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Resumen

En esta tesis investigamos el siguiente modelo de quimiotaxis-consumo en dominios

acotados de RN (N =1,2,3):
Ou— Au= -V - (uVv), 0w —Av=—u’v,

donde s > 1, dotado de condiciones de contorno aisladas y condiciones iniciales para
(u,v), con u y v representando la densidad de células y la concentracion de la senal
quimica, respectivamente. Bajo hipétesis poco exigentes sobre la regularidad del do-
minio y a través de la convergencia de las soluciones de un modelo truncado adecuado,
se establecen dos resultados principales: existencia de soluciones débiles uniformes en
el tiempo en dominios 3D, y unicidad y regularidad en dominios 2D (o 1D). Utilizando
la teoria desarrollada en este anélisis teérico, proponemos y estudiamos un esquema
discreto en tiempo implicito tipo Backward Euler para dicho modelo combinado con
el uso de una variable auxiliar, probando existencia de solucién, estimaciones a pri-
ori uniformes en el tiempo y convergencia hacia una solucion débil (u,v) del modelo
quimiotaxis-consumo. A continuacién abordamos problemas de control 6ptimo suje-
tos al siguiente modelo de quimiotaxis-consumo controlado de forma bilineal en un

dominio acotado © C R? durante un intervalo de tiempo (0, T):
Oou — Au= -V - (uVv), v — Av=—u’v+ folg,,

siendo f el control que acttia en un subdominio 2. C €. En primer lugar, abordamos
un problema de control ¢éptimo relacionado con las soluciones débiles del modelo de
quimiotaxis-consumo controlado. Demostramos la existencia de soluciones débiles que
satisfacen una desigualdad de energia, la existencia de control éptimo sujeto a controles
acotados y discutimos la relaciéon entre el problema de control considerado y otros dos
relacionados que pueden ser de interés. A continuacién estudiamos un problema de
control 6ptimo sujeto a soluciones fuertes del citado modelo de quimiotaxis-consumo
controlado. Demostramos un criterio de regularidad que nos permite obtener existen-
cia y unicidad de soluciones fuertes globales en el tiempo, mostramos la existencia de
una solucién 6ptima global y, utilizando un teorema de multiplicadores de Lagrange,
establecemos condiciones de optimalidad de primer orden para cualquier solucién 6p-
tima local, probando existencia, unicidad y regularidad de los multiplicadores de La-
grange asociados. Finalmente, en el capitulo de conclusiones, discutimos una serie de

posibles trabajos futuros relacionados con los resultados presentados en esta tesis.



Abstract

In this thesis we investigate the following chemotaxis-consumption model in bounded
domains of RN (N =1,2,3):

Ou — Au= =V - (uVv), 0w — Av = —u’v,

where s > 1, endowed with isolated boundary conditions and initial conditions for
(u,v), with u and v representing the cell density and chemical signal concentration,
respectively. Under mild regularity assumptions on the domain and through the con-
vergence of solutions of an adequate truncated model, two main results are established:
existence of uniform in time weak solutions in 3D domains, and uniqueness and regu-
larity in 2D (or 1D) domains. Using the theory developed in this theoretical analysis,
we propose and study a Backward Euler implicit time discrete scheme combined with
the use of an auxiliary variable for the aforementioned model, proving existence of
solution, uniform in time a prior: estimates and convergence towards a weak solu-
tion (u,v) of the chemotaxis-consumption model. In the sequel we approach optimal
control problems subject to the following bilinear controlled chemotaxis-consumption

model in a bounded domain 2 C R? during a time interval (0,7):
ou — Au= -V - (uVv), v — Av=—u’v+ folg,,

with f being the control acting in a subdomain 2. C ). First, we approach an optimal
control problem related to weak solutions of the controlled chemotaxis-consumption
model. We prove the existence of weak solutions satisfying an energy inequality, the
existence of optimal control subject to bounded controls and discuss the relation be-
tween the considered control problem and two other related ones that might be of
interest. Next we study an optimal control problem subject to strong solutions of the
aforementioned controlled chemotaxis-consumption model. We prove a regularity cri-
terion that allows us to get existence and uniqueness of global-in-time strong solutions,
we show the existence of a global optimal solution and, using a Lagrange multipliers
theorem, we establish first order optimality conditions for any local optimal solution,
proving existence, uniqueness and regularity of the associated Lagrange multipliers.
Finally, in the conclusions chapter, we discuss a series of possible future works related

to the results presented in this thesis.
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INTRODUCTION

In microbiology, chemotaxis is understood as the directed migration of cells in
response to a concentration gradient of a certain chemical substance, either toward
attractant chemicals or away from repelents [53|. Chemotaxis plays an essential role
in many biological processes such as wound healing, the immune cells migration, the
migration of bacteria, among others. It is also an important factor in some undesired
events such as tumor growth, cancer metastasis and inflamatory diseases, for example
[46, 59]. In unicellular organisms, chemotaxis is frequently related to the search for
nutrients and there are studies on its applications to the degradation of polluting
substances [47, 48|.

The introduction of one of the first mathematical models for chemotaxis is at-
tributed Keller and Segel in two works from 1970 and 1971 [38, 39] which are also
regarded by some authors as a development of the work of Patlak [50]. Since then,
the research on this topic gave rise to different related models such as models with
chemoattraction or chemorepulsion, combined with production or consumption of the
chemical substance, with the presence of a logistic growth of the population of cells,
models for angiogenesis, haptotaxis and so on, covering a wide variety of applications
of very practical interest. From the mathematical point of view, the aforementioned
models possess interesting and challenging features that attracted the attention of
many authors along the years and make these models still relevant nowadays [4, 33, 34].

Among the various models for chemotaxis that were mentioned, in this thesis, we
focus on a model that describes a situation where, inside a bounded and connected
region of the d-dimensional space, with d = 1,2,3, the cells are attracted by the
concentration gradient of a chemical substance that, in its turn, diffuses and is con-
sumed by the cells. Let © be a bounded domain of R? and T' be its boundary. Let
u = u(t,x) and v = v(¢t,x) be the density of cell population and the concentration of
chemical substance, respectively, on € € and ¢ > 0. This model is governed by the

initial-boundary PDE problem

0 (1)

Ou— Au= -V - (uVv), 0w — Av=—u’v,
anU|I‘ = an”U’F =0, U(O) = UO, U(O) =v,

where V- (uVv) is the chemotaxis term and u®v is the consumption term, with s > 1.
Onu denotes the normal derivative of w on the boundary. We assume that the initial
conditions ©? and v° are nonnegative functions.

In the present thesis, