm(t−j ). At the beginning (point j−1) one has λV (t+j−1),
λh(t

+
j−1), and λm(t+j−1).The �nal values of the states are used as initial values for the next optimal phase alu-lation (j 6= N in pratial ases). The initial (if j 6= 1) and �nal values of the adjoints areused to impose some neessary onditions for optimality and, hene, to de�ne λV,aj , hbj , and

Vj . This task is performed by means of an iterative proedure (desribed in Setion 7.3.4),when all phases in σ are already omputed.7.3.2 Algorithm for Optimal CruiseIf the phase onsidered is a ruise (that is, qj = cr), the numerial proedure is as follows.The �rst bang starts with the following initial values at the point j − 1: V (tj−1) = Vj−1,
m(tj−1) = mj−1, and x(tj−1) = xj−1, with h(tj−1) = hj−1 playing the role of a parameterduring this phase (h = const). These initial values are known beause the trajetory at theprevious phase has already been obtained; note that, in pratial ases, the �rst phase fromthe sequene σ is not a ruise phase (j 6= 1). Let xbj and Vj be the values of the distanetravelled at the end of the singular ar (point bj) and the speed at the end of the ruise (point
j), respetively. The state equations (7.6) an be integrated until the singular ar (Eq. 7.24)is reahed (point aj). Then, using the �rst two Eqs. (7.23), λV and λm ould be obtained at
aj , so that the adjoint equations (7.12) ould be integrated bakwards along the �rst bang. If
xbj were known, the state equations ould be integrated along the singular ar (from point ajto point bj), and then, using the �rst two Eqs. (7.23), λV and λm ould be obtained. Finally,if Vj were known, the state equations and the adjoint equations ould be integrated alongthe seond bang, whih starts at the singular ar (point bj) and ends when the value V = Vjis reahed.At the end (point j) one has the following �nal values: V (tj) = Vj , m(tj) = mj , h(tj) =
hj = hj−1, x(tj) = xj , λV (t−j ) and λm(t−j ). At the beginning (point j − 1) one has λV (t+j−1)and λm(t+j−1). One the full state as well as the adjoints λV and λm are known, and inorder to obtain the remaining adjoint variable λh, one has to integrate its dynami equationalong the entire ruise phase (from j − 1 to j), starting from λh(t

+
j−1). Note that λh(t−j−1) isknown from the previous phase (again j 6= 1 in pratial ases), and the neessary ondition

λh(t
+
j−1) = λh(t

−

j−1) is imposed.
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7.3. Numerial ProedureThe �nal values of the state are used as initial values for the next optimal phase alulation(as j 6= N in pratial ases). The initial (as j 6= 1 in pratial ases) and �nal values ofsome of the adjoints are used to impose some neessary onditions for optimality and, hene,to de�ne xbj and Vj . This task is performed by means of an iterative proedure (desribedin Setion 7.3.4), when all phases in σ are already omputed.
7.3.3 Algorithm for Optimal DesentIf the phase onsidered is a desent (that is, qj = d), the numerial proedure is as follows.The �rst bang starts with the following initial values at the point j − 1: V (tj−1) = Vj−1,
h(tj−1) = hj−1, and x(tj−1) = xj−1, with m(tj−1) = mj−1 playing the role of a parameterduring this phase (m = const). These initial values are known beause the trajetory at theprevious phase has already been obtained; note that, in pratial ases, the �rst phase fromthe sequene σ is not a desent phase (j 6= 1). Let Vj and hj be the values of the speed andthe altitude, respetively, at the end of the desent (point j). The state equations (7.9) anbe integrated until the singular ar (Eq. 6.15) is reahed (point aj). Then, using the �rst twoEqs. (7.25), λV and λh ould be obtained at aj , so that the adjoint equations (7.12) ouldbe integrated bakwards along the �rst bang. If Vj and hj were known, the state equationsould be integrated bakwards along the seond bang, that is, from j until the singular ar(Eq. 6.15) is reahed (point bj). Then, the state equations ould be integrated along thesingular ar (from point aj to point bj), and then, using the �rst two Eqs. (7.25), λV and λhould be obtained. Finally, the adjoint equations ould be integrated along the seond bang,starting at the singular ar (point bj) and ending at j.At the end (point j) one has the following �nal values: V (tj) = Vj , m(tj) = mj = mj−1,
h(tj) = hj , x(tj) = xj , λV (t−j ) and λh(t−j ). At the beginning (point j − 1) one has λV (t+j−1)and λh(t+j−1). One the full state as well as the adjoints λV and λh are known, and in orderto obtain the remaining adjoint variable λm, one has to integrate its dynami equation alongthe entire desent phase (from j − 1 to j), starting from λm(t+j−1). Note that λm(t−j−1) isknown from the previous phase (again j 6= 1 in pratial ases), and the neessary ondition
λm(t+j−1) = λm(t−j−1) is imposed.The initial (as j 6= 1 in pratial ases) and �nal values of some of the adjoints are used toimpose some neessary onditions for optimality and, hene, to de�ne Vj and hj . This taskis performed by means of an iterative proedure, when all phases in σ are already omputed(desribed in Setion 7.3.4).In all pratial ases the desent phase is the last phase (j = N); in suh a ase, theseond bang ends with the known �nal values V (tf ) = Vf and h(tf ) = hf , so that there is nounknown variable needed for the desent omputation. However, the initial and �nal valuesof some of the adjoints, as well as the �nal value of the distane travelled x(tf ), are used toimpose some neessary onditions for optimality whih are added (as losing equations) tothe iterative proedure. 99



7. Minimum-Fuel Global Trajetory7.3.4 Closing EquationsAs previously mentioned, given a phase sequene σ, the numerial proedure is built bysequentially pieing the orresponding phase algorithms together. Eah phase algorithm mayadd some unknown parameters: three for limb phases and two for ruise and desent phases.However, those neessary onditions for optimality not expliitly taken into aount in thephase algorithms allow for the de�nition of the unknown parameters by means of an iterativeproedure.Let ncl, ncr and nd (with ncl+ncr+nd = N) the number of limb phases, ruise phases anddesent phases, respetively, onsidered in σ. Then, aording to the explained algorithms,the number of total unknown parameters is Nun = 1 + 3ncl + 2ncr + 2(nd − 1) (taking intoaount that K is an unknown and that the �nal desent has zero unknowns). The numberof losing equations an be obtained as follows.A swithing point j for j = 1, ..., N−1 is the beginning of the phase qj+1. At the beginningof a phase qj+1, one has three adjoint ontinuity equations, the �rst three Eqs. (7.13). If thephase qj+1 is a ruise or a desent, one of these adjoint ontinuity equations has alreadybeen used in the orresponding phase algorithm (the one involving the adjoint assoiatedto the state that remains onstant). This implies that at the beginning of a phase qj+1 for
j = 1, ..., N − 1 (that is, exept for q1) one has either two (if qj+1 = cr or qj+1 = d) or three(if qj+1 = cl) adjoint ontinuity equations that have not been expliitly taken into aount inthe orresponding phase algorithm. Hene, beause the �rst phase is a limb in all pratialases, one has 3(ncl − 1) + 2ncr + 2nd losing equations stating adjoints ontinuity. Besides,one has two additional losing equations: x(tf ) = xf and λm(tf ) = 0. As a result, thenumber of total losing equations is Nce = 3(ncl − 1) + 2ncr + 2nd + 2, that is, Nce = Nun.The resolution of this system of non-linear equations is performed using MATLAB's fsolve.7.4 Appliation to a Climb-Cruise-Climb-Cruise-Desent Tra-jetoryAs already seen, by onveniently pieing the phase algorithms together one an establisha numerial proedure to solve the problem given any possible solution struture. Typialsolution strutures inlude onsidering an initial limb from the given initial state, a �naldesent to the given �nal state and several ruise phases at di�erent altitudes joined by limbphases (sine experiene shows that ruise altitudes should inrease along the trajetory).Elements form this family of solution strutures an be identi�ed by the number of ruisephases onsidered ncr. In this hapter, results are presented for a limb-ruise-limb-ruise-desent struture, σ = (cl, cr, cl, cr, d), whih is the element ncr = 2 from the aforementionedfamily of solution strutures.In Fig. 7.1 a sketh of the expeted optimal path is presented (the partiular ase of
γmin,cl = γmax,d = 0 is depited). For this partiular ase, and with additional assumptions,several simpli�ations an be made in the numerial proedure, as desribed next.
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7.4. Appliation to a Climb-Cruise-Climb-Cruise-Desent Trajetory
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b5Figure 7.1: Sketh of the optimal global path.First, at the swithing point j = 2 (swithing from the �rst ruise to the intermediatelimb) Hcr = Hcl holds, sine the numerial method expliitly imposes Hcr = 0 and Hcl = 0to ompute the adjoints. Hene, from Eqs. (7.4), (7.7) and (7.17), at t = t2 one has
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7. Minimum-Fuel Global Trajetorywhih implies that the swithing point 2 belongs to the ruise singular ar (see Eq. 5.12),and then, 2 ≡ b2. As a onsequene, the only value for the unknown V2 satisfying the losingequation (7.29) is V2 = Vb2 , and therefore, there is one deision variable less.Seond, at the swithing point j = 4 (swithing from the seond ruise to the desent)
Hcr = Hd holds, sine the numerial method expliitly imposes Hcr = 0 and Hcl = 0 toompute the adjoints. Hene, from Eqs. (7.7), (7.10) and (7.17), at t = t4 one has
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(7.30)were πb4 is the value of the ontrol variable at the �nal bang of the seond ruise and γa5 isthe value of the ontrol variable at the initial bang of the desent. Again, the dependenewith respet to time of the state variables has not been inluded, sine the numerial methodexpliitly imposes these to be ontinuous at the swithing points.Combining Eq. (7.30) with ondition λV (t−4 ) = λV (t
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γa5 (7.31)The satisfation of this equation ensures satisfation of the ontinuity ondition for λV ; hene,it is used as a losing equation instead of λV (t−4 ) = λV (t
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c = 0 (7.33)whih implies that the swithing point 4 belongs to the ruise singular ar (see Eq. 5.12),and then, 4 ≡ b4. As a onsequene, the only value for the unknown V4 satisfying the losingequation (7.33) is V4 = Vb4 , and therefore, there is one deision variable less.Aording to the two previous developments, the optimal ruise phase onsidered in thishapter has a bang-singular struture instead of a bang-singular-bang struture. As a on-sequene, when setting up the global numerial proedure, the algorithm for optimal ruisephase (from j − 1 to j) has one deision variable less (Vbj ) and one losing equation less(ontinuity of λV at j) than the algorithm desribed in Setion 7.3.2.7.5 ResultsThe airraft model onsidered in this thesis for the numerial appliations (orresponding toa Boeing 767-300ER) is desribed in Appendix B, and the atmosphere model is the Interna-tional Standard Atmosphere (ISA).102



7.5. ResultsFor the wind model, linear pro�les are onsidered, with the absolute value of the windspeed inreasing with altitude (see Ref. [50℄). The pro�les are de�ned as follows
w(h) = w̄ +∆w

h− h̄

hhigh − h̄
(7.34)where w̄ is the average wind; ∆w is the wind-shear parameter; hhigh = 33000 ft and hlow =

10000 ft are referene altitudes; and h̄ = (hlow + hhigh)/2 = 21500 ft is the average altitude.Note that, on one hand, the average wind speed w̄ is the wind speed at the average altitude,that is, w̄ = w(h̄); on the other hand, ∆w de�nes the wind shear dw

dh
, and, in partiular,

∆w = 0 de�nes a uniform wind pro�le. In the following, both tailwinds (TW) and headwinds(HW) are onsidered, with the linear pro�les de�ned as follows: for TW one has w̄ > 0 and
∆w ≥ 0, and for HW w̄ < 0 and ∆w ≤ 0.The initial onditions (orresponding to a hypothetial SID �nal �x) are CASi = 250 kt,
hi = 10000 ft, and the �nal onditions (orresponding to a hypothetial approah �x withinthe TMA) are CASf = 210 kt, hf = 9000 ft. The �nal value of the horizontal distanetravelled is xf = 6000 km. The throttle setting during limb is πcl =0.75, so that typialperformane is obtained for the range of parameters onsidered in the hapter. Moreover,the bounds on the ontrol are πmin = 0.015, πmax = 1, γmin,cl = 0, γmax,cl = 10 deg,
γmin,de = −10 deg, and γmax,de = 0.To analyze the wind e�ets on the optimal trajetories, the initial airraft weight is
Wi = 1500 kN, the average wind ranges from −30 kt to 30 kt, and the absolute value ofthe wind-shear parameter ranges from 0 to 20 kt. In the analysis of the e�et of the initialairraft weight on the results, no wind is onsidered, andWi ranges from 1450 kN to 1550 kN.The outline of this setion is as follows: the e�ets of the average wind speed (Setion7.5.1), the wind-shear parameter (Setion 7.5.2), and the airraft weight (Setion 7.5.3) onthe optimal trajetories as well as on the optimal ontrol are analyzed, and then, the globalvariables suh as minimum fuel onsumption, �ight time and ruise altitudes are analyzed inSetion 7.5.4.7.5.1 E�et of the Average Wind SpeedThe optimal trajetory V (h), the speed pro�le V (x), and the �ight path h(x) are representedin Figs. 7.2, 7.3a, and 7.3b, respetively, for di�erent values of the average wind speed (w̄ranging from −30 kt to 30 kt) and for a wind shear parameter ∆w = 0. In the optimaltrajetories, the limb phases start with a horizontal aeleration and end with a steep limbout; the ruise phases start with an initial deeleration; and the desent phase starts andends with horizontal deelerations. During the initial limb, the speed ontinuously inreases,reahes a maximum and then slowly dereases. Along the ruise phases, the speed slowlydereases. The intermediate limb takes plae with slightly higher speeds than those of ruisephases. During the desent phase the speed ontinuously dereases. The in�uene of w̄ onthe optimal pro�les is lear: As w̄ inreases, the speed dereases at all phases, so that forTW one has slower speeds than for HW.
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7. Minimum-Fuel Global Trajetory
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Figure 7.2: Optimal trajetory V (h) for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0.
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(b)Figure 7.4: Optimal ontrols γ(h) and π(x) for w̄ = −30, −20, −10, 0, 10, 20, 30 kt, and
∆w = 0. (a) γ(h), (b) π(x).
7.5.2 E�et of the Wind ShearThe optimal trajetory V (h), speed pro�le V (x), and �ight path h(x) are represented in Figs.7.5, 7.6, and 7.7, respetively, for di�erent values of the wind-shear parameter (|∆w| rangingfrom 0 kt to 20 kt), and for two values of the average wind (w̄ = 30 kt, TW, and w̄ = −30 kt,HW). The optimal trajetories have the same struture as mentioned before. The in�uene of
∆w on the optimal speed pro�les and on the optimal �ight path orresponding to the initiallimb and to the desent is very small; on the ontrary, the in�uene on the ruise altitudesis muh larger.
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(b)Figure 7.5: Optimal trajetory V (h). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b) HW(w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).
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(b)Figure 7.7: Optimal �ight path h(x). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b) HW(w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).
The optimal ontrols γ(h) and π(x) are represented in Figs. 7.8 and 7.9, respetively, forthe same values of ∆w and w̄ (TW and HW) as before. They present the same disontinuousstruture as mentioned before, whih has been again on�rmed by the numerial results of theswithing funtion at eah phase. During limb and desent, the wind-shear fator has littlein�uene on the singular optimal ontrol γ, although somewhat larger than the in�uene ofthe average wind speed; however, it importantly a�ets the bang-singular and singular-bangswithing times. During ruise, the wind-shear fator has an important in�uene on thesingular optimal ontrol π, sine it a�ets the ruise altitudes: As ∆w inreases, π inreases(note that, for HW, when ∆w inreases |∆w| dereases).106
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(b)Figure 7.9: Optimal ontrol π(x). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b) HW(w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).
7.5.3 E�et of the Initial Airraft WeightThe optimal trajetory V (h), speed pro�le V (x), and �ight path h(x) are represented inFigs. 7.10, 7.11a, and 7.11b, respetively, for di�erent values of the initial airraft weight(Wi ranging from 1450 kN to 1550 kN) and for no wind (w̄ = 0 and ∆w = 0). The optimaltrajetories have the same struture as mentioned before. The in�uene ofWi on the optimalpro�les is lear: As Wi inreases, the speed inreases at all phases.
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Figure 7.10: Optimal trajetory V (h) for Wi = 1450, 1475, 1500, 1525 and 1550 kN (w̄ =
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(b)Figure 7.12: Optimal ontrols γ(h) and π(x) for Wi = 1450, 1475, 1500, 1525 and 1550 kN(w̄ = ∆w = 0). (a) γ(h), (b) π(x).7.5.4 Analysis of Global VariablesIn this setion, global variables are analyzed along with the minimum fuel onsumption.In Figs. 7.13, 7.14, 7.15, 7.16, 7.17, and 7.18 the following variables are represented: theminimum fuel onsumption (mF ), the �ight time (tf ), the limb range (xc), the �nal distaneof the �rst ruise (or transition distane, x2), the desent range (xd), and the ruise altitudes(h1 and h3). They are depited, �rst, as funtions of the wind-shear parameter for two valuesof the average wind (w̄ = 30 kt TW and w̄ = −30 kt HW) and Wi = 1500 kN, and seond,as funtions of the average wind for di�erent values of the initial airraft weight (Wi rangingfrom 1450 to 1550 kN) and ∆w = 0. It is interesting to note that, in this hapter, theruise altitudes are free variables whih are obtained as results of the trajetory optimizationproblem.Some numerial values are given in Table 7.1. The results show the following: 1) thestronger the wind shear for TW, the smaller the fuel onsumption, the �ight time, and thetransition distane, but the larger the limb range, the desent range and the ruise altitudes;2) the stronger the wind shear for HW (in absolute value), the larger the fuel onsumption,the �ight time, and the transition distane, but the smaller the limb range, the desentrange and the ruise altitudes; 3) the higher the average wind speed, the lower the fuelonsumption, the �ight time, and the ruise altitudes, but the higher the limb range, thetransition distane, and the desent range; and 4) the heavier the airraft, the larger the fuelonsumption, the limb range, and the transition distane, but the smaller the �ight time,the desent range and the ruise altitudes. These trends are now quanti�ed (using the valuesgiven in Table 7.1).
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7. Minimum-Fuel Global Trajetory
Table 7.1: Flight variables for di�erent winds and initial airraft weights (optimum values)

Wi = 1500 kN
w̄ = −30 kt (HW) w̄ = 30 kt (TW)

∆w = −20 kt ∆w = 0 kt ∆w = 0 kt ∆w = 20 kt
mF [kg℄ 31926.4 30710.0 27149.0 26198.6
tf [min℄ 491.16 473.36 417.32 401.90
xc [km℄ 133.43 159.19 180.47 213.30
x2 [km℄ 3013.59 2996.99 3001.28 2993.65
xd [km℄ 156.13 169.17 199.37 214.22
h1 [m℄ 9250 9721 9680 10056
h3 [m℄ 10000 10420 10288 10623

∆w = 0 kt
w̄ = −30 kt (HW) w̄ = 30 kt (TW)

Wi = 1450 kN Wi = 1550 kN Wi = 1450 kN Wi = 1550 kN
mF [kg℄ 29696.8 31723.1 26241.7 28056.6
tf [min℄ 475.22 471.58 418.80 415.90
xc [km℄ 158.01 160.30 179.26 181.59
x2 [km℄ 2994.95 2998.96 2998.71 3003.75
xd [km℄ 172.69 165.72 203.96 194.90
h1 [m℄ 9945 9541 9903 9462
h3 [m℄ 10639 10207 10507 10075
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(b)Figure 7.13: Minimum fuel onsumption: (a) vs. wind-shear parameter for TW (w̄ = 30 kt)and HW (w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475,
1500, 1525 and 1550 kN, for ∆w = 0.
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(b)Figure 7.17: Desent distane: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475, 1500,
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Wi(b)Figure 7.18: Cruise altitudes: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475, 1500,
1525 and 1550 kN, for ∆w = 0.

The e�et of the average wind speed on the minimum fuel onsumption, the �ight time,the limb range, the desent range, and the altitude of the seond ruise is quite large, whereasits e�et on the transition distane and the altitude of the �rst ruise is quite small. When
w̄ inreases from −30 kt to 30 kt (for ∆w = 0 and Wi = 1500 kN), the inreases in xc and
xd are 21.28 km and 30.20 km, respetively, that is 12.5%, and 16.4%, and the dereases in
mF , tf , and h3 are 3561.0 kg, 56.04 min, and 132.1 m, respetively, that is 12.4%, 12.6%,and 1.28%, whereas the inreases in x2 is 4.29 km, that is 0.143%, and the derease in h1 is42.0 m, that is 0.433%.The e�et of the wind shear on mF , tf , xc, xd, h1, and h3 in the ase of TW (w̄ = 30 kt)is quite large, espeially its e�et on xc, whereas its e�et on x2 is quite small; when ∆winreases from 0 to 20 kt, the dereases in mF and tf are 950.4 kg and 15.42 min, respetively,that is 3.50% and 3.70%, and the inreases in xc, xd, h1, and h3 are 32.83 km, 14.86 km,376.8 m, and 335.2 m, respetively, that is, 18.2%, 7.45%, 3.89%, and 3.26%, whereas theinrease in x2 is of just 7.63 km, that is 0.254%. In the ase of HW (w̄ = −30 kt) similartrends are obtained; when ∆w inreases from −20 kt to 0, the dereases in mF and tf are1216.4 kg and 17.80 min, respetively, that is 3.96% and 3.76%, and the inreases in xc, xd,
h1, and h3 are 25.75 km, 13.03 km, 471.4 m, and 420.5 m, respetively, that is, 16.2%, 7.70%,4.85%, and 4.04%, whereas the inrease in x2 is of just 16.60 km, that is 0.551%.The e�et of the initial airraft weight, an be quanti�ed as follows. For w̄ = −30 kt HW,when Wi inreases from 1450 kN to 1550 kN, the inreases in mF , xc, and x2 are 2026.3 kg,2.30 km, and 4.01 km, respetively, that is 6.60%, 1.44%, and 0.134%, and the dereases in
tf , xd, h1, and h3 are 3.64 min, 6.97 km, 404.1 m, and 431.3 m, respetively, that is 0.769%,4.12%, 4.16%, and 4.14%. For w̄ = 30 kt TW, the inreases in mF , xc, and x2 are 1814.87 kg,2.33 km, and 5.04 km, respetively, that is 6.68%, 1.29%, and 0.168%, and the dereases in
tf , xd, h1, and h3 are 2.90 min, 9.07 km, 440.9 m, and 432.1 m, respetively, that is 0.695%,4.55%, 4.55%, and 4.20%. 113



7. Minimum-Fuel Global Trajetory7.6 SummaryAn analysis of minimum-fuel global trajetories in the presene of altitude-dependent windshas been made, using the theory of singular optimal ontrol and swithed ontrol sys-tems. The optimal trajetory are omposed of several phases, in whih optimal ontrolis of the bang-singular-bang type, with optimal paths formed by a singular ar and twominimum/maximum-ontrol ars joining the singular ar with the initial and �nal swithingpoints.Results have been presented for the partiular ase of a limb-ruise-limb-ruise-desenttrajetory with γmin,cl = γmax,d = 0, πmin 6= πcl 6= πmax, and initial γmin,cl-ar and γmax,d-ar in the intermediate limb phase and in the desent phase, respetively. In ruise phases,these assumptions lead to the optimal ontrol being of the bang-singular type instead, withoptimal paths formed by a singular ar and a minimum-π ar joining the singular ar with theinitial swithing point, sine the �nal swithing point belongs to the singular ar. In limband desent phases, these assumptions lead to a short horizontal aeleration segment and asteep limb out segment at the beginning and at the end, respetively, of both limb phases,and two short horizontal deeleration segments at the beginning and end of the desent phase.This study has been quite general, in the sense that it has been made for a general airraftmodel and a general horizontal wind pro�le, although results have been presented for linearpro�les. In the numerial appliations, the linear wind pro�les have been de�ned by twoparameters: the average wind and the wind shear. The in�uene of these two parameters onthe results and the in�uene of the initial airraft weight have been analyzed.The results have shown that as the average wind inreases, the fuel onsumption andthe �ight time derease (as expeted). Of partiular importane in this hapter has beenthe analysis of the in�uene of the wind shear on the global-trajetory performane. Thein�uene of the wind shear on fuel onsumption and �ight time is omparable to that of theaverage wind, however not so large; in these variables the wind shear reinfores the e�etsof the average wind. With respet to the initial airraft weight, as it inreases the fuelonsumption importantly inreases whereas the �nal time is barely una�eted.An interesting remark is that the approah onsidered has the advantage of providing thealtitudes at whih ruise phases should take plae in order to minimize the fuel onsumptionof the global trajetory. Therefore, the in�uene of the average wind, the wind shear, and theinitial airraft weight on the ruise altitudes have been also analyzed. The average wind hasvery little in�uene on the optimal values of the ruise altitudes, whereas the wind shear andthe airraft weight importantly a�et them. With tailwinds, the stronger the wind shear,the higher the ruise altitudes, whereas with headwinds, the stronger the wind shear (inabsolute value), the lower the ruise altitudes. As the initial airraft weight inreases, theruise altitudes derease.
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8 ConlusionsIn this thesis, an analysis of optimal airraft trajetories has been made, using the theory ofsingular optimal ontrol. An indiret method is proposed, in whih neessary onditions foroptimality are expliitly involved to obtain the optimal trajetory, i.e., the optimal ontrollaw and the assoiate evolution of the states that optimize some property derived from thetrajetory.As previously mentioned, the employed optimization approah features the following ad-vantages:1. It provides analytial state-feedbak ontrol laws that an be diretly used to guide theairraft along the optimal path, allowing for an easy implementation.2. It leads to more aurate results than those obtained by diret trajetory optimizationmethods.3. It allows for generating trajetories with the best performane whih, although thesemay not be �yable aording to present-day air-tra�-ontrol proedures and regula-tions, they an be used either as referenes to the design of improved �ight proedures,or to assess the optimality of standard �ight proedures ommonly used in pratie,suh as CAS/Mah limbs, onstant-Mah ruises and Mah/CAS desents.The proposed approah has been applied to optimize multiphase airraft trajetories witha presribed phase sequene in the presene of altitude-dependent winds. It has suessfullyprovided results for a broad range of ases onsidered, with omputation times for an optimalmultiphase airraft trajetory less than 1.5 min, for a relative tolerane in the unknownvariables of 10−9. This �gures are obtained when MATLAB 7.8.0 (R2009a) is running ina PC with an Intel DH67VR motherboard, an Intel Core i7-2600 miroproessor (4 ores,8 MB ahe, 3.4 GHz), and a Windows 7 (64 bits) Operating System.In order to simplify as muh as possible the formulation onsidered, state onstraintshave not been expliitly taken into aount. However, all the omputed optimal trajetorypresented in this thesis have been heked to provide suitable state laws in whih states donot saturate.The atmosphere model onsidered in this thesis do not meet the regularity requirementsassumed in Chapter 3 at the tropopause. However, in all the results presented in this thesis,optimal trajetories take plae within the troposphere, and therefore, it is not neessary forthis lak of regularity to be expliitly taken into aount.Optimizing global trajetories implies not only addressing eah �ight phase, but alsotaking into aount the interations among them as well as looking for a global objetive. The115



8. Conlusionsaim for a global objetive has been ahieved by onsidering a global performane index, whihis split into the ontributions of eah phase and partiularized to the additional onstraintimposed at eah phase. The interations have been taken into aount by appropriatelyimposing the transversality onditions and by enforing state and adjoint ontinuity at theswithing points.As a onlusion, an optimal global trajetory annot be obtained by simply pieing indi-vidually optimized phases together, not even when eah phase is optimized with a performaneindex suitable for a global objetive, beause the transversality onditions do not provide thesame results for the evolution of the adjoints. However, onlusions regarding the optimalontrol and optimal path struture for a single-phase optimal trajetory also apply at eahphase of an optimal multiphase trajetory. This justi�es that, prior to optimizing multiphaseairraft trajetories, the proposed approah has been applied to some auxiliary problems inwhih a single-phase airraft trajetory is optimized.
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9 Future WorkIn this thesis, several future researh lines an be identi�ed. First of all, the results presentedan be extended.On one hand, in this thesis results are presented for linear wind pro�les in limb, desentand global trajetories, whereas a uniform wind is onsidered for ruise trajetories. Astraightforward extension an be presenting results for optimal ruise in the presene of linearwind pro�les. Moreover, for any of the appliations onsidered, results an be presented forother types of wind pro�les. This would allow, for example, to ompute ruise altitudes fora global trajetory in the presene of a jet stream.On the other hand, in the optimal global trajetory problem, results are presented for onephase sequene, limb-ruise-limb-ruise-desent. An extension an be presenting results forsome other phase sequenes, suh as those with only one ruise phase and no intermediatelimb, or with three ruise phases and two intermediate limbs. With these extensions,a omparison among the di�erent proposed trajetories ould be performed, whih wouldallow, for instane, to analyze the e�et of the �ight range on the seletion of the phasesequene.Seond, as in the appliations involving only one �ight phase, results from optimal globalmultiphase trajetories ould be used to assess the optimality of global trajetories om-posed of segments performing standard proedures. As an example, a standard globaltrajetory ould be omposed by pieing a CAS/Mah limb, a onstant-Mah ruise, an-other CAS/Mah limb, another onstant-Mah ruise and a onstant-CAS desent together.Therefore, the optimized standard global trajetory ould be ompared with the optimallimb-ruise-limb-ruise-desent trajetory, whih would provide an optimality assessmentof suh a standard global trajetory.Third, the optimization approah presented in this thesis an be extended to analyzeproblems with other ost funtions, suh as global trajetories minimizing the diret operat-ing ost. To analyze minimum-DOC global trajetory omposed of limb, ruise and desentphases, it is onvenient to perform a previous analysis onsidering only one phase, beauseonlusions regarding the optimal ontrol and optimal path struture for a single-phase op-timal trajetory also apply at eah phase of an optimal multiphase trajetory, as it has beenalready shown. In this ontext, the problem of minimum-ost ruise, onsidering not onlythe DOC but also the arrival-error ost, has already been analyzed by Frano and Rivas[31℄. Therefore, prior to studying minimum-DOC global trajetories, it just remains to an-alyze minimum-DOC limbs penalizing small distane travelled, as well as maximum-rangeunpowered desents penalizing large �ight time. 117



