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Quantum Transport in Nonuniform Magnetic Fields: Aharonov-Bohm Ring as a Spin Switch
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We study spin-dependent magnetoconductance in mesoscopic rings subject to an inhomogeneous
in-plane magnetic field. We show that the polarization direction of transmitted spin-polarized electrons
can be controlled via an additional magnetic flux such that spin flips are induced at half a flux quantum.
This quantum interference effect is independent of the strength of the nonuniform field applied. We give
an analytical explanation for one-dimensional rings and numerical results for corresponding ballistic
microstructures.
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Recent experimental progress [1] in creating spin-
polarized charge carriers in semiconductors indicates the
principle ability to perform spin electronics [2] based on
nonmagnetic semiconductor devices. This widens the field
of usual magnetoelectronics in metals and opens up the
intriguing program of combining the rich physics of spin-
polarized particles with all the advantages of semicon-
ductor fabrication and technology, e.g., precise design of
nanoelectronic devices with controllable charge carrier
densities and optoelectronical applications. Besides, the
spin relaxation times involved can be rather long; coher-
ence of spin states can be maintained up to scales of more
than 100 mm [3]. Hence coherent control and quantum
transport of spin states in semiconductor heterojunctions
or quantum dots are attracting increasing interest [4], also
in view of proposed future applications including spin
transistors [5], filters [6], and scalable devices for quantum
information processing [7], to name only a few.

In nonmagnetic semiconductors the coupling of the
carrier spin to an applied magnetic field can be used to
control the spin degree of freedom. In this respect, nonuni-
form magnetic fields whose direction varies on mesoscopic
length scales (textured fields) are of particular interest.
Besides the usual Zeeman spin splitting, they give rise to a
variety of additional effects absent in conventional charge
quantum transport.

In the limit of a strong magnetic field the electron spin
can adiabatically follow the spatially varying field direc-
tion, and the spin wave function acquires a geometrical
or Berry phase [8]. In mesoscopic physics, Berry phases
were first theoretically studied for one-dimensional (1D)
rings [9,10]. They are also expected to give rise to clear
signatures in the magnetoconductance of two-dimensional
(2D) ballistic microstructures [11]. Nonuniform magnetic
fields on mesoscopic scales have been realized in semicon-
ductors, for instance, by placing micromagnets [12,13] or
ferromagnetic stripes [14] above or into the plane of a 2D
electron gas in high-mobility semiconductor heterostruc-
tures. However, although magnetic inhomogeneities of up
to 1 T have been reported [15], it is difficult to experi-
mentally reach the truly adiabatic regime. The coupling of
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the carrier spins to more realistic moderate inhomogeneous
fields generally leads to nonadiabatic, spin-flip processes
counteracting geometrical phases. Hence, despite various
experimental efforts [13,16] a clear-cut demonstration of
Berry phases in mesoscopic transport remains an experi-
mental challenge.

In this Letter we study nonadiabatic, spin-dependent
coherent transport through ballistic mesoscopic rings in
the presence of textured fields. This enables us, on the
one hand, to quantitatively investigate for unpolarized
electrons the relevant conditions necessary to observe
geometrical phases or their nonadiabatic generalizations,
Aharonov-Anandan phases [17]. On the other hand, we
show for spin-polarized charge carriers how to use inho-
mogeneous fields to induce spin flips in a controlled way.
For Aharonov-Bohm (AB) ring geometries (with in-plane
nonuniform field) coupled symmetrically to two leads we
demonstrate that the spin direction of polarized particles
transversing the rings can be tuned and even reversed by
applying an additional small control field. This quantum
effect exists irrespective of adiabaticity.

We consider symmetric 1D and 2D ballistic rings with
two attached leads as shown in Fig. 1. For the inhomo-
geneous magnetic field we assume a circular configuration
�Bi� �r� � Bi�r�ŵ � �a�r�ŵ (in polar coordinates) centered
around the inner disk of the microstructure [18]. The Ham-
iltonian for noninteracting electrons with effective mass
m� and spin given by the Pauli matrix vector �s reads, in
the presence of a magnetic field �B � �= 3 �A,

H �
1

2m�

∑
�p 1

e
c

�A��r�
∏2

1 V ��r� 1 m �B ? �s . (1)

The potential V ��r� defines the confinement of the ballistic
conductor. In our case the vector potential has two con-
tributions, �A � �A0 1 �Ai. The term �Ai��r� generates the
inhomogeneous field �Bi� �r� and �A0 represents a (weak) per-
pendicular uniform field �B0 or an AB flux f to be used
as an additional tunable parameter to study the magneto-
conductance. In Eq. (1), m � g�mB�2 � g�eh̄��4m0c�
where mB is the Bohr magneton, m0 is the bare electron
mass, g� is the effective gyromagnetic ratio, and e . 0.
© 2001 The American Physical Society 256602-1



VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001
FIG. 1. Geometries of ballistic microstructures used in the
quantum calculations of the spin-dependent conductance for a
circular (in-plane) magnetic field texture plus a magnetic flux
f. Spin directions are defined with respect to the y axis.

We compute the spin-dependent conductance
G�E, Bi, f� for two-terminal quantum transport through
the microstructures using the Landauer formula. We focus
on the case where the two leads of width w support only
one open channel [19]. The spin-dependent conductance
then reads, for zero temperature,

G�E, Bi, f� �
e2

h
�jt""j2 1 jt##j2 1 jt#"j2 1 jt"#j2� . (2)

We define the spin direction with respect to the y axis in
Fig. 1. The transmission coefficients T #" � jt#"j2 �T "# �
jt"#j2� describe transitions between an incoming state from
the right with spin up (down) to an outgoing state to the left
with spin down (up). They vanish for Bi � 0. In the oppo-
site, adiabatic limit of a strong magnetic field, the magnetic
moment associated with the electron spin traveling around
the ring stays (anti)aligned with the local inhomogeneous
field. Hence, for the field geometry in Fig. 1(a) an incom-
ing spin-up state is then converted into a spin-down state
upon transmission through the ring, and vice versa. In the
strong-field limit, T "" � jt""j2 � 0 and T ## � jt##j2 � 0.

For the experimentally relevant, intermediate case of
moderate magnetic fields one must solve coupled equa-
tions for the spin states to account for spin flips. We
calculate the four spin-dependent transmission amplitudes
by projecting the corresponding Green function matrix of
the system onto the transverse mode spinors (of incoming
and outgoing states) in the leads. We obtain the Green
functions for the Hamiltonian (1) numerically after gen-
eralizing the recursive Green function method for spinless
particles to the case with spin. This requires one to re-
place the on-site and hopping energies in a tight-binding
approach by 2 3 2 spin matrices [20].

We first study how adiabaticity is approached in meso-
scopic rings by considering the spin-dependent transmis-
sion of unpolarized electrons in the full crossover regime
between Bi � 0 and the adiabatic limit. The appearance of
geometrical phases requires an adiabatic separation of time
scales: For 1D rings of radius r0 the Larmor frequency of
spin precession, vs � 2mB�h̄, must be large compared
to the frequency v � yF�r0 of orbital motion with Fermi
velocity yF around the ring [10]. In the adiabatic limit a
geometric phase g"�#� is acquired during a round-trip. For
the in-plane field considered, g"�#� � p giving rise to a
geometric flux 2f0�2 with f0 � hc�e. With an AB flux
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f it adds up to an effective flux f 2 f0�2. This causes a
shift in the AB magnetooscillations of T "# and T #" such that
the overall transmission T �f � 0� � 0 [11], since also T ""

and T ## tend to zero; see above. The condition for adia-
baticity can be written as

q �
v

vs
�

kFr0

g��m��m0� �pr2
0 B�f0�

ø 1 , (3)

with kF � m�yF�h̄. For 2D rings of width d and mean
radius r0 the angular �ŵ� component of �kF is relevant for
adiabaticity. For the mth propagating mode in a 2D ring,
q in Eq. (3) is then replaced by the rescaled parameter
qw � q

p
1 2 �m��kFd�p��2 (provided that d�r0 ø 1).

To show how adiabaticity is approached we consider
transport through a ring with one open channel, m � 1.
The solid line in Fig. 2 depicts the numerically obtained
average transmission �T�E, f � 0��E as a function of
1�qw for the quasi-1D ring of Fig. 1(b) �d�r0 � 0.25� at
f � 0. The average is taken over an energy interval (be-
tween the first and the second open channel) at fixed qw to
smooth out energy-dependent oscillations. With increasing
1�qw the transmission �T�E, f � 0��E tends to zero which
is a clear signature of the geometrical phase as discussed
above. The overall decay is Lorentzian, 	�1 1 q22

w �21

(dotted line in Fig. 2). This curve and the dashed line,
which agrees well with the numerical result, are obtained
in an independent transfer matrix approach for a 1D ring
[Fig. 1(a), qw � q] to be discussed below.

