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ABSTRACT The importance of monitoring and evaluating the quality of water resources has significantly
grown over time. To achieve this effectively, an option is to employ an intelligent monitoring system capable
of measuring the physical and chemical parameters of water. Surface vehicles equipped with sensors for
measuring water quality parameters offer a viable solution for these missions. This work presents a novel
approach called AquaHet-PSO, which addresses the challenge of simultaneously monitoring multiple water
quality parameters with several peaks of contamination using a heterogeneous fleet of autonomous surface
vehicles. Each vehicle in the fleet possesses a different set of sensors, such as number of sensors and
sensor types, which is the definition provided by the authors for a heterogeneous fleet. The AquaHet-
PSO consists of three main phases. In the initial phase, the vehicles traverse the water resource to obtain
preliminary models of water quality parameters. These models are then utilized in the second phase to
identify potential contamination areas and assign vehicles to specific action zones. In the final phase, the
vehicles focus on a comprehensive characterization of the parameters. The proposed system combines
several techniques, including Particle Swarm Optimization and Gaussian Processes, with the integration of
genetic algorithm to maximize the distances between the initial positions of vehicles equipped with identical
sensors, and a distributed communication system in the final phase of the AquaHet-PSO. Simulation results
in the Ypacarai lake demonstrate the effectiveness and efficiency of AquaHet-PSO in generating accurate
water quality models and detecting contamination peaks. The proposed method demonstrated improvements
compared to the lawnmower approach. It achieved a remarkable 17% improvement, on r-squared data, in
generating complete models of water quality parameters throughout the lake. In addition, it achieved a
230% improvement in accurate characterization of high pollution areas and a 24% increase in pollution
peak detection specifically for heterogeneous fleets equipped with four or more identical sensors.

INDEX TERMS Autonomous surface vehicle, Gaussian process, Genetic Algorithm, Heterogeneous fleet,
Informative path planning,Multi-objective problem, Particle swarm optimization,Water resourcemonitoring

NOMENCLATURE
P Set of vehicles in the fleet.
p ∈ P A vehicle.
S Set of measurable water quality parameters by

the fleet.
s ∈ S A water quality parameter sensor.
S(p) ⊆ S Subset of sensors of vehicle p.

N ⊂ R2 Set of coordinates within a 2D space.
x ∈ N = (x, y) A location, coordinate.
Q ⊂ N Set of coordinates where the fleet measured

water quality values.
Q(p) ⊆ Q Subset of the coordinates where water quality

was measured by the ASV p.
Q(s) ⊆ Q Subset of the coordinates where the water qual-
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ity parameter s was measured by any of the
ASVs in the fleet.

U ⊂ N Set of all coordinates where any of the ASVs
in the fleet where located.

U(p) ⊆ U Subset of the coordinates through which the
ASV p passed.

A ⊂ N Set of all action zones.
A(s) ⊆ A Subset of all action zones of the water quality

parameter s.
Z ⊂ N Set of all combined action zones.
z ∈ Z A combined action zone.
P(z) ⊆ P Subset of the vehicles assigned to the combined

action zone z.
S(z) ⊆ S Subset of sensors of combined action zone z.
ys(x) Ground truth value of the water quality param-

eter s at location x.
ŷs(x) Estimated model value of the water quality

parameter s at location x.
K Covariance (kernel) matrix of the Gaussian

Process.
µs(x) Mean value estimated by a Gaussian Process of

the water quality parameter s at location x.
σs(x) Uncertainty value obtained by a Gaussian Pro-

cess of the water quality parameter s at location
x.

t Time

I. INTRODUCTION

THE importance of maintaining healthy water environ-
ments is evident. Animals and plants depend on water

to live. Therefore, the more healthy a water body is, the more
it will help to balance its ecosystem. However, human waste
and bad practices pollute water bodies such as lakes and
lagoons, due to industrial and agricultural activities [1]. Then,
the water ecosystem fails to be balanced, generally creating
excess of nutrients such as nitrates and phosphorus, which
leads to the proliferation of a green-blue algae, which is a
toxic algae that drains oxygen and kills life inside the water
[2]. This eutrophization problem can be found all around the
world including China, Sri Lanka, Paraguay and the United
States [3]–[5].

To efficiently overcome this problem, government agencies
and research centers must develop plans to treat water bodies
or to maintain a certain water quality level. Both of which
can be highly inefficient if the lake or river is not monitored
periodically considering these water quality levels [6]. Water
quality can be described with a set of physico-chemical pa-
rameters of water, including potential of Hydrogen, dissolved
oxygen, total of dissolved solids. The knowledge of the values
of theseWater Quality Parameters (WQPs) can help for either
treating water or maintaining water quality on a certain level.
Therefore, monitoring such parameters is a crucial task in this
situation.

Current efforts for water quality monitoring include fixed
stations, manual measurement campaigns and monitoring
through the usage of Autonomous Surface Vehicles (ASVs)

[7]. The first method consists of chemical laboratories in-
stalled on the shore of lakes, that continuously measure on a
specific location within the water body. The second improves
the general knowledge by manually obtaining samples from
different locations and then returning these samples to a
laboratory for a post-process evaluation. The latter presents a
mixture of both of the former methods because a vehicle can
travel to any location within a particular enclosed water body
and additionally can be tele-operated, which decreases the
exposure of probable toxic waters to humans. Additionally,
if the vehicles are equipped with electronic water quality
sensors, measurements can be performed in real time and
water quality can be obtained during the monitoring mission.
Moreover, these values can help for decision making strate-
gies regarding the location of measurement, providing a more
efficient usage of resources. The relative cost of monitoring
through Autonomous Surface Vehicles (ASVs) is considering
to be cheaper than the other methods and can provide better
results. Monitoring with ASVs can be efficient because water
WQPs patterns can vary on a weekly basis [8], and this type
of monitoring is relatively quick, minimizing the likelihood
of significant changes in the WQPs.
ASVs are composed of modules that have different func-

tions in order to fulfill the task of monitoring water resources.
These modules can be seen in Fig. 1. The perception module
allows the ASV to know its environment and where it is
positioned. The ASV sensors are located in this module.
Some of the papers related to this module are those presented
in references [9] and [10]. The learning module is composed
of a surrogate model that uses the data from the perception
module to generate a models of the environment, the number
of models depends on the number of WQPs to be measured.
These models are used in the planning module to calculate
an optimized informative path to solve a specific problem, as
demonstrated in the work by [11]. Finally, the control module
and the ASV dynamics are in charge of the ASV movement,
i.e. their function is to make the ASV go to the points assigned
by the informative path planner. Some advances in this area
can be found in [12]. The informative path planner approach
incorporates real-time measurements of water quality param-
eters into the calculation of the next vehicle position, taking
advantage of available environmental information [13].
This work focuses on the learning and planning modules.

It is considered that multiple WQPs need to be monitored si-
multaneously, and also that there aremultiple ASVs available.
The monitoring mission focuses on obtaining the models of
theWQPs and on finding peaks of contamination or pollution
(that can be described as an optimization problem) within a
large-scale lake scenario. In that sense, an intelligent online
informative path planning framework is proposed to solve the
problem at hand. Furthermore, the considered fleet of ASVs
have different sensors available, so that an heterogeneous
optimization system must be designed to fully accomplish
the monitoring mission. The problem can be described as a
multi-objective optimization, in which the agents in charge
of obtaining values within a search or decision space can only
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FIGURE 1. Block diagram of the proposed monitoring system: AquaHet-PSO

evaluate some of the objectives.We propose aMulti-objective
Particle Swarm Optimization (PSO) technique designed for
an heterogeneous fleet of ASVs. The PSO algorithm was
chosen based on a comparative study conducted in [14],where
various Swarm Intelligence (SI) algorithms were evaluated.
The results of this comparison indicated that PSO offers
several advantages for monitoring application. Specifically,
it is known for its ease of implementation and minimal
requirement for initial parameters. Consequently, the PSO
was selected as the foundational algorithm for the proposed
informative path planning approach. The system is in charge
of obtaining informative paths that considers the properties
of ASVs as well as the lake scenario (water quality map
models). The proposed system is called AquaHet-PSO, due
to the heterogeneous design of a PSO for aquatic vehicles,
and is composed of three main operational phases: explo-
ration, resource allocation, and exploitation. The exploration
phase focuses on the generation of initial WQPs models. In
the resource allocation phase, ASVs are allocated to areas
with high levels of contamination identified in the initial
models, the combined action zones. Finally, in the exploita-
tion phase, the system exploits the contamination zones in
order to characterize in depth the areas with high levels of
contamination. During the exploitation phase, the AquaHet-
PSO system incorporates the distributed learning technique
to ensure the autonomy of the ASV sub-fleet deploying in the
combined action zones. The heterogeneous nature of ASVs,
with different number and types of sensors, poses a challenge
in determining their initial positioning. ASVs equipped with
identical sensors starting from relatively close positions can
hinder effective surface exploration of water resources due
to inadequate separation between vehicles. For this reason,
the Genetic Algorithm (GA) is employed to maximize the
distance between the initial positions of ASVs with the same
measurement capabilities, namely sensors of the same type.
In summary, our proposal introduces a novel concept by
addressing a scenario where ASVs in a fleet have different
sensor capabilities, i.e. different number and type of WQP
sensors. This diversity gives rise to a multi-objective prob-
lem: creating accurate models for all WQPs. To achieve this,

ASVs, taking into account the unique configurations of their
sensors, must have the ability to identify the optimal positions
for measurements. This is where AquaHet-PSO plays a key
role. It generates real-time trajectories for each ASV, guiding
them to collect measurements at optimal positions, taking
into account all sensors onboard each ASV. This innovative
approach enables efficient and comprehensive water quality
monitoring in a variety of environments. The AquaHet-PSO
contributes substantially on monitoring and informative path
planning, as well as in the framework that has been designed
and is proposed in this work. The contribution can be sum-
marized as follows:
1) The development of amonitoring system based onmulti-

objective multi-modal particle swarm optimization and
Gaussian processes for a heterogeneous fleet of au-
tonomous surface vehicles capable of generating accu-
rate models of water quality parameters and detecting
areas with high levels of contamination in real time.

2) The optimization of the initial positioning of ASVs
equipped with sensors that measure the same water qual-
ity parameter by utilizing a genetic algorithm.

3) The application of the proposed monitoring system in
the case of the Ypacarai lake, showing the effectiveness
of the proposed system over a multi-objective and het-
erogeneous lawnmower.

The following sections describes the literature review in
Section II, followed by the statement of the problem in
Section III. Next, Section IV described the AquaHet-PSO,
thoroughly. An implementation of the proposed system can be
found in Section V, including results for a simulation setup.
The work is concluded in Section VI, with a mentioning of
future works.

II. RELATED WORK
Current efforts regarding the mentioned problem can be
grouped into three different groups: i) Monitoring ap-
proaches, ii) Usage of ASVs and iii) PSO techniques. Mon-
itoring approaches consider ASVs as well as other types of
vehicles including Aerial and Ground vehicles. For exam-
ple, the authors in [15] describe a monitoring mission for
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crops using aerial vehicles using a Gaussian Process-based
approach, in which different parameters are measured from
different heights using onboard sensors. In [16], the authors
introduce a novel path planner employing Evolutionary Al-
gorithms (EA) for an ASV. This planner seeks to optimize
the ASV trajectory and to obtain information about the distri-
bution of cyanobacteria in water currents and the cyanobac-
teria behavior during the mission. In [17], the authors pro-
pose an innovative approach, an adaptive visual informa-
tion gathering (AVIG) framework, for Autonomous Under-
water Vehicles (AUVs) exploring benthic environments. This
framework incorporates Decision-time Adaptive Replanning
(DAR), Sparse Gaussian Process (SGP), and Convolutional
Neural Network (CNN) techniques to dynamically adapt the
exploration of the robot based on real-time visual data ob-
tained from the environment. On the other hand, in [18], an
heterogeneous system (aerial and ground vehicles) mission
is proposed to explore and monitor a defined region using
active exploration algorithms for detecting radiation locations
with the aerial drone and performing extensive information
acquisition with the ground vehicle. Heterogeneous vehicle
systems consists of using vehicles with different capabilities
that works towards achieving to the same goal [19]. They are
mainly used to exploit the different advantages that each type
of vehicle can contribute. Heterogeneous systems have also
been studied, in [20], where a cell wall based paradigm was
proposed to optimize the throughput of heterogeneous aerial
vehicles networking. A multi-agent system was proposed in
[21], where the multiple heterogeneous aerial agents aimed
to cover a large area for network resource orchestration based
on virtual networks. Another approach [22] proposed the
usage of aerial vehicles with communication constraints that
constructed coverage paths in amulti-robot patrollingmission
scenario. The mentioned work used coordination techniques
that efficiently utilized information from multiple sources to
update their paths. More recently, Zhang et al. [23] proposed
the usage of underwater vehicles to obtain information about
a sea floor through the usage of cooperative coverage path
planning mechanisms based on dot-spreading definition and
visiting. Definitely, (homogeneous and heterogeneous) au-
tonomous vehicles where used for the monitoring mission.

Specifically to monitoring water quality, recent works in-
clude [24], [14] and [25]. These works start from the premise
that a exploration is needed to obtain good, reliable WQP
model. Most of the related work use ASVs to perform mon-
itoring since they are reusable, safe and reliable for the task
at hand. Moreover, there exists a set of works that propose
monitoring systems for the Ypacarai Lake. Such is the case
of Arzamendia et al. [26] that used as a basis the Genetic
Algorithm (GA) to solve the lake monitoring problem. The
problem was modeled as the Traveling Salesman Problem
(TSP) and the objective is to cover the largest possible area
of the water resource. To meet this objective, the authors
determined beacons on the shores of the lake where the ASV
should pass. The same authors propose a modification in [27],
where the problem is modeled with the Chinese Postman

Problem (CPP). This improvement allows the ASVs to visit
the beacons more than once, maximizing the coverage area
of the monitoring system. It is remarkable that none of the
mentioned system regarding monitoring using ASVs consid-
ers that the ASVs can be heterogeneous in the sense of the
available water quality sensors, despite that this decision can
only improve economic resources, since not every vehicle
will have the same number of water quality sensors.
Finally, regarding PSO techniques, in [28], the authors

introduce a heterogeneous fleet comprising an underwater
vehicle, a surface vehicle, and an aerial vehicle for conducting
underwater target tracking missions. The system is divided
into two phases: the initial search for the target location and
the subsequent tracking phase. To address the problem of path
planning in the presence of obstacles, an improved PSO is
employed in the second phase. Wang et al. [29] developed
multiple path planning approaches utilizing the distributed-
PSO algorithm to address the path planning challenges faced
by a swarm of UAVs. These planners designed for conducting
reconnaissance missions. The authors in [30] introduce a
novel approach that combines the PSO algorithm with the
Model Predictive Control (MPC) technique. By integrating
the PSO with the MPC, they propose a cooperative control
strategy for planning path and tracking trajectories designed
for intelligent vehicles. In [31], the authors integrate PSOwith
Reinforcement Learning (RL) to solve multi-objective prob-
lems, the MCMOPSO-RL (Multi-Objective Particle Swarm
Optimization with Multi-Mode Collaboration based on Rein-
forcement Learning). MCMOPSO-RL is a path planner that
combines PSO and RL techniques to optimize trajectories
while simultaneously taking into account multiple objectives
and constraints.
A brief summary of the related work regarding monitoring

techniques is shown in Table 1, where the third column de-
scribes the main approach of each proposed strategy. The def-
inition of heterogeneity varies among the authors mentioned
in this section. Some authors consider fleets as heterogeneous
when the vehicles are of different types (ASVs, UAVs, etc.),
while others define heterogeneity based on varying character-
istics such as speed or energy levels. Therefore, the Heteroge-
neous column provides clarification on what the authors refer
to as heterogeneous fleets.
The works discussed in this section serve as a basis for

comparison, but a direct comparison is not possible because,
according to the authors, AquaHet-PSO is the first system to
consider vehicles that do not have the same types of sensors
onboard simultaneously. The authors define a heterogeneous
fleet as a group of ASVs equipped with different types of
sensors, whichmay not necessarilymatch the sensors on other
ASVs. The combination of these approaches and techniques
offers several clear advantages: online route generation for
multi-objective monitoring, the ability to generate models
of water quality parameters and detect contamination peaks
using a heterogeneous fleet, and broader coverage of thewater
resource by optimizing initial positions through GA.
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TABLE 1. Brief summary of the related work

Publication Year Main Approach Heterogeneous
[15] 2022 Online mapping. No

[16] 2023
Cyanobacteria
monitoring. No

[17] 2021
Underwater
environment
exploration.

No

[18] 2019
Detection of

radiation locations.
Aerial and

ground vehicles.

[19] 2021
Coverage path

planning.
Characteristics

of AUVs.

[20] 2021
Optimization of vehicle
network performance.

UAS swarm
networking.

[21] 2021 Area coverage.
Network
resources.

[22] 2013
Coverage path

planning.
Characteristics

of AUVs.

[23] 2021
Coverage path

planning.
Characteristics

of AUVs.

[24] 2021
WQPs monitoring
and estimation. No

[14] 2021
WQPs monitoring
and estimation. No

[25] 2022
WQPs monitoring
and estimation. No

[26] 2019 WQPs monitoring. No
[27] 2019 WQPs monitoring. No

[28] 2022
Search and

tracking mission.

Aerial, surface
and underwater

vehicles.

[29] 2019
Reconnaissance

missions. No

[30] 2020
Path planning and
trajectory tracking. No

[31] 2022 Trajectory optimization. No

III. PROBLEM MODELLING AND SYSTEM ARCHITECTURE
A. PROBLEM MODELLING
The ASV fleet consists of P vehicles, that do not necessarily
share the same water quality sensing capabilities, hence a het-
erogeneous system. The ASVs have several sensors capable
of measuring different water quality parameters s, each sensor
measuring one parameter. As ASVs are heterogeneous, the
vehicles do not have the same type of sensor on board. The
proposed informative path planner uses the measurements
taken for eachWQP to calculate the next position to which the
ASVs should go. This translates to a multi-objective problem,
since, by having multiple WQPs, the planner must consider
multiple criteria to obtain the best position to which the ASVs
should travel.

The main objective is to minimize the error between the
actual states of the water quality parameters s represented
by ground truths ys(x) and the models estimated with the
proposed monitoring system ŷs(x), subject to a maximum
Euclidean distance max_dist that the ASVs can travel, Eq. 1.

min f (x) =
1

S

S∑
s=1

fs(x)

s.t.
1

P

P∑
p=1

dist_ASVp ≤ max_dist

(1)

The function fs(x) is the Mean Square Error (MSE) be-
tween the actual state of the water quality parameters ys(x)
and the model estimated ŷs(x) as shown in Eq. 2. The term
x refers to the coordinate (x, y) on the surface of the water
resource, this term is being discretized to N points within the
search space. The term S refers to the total number of WQP
sensors that are measured.

fs(x) =
1

N

N∑
i=1

(ys(xi)− ŷs(xi))2 (2)

The monitoring system is carried out in water resources.
Therefore, the search space is the entire surface of the water
resource. The search space is represented by a matrixM of
n×m, where each element of the matrixMij has a dimension
of d × d and has a value. The value ofMij represents the
state of the element: 1) if the value is equal to 0, ASVs
cannot to travel to that grid, since it represents an obstacle,
land or forbidden zone; 2) if the value is equal to 1, the grid
is available for ASVs to travel through. All available grid
coordinates are in the set N .

B. SYSTEM ARCHITECTURE
The system architecture of the proposed approach comprises
threemain parts: i) theASVs, ii) thewater quality sensors, and
iii) the global coordinator. These parts are explained below:

• ASV: The set of sensors owned by each ASV is not
necessarily the same as the set of sensors on board of
other ASVs. Therefore, regarding the available sensors,
the ASVs are heterogeneous. At the start of the mission,
all ASVs have the same energy level. The monitoring
task ends when the average distance traveled by the
ASVs is equal to max_dist . It is assumed that the bat-
tery of the ASVs has enough autonomy to finish the
monitoring task. Since the movements of the ASVs are
synchronized, all vehicles end themonitoring tasks at the
same time.
The ASVs are equipped with a robust obstacle avoid-
ance system, often implemented using computer vision
techniques. Additionally, they are outfitted with a sonar
system capable of measuring the depth of the surround-
ing environment. This feature enables the ASVs to iden-
tify shallow areas and effectively steer clear of them,
enhancing navigation safety. Furthermore, the ASVs are
equipped with a differential Global Positioning System
(GPS) that operates in tandem with a base station. This
comprehensive set of sensors and systems empowers
ASVs to navigate complex water bodies, avoid obsta-
cles, and maintain accurate positioning.

• Sensors: The sensors employed for measuring WQPs
are assumed to be in an ideal state. This signifies that the
sensors are regarded as well-calibrated and functioning
accurately as the monitoring tasks are initiated. These
sensorsmeasure discretely, at a positionxwhere anASV
is located. The locations where the measurements were
taken conform the Q ⊂ N set.
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The locations where the pth vehicle has measured corre-
sponds to a subset

Q(p) = {x ∈ Q | x measured by vehicle p} (3)

Thorough this paper the subindex (p) will be used to
denote subsets that are relevant only to the pth vehicle.
During the monitoring process, the sensor data is trans-
formed into a normalized range between 0 and 1. Ad-
ditionally, to categorize the water quality status, three
levels are considered. The first level represents an ac-
ceptable status and ranges from 0 to 33%. The second
level indicates a warning level and ranges from 34 to
66%. The last level signifies a risk level and ranges
from 67 to 100%. These thresholds are determined based
on the maximum contamination value measured. The
specific value of 33% was chosen by the authors to
ensure that each level encompasses a similar range of
values.
Communication between theASV system and theWQPs
sensors is established through a USB connection.

• Global coordinator: The global coordinator is located
in the cloud, and the ASVs are connected to it via 4G
technology. Communication between the ASVs is done
through the centralized system. Communication solely
occurs between the vehicles and the central server; there
is no inter-vehicle communication. Data from the sen-
sors are sent to the cloud and they are used to generate
the responses of the data model in the global coordinator.
An illustration of the communications between the parts
of the proposed monitoring system is shown in Fig. 2.

FIGURE 2. Communication between the global coordinator, the ASVs and
the sensors

IV. PROPOSED INFORMATIVE PATH PLANNER:
AQUAHET-PSO
The proposed approach is a multi-modal, multi-objective
monitoring system that has the ability to process data and gen-
eratemodels for several water quality parameters s1, s2, ..., sS ,
the AquaHet-PSO. The AquaHet-PSO is a monitoring system

that combines the components of the PSO, the GP data, and
the GA. In the proposed monitoring system, the ASV fleet
consists of vehicles with diverse measurement capabilities.
This means that the vehicles are equipped with different types
and quantities of sensors.

A. CLASSICAL PARTICLE SWARM OPTIMIZATION
The PSO, developed by [32], is an optimization algorithm
based on the social behavior of flocks of birds and school of
fish. This algorithm allows working with several individuals
simultaneously. The individuals are called particles and rep-
resent possible solutions to an optimization problem, a set of
particles is called swarm. The movement of the particles is
based on a control component, an auto-cognitive component
or local best, and a social cognitive component or global best.
The local best is the best position of the particle up to the
moment where the term is calculated. In contrast to the local
best, the global best is the best position of the swarm up to
the moment where the term is calculated. The expressions
for calculating the velocity vt+1 and the position xt+1 of the
particle p are shown below:

vt+1
p = ωvtp + c1r t1

[
pbesttp − xtp

]
+ c2r t2

[
gbestt − xtp

]

(4a)

xt+1
p = xtp + vt+1

p (4b)

the ω term is the control parameter or the inertia weight, the
local best of the particle p at time t is represented by the term
pbesttp, the gbestt term is the global best of the swarm at
time t . To determine the importance of the auto-cognitive and
social component of the PSO, the algorithm has two weights
c1 and c2, also called acceleration coefficients. r1 and r2 are
two random values between 0 and 1.

B. GAUSSIAN PROCESS
Gaussian Processes (GP) are probabilistic machine learning
models based on Bayesian inference [33]. The GP input data
are considered random variables and the output a multivariate
Gaussian distribution. The behavior of the GP is defined by
two functions: i) the covariance function or kernel function,
and ii) the mean function. Usually, the mean function is zero
for convenience.
The GP input data are the measurements taken from the

water resource ys(x) : x ∈ Q and the Q set. For the GP Re-
gression update, these data are marginalized and conditioned.
The unknown responses (µ(x∗), σ(x∗)) of the GPR (ŷ(x)∗)
are obtained by applying the equations shown below:

µs(x∗) = K T
∗ (K + σ2

o )
−1ŷs(x) (5a)

σs(x∗) = K∗∗ − K T
∗ (K + σ2

o )
−1K∗ (5b)
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The term σo represents the expected measurement noise in
the context of GP modeling. This parameter plays a crucial
role in refining water quality measurements obtained through
GPs, as it allows for a more accurate adjustment of the data
[11]. The terms K , K∗∗ and K∗ are obtained from the fitted
kernel. These terms include covariances between known data
k(x,x) and unknown data k(x∗,x∗), as well as covariances
between both the known and unknown data k(x,x∗).

K =

[
K K∗
K T
∗ K∗∗

]
=

[
k(x,x) k(x,x∗)
k(x∗,x) k(x∗,x∗)

]
x : x ∈ Q
x∗ : x∗ ∈ N

(6)

The estimate of water quality parameters ŷ(x) at any lo-
cation x is obtained from the GP mean. Therefore, for the
following sections, mention is made of µs(x) as the model
estimated by the monitoring system. The standard deviation
or uncertainty of the model is σs(x).

C. INITIAL POSITIONS
In a multi-objective problem where ASVs share at least one
sensor, the initial positions of the ASVs play a crucial role.
The farther apart the ASVs with shared sensors are, the
larger the area they can collectively cover. However, in the
AquaHet-PSO, the ASVs are heterogeneous, which makes
determining the optimal starting positions a complex task.
Since a Gaussian Process model is fitted according to the
measurements, the farther apart these measurements are, the
better (so that to reduce the model uncertainty). However,
the initial distribution of sensors across the search space is
dependent on the vehicles themselves, so an initial allocation
of the vehicles need to be done. To address this, a Genetic
Algorithm (GA) is employed to assign the starting points of
the ASVs. The initial positioning problem of the ASVs is
considered an NP-hard problem due to the large number of
possible solutions resulting from the various permutations of
initial positions that each vehicle could occupy.

Using a set of specific points x such as ports or clearings
along the edge of the water resource as potential starting
locations, a Genetic Algorithm searches for the optimal initial
placement or location of the allotted vehicles. The specific ob-
jective in this stage is to maximize the distance between water
quality sensors, ensuring that the vehicles are positioned as far
apart as possible. This approach aims to optimize the initial
coverage area and enhance the efficiency of data collection
and monitoring.

TheGA, influenced by the theory of evolution of Darwin, is
a stochastic population-based algorithm [34]. Each solution is
represented as a chromosome consisting of genes that encode
specific parameters [35]. The GA employs various techniques
such as selection, crossover, and mutation to simulate the nat-
ural process of evolution. These techniques help in improving
the fitness of the population over successive generations,
ultimately leading to the identification of an optimal solution
[35]. For a more detailed explanation of the functioning of the

Vehicle Sensors Vehicle Sensors
p1 s1, s2 p5 s2, s3
p2 s1, s3 p6 s2, s4
p3 s1, s4 p7 s3, s4
p4 s1, s2 p8 s3, s4

TABLE 2. On-board sensors of the vehicles in the example shown in Fig. 4

GA, readers are referred to [34]–[36]. Since the initial ports
are predefined locations, these locations are encoded into an
ordered list and the GA algorithm considers an individual as
an specific subset of locations (according to the number of
available vehicles). The list can be seen in Fig. 3. An example
is shown in Fig. 4(b), where 8 vehicles must be located along
a list of 8 possible locations. Each individual then contains the
indices of the candidate starting locations and are defined as
lists of indices. Using this approach, many classical operators
can be used as they are since the individual or chromosome
definition are identical to the classical individuals for a TSP
problem found in several works [34]–[36].
The important difference with the general TSP approach

is that the fitness function is not defined to minimize the
distance between selected locations but to maximize the
distance between sensors. Fortunately, the distance between
sensors can be obtained according to the set of sensors that
are shared between vehicles. Recalling that S(p) ⊆ S is
the subset of sensors available in the pth vehicle, we aim
to maximize the distance between two vehicles pi and pj
whenever they share a common type of sensor s. Moreover, if
the vehicles pi and pj share more than one sensor, the fitness
of the individual is better since there are more sensors that
are far apart. This information is encoded as the cardinality,
or number of elements, in the intersection of sensors between
vehicle pi and vehicle pj. With a direct proportion for both
cardinality and distance between vehicles, the fitness function
for the individual x, i.e., the list of indices related to the initial
positions, that needs to be maximized in this GA approach is:

f (x) =
|P|−1∑
i=1

|P|∑
j=i+1

|S(pi)
⋂
S(pj)| · dist(pi, pj) (7)

Implying that dist(·) is the Euclidean distance between the
vehicles pi and pj located at different harbors and ports. The
crossover operator to be used is the classical Ordered, which
creates offspring based on an initial subset of one parent
and completes the offspring with the remaining genes of the
second parent in the order that they are found. Regarding
mutation, a random shuffle is performed between pairs of
genes, this is called the Shuffle Indices mutation operator.
Tournament selection is used as well via a µ+λGA approach
[26]. Specific values for individual and population size and
number of generations are set depending on the number of
vehicles present in the current experiment. Additional values
are defined in the experiments section.
Table 2 lists the sensors s owned by each vehicle p in an

example of the monitoring task. Fig. 3 shows the chromo-
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FIGURE 3. Example an individual for the initial location selection. In this
example, vehicle p3 must be initially located at position 7 (5200, 1000).

somes of the example in the process of maximizing the initial
positions of the ASVs. The Port ID column refers to eight
coordinate points of harbors and ports located around the
Ypacarai lake. The selection of these coordinates was based
on easily accessible locations or existing ports in the region.
The objective of the new initial positioning of the ASVs is to
generate the largest possible initial distance between vehicles
equipped with the same type of sensor. In order to show an
example in an illustrative way, Fig. 4 is presented. In the
example shown in Fig. 4, the fitness of the initial positions
without GA, Fig. 4(a), is 1386.79. However, the fitness of
the maximized initial positions, Fig. 4(b), is 1581.79. This
suggests an improvement in the initial disposition of the
ASVs at the beginning of the mission.

D. INFORMATIVE PATH PLANNER
This subsection provides an explanation of the operational
phases involved in the informative path planner, along with
the process of measuring multiple WQPs. Initially, the pro-
cedures for calculating the components of the equations are
presented. The equations governing the movements of ASVs
in the exploration and exploitation phases are adaptations
of the Enhanced GP-based PSO [14], Eq. 20a. Readers are
encouraged to refer to Appendix A for further details and
comprehensive information.

1) Enhanced GP-based PSO components
The AquaHet-PSO is based on the Enhanced GP-based PSO
algorithm [14] (Section A), dividing the monitoring mission
into phases, where it first tries to cover the largest possible
area of the water resource, then segments the area of the
water resource and assigns ASVs to the zones to finally
detect contamination peaks of different WQPs. The equations
governing the speed and motion of the vehicles are equa-
tions based on the Enhanced GP-based PSO [14] and the
studies conducted in [37] and [38]. Having different sensors,
the ASV informative path planner must take into account
multiple objectives to define the next position to travel. It
should also be noted that there is no longer only one GP; on
the contrary, a GP must be assigned for each WQP. These
GPs are updated with the measured data of the water quality
parameters ys(x) : x ∈ N and the coordinates where the
measurements were taken Q(s) ⊂ Q. The subset Q(s) is
composed of the coordinates x where the measurements of
the water quality parameters s were taken. To obtain the

movement components, the proposed approach uses the data
from the sensors owned by the ASV.

The movement components can be obtained by two dif-
ferent methods, i) the decoupled method, and ii) the coupled
method. The methods are defined below:

a: Decoupled Method

This method is developed in order to give importance to
one objective (water quality parameter) at a time and not si-
multaneously. However, during the monitoring task, different
objectives are prioritized at different time periods. The multi-
objective informative path planner selects, at a given time, the
WQP that has the highest data value, obtains the coordinates
where that data is located and the corresponding term is equal
to that coordinate. Eq. 8 shows the equations to calculate the
movement components.

pbesttp(x) = argmax{µs(x)}, s = [1, 2, .., S] (8a)

: s ∈ S(p); x ∈ U(p)
gbesttp(x) = argmax{µs(x)}, s = [1, 2, .., S] (8b)

: s ∈ S(p); x ∈ U
max_untp(x) = argmax{σs(x)}, s = [1, 2, .., S] (8c)

: s ∈ S(p); x ∈ N
max_contp(x) = argmax{µs(x)}, s = [1, 2, .., S] (8d)

: s ∈ S(p); x ∈ N

b: Coupled Method

For this method, the linear scalarization is used. By apply-
ing linear scalarization, the multi-criteria problem becomes
simple, since it transform a multi-objective problem into
a single objective problem. Unlike the decoupled method,
in this method all objectives (water quality parameters) are
considered simultaneously. The equations for calculating the
PSO components and the surrogate model data are shown in
Eq. 9. These values are obtained from the argument of the
maximum value of the sum of the mean of the models or
the model uncertainty. In Eq. 9, the term ws_p represents the
importance given to each WQP. This weight is referred to as
the sensor weight. The sensor weight will depend on the types
of sensors s that the vehicle p has, S(p), and the number of
sensors of each parameter that the ASV fleets have. The more
sensors of the same parameter, the lower the weight. This is
defined with the objective of giving greater importance to the
sensors that are in smaller quantity.
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(a) Initial position of the ASVs without GA. (b) Initial position of the ASVs with GA.