9. Future WorkFourth, the optimization approah presented in this thesis an also be extended to aountfor tropopause rossings during limb and desent phases. One possible approah is basedon regularizing the atmosphere model, that is, adopting an alternative atmosphere modelwhih oinides with the ISA model exept at altitudes in a neighborhood of the tropopause,for whih a su�iently regular model is onsidered. Another possible approah is based onexpliitly taking into aount the lak of regularity of the atmosphere model, whih may foreto hange the onsidered struture of the solution (for instane, by introduing an additionalhorizontal segment at the tropopause altitude).
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A Nomenlature
a speed of sound
c spei� fuel onsumption

CAS alibrated airspeed
CAS∗

d optimum desent alibrated airspeed
CC spei� fuel onsumption oe�ient
CD drag oe�ient
CL lift oe�ient
CT thrust oe�ient
CI ost index
D aerodynami drag

DOC diret operating ost
g gravity aeleration

h, ht, h̄ altitude, CAS/Mah transition altitude, average altitude
H Hamiltonian
H onstant value of the Hamiltonian
J objetive funtion
K ost fator
l running ost
L aerodynami lift

m,mF airraft mass, fuel onsumption
M Mah number
p pressure

Ra air gas onstant
S swithing funtion

SW referene wing surfae
t, tf ,∆tf time, �ight time, �ight delay
T, TM thrust, maximum thrustu, u ontrol vetor, ontrol variable

V aerodynami speed
w, w̄,∆w, δw wind speed, average wind speed, wind-shear parameter, mismodeled wind

W airraft weight
x, xf , xmax horizontal distane, range, maximum rangey state vetor

γ, γg aerodynami �ight-path angle, ground path angle
δ pressure ratio 125



A. Nomenlature
θ temperature ratio
Θ temperature
κ ratio of spei� heats
λ adjoint variable
π throttle setting
ρ density
σ phase sequene
τ sequene of swithing times
Ω ruise singular-ar parameterSubindies
cl limb
cr ruise
d desent
f �nal
i initial or ounter
j ounter
q �ight segment

SL sea level (ISA model)
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B Supplementary Models
B.1 Earth ModelThe Earth model adopted has the following harateristis:� �at Earth,� onstant gravity g=9.80665 m/s2,� air, a perfet gas de�ned by a gas onstant Ra =287.053 J/(kgK) and a ratio of spei�heats κ=1.4, and� standard atmosphere ISA (it de�nes temperature, Θ, pressure, p, and density, ρ, asfuntions of altitude h, with ΘSL, pSL and ρSL as the referene sea-level values).B.2 Airraft Model for Boeing 767-300ERThe airraft model of the Boeing 767-300ER onsidered in this thesis for the numerialappliations has a wing surfae area SW =283.3 m2, a maximum take-o� mass of 186880 kgand a maximum fuel mass of 73635 kg.The aerodynami model de�nes the drag polar CD = CD(M,CL), that gives the dragoe�ient as a funtion of Mah number, M , and lift oe�ient, CL. The lift and dragoe�ients are de�ned by L = 1

2ρV
2SCL and D = 1

2ρV
2SCD, respetively. The drag polarde�ned by Cavar and Cavar [20℄ is onsidered; it is given by

CD =



CD0,i
+

5
∑

j=1

k0jK
j
(M)



+



CD1,i
+

5
∑

j=1

k1jK
j
(M)



CL

+



CD2,i
+

5
∑

j=1

k2jK
j
(M)



C2
L

(B.1)where
K (M) =

(M − 0.4)2√
1−M2

(B.2)The inompressible drag polar oe�ients are CD0,i
= 0.01322, CD1,i

= −0.00610, CD2,i
=

0.06000, and the ompressible oe�ients are given in table B.1. This polar is valid for
M ≥ 0.4; for M ≤0.4, the inompressible drag polar applies (obtained by setting K̄ = 0 inequation B.1). 127



B. Supplementary Models
j 1 2 3 4 5

k0j 0.0067 −0.1861 2.2420 −6.4350 6.3428
k1j 0.0962 −0.7602 −1.2870 3.7925 −2.7672
k2j −0.1317 1.3427 −1.2839 5.0164 0.0000Table B.1: Compressible drag-polar oe�ients for the Boeing 767-300ERThe propulsion model de�nes the thrust available and the spei� fuel onsumption. Forthe available thrust the following general model is onsidered (see Torenbeek [74℄)

T =WTOδCT (M,Nc) (B.3)where WTO is the referene take-o� weight, δ = p/pSL is the pressure ratio (pSL being thereferene sea-level pressure), and CT is the thrust oe�ient, whih in general is a funtion ofthe Mah number and the engine ontrol parameter Nc. The ontrol parameter is a funtionof Mah number, altitude and the throttle-setting parameter π (Nc(M,h, π)), therefore onean also write the model as T = T (M,h, π), that is, thrust dependent on Mah number,altitude and throttle-setting parameter.Although di�erent funtional dependenies should be used for the di�erent values of thethrottle-setting parameter, in this thesis, for simpliity, the following single model is onsid-ered CT = πCT,max and the maximum thrust oe�ient CT,max is given by (see Mattingly [43℄and Barman and Erzberger [3℄)
CT,max =

TM,SL

WTO

(

1 +
κ− 1

2
M2

) κ
κ−1

(

1− 0.49
√
M
) 1

θ
(B.4)where θ = Θ/ΘSL is the temperature ratio (ΘSL being the referene sea-level temperature),and TM,SL is the maximum thrust at sea level and for M = 0.As a onsequene, the model an be rewritten as T = πTM (M,h) where TM satis�es

TM = WTOδCT,max(M,h) with CT,max given by equation (B.4). The values used for thisairraft are TM,SL =5.00×105 N.For the spei� fuel onsumption the following general model is onsidered (see Toren-beek [74℄)
c =

aSL
√
θ

LH
CC(M) (B.5)where aSL =

√
κRaΘSL is the speed of sound at sea level, LH is the fuel latent heat, and CCis the spei� fuel onsumption oe�ient (in general CC depends on CT , but this dependeneis negleted, sine it is very weak in pratie [74℄). For the fuel latent heat, one an take

LH = 43 × 106 J/kg. For the spei� fuel onsumption oe�ient, the linear model de�nedby Mattingly [43℄ is onsidered; it is given by
CC = cSL

LH

aSL
(1.0 + 1.2M) (B.6)where cSL is the spei� fuel onsumption at sea level and for M = 0. For this airraft,

cSL =9.0×10−6 kg/(s N) is used.128



C Singular ontrol funtions at limbIn the following, the funtions A1, A2, A3, A4, B1, B2, and B3, whih de�ne the optimalsingular ontrol during limb (see Chapter 4, Setion 4.2.4.2) are given.
A1 =V

2

(

cT +
∂D

∂V
− ∂T

∂V

)[(

1 +
V w′

g

)(

∂T

∂V
− ∂D

∂V

)

− V

g

(

∂T

∂h
− ∂D

∂h

)

− w′

g
(T −D)

]

+ (T −D)V 2 ∂

∂V

[(

1 +
V w′

g

)(

∂T

∂V
− ∂D

∂V

)

− V

g

(

∂T

∂h
− ∂D

∂h

)

− w′

g
(T −D)

]

+ V 2mcT

[(

1 +
V w′

g

)

∂2D

∂V ∂m
− V

g

∂2D

∂h∂m
− w′

g

∂D

∂m

]

− V 2

g

(

∂T

∂h
− ∂D

∂h

)

(T −D)

− V 2cT

(

T −D +m
∂D

∂m

)[(

1 +
V w′

g

)(

1

T

∂T

∂V
+

1

c

∂c

∂V

)

− V

g

(

1

T

∂T

∂h
+

1

c

∂c

∂h

)](C.1)
A2 = V cT

(

T −D +m
∂D

∂m

)

+ V

(

∂T

∂V
− ∂D

∂V

)

(T −D) (C.2)
A3 =− V 2T

(

1

T

∂T

∂V
+

1

c

∂c

∂V

)[(

1 +
V w′

g

)(

∂T

∂V
− ∂D

∂V

)

− V

g

(

∂T

∂h
− ∂D

∂h

)

− w′

g
(T −D)

]

− T (T −D)
V 2

g

(

1

T

∂T

∂h
+

1

c

∂c

∂h

)

+ (T −D)
V 2

c

∂

∂V

[(

1 +
V w′

g

)(

c
∂T

∂V
+ T

∂c

∂V

)

− V

g

(

c
∂T

∂h
+ T

∂c

∂h

)] (C.3)
A4 = V

(

1 +
V w′

g

)(

∂T

∂V
− ∂D

∂V

)

− V 2

g

(

∂T

∂h
− ∂D

∂h

) (C.4)129



C. Singular ontrol funtions at limb
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D Optimized Standard ProeduresIn this appendix, the optimized CAS/Mah limb analyzed by Frano et al. [34℄ as well asthe optimized onstant-CAS desent analyzed by Frano et al. [32℄ are reprodued for thesake of ompleteness.D.1 Optimized CAS/Mah ClimbThe CAS/Mah proedure onsidered in Ref. [34℄ is formed by four segments, all of themwith �xed engine rating, that is, with given thrust T (V, h): 1) an initial aeleration segmentat onstant altitude hi from the initial speed Vi to the limb CAS (CASc), 2) a limb segmentwith onstant CAS (CASc) from hi to the transition altitude ht at whih limb Mah Mc isreahed, 3) a limb segment with onstant Mah (Mc) from ht to the �nal altitude hf , and4) a �nal aeleration at onstant altitude hf from Mc to the �nal speed Vf . This proedureis similar to the one used by Coppenbarger [26℄ in his analysis of limb trajetory preditionenhanement using airline �ight-planning information.To solve the equations of motion (4.1) for eah �ight segment, a �ight onstraint mustbe given (besides the engine rating) so that the ontrol parameter γ an be determined. Forthe initial and �nal �ight segments the �ight onstraint is h = const, and therefore γ = 0.For the onstant-CAS segment, it is CAS = const = CASc, whih is in fat a speed law
V = VC(h) (see Asselin [1℄) given by
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, (D.1)where k = (κ − 1)/κ. For the onstant-Mah segment, the �ight onstraint is M = const =

Mc, whih is in fat a speed law V = VM (h) given by
VM =Mc

√

κRaΘ(h), (D.2)Note that the transition altitude ht is de�ned by the relation
VC(ht) = VM (ht) (D.3)For the initial and �nal horizontal segments the equations of motion (4.1) redue to