In our calculations �kFr0� 
 15. In a typical experi-
mental setup, kFr0 � 2pr0�lF 
 60 for r0 
 500 nm
and 1�q 
 0.07B�T� and 0.86B�T� for GaAs and InAs.
However, despite the relatively large fields necessary for
satisfying Eq. (3) for q, the scaling factor entering into qw

allows one to reach adiabaticity for considerably lower

FIG. 2. Energy-averaged quantum transmission as a function
of the adiabaticity parameter qw (see text) for unpolarized elec-
trons through rings with circular in-plane magnetic field (as in
Fig. 1) and zero flux. The solid line represents numerical results
for the geometry in Fig. 1(b). The dashed curve shows results
from a corresponding transfer-matrix approach for a 1D ring
[Fig. 1(a); see text]. The dotted line shows an overall Lorentzian
dependence 0.916��1 1 q22

w �. Inset: 1D approximate [Eq. (4),
dashed line] and full (solid line) results for strongly coupled
leads (e � 0.5). In all curves �T �E, f � 0��E ! 0 for qw ! 0
owing to geometrical phases.
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field strengths. This is achieved by reducing either the
width of quasi-1D rings or kF via the electron density [21].

In the following we study how the spin-dependent trans-
mission changes as a function of an additional flux f �
pr2

0 B0 with B0 ø Bi. Our main results are summarized
in Fig. 3 showing �T�E, f��E for three scaled strengths
qw � 20, 1.4, 0.25 of the inhomogeneous field. We con-
sider up-polarized, incoming spins; equivalent results are
obtained for spin-down states. In the weak-field limit,
Fig. 3(a), �T #"� (dotted line) is close to zero, and the total
transmission (solid line) shows usual AB oscillations pre-
dominantly given by �T ""� (dashed line). The behavior is
reversed in the adiabatic limit, panel (c), where �T #"� ex-
hibits AB oscillations, shifted by f0�2 due to the geomet-
rical phase as discussed above.

Panel (b) shows the general case of an intermediate field.
With increasing flux the polarization of transmitted elec-
trons changes continuously. Most interestingly, �T #"� � 0
at f � 0, while �T ""� � 0 for f � f0�2. For zero flux
an ensemble of spin-polarized charge carriers is transmit-
ted always keeping the spin direction, while for f � f0�2

FIG. 3. Averaged transmission for up-polarized incoming elec-
trons (see Fig. 1) through a quasi-1D ring as function of a flux
f � pr2

0 B0 in the presence of a circular in-plane field Bi ¿ B0
of increasing strength: (a) weak, (b) moderate, and (c) strong.
The overall transmission (solid line) is split into its components
�T ""� (dashed line) and �T #"� (dotted line). Note the change in
the polarization upon tuning the flux and the spin-switch mecha-
nism at f � f0�2.
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the transmitted electrons just reverse their spin direction.
In other words, by tuning the flux from 0 to f0�2, one
can reverse the polarization of transmitted particles in a
controlled way. Hence, the AB ring plus the rotationally
symmetric magnetic field acts as a tunable spin switch, in-
dependent of the field strength Bi . 0, which determines
only the size of the spin-reversed current. Alternatively, for
a fixed flux 0 , f , f0�2 (vertical dotted line in Fig. 3)
the spin polarization is reversed upon going from the non-
adiabatic to the adiabatic regime, while the total transmis-
sion remains nearly constant.

This mechanism for changing the spin direction neither
relies on the spin coupling to the control field B0 nor on
the Zeeman splitting often exploited in spin filters. It is a
pure quantum interference effect which exists also for the
nonaveraged transmission at a given energy.

In the following we give an analytical explanation for
the numerically observed effects (Figs. 2 and 3). To this
end we consider the model of a 1D AB ring coupled to 1D
leads, Fig. 1(a), and extend the transfer matrix approach
for spinless particles [22] to the case with spin. We follow
the method outlined in [23] but consider fluxes instead of
probabilities to work with unitary transfer matrices.