FIGURE 4. Example of maximization of the initial position of the ASVs.

pbesttp(x) = argmax{
S∑

s=1

ws_pµs(x)} (9a)

: s ∈ S(p); x ∈ U(p)

gbesttp(x) = argmax{
S∑

s=1

ws_pµs(x)} (9b)

: s ∈ S(p); x ∈ U

max_untp(x) = argmax{
S∑

s=1

ws_pσs(x)} (9c)

: s ∈ S(p); x ∈ N

max_contp(x) = argmax{
S∑

s=1

ws_pµs(x)} (9d)

: s ∈ S(p); x ∈ N

As mention before, the weights depend on the types of
sensors that each vehicle has. Since each vehicle can have
different sensors, the sensor weights may vary from vehicle
to vehicle. However, in all vehicles, the sum of the sensor
weights complies with the condition shown below:

S∑
s=1

ws_p = 1 (10a)

1

S1
u+

1

S2
u+ ...+

1

SS
u = 1 (10b)

: s ∈ S(p)
Each sensor weight is equal to one variable u divided by the

total number of sensors Ss of the same type s in the entire fleet,

Eq. 11. The sensors taken into account in this calculation are
the ones owned by the ASV (S(p)). The value of u is obtained
by clearing the variable from Eq. 10b. This value can vary
between different ASVs. To obtain the weight of each sensor,
Eq. 11 is applied after determining the value of u using Eq. 10.

ws_p =
1

Ss
u (11a)

: s ∈ S(p)

An example is shown below: considering a fleet with three
ASVs (|P| = 3), with the following sensor capabilities for
each ASV: S(p1) = {s1, s2, s3}, S(p2) = {s1, s3, s4}, S(p3) =
{s4}. Therefore, the total amount of each type of sensor is:
S1 = 2, S2 = 1, S3 = 2, and S4 = 1. To find the values of the
sensor weights for each ASV, it is first necessary to find the
value of u by applying the formulas in Eq. 10. After finding
the value of u, the formula in Eq. 11 needs to be applied.

TABLE 3. Example of calculation of sensor weights

p u w1 w2 w3 w4

1 0.5 0.25 0.5 0.25 0
2 0.67 0.33 0 0.33 0.33
3 1 0 0 0 1

The values of the weights for the example are presented in
Table 3. In the case of p1, as the number of s2 sensors in the
fleet is smaller, its weight is higher than the other sensors. On
the other hand, p2 has sensors with an equal number in the
fleet, resulting in equal weight values. Lastly, p3, having only
one sensor, has a weight value of 1 assigned to that sensor.
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2) Operational phases
The operational phases of the AquaHet-PSO is derived from
the PSO and the GP, resulting in a monitoring mission that
consists of three distinct phases: exploration, resource al-
location, and exploitation. The exploration and exploitation
phases play a crucial role in generating accurate models of
the WQPs and detecting contamination zones in the proposed
monitoring system. However, due to the heterogeneity of the
fleet, where ASVs may have different types or quantities of
sensors for measuringWQPs, efficient assignment of vehicles
to specific areas becomes essential. Therefore, the resource
allocation phase is a critical aspect of the proposed monitor-
ing system.

a: Exploration phase
The purpose of this phase is to obtain an initial model for
different WQPs. To meet the objective, the ASVs must cover
the largest possible surface area of thewater body, i.e., explore
the surface. In this first phase, the velocity of the ASVs are
calculated using Eq. 12. The position is determined using the
same equation as the Classic PSO, Eq. 4b.

vt+1
p = wvtp + c1r t1[pbest

t
p − xtp] + c3r t3[max_unt − xtp]

(12)
The studies performed in [37] show that in order to have

an optimal exploration, the global best gbest and maximum
contamination max_con terms must be inactive. However,
before calculating the velocity, a preliminary computation
of the motion components is carried out, as described in
Section IV-D1. The exploration phase ends when the vehi-
cles have traveled a certain distance, this distance is called
exploration_distance and represents a percentage of themaxi-
mumdistance,max_dist , that themonitoringmission can last.

Algorithm 1 shows the pseudo-code of the exploration
phase. Before starting the exploration task, the PSO must
be initialized and the ground truth of the water quality pa-
rameters ys must be created. In addition, the sensor weights
must be calculated, and the ASVs must be assigned to the
starting points by applying the GA. Then, the exploration
phase begins. The local best pbesttp and global best gbesttp
values are constantly calculated using Eq. 8a, 8b or Eq. 9a,
9b, depending on the selected method. When the ASVs reach
a traveled distance l between the current position xt and the
last position where a measurement has been taken xmeasure,
the sensors take a measurement. These measurements are
used to update the GP of each WQP. The coordinates of the
maximum contamination max_contp and maximum uncer-
tainty max_untp are then calculated by applying Eq. 8d, 8c
or Eq. 9d, 9c, depending on the selected method. Finally,
the velocity vt+1

p and next position pt+1
p of the ASVs are

calculated.

b: Resources allocation phase
The great challenge lies in the variety of parameters that must
be measured, in addition to the fact that the ASVs do not

Algorithm 1: AquaHet-PSO exploration phase
pseudo-code

while dist ≤ exploration_distance do
for p in P do

pbesttp, gbest
t
p ← Obtain the values from

Eq. 8 or Eq. 9*;

dist ← xt − xmeasure ← Calculate distance
if dist ≥ l then

for p in P do
for s in S(p) do

ys(x) ← Take water resource
measurements from the s parameter
sensor

for s in S do
σts, µ

t
s ← Adjust the GP of the s parameter

for p in P do
max_untp, max_contp ← Obtain the
values from Eq. 8 or Eq. 9*

for p in P do
vt+1
p , xt+1

p ← Update speed and position of
the ASVs using Eq. 12 and Eq. 20b

*The terms pbestp, gbestp, max_unp and max_conp are calculated
according to the selected method, coupled or decoupled.

have the same sensors. Consequently, the procedures must
be adapted to solve multi-objective and heterogeneous mon-
itoring problems. Therefore, the second phase of the system
deals with the delimitation of potential pollution zones and
the assignment of vehicles to these zones. In the following,
the procedure is explained in detail.

• Combined Action Zones (CAZ): for the generation of
the CAZ, the action zones must first be generated. To do
this, using the model obtained in the exploration phase,
the areas where contamination is high are located and
action zones are generated. Action zones are circular
areas of radius rad where water contamination values
exceed a set threshold. The boundaries for the action
zones are determined based on the levels of acceptable,
warning, and risk, as described in Section III-B. For the
generation of action zones, the warning and risk levels
are taken into consideration. Therefore, any coordinate
where the estimated water quality parameters (WQPs)
fall within these levels is considered as part of an action
zone. All action zones are located in set A. However,
action zones are determined for each specific WQP,
which means that there can be several action zones in
total. The subset As ⊂ A refers to the action zones
pertaining to water quality parameters s.
Fig. 5(a) to Fig. 5(d) show examples of the generation
of action zones of an s-sensor. Each circle represents an
action zone created. The higher the Priority value of the
zone, the higher the contamination levels of the zone.
These zones have the function of limiting the surface
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area to be exploited by the ASVs with the objective of
deepening the monitoring in these zones. Action zones
do not overlap. If a coordinate has already been assigned
to an action zone, it will no longer be considered for the
other zones.
Due to the significant number of action zones, the
AquaHet-PSO proceeds to create CAZ. The set Z is
composed of all action zones combined. These CAZs
are formed by merging overlapping action zones. We
proposed a sequential procedure to generate the CAZ.
It is important to highlight that the following steps or
phases are not excluding. Therefore, the step 2 will be
applied if with execution of the step 1 at least a vehicle
is not assigned to each CAZ. The procedure is at follows:
-- Step 1 - Prioritize heterogeneity: when CAZs are

formed by merging overlapping action zones of dif-
ferent parameters, without considering overlaps of
action zones for the same parameter. The overlapping
of action zones belonging to the same WQP is not
realized due to the heterogeneity of the fleet. This is
because the presence of different sensors on board
allows an ASV to exploit action zones of different
sensors at the same time, allowing a more focused
exploitation of two or more parameters in smaller
areas. This approach differs from overlapping action
zones of the same sensor, which would result in larger
zones targeting a single WQP.
This situation arises when the distance between the
centers of action zones for different sensors is smaller
than the combined sum of their respective action
zone radii (distance between center1s1 and center1s2
> rads1 + rads2). However, an exception is made
if an action zone of parameter sn overlaps with two
action zones of parameter sn+1. An example of this is
seen in the overlapping of the action zones between
s2 (Fig. 5(b)) and s3 (Fig. 5(c)). The result is the
convergence of these action zones into a single CAZ,
as depicted in Fig. 5(e), CAZ 0. In addition, the op-
eration of the step 1 can be seen in Fig. 5(e), which
shows different areas where the action zones of the
same sensor are not merged (orange-tinted areas in the
lower margin of the figure and green-tinted areas in
the upper left margin).

-- Step 2 - Prioritize homogeneity: If after the appli-
cation of step 1 there are still zones without ASVs
assigned, new CAZs need to be generated. In step
2, the overlap between zones of the same sensor is
also taken into account. This is because of the limited
availability of ASVs and the potential for an ASV to
exploit multiple zones of the same sensor. Fig. 5(f)
shows the merging of the different action zones into
3 CAZs, where the zones corresponding to the same
sensor are also overlapped.

-- Step 3 - Enlarge coverage: based on the CAZs gener-
ated in step 2), if there is a zone to which no ASV is

assigned, the radius of that zone is increased until it
overlaps with another CAZ, thus ensuring an overlap
of CAZs. This can be seen in Fig. 5(g), where no ASV
was assigned in one of the CAZs.

These phases are determined based on the allocation
of vehicles. Initially, CAZs are created following the
conditions specified in phase 1. If there are any CAZs
that are not assigned to a vehicle, the zones described
in step 2 are generated. Vehicle assignment is then con-
ducted, and if there are still CAZs remaining without
assigned vehicles, the overlapping of CAZs (step 3) is
generated. The subset Sz consists of the water quality
parameters s to which the CAZs z belong. It is worth
noting that although a different order can be followed
for the previous steps of the CAZ generation, simulation
results have conducted and the proposed order is the one
that the best results achieved.

• Assignment of ASVs: the assignment of vehicles is
carried out based on the sensors that each ASV pos-
sesses and the WQPs of the CAZs. After the generation
of the CAZ, a scan is performed between the sensors
of each ASV and the parameters of each CAZ. This
enables determining the number of common sensors
between them (Priority). As the values increase, so does
the priority level. These data are utilized for resource
allocation, where the ASV with the highest priority is
the one that shares the most sensors in common with
any CAZ. In cases where multiple CAZ have the same
Priority, the decision criterion shifts to the number of
potential vehicles that can be assigned to each zone,
Number of possibilities. This number reflects the count
of vehicles that share an equal number of sensors in com-
mon with the CAZ. The vehicle selected for assignment
to the CAZ is the onewith the lowest probability of being
assigned to another CAZ, ensuring optimal distribution.
This process continues until all the CAZ have an ASV
assigned to them. Vehicles that are assigned to the CAZ z
are located in subsetP(z) There are a couple of excluding
scenarios that can arise:
-- Scenario 1: when there are more CAZs than available

ASVs, the problem is resolved by regenerating the
CAZs.

-- Scenario 2: when there are more vehicles than action
zones, in such cases, the sensors possessed by each
vehicle are considered, and the vehicle is assigned to
the zone with the highest number of sensor matches.
In cases where multiple CAZs have an equal number
of sensors in common with the vehicle, the ASV is
assigned to the zone with the largest surface area.

An example is shown below: considering a fleet with
three ASVs (|P| = 3) and three CAZs (|Z| = 3),
with the following sensor capabilities for each ASV:
S(p1) = {s1, s2, s3}, S(p2) = {s1, s3, s4}, S(p3) = {s4};
and each CAZ corresponds to the following sensors:
S(z1) = {s1}, S(z2) = {s1, s2, s3}, S(z3) = {s4}. After
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(a) Action zones of s1 (b) Action zones of s2 (c) Action zones of s3 (d) Action zones of s4

(e) Combined action zones generated in Step 1 (f) Combined action zones generated in Step 2 (g) Combined action zones generated in Step 3

FIGURE 5. Example of the process of generating combined action zones.

the initial scan, the following data is obtained:

TABLE 4. Example of resource allocation: 1st scan

z Priority Number of possibilities Vehicles
1 1 2 p1, p2
2 3 1 p1
3 1 2 p2, p3

Based on this information, it is observed that p1 has
the highest priority since it has the most matches with
z2. Then, P(z2) = {p1}. Following this assignment,
a subsequent scan is performed to determine the next
optimal assignment based on the remaining vehicles and
CAZ:

TABLE 5. Example of resource allocation: 2nd scan

z Priority Number of possibilities Vehicles
1 1 1 p2
3 1 2 p2, p3

After the scan, it is observed that both z have the same
Priority. Therefore, the Number of possibilities is taken
into consideration. Since z1 has the lowest value, it is

given the highest priority. Then, P(z1) = {p2}. Finally,
P(z3) = {p3}.

Algorithm 2 shows the process of the resource allocation
phase. In the this phase, action zones are first created for each
water quality parameter s. Once all the zones are obtainedA,
the next step is to generate CAZs Z and assign vehicles to
them P(z). These two processes are intertwined. If there are
any CAZs without assigned vehicles, new CAZs are gener-
ated according to the three cases mentioned earlier until all
zones have vehicles assigned (vehicles_assigned).

Algorithm 2: AquaHet-PSO resource allocation
phase pseudo-code

for s in S do
A(s) ← Obtain action zones for each of the WQP

while not vehicles_assigned do
Z ← Generate combined action zones
P(z) ← Assign vehicles to the combined action
zones
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c: Exploitation phase
After assigning the vehicles to the CAZs, the algorithm pro-
ceeds with the exploitation of the areas. Due to the change
of target between phases, the speed equation varies. In the
exploitation phase, the speed is calculated according to the
results obtained in [38], where the analysis shows that the
maximum uncertainty term max_un must be eliminated,
Eq. 13. To calculate the position, the Classic PSO equation
is used, Eq. 4b. Before applying the velocity equation, the
Enhanced GP-based PSO components must be calculated
using the equations of Section IV-D1.

vt+1
p =wvtp + c1r t1[pbest

t
p − xtp] + c2r t2[gbest

t − xtp]

+ c4r t4[max_cont − xtp]
(13)

During the exploitation task, measurements are made
through sensors available on the ASVs of the fleet. However,
not all water quality sensors on the ASVs are used to update
their movement. Sensors that do not correspond to the pa-
rameters of the CAZs are deactivated, which means that their
weight wsp is set to zero. This is done to prevent parameters
not related to the parameters of the CAZs from influencing
the exploitation of those regions.

The AquaHet-PSO incorporates the distributed learning
technique during the exploitation phase. This system is em-
ployed to update the WQPs models within each CAZ. Nev-
ertheless, centralized communication with the central server
is maintained and updates are performed at the central server.
In the AquaHet-PSO, the CAZs are treated as nodes, which
form sub-fleets. Once the vehicles are assigned and the sub-
fleets and nodes are established, the corresponding parame-
ter models for each CAZ generated during the exploitation
phase are provided. The new measurements obtained during
the exploitation phase are combined with the measurements
collected during the exploration phase to generate the param-
eter models. It is important to note that the measurements
of the different zones are not mixed. This is applied in or-
der not to influence the calculation of the new positions.
The exploitation phase, as well as the monitoring mission,
ends when the vehicles have traveled a distance equal to
exploitation_distance.

From this point on wards, the operation of the algorithm
follows a similar pattern to the exploration phase, this can
be observed in Algorithm 3. After assigning vehicles to their
respective zones, the algorithm continues until the vehicles
have traveled a distance equal to exploitation_distance. This
distance represents the remaining percentage of distance the
vehicles can travel during the monitoring mission. The fol-
lowing steps are performed: calculation of the local best
pbesttp and global best gbesttp values of each vehicle using
Eq. 8a, 8b or Eq. 9a, 9b, depending on the selected method;
when the vehicles reach a distance l between measurements,
a new measurement is taken for each vehicle, and the GPs of
theWQPs are updated, this update is done separately for each
CAZ, as each zone is considered independent; calculation of

maximum contamination max_contp and maximum uncer-
taintymax_untp; and update of the speed and position of the
ASVs. These steps are repeated until the vehicles reach the
maximum mission distance max_dist , ensuring continuous
monitoring and updating of the WQP models (max_dist =
exploration_distance+ exploitation_distance).

Algorithm 3: AquaHet-PSO exploitation phase
pseudo-code

while dist ≤ exploitation_distance do
for p in P do

pbesttp, gbest
t
p ← Obtain the values from

Eq. 8 or Eq. 9*;

dist ← xt − xmeasure ← Calculate distance
if dist ≥ l then

for z in Z do
for p in P(z) do

for s in S(p) do
ys(x) ← Take water resource
measurements from the s
parameter sensor

for s in S(z) do
σts_z, µ

t
s_z ← Adjust the GP of the s

parameter

for p in P do
max_untp, max_contp ← Obtain
the values from Eq. 8 or Eq. 9*

for p in P do
vt+1
p , xt+1

p ← Update speed and position
of the ASVs using Eq. 13 and Eq. 20b

*The terms pbestp, gbestp, max_unp and max_conp are calculated
according to the selected method, coupled or decoupled.

d: Final model
To obtain the final model of theWQPs, the monitoring system
combines the measurements collected during the exploration
and exploitation phases. All measurements obtained through-
out the monitoring process are merged in a central server,
which allows updating the corresponding GP associated with
each WQP.

3) Measurements of WQPs
Water resource measurements are taken every l distance trav-
eled. The formula used for the calculation of the distance l is
shown in Eq. 14. This value is calculated by taking the length
scale radius λ, which is a constant, and the posterior length
scale value ℓt of the GP [24]. This is due to the processing
time of the GP, the more measurements are taken, the longer
it takes to adjust the GP.

l = λ× ℓt (14)
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V. PERFORMANCE EVALUATION
A. SIMULATION SETTINGS
The code was implemented in Python 3.8 using the Scikit-
learn, DEAP, and Bayesian Optimization libraries. The
Scikit-learn library1 provides machine learning tools, while
DEAP2 is used for evolutionary algorithm implementation,
and Bayesian Optimization library3 is used for optimizing
hyperparameters. The code can be found on GitHub4. The
simulations were conducted on a laptop computer with an
Intel i5 1.60 GHz processor and 8GB RAM.

B. GROUND TRUTH: YPACARAI LAKE
The case of study for testing the monitoring system is the
Ypacarai lake. The search space is scaled, each pixel on the
map represents an area of 100 x 100 meters, resulting in
a search map with dimensions of 100 x 150 meters. The
distribution map of the WQPs, also known as ground truth, is
generated using the Shekel function, Eq. 15. The Shekel func-
tion is a commonly used benchmark function in optimization
and modeling tasks, which is multimodal, multidimensional,
continuous, and deterministic [24].

fShekel(x) =
M∑
i=1

1

ci +
∑L

j=1(xj − aij)2
(15)

The Shekel function has the advantage of being a mul-
timodal function, which means that it allows for multiple
maximum points to exist in the entire search space. These
maximum points represents areas in the Ypacarai lake with
high levels of contamination ofWQPs. Nevertheless, it should
be pointed out that in the tests conducted, the correlation
between WQPs is not considered. In Eq. 15, the parameters
aij and ci represent the positions at which the maximum point
and the inverse of the significance value of the maximum of
the function are located, respectively. The matrix A, to which
the element aij belongs, has dimensions of M × L, where M
represents the number of maximum points and L represents
the dimension of the space. On the other hand, the matrix C ,
to which element ci belongs, has dimensions ofM × 1. In the
case of the informative path planner tests, the distribution of
themaps is generated using the Shekel function. This function
generates 50 different sets of S maps, where S represents the
number of type of sensors. Each map in the set will have 2
peaks in the (x, y) dimensions, as indicated by the value of
2 for the M and L terms. The positions of the peaks and the
values of the matrix C are randomly obtained. An example of
a ground truth set generated for a simile is shown in Fig. 6. A
different ground truth is generated per WQP sensor.

Considering that the values of ci are randomly generated,
the data of the generated models are normalized to a range of
[0, 1] using Eq. 16:

1https://scikit-learn.org/stable/index.html (accessed on 22 June 2023)
2https://deap.readthedocs.io/en/master/ (accessed on 22 June 2023)
3https://github.com/fmfn/BayesianOptimization (accessed on 22 June 2023)
4https://github.com/MicaelaTenKathen/AquaHet-PSO.git (accessed on 22
June 2023)

FIGURE 6. Examples of ground truth of water quality parameters
obtained with the Shekel function.

fNormalized(x) =
fShekel(x)− fmin_Shekel(x)

fmax_Shekel(x)− fmin_Shekel(x)
(16)

The normalization process involves utilizing the data ob-
tained from the Shekel function, where fShekel(x) represents
the data, fmin_Shekel(x) represents the minimum value within
that data, and fmax_Shekel(x) represents the maximum value
obtained.

C. PARAMETER SETTINGS
The simulation experiments involve fleets of 5 to 10 vehicles,
with the number of vehicles being chosen randomly. Each
test consists of 50 simulations. The number of sensors of
the same type varies from one method or informative path
planner to another, ranging from 2 to 6 sensors. This enables
the observation of the behavior of the methods or informative
path planners with different numbers of ASVs that can mea-
sure the same WQP. Additionally, a test is conducted where
the number of sensors of the same type is variable, ranging
from 4 to 6 sensors. Each ASV can have up to three sensors
measuring different WQPs on board. To determine the value
of λ in Eq. 14, the studies performed in [24] and [14] are
considered. In order to reduce the computational time and to
obtain enough measurements to generate good models of the
WQPs, the value of λ is set at 0.3. According to [39], in order
for the GP to generate smooth models, the length scale value
must be 10% of the search space length value. Based on this
information, the length scale of the GPs are uniformly set to
10, since the map is scaled.
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To determine the weights of each WQP function (ws_p), in
the coupled method, the number of sensors in the fleet of
ASVs is taken into account, the more sensors of the same
parameter, the lower the weight value of that parameter. This
is applied in order to give more priority to the sensors that are
less available. To obtain the values, Eq. 11 is applied at the
beginning of each simulation. It is important to mention that
the weights of the sensors s differ from one ASV p to another,
as they depend on the sensors installed on each ASV.

For the weights of the terms of Eq. 12 and Eq. 13,
c1, c2, c3, c4, in the exploration phase, the values obtained
in [37] are used, and for the exploitation phase, the weights
are set to the values obtained in [38]. The studies mentioned
earlier were specifically conducted for a fleet of 4 vehicles,
which in the case of the AquaHet-PSO, refers to 4 sensors of
the same type. Therefore, for a different number of vehicles,
the weight values used in the algorithm vary. The weight
values for these scenarios can be found in Table 9 of the
Appendix B. The values of the weights of c shown in Table 6
are for a number of 4 sensors or more. In the AquaHet-
PSO, first, the ASVs travel 10km to obtain data from the
entire surface of the lake, focusing on the exploration of
the water resource. After collecting the necessary data, the
ASVs focus on characterizing the areas where the highest
levels of contamination are found. During the exploitation
phase, each ASV covers a distance of 10km. These values
were determined according to the study performed in [25].
This study demonstrated that a balanced ratio of 50% explo-
ration distance (exploration_distance) and 50% exploitation
distance (exploitation_distance) is optimal. As a result, the
maximum distance max_dist for the monitoring mission is
set at 20km. To determine the radius of the action zones
rad , the value set in the length scale is taken into account.
The goal is to ensure that there are no significant changes
between the positions of the measurements within the zones.
All parameters and hyper-parameters that are set are shown
in Table 6.

D. PERFORMANCE METRICS
The main objective of the proposed monitoring system is to
minimize the discrepancy between the actual models of the
water quality parameters ys(xi) and their estimated models
ŷs(xi), as discussed in Section III-A. In addition to using
Mean Squared Error (MSE) across the entire search space,
Eq. 2, as a comparison metric, the following metrics are also
utilized:
1) R-squared (R2): It measures the goodness of fit between

the ground truths ys(xi) and the estimated models ŷs(xi)
across the entire search spaceN . The term N represents
the number of elements of the set N , S represents the
number of elements of the set S, and the term ȳs(x)
is the average of the values. To obtain the R2 value
of the monitoring system, Eq. 17 is applied. It is first
necessary to calculate the R2 between each ground truth
and estimated model of the sensors that compose the set
S. Then, the average of the results is obtained.

TABLE 6. Parameter values for informative path planner tests

Component Parameter Value

Simulation
parameters

Number of vehicles (|P|) 5 - 10 vehicles
Type of WQP sensors 2 - 10 WQPs
Number of sensors
of the same type 2 - 6 sensors

Simulations 50 simulations
max_dist 20km

Gaussian
process

ℓ0 10
ℓbounds [1× 10−5, 10]

AquaHet-PSO

λ 0.3
c1explore 2.0187
c2explore 0
c3explore 3.2697
c4explore 0
c1exploit 3.6845
c2exploit 1.5614
c3exploit 0
c4exploit 3.1262
exploration_distance 10km
exploitation_distance 10km
rad 1km (10)

Genetic
algorithm

individual list of indices size |P|
population 10*|P|
generations 10*|P|
crossover probability 0.5
crossover function Ordered
mutation probability 0.5
mutation function Shuffle Indices
Algorithm EA µ+ λ
Selection function Tournament (size=3)

fitness
max sensor

distance (Eq. 7)

R2
map(ys, ŷs) =

1

S

S∑
s=1

(
1−

∑N
i=1(ys(xi)− ŷs(xi))2∑N
i=1(ys(xi)− ȳs(x))2

)
(17)

2) Peak Error: It calculates the difference between the
peaks of the CAZs in the ground truth ys(xi) and es-
timated models ŷs(xi) by applying Eq. 18. This metric
provides insight into the error associated with the detec-
tion of contamination peaks. The term Zpeaks represents
the number of contamination peaks detected using the
CAZ. The error is calculated by taking the average of the
errors of the peaks in the CAZ associated with the CAZ
sensors (Sz). Subsequently, the average of these CAZ
errors is computed. The term Sz refers to the number of
WQPs belonging to CAZ.

Errorpeak(ys, ŷs) =
1

Zpeaks

Z∑
z=1(

1

Sz

Sz∑
s=1

(|ys(xi)− ŷs(xi)|)

) (18)

3) MSE of CAZs: It calculates the average squared dif-
ference between the ground truth ys(xi) and estimated
models ŷs(xi) specifically for the CAZs. This value is
obtained using Eq. 19. To calculate the MSE in the
CAZs, first, the MSE between the ground truth and the
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estimated models of the sensors that form the CAZ (S‡),
is computed. Then, the average of these MSE results is
calculated, considering the CAZs. It is important to note
that the MSE is calculate specifically for the areas (coor-
dinates) that compose the CAZs. The Zcoord corresponds
to the number of coordinates that constitute the CAZs.

MSECAZ (ys, ŷs) =
1

Zcoord

Z∑
z=1(

1

Sz

Sz∑
s=1

(ys(xi)− ŷs(xi))2
) (19)

E. DECOUPLED METHOD VS COUPLED METHOD
This subsection presents a comparison between the AquaHet-
PSO variants, the decoupled and the coupled methods. In
the decoupled method, the monitoring system prioritizes only
one vehicle sensor during each time period, whereas in the
coupled method, all ASV sensors influence the movement
of the vehicles, giving priority to the WQP with the fewest
sensors in the fleet.

Apart from comparing themethods, the impact of the initial
positions of the ASVs is also assessed. The study analyzes the
behaviors of themethods when the GA is applied to assign the
starting points of the vehicles, as well as when the distribution
of the vehicles is notmaximized (without GA). An example of
this application is shown in Fig. 4, where the initial positions
of the vehicles are shown without using the GA (Fig. 4(a)),
and Fig. 4(b) shows the new initial positions by applying the
maximization of the initial distance between the ASVs (GA).
These tests are conducted considering different numbers of
sensors of the same type. The results are shown in Table 7.

Fig. 7 shows the results obtained for the case of 4 or more
sensors in boxplot format, where AquaHet-PSO-C-GA is the
abbreviation for the coupled method of the AquaHet-PSO
using the GA for the initial positioning of the ASVs, the
AquaHet-PSO-C for the coupled method of AquaHet-PSO
without the use of the GA, AquaHet-PSO-D-GA refers to
the decoupled method of AquaHet-PSO using the GA for
the initial GA positions and AquaHet-PSO-D refers to the
decoupled method of AquaHet-PSO without using the GA.

The test results show that the coupled method, which uses
the GA to assign the initial positions of the ASVs, performs
better than the other methods. This can be attributed to the fact
that all sensors influence the motion of the vehicles, i.e., the
optimal positions of each sensor are considered to determine
the next position.

In contrast, the decoupled method, where only one sensor
is prioritized per time period, has limitations. Vehicles are
unable to effectively scan optimal zones for other sensors,
resulting in deficient model generation where the pollution
zones for those sensors do not approach the actual pollution
zones. Consequently, the exploitation of high pollution zones
and the detection of pollution peaks related to non-priority
sensors is adversely affected.

In summary, the decoupled method may present some poor
results in both exploration and exploration. Constantly chang-
ing priority with respect to sensors can result in overlapping
paths in the exploration phase limiting exploration of unex-
plored areas. Additionally, in the exploitation phase, focusing
on a single sensor results in poor exploitation of the other
WQPs. Based on these results, the AquaHet-PSO coupled
method is selected to compare with the other informative path
planners.

The performance of the coupled AquaHet-PSO method,
with GA for initial ASV positioning, is evaluated for several
numbers of sensors of the same type of WQP. Fig. 8 shows
the results obtained as a function of the average distance
traveled by the fleet vehicles. In each test, the fleets consist of
the same number of identical-sensors, except for the scenario
with 4 or more sensors, where the fleets can have between
4 or 6 sensors of the same type. The results indicate that the
proposed monitoring system performs well when there are 4
or more sensors of the same type. This is because with a small
number of sensors of the same type, the system struggles
to generate an accurate initial model during the exploration
phase, leading to limited creation of CAZs in areas with
higher contamination levels. Consequently, the detection of
contamination peaks becomes challenging. Therefore, hav-
ing a limited number of sensors of the same type and that
vehicles may possess multiple sensors, the swarm is unable
to effectively detect local optima or contamination zones
throughout the search space. Nevertheless, when an ASV is
equipped with multiple sensors, its focus is distributed among
different parameters, potentially impacting the exploration
and exploitation of each parameter.
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TABLE 7. Comparison of AquaHet-PSO variants

Sensors of the same type Method R2 Score MSE Map Error (Peaks) MSE (CAZ)

2 sensors
Decoupled With GA 0.4022 ± 0.4148 0.0255 ± 0.0186 0.3283 ± 0.1509 0.0833 ± 0.0715

Without GA 0.1833 ± 0.6168 0.0349 ± 0.0259 0.3957 ± 0.2133 0.1170 ± 0.0987

Coupled With GA 0.4852 ± 0.4292 0.0219 ± 0.0189 0.3147 ± 0.1170 0.0719 ± 0.0740
Without GA 0.3334 ± 0.4948 0.0281 ± 0.0207 0.3484 ± 0.1834 0.0914 ± 0.0727

3 sensors
Decoupled With GA 0.6909 ± 0.3012 0.0129 ± 0.0125 0.2657 ± 0.1741 0.0419 ± 0.0504

Without GA 0.4574 ± 0.4813 0.0230 ± 0.0197 0.3304 ± 0.2160 0.0752 ± 0.0770

Coupled With GA 0.7520 ± 0.2764 0.0103 ± 0.0119 0.2190 ± 0.1783 0.0328 ± 0.0465
Without GA 0.5724 ± 0.4847 0.0183 ± 0.0204 0.2878 ± 0.2198 0.0605 ± 0.0817

4 sensors
Decoupled With GA 0.9128 ± 0.1207 0.0039 ± 0.0057 0.1790 ± 0.1629 0.0131 ± 0.0221

Without GA 0.7957 ± 0.3459 0.0089 ± 0.0153 0.2239 ± 0.2292 0.0288 ± 0.0543

Coupled With GA 0.9499 ± 0.0850 0.0022 ± 0.0041 0.1576 ± 0.1546 0.0069 ± 0.0158
Without GA 0.8806 ± 0.2055 0.0049 ± 0.0081 0.1871 ± 0.1810 0.0160 ± 0.0326

5 sensors
Decoupled With GA 0.9640 ± 0.0646 0.0013 ± 0.0019 0.1483 ± 0.1638 0.0047 ± 0.0094

Without GA 0.8856 ± 0.2326 0.0049 ± 0.0095 0.1938 ± 0.1751 0.0164 ± 0.0359

Coupled With GA 0.9692 ± 0.0741 0.0012 ± 0.0024 0.1447 ± 0.1642 0.0040 ± 0.0121
Without GA 0.9467 ± 0.1450 0.0025 ± 0.0072 0.1620 ± 0.1531 0.0079 ± 0.0263

6 sensors
Decoupled With GA 0.9747 ± 0.0506 0.0010 ± 0.0018 0.1525 ± 0.1632 0.0035 ± 0.0080

Without GA 0.9591 ± 0.0996 0.0017 ± 0.0043 0.1588 ± 0.1803 0.0058 ± 0.0175

Coupled With GA 0.9809 ± 0.0782 0.0007 ± 0.0029 0.1434 ± 0.1845 0.0027 ± 0.0141
Without GA 0.9641 ± 0.1146 0.0016 ± 0.0058 0.1495 ± 0.1679 0.0057 ± 0.0245

4 or more sensors
Decoupled With GA 0.9387 ± 0.0992 0.0028 ± 0.0049 0.1777 ± 0.1617 0.0096 ± 0.0216

Without GA 0.8392 ± 0.2664 0.0069 ± 0.0109 0.2141 ± 0.1823 0.0242 ± 0.0446

Coupled With GA 0.9577 ± 0.0898 0.0018 ± 0.0044 0.1541 ± 0.1705 0.0060 ± 0.0188
Without GA 0.9180 ± 0.1794 0.0033 ± 0.0067 0.1757 ± 0.1672 0.0111 ± 0.0294

(a) Results of the R2 of the whole wa-
ter resource models.