V̇ =
T (V, hA)−D(V,m, hA)

m

ṁ = −c(V, hA)T (V, hA)
ẋ = V + w(hA)

(D.4)131



D. Optimized Standard Proedureswhere hA stands for the initial and �nal altitudes, hi and hf , respetively.For the onstant-CAS and onstant-Mah segments, let V = VA(h) stand for the knownspeed laws V = VC(h) and V = VM (h), respetively. Then one has
dV

dt
= V ′

A

dh

dt
= V ′

A(h)VA(h)γ (D.5)therefore, the �rst equation of motion (4.1) de�nes the ontrol variable γ as a funtion of mand h, say γ = γA(m,h), as follows
γA =

T (VA(h), h) −D(VA(h),m, h)

m
[

g + VA(h)
(

w′(h) + V ′

A(h)
)] (D.6)One γ is known, one must integrate the following equations

ṁ = −c(VA(h), h)T (VA(h), h)
ḣ = VA(h)γA(m,h)

ẋ = VA(h) +w(h)

(D.7)The omputation of the CAS/Mah limb is performed as follows: For the initial segment,Eqs. (D.4) are integrated from V = Vi, m = mi and x = 0 until V = VC(hi); at the end ofthe segment one has m1 and x1. For the onstant-CAS segment, Eqs. (D.7) are integratedstarting at m = m1, h = hi and x = x1 until h = ht; at the end of the segment one has
m2 and x2. For the onstant-Mah segment, Eqs. (D.7) are integrated starting at m = m2,
h = ht and x = x2 and stopping at h = hf ; at the end of the segment one has m3 and x3.Finally, for the last segment, Eqs. (D.4) are integrated from V = VM (hf ), m = m3, and
x = x3 until V = Vf ; at the end of the segment one has the �nal mass mf and the �naldistane xf . The fuel onsumption is therefore mF = mi −mf .This proedure to obtain the �nal distane and the fuel onsumption for given values ofCAS and Mah an be written in symboli form as

xf = xf (CASc,Mc)

mF = mF (CASc,Mc)
(D.8)The CAS/Mah proedure is now optimized to give minimum performane index, taking

CASc and Mc as the optimization parameters. The optimum values of CASc and Mc areobtained solving the following parametri optimization problemminimize mF (CASc,Mc)−Kxf (CASc,Mc)subjet to CASc ≥ CASi

Mc ≤Mf

hi ≤ ht(CASc,Mc) ≤ hf

(D.9)where CASi and Mf are the values of CAS and Mah that orrespond to Vi, hi and Vf , hfrespetively. The onstraints guarantee that the limb proedure has the segments onsideredin its de�nition. In this appliation, the optimization solver used is MATLAB's fminon, asequential quadrati programming (SQP) method (see Ref. [29℄).132



D.2. Optimized Constant-Calibrated-Airspeed DesentD.2 Optimized Constant-Calibrated-Airspeed DesentThe onstant-CAS proedure onsidered in Ref. [32℄ is formed by three segments, all of themwith zero thrust: 1) an initial deeleration segment at onstant altitude hi from the initialspeed Vi to the desent CAS (CASd), 2) a desent segment with onstant CAS (CASd) from
hi to the �nal altitude hf , and 3) a deeleration segment at onstant altitude hf from CASdto the �nal speed Vf .To solve the equations of motion (6.1) for eah �ight segment, a �ight onstraint mustbe given (besides �ying unpowered) so that the ontrol parameter γ an be determined. Forthe initial and �nal �ight segments, the �ight onstraint is h = const, and therefore γ = 0;for the onstant-CAS segment, it is CAS = const = CASd, whih is in fat the same speedlaw V = VC(h) as in (D.1) but with CASd, instead of CASc, that is
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, (D.10)For the initial and �nal horizontal segments the equations of motion (6.1) redue to
V̇ = −D(V, hA)

m

ẋ = V +w(hA)

(D.11)where hA stands for the initial and �nal altitudes, hi and hf , respetively.For the onstant-CAS segment, beause V = VC(h) is given, one has
dV

dt
=

dVC
dh

dh

dt
=

dVC
dh

VC(h)γ (D.12)therefore, the �rst equation of motion (6.1) de�nes the ontrol variable γ as a funtion of h,say γ = γC(h), as follows
γC = −D(VC(h), h)

m
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g + VC(h)
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+ VC(h)

dVC
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]

−1 (D.13)One γ is known, one must integrate the following equations
ḣ = VC(h)γC(h)

ẋ = VC(h) + w(h)
(D.14)The omputation of the onstant-CAS desent is performed as follows: For the initialsegment, Eqs. (D.11) are integrated from V = Vi and x = 0 until V = VC(hi); at the end ofthe segment, one has x1 = ∆x1. For the onstant-CAS segment, Eqs. (D.14) are integratedstarting at h = hi and x = x1, and stopping at h = hf ; at the end of the segment onehas x2 = x1 + ∆x2. Finally, for the last segment, Eqs. (D.11) are integrated from from

V = VC(hf ) and x = x2 until V = Vf ; at the end of the segment one has the �nal distane
xf = x2 +∆x3. The range is therefore xf = ∆x1 +∆x2 +∆x3.This proedure to obtain the range for a given value of CAS an be written in symboliform as

xf = xf (CASd) (D.15)133



D. Optimized Standard ProeduresThe onstant-CAS proedure is now optimized to give maximum range, taking CASd asthe optimization parameter. The optimum value of CASd, say CAS∗

d , is obtained solving thefollowing parametri optimization problemminimize − xf (CASd)subjet to CASf ≤ CASd ≤ CASi
(D.16)where CASi and CASf are the values of CAS that orrespond to Vi, hi and Vf , hf , re-spetively. In this hapter, the optimization solver used is MATLAB's fminon, a sequentialquadrati programming (SQP) method (see Flether [29℄, for example).
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