The eigenstates of the Hamiltonian (1), which are ana-
lytically obtained for a ballistic 1D ring [10], are neces-
sary for implementing the transfer matrix algorithm. They
read Cn,s � exp�inw� ≠ cs

n�w�, where the first factor de-
scribes the motion along the ring and the second refers to
the spin state s � ", # [with respect to the vertical �z� axis].
The Zeeman term causes a slight difference in the kinetic
energy of spin-" and spin-# electrons traveling clockwise
or counterclockwise around the ring so that we must dis-
tinguish four possible n: n

"
j, n

#
j � j � 1, 2�. They are

given by n0 � n 1 f�f0, where the n0 are the solutions
of the equation [20] ẼF � n04 1 2n03 1 �1 2 2ẼF�n02 2

2�ẼF 1 m̃B cosa�n0 1 Ẽ2
F 2 m̃B cosa 2 �m̃B�2. Here,

ẼF � �2m�r2
0�h̄2� EF is the scaled Fermi energy, m̃ �

�2m�r2
0 �h̄2�m, and a is the tilt angle of the textured mag-

netic field with respect to the z axis. In the general, non-
adiabatic case four angles g

"
j , g

#
j # a take the role of a

and characterize the spin eigenstates which read

c "
nj

�

0
B@ cos

g
"

j

2

6ieiw sin
g

"

j

2

1
CA, c #

nj
�

0
B@ sin

g
#

j

2

7ieiw 0

cos
g

#

j

2

1
CA ,

with cotgj � 6�cota 1 �2n0
j 1 1���2m̃B sina��. In the

adiabatic limit g ! a. The transfer matrices in the gen-
eralized basis enter into the transmission formulas which
generally require a numerical evaluation.

For an in-plane field �a � p�2� without additional flux
�n � n0� the equations above simplify considerably and
we find n

"�#�
1 � 2�n#�"�

2 1 1�. Though being involved, all
expressions leading to the transmission can be handled
analytically. The transmission depends strongly on the
coupling at the junctions between the ring and the leads. It
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is given by a parameter e [22] where e � 0 �0.5� describes
zero (strongest) coupling. Adjusting e the analytical model
allows us to estimate the effective coupling to the leads in
ballistic rings used in the numerical calculations above.
The dashed line in Fig. 2 �e � 0.316� fits well with the
numerical result (solid line). For e � 0.5 and f � 0, an
approximate analytical expression for �T�E, 0��E can be
given in compact form, if we replace the energy averages
over rapidly oscillating angular functions involved by their
mean. We find, leaving the details to [20],

�T�E, f � 0��E 
 16
cos2ḡ1 sin2�Dnp�2�

4 1 cos4ḡ1�1 2 cos�Dnp��2 .

(4)

Dn � n
"
1 2 n

#
1 and ḡ1 � �1�2� �g"

1 1 g
#
1� can be ex-

pressed through qw as Dn � �1 1 q22
w �1�2 and cosḡ1 �

�1 1 q22
w �21�2. The inset in Fig. 2 shows the result (4)

(dotted line) compared to the exact 1D result (solid line)
for e � 0.5.

All the general features of �T�E, 0��E in Fig. 2 are
well described by Eq. (4). Owing to destructive inter-
ference, the transmission vanishes at points where Dn is
an even integer corresponding to 1�qw �

p
3,
p

15, . . . .
Equation (4) gives a complicated overall decay factor for
�T�E, 0��E which reduces to the Lorentzian cos2ḡ1 �
1��1 1 q22

w � in the limit e ! 0. Already for e , 0.4 this
is a good approximation for the overall crossover from the
diabatic to the adiabatic regime (dotted line in Fig. 2).

Within the 1D model we further reproduce the flux de-
pendence for spin-dependent transport, Fig. 3, and find an
analytical proof [20] for the spin-switch effect discussed
above. The transmission coefficient T "" vanishes com-
pletely at f � f0�2, if the magnetic field to which the
spins couple has no component perpendicular to the plane
of the ring. Furthermore, we find numerically that the spin-
switch effect does not occur only in quasi-1D rings but
also in doubly connected structures with more than one
open mode and arbitrary shape, as long as reflection sym-
metry with respect to the horizontal axis is preserved [20].
However, the effect requires single-channel leads [19]. We
further note that rings with Rashba (spin-orbit) interaction
[24] (yielding an effective in-plane magnetic field in the
presence of a vertical electric field) might lead to a similar
spin-switch effect.

To summarize, we have studied nonadiabatic spin trans-
port through ring geometries in inhomogeneous magnetic
fields. We obtain, numerically and analytically, the ex-
plicit dependence of the transmission on the scaled field
strength qw , which acts as an adiabaticity parameter, elu-
cidating the role of geometrical phases in quantum trans-
port and possible experimental realizations. For in-plane
fields and symmetric ballistic structures we demonstrate
how an additional small flux f can be used to control spin
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flips and to tune the polarization of transmitted electrons.
This quantum mechanism does not require adiabaticity. In
combination with a spin detector such a device may be
used to control spin polarized current, similar to the spin
field-effect transistor of Ref. [5]. Whether related effects
may prevail in diffusive ferromagnetic conductors remains
as a further interesting problem.
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