(b) Results of the MSE of the whole
water resource models.

(c) Results of the peak errors. (d) Results of the MSE of the com-
bined action zone models.

FIGURE 7. Distribution of the obtained results for the AquaHet-PSO methods using the GA and without using the GA for the initial positioning of the ASVs.

F. COMPARISON OF MULTI-OBJECTIVE AND
HETEROGENEOUS INFORMATIVE PATH PLANNERS
In this subsection, the performance of multi-objective and
heterogeneous path planners is compared. The parameters
of all path planners are set with the same values shown in
Table 6, including the number of vehicles (N), number of
sensors (S), length scale of GPs, among others.

One of the informative path planners that is compared is the
lawnmower algorithm. The implementation of this algorithm
is based on the code provided by [40]. The interspace param-
eter is set to match the Gaussian Process (GP) length scale,
which is 10. This ensures that there are minimal variations
between sensor measurements taken at different positions.
The initial positions of the ASVs in the lawnmower algorithm
are the same as those used in the AquaHet-PSO method
without GA.

Table 8 presents the results obtained from the tests per-
formed for different numbers of sensors of the same type.

It can be seen that for a low number of sensors of the same
type, the lawnmower outperforms the coupled AquaHet-PSO
method. Asmentioned above, having a low number of sensors
of the same type and the possibility of each ASV having more
than one sensor on board makes it difficult to explore the sur-
face of the water resource. This is because the vehicle needs
to cover a larger area of the water resource and to explore
the surface it must consider the best local and uncertainty
of all the sensors on board. Consequently, it also affects the
segmentation of the lake and the detection of contamination
peaks. As the number of sensors of the same WQP increases,
the monitoring system can cover a larger area of the water
resource, allowing more measurements and improving the
initial model. This facilitates the creation of CAZs in regions
with higher pollution potential, resulting in better detection of
pollution peaks. Starting with a minimum of four sensors of
the same type, the AquaHet-PSO shows a significant perfor-
mance improvement compared to lawnmower. These results
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(a) Mean and standard deviation of the R2 of the whole water resource
models.

(b) Mean and standard deviation of the MSE of the whole water
resource models.

(c) Mean and standard deviation of the peak errors. (d) Mean and standard deviation of the MSE of the combined action
zone models.

FIGURE 8. Results obtained using the coupled AquaHet-PSO method, which incorporates the use of GA for assigning the starting points of ASVs, for
various numbers of sensors of the same type.

TABLE 8. Performance comparison of informative path planners for different numbers of sensors of the same type

Sensors of the same type Informative Path Planner R2 Score MSE Map Error (Peaks) MSE (CAZ)

2 sensors
Lawnmower 0.5128 ± 0.3945 0.0214 ± 0.0179 0.2945 ± 0.1766 0.0694 ± 0.0847

AquaHet-PSO With GA 0.4852 ± 0.4292 0.0219 ± 0.0189 0.3147 ± 0.1170 0.0719 ± 0.0740
Without GA 0.3334 ± 0.4948 0.0281 ± 0.0207 0.3484 ± 0.1834 0.0914 ± 0.0727

3 sensors
Lawnmower 0.6427 ± 0.3784 0.0162 ± 0.0173 0.2414 ± 0.1882 0.0469 ± 0.0643

AquaHet-PSO With GA 0.7520 ± 0.2764 0.0103 ± 0.0119 0.2190 ± 0.1783 0.0328 ± 0.0465
Without GA 0.5724 ± 0.4847 0.0183 ± 0.0204 0.2878 ± 0.2198 0.0605 ± 0.0817

4 sensors
Lawnmower 0.7815 ± 0.2821 0.0089 ± 0.0109 0.1926 ± 0.1755 0.0219 ± 0.0439

AquaHet-PSO With GA 0.9499 ± 0.0850 0.0022 ± 0.0041 0.1576 ± 0.1546 0.0069 ± 0.0158
Without GA 0.8806 ± 0.2055 0.0049 ± 0.0081 0.1871 ± 0.1810 0.0160 ± 0.0326

5 sensors
Lawnmower 0.8918 ± 0.2245 0.0048 ± 0.0098 0.1544 ± 0.1676 0.0092 ± 0.0286

AquaHet-PSO With GA 0.9692 ± 0.0741 0.0012 ± 0.0024 0.1447 ± 0.1642 0.0040 ± 0.0121
Without GA 0.9467 ± 0.1450 0.0025 ± 0.0072 0.1620 ± 0.1531 0.0079 ± 0.0263

6 sensors
Lawnmower 0.9182 ± 0.2205 0.0034 ± 0.0092 0.1588 ± 0.1664 0.0061 ± 0.0182

AquaHet-PSO With GA 0.9809 ± 0.0782 0.0007 ± 0.0029 0.1434 ± 0.1845 0.0027 ± 0.0141
Without GA 0.9641 ± 0.1146 0.0016 ± 0.0058 0.1495 ± 0.1679 0.0057 ± 0.0245

4 or more sensors
Lawnmower 0.7935 ± 0.4354 0.0085 ± 0.0140 0.1920 ± 0.1607 0.0198 ± 0.0450

AquaHet-PSO With GA 0.9577 ± 0.0898 0.0018 ± 0.0044 0.1541 ± 0.1705 0.0060 ± 0.0188
Without GA 0.9180 ± 0.1794 0.0033 ± 0.0067 0.1757 ± 0.1672 0.0111 ± 0.0294

can be seen in the form of a boxplot in Fig. 9. Additionally,
the results during themission, in terms of the average distance

traveled by the ASVs, are shown visually in Fig. 10. Fig. 10
shows the results obtained with respect to the lawnmower
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(a) Results of the R2 of the whole wa-
ter resource models.

(b) Results of the MSE of the whole
water resource models.

(c) Results of the peak errors. (d) Results of the MSE of the com-
bined action zone models.

FIGURE 9. Distribution of the obtained results from the informative path planners compared in Table 8.

(a) Mean and standard deviation of the R2 of the models of the entire
water resource.

(b) Mean and standard deviation of the MSE of the models of the
entire water resource.

(c) Mean and standard deviation of the peak errors. (d) Mean and standard deviation of the MSE of the models of the
combined action zones.

FIGURE 10. Results obtained from the informative path planners during the monitoring task for fleets with 4 or more sensors of the same type.

and AquaHet-PSO methods for the case of 4 or more sen-
sors during the monitoring mission. Initially, the lawnmower
method outperforms the AquaHet-PSO in the tests. However,
as the mission progresses, the AquaHet-PSO demonstrates
better performance. This difference in performance can be

attributed to several factors. With the lawnmower method, the
ASVs thoroughly explore the surface at the beginning of the
mission. However, this method does not account for model
uncertainty and does not effectively exploit areas of increased
contamination. As a result, the lawnmower method may not
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generate the most accurate models of WQPs over time. In
contrast, the AquaHet-PSO considers the model uncertainty
and actively scans unexplored areas to minimize uncertainty.
In addition, during the exploitation phase, ASVs focus on
areas with a high risk of contamination and collect more
measurements to generate the best possible models. This
combination of exploration and exploitation strategies allows
the AquaHet-PSO to outperform the lawnmower method as
the mission progresses.

Fig. 11 and Fig. 12 depict monitoring missions conducted
using the lawnmower and the AquaHet-PSO monitoring sys-
tems, respectively. The missions involve a fleet of 8 vehicles
equipped with 4 sensors for each of the 4 WQPs. The ground
truth of the WQPs can be seen in Fig. 6, which is located
in Section V-B. In Fig. 11, the initial positions of the ASVs
are not optimized but randomly selected from either port or
clearing points in the Ypacarai lake. Fig. 11(a) illustrates the
movement of the ASVs during the mission, while Fig. 11(b)
showcases the WQP models obtained at the conclusion of the
mission. Due to the random initial positioning of the ASVs,
the lawnmower may not capture all contamination peaks
effectively. This discrepancy is evident when comparing the
ground truth of parameter s4 (Fig. 6) with themodel generated
by the monitoring system (Fig. 11(b)).

On the other hand, the AquaHet-PSO takes advantage of
the GA algorithm to optimize the initial positioning of ASVs.
This approach ensures a larger coverage of the surface of
the Ypacarai lake by maintaining a significant separation be-
tween ASVs equipped with the same sensor. The movement
and initial positions of ASVs during the exploration phase are
depicted in Fig. 12(a). In this figure, the dispersion of vehicle
movement is evident as the active terms are the best local
and maximum uncertainty, enabling the exploration of un-
charted areas. Fig. 12(b) presents the initial models of WQPs
obtained at the end of the exploration phase. Comparing
these initial models with the final model of the lawnmower
method highlights the importance of maximizing the initial
positions of ASVs. After covering a distance of 10 km, the
proposed system successfully detects potential contamination
zones. These zones are delineated through the second phase of
AquaHet-PSO. Fig. 12(c) illustrates the operation of the sec-
ond phase, where 5 CAZs are determined based on the initial
models obtained. ASVs are then assigned to their respective
zones. When a sufficient number of ASVs is available, the
zones are generated according to Step 1 in Section IV-D2b.
CAZ 0, being the largest, accommodates three ASVs and
focuses on exploiting three WQPs. CAZ 1 has two ASVs
assigned to exploit two parameters. Finally, CAZs 2, 3, and 4
correspond to individual parameters, with one ASV assigned
to each zone. Fig. 12(d) illustrates the movement of the ASV
from the end of the exploration phase to the corresponding
CAZs and the movement during the exploitation phase. It is
worth noting that while the ASV moves towards its assigned
zone, it continues to take measurements. By prioritizing best
local, best global, and maximum contamination terms, the
ASV movements are concentrated in areas with high con-

tamination levels. In Fig. 12(e), the models generated for
each WQP in the respective CAZs are shown. Adding up the
parameters measured in each zone results in 8 GPs, leading
to the generation of 8 models in the exploitation phase: 3 in
CAZ 0, 2 in CAZ 1, and 1 each in CAZs 2, 3, and 4. To obtain
the final model for eachWQP, the measurements collected by
the ASVs are fused in the central server, resulting in a single
model for each parameter. Fig. 12(f) demonstrates that the
generated models closely resemble the ground truth values of
the corresponding parameters.
The computational time needed for an AquaHet-PSOmon-

itoring mission is contingent on the number of samples taken
and the quantity of WQPs under monitoring. In other words,
as the number of sensors and monitored WQPs increases,
the complexity of the mission escalates, resulting in longer
computational durations. The duration of a monitoring mis-
sion can range from approximately 7 seconds in scenarios
involving a fleet of 5 vehicles, each measuring 2 WQPs with
2 sensors for each WQP, to the most intricate case studied,
which lasts 53 seconds. This complex scenario involves a
fleet of 10 vehicles monitoring 10 WQPs, with each WQP
equipped with 2 sensors. These investigations were carried
out within the specified constraints, allowing each vehicle to
carry up to 3 sensors and considering amaximum of 10WQPs
to monitor (as detailed in Table 6).

G. DISCUSSION OF THE RESULTS
The main results obtained in this work are presented below:

• The coupled and decoupled methods of AquaHet-PSO
differ in the information they consider to guide the
ASVs. While in the coupled method, information from
all sensors in the ASV are considered, in the decoupled
method, the algorithm gives priority to information from
a single sensor per time period. However, prioritizing
only one sensor per time period affects the generation of
the models and the detection of the contamination peaks
of the other water quality parameters. In the course of the
mission, the ASV focuses on exploiting the parameter
that has the maximum values of the terms, and it may
be the case that such information is always from the
same parameter, detracting from the priority of the other
parameters.

• The use of the genetic algorithm to select the initial
position of the ASVs plays an important role in improv-
ing the performance of the AquaHet-PSO. Maximizing
the distance between ASVs having the same type of
sensor allows to cover a larger area of the water resource
in the exploration of the resource. Therefore, potential
contamination zones can be detected more effectively.

• When there are few sensors of identical type in the ASV
fleet, the lawnmower algorithm proves to be more effec-
tive in dealing with heterogeneous and multi-objective
problems. However, to navigate the water resource, the
AquaHet-PSO uses information from all sensors on
board the ASV. As a consequence, the proposed mon-
itoring system may be less advantageous in scenarios
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(a) Trajectories performed by the ASVs. (b) Models of water quality parameters obtained at
the end of the monitoring mission.

FIGURE 11. Example of the performance of the Lawnmower. The fleet has the same characteristics as the AquaHet-PSO example (Fig. 8). In the ASV
movement graphs, the trajectory of the vehicles is represented in different color.

where with small number of sensors of the same type
because the maximum uncertainty or contamination of
the sensors on board the ASV can be at opposite ex-
tremes. As a result, the ASVmight not detect all possible
contamination sources in the exploration phase, which
may affect the effectiveness of the other phases of the
AquaHet-PSO.

• On the contrary, when the number of identical sensors is
higher, the AquaHet-PSO performs better than the lawn-
mower. Guided by data frommore than onewater quality
parameter is not as advantageous with a small number of
identical sensors. However, when the number is larger,
this weakness becomes the strength of the algorithm. It
allows measurements to be obtained from different types
of sensors in optimal positions. As a consequence, it
is possible to detect regions with possible contamina-
tion hotspots. With these first approximations, possible
action zones are delimited and exploited, resulting in
the detection of pollution peaks and the generation of
good models of water quality parameters. The results
for R2 of the lawnmower with respect to the coupled
method of the AquaHet-PSO with GA decrease by 17%
in the case of 4 or more sensors. In addition, there is
an improvement of approximately 370% in the genera-
tion of water quality parameter models over the entire
search space, a 24% improvement in the detection of
contamination peaks and a 230% improvement in the
characterization of water quality parameters in areas of
potential contamination.

VI. CONCLUSION AND FUTURE WORK
A multi-objective monitoring system for a fleet of hetero-
geneous ASVs has been developed and simulated in this
work, the AquaHet-PSO. The proposed monitoring system is
based on the PSO, the GP, and the GA. It makes use of the
GP as a surrogate model. The GP allows the generation of

complete models for water quality parameters, which facili-
tates the estimation of data on the entire water resource. The
objectives of the AquaHet-PSO are to generate good models
of multiple quality parameters itself, and to detect pollution
peaks of these parameters. The ASV fleet is composed of
vehicles that do not have the same water quality parameter
measurement capabilities, which we call heterogeneous ASV
fleet. By applying the GA, the initial positions of ASVs
with identical sensors can be optimized, allowing increased
coverage of a wider area from the beginning of themonitoring
mission. Then, the operation of the AquaHet-PSO consists
of three phases. The first phase is the exploration phase.
In this first phase, the aim is to cover the largest possible
area of water resource in order to generate good first models
of water quality parameters. The first models generated are
used in the second phase of the algorithm. In the second
phase, called resource allocation, the regions where potential
areas with high contamination levels are detected (combined
action zones) are delimited and ASVs are assigned to these
regions. The ASVs are assigned according to the sensors
they possess and the water quality parameters measured in
each zone. This phase aims to optimize measurements and
focus on areas with high pollution levels by taking advan-
tage of the capability of ASVs to have on board several
different sensors. This approach allows the collection of data
for different water quality parameters within the combined
action zones, which improves measurement efficiency and
zone characterization. Finally, the exploitation phase. In this
phase, the ASVs focus on characterizing the water quality
parameters in depth, taking measurements in the combined
action zones. The distributed learning technique is used in
the exploitation phase so that each sub-fleet assigned to the
action zones operates independently of the other fleets. This
allows the ASVs to focus only on the zone to which they are
assigned. The generation of the final models is performed on
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(a) Trajectories performed by the ASVs in the ex-
ploration phase.

(b) Models of water quality parameters obtained in
the exploration phase.

(c) Segmentation of the Ypacarai lake into com-
bined action zones and allocation of ASVs.

(d) Trajectories performed by the ASVs in the ex-
ploitation phase.

(e) Models of water quality parameters of the com-
bined action zones obtained in the exploitation
phase.

(f) Final models of water quality parameters ob-
tained at the end of the monitoring mission.

FIGURE 12. Example of the performance of the proposed monitoring system. The example shows the 3 phases of the AquaHet-PSO. In the ASV movement
graphs, the trajectory of the vehicles is represented in different color.

the central server at the end of the three phases mentioned
above. The measurements of the combined action zones are
merged to obtain the final models of the water quality pa-
rameters. The results of the study showed the effectiveness
of the monitoring system in meeting the challenges related
to multi-objective monitoring missions and heterogeneous
fleets. In addition, the importance of strategic initial vehicle
positioning for simultaneous monitoring of multiple water
quality parameters was validated. TheAquaHet-PSO success-
fully generated accurate models for water quality parame-
ters, performed comprehensive characterization of potentially
contaminated areas, and detected pollution peaks for each
parameter. As future work, the monitoring system will be im-
proved by integrating the Pareto dominance method instead
of the scalarization of the objectives to calculate the PSO
components and the coordinates of maximum contamination
and uncertainty. Furthermore, it is proposed to implement
the monitoring system in a real-world heterogeneous fleet

of ASVs for further validation and evaluation. Additionally,
research will be conducted to develop informative path plan-
ning solutions for heterogeneous fleets based on alternative
heuristic algorithms.

APPENDIX A
ENHANCED GP-BASED PSO
The Enhanced GP-based PSO is a monitoring system that is
based on the PSO and has the GP as surrogate model [14].
In the Enhanced GP-based PSO, the number of sensors S
is considered equal to 1, i.e., only the modeling of a WQP
is considered. Since it is an algorithm capable of solving
problems with a single criterion.
The Enhanced GP-based PSO combines the cognitive com-

ponents of the PSO,pbest andgbest, with the responses ob-
tained from the GP, µ and σ. In the informative path planner,
the ASVs are the particles, and the ASV fleet is represented
by the swarm. The mean µ obtained from the GP represents
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the estimated model of theWQPs. The standard deviation σ is
the uncertainty in the estimated model. The higher the value
of the mean, the higher the level of water contamination.

During the monitoring task, water resource measurements
are taken through the water quality sensors. It should be noted
that all the ASVs have the same sensors. As a result, the fleet
has a homogeneous capacity for measuring a WQP. These
measurements ys(x), along with the coordinates that conform
the Q set, are used to update the GP. After updating, the data
from the maximum µ and σ values, along with the local best
and global best values, are used to calculate the velocity vt+1

and the position xt+1 of each ASV p, Eq. 20.

vt+1
p = ωvtp + c1r t1[pbest

t
p − xtp] + c2r t2[gbest

t − xtp]

+ c3r t3[max_unt − xtp] + c4r t4[max_cont − xtp]

(20a)

xt+1
p = xtp + vt+1

p (20b)

The coordinates that are considered to obtain the best local
pbest and global best gbest are the points where the ASVs
have already passed. All these points form the set U ⊂ N .
Within the set U , there are the subsets U(p), which are com-
posed of the points through which each ASV p has traveled.
Eq. 21a and Eq. 21b show how the values of local best and
global best are obtained, respectively. The max_unt term
is the coordinate where the maximum value of the model
uncertainty (σ) is found at time t , Eq. 21c, and themax_cont

term represents the coordinate where the maximum value
of the model mean (µ) or maximum contamination value is
obtained, Eq. 21d. The terms c3 and c4 are the acceleration
coefficients that determine the significance of the uncertainty
and contamination terms. r3 and r4 are random values that are
within the range [0, 1].

pbesttp = argmax{µs(x)} : x ∈ U(p) (21a)

gbestt = argmax{µs(x)} : x ∈ U (21b)

max_unt = argmax{σs(x)} : x ∈ N (21c)

max_cont = argmax{µs(x)} : x ∈ N (21d)

APPENDIX B
ACCELERATION COEFFICIENTS VALUES
The studies in [37] and [38] were conducted for fleets of 4
vehicles, which means that these values are not the optimal
weights for other numbers of vehicles. Because of this, further
studies are conducted to obtain the optimal values of the
weights of the Enhanced GP-based PSO algorithm for explo-
ration and exploitation approaches. The studies are performed
with the same conditions mentioned in [37] and [38], using
Bayesian optimization for the hyper-parameterization of the
weights. The results obtained are shown in Table 9. When the
number of vehicles is greater than 4, the weights do not have
significant variations. Therefore, the weights of the Enhanced

GP-based PSO terms for more than 4 vehicles are fixed to the
values of the weights for 4 vehicles.

TABLE 9. Acceleration coefficients

Coefficients 2 vehicles 3 vehicles 4 or more vehicles

Explore

c1 0.2517 1.2131 2.0187
c2 3.4080 3.1476 0
c3 1.4596 1.5157 3.2697
c4 0 0 0

Exploit

c1 2.7460 1.3588 3.6845
c2 3.3385 1.4528 1.5614
c3 0 0 0
c4 3 4 3.1262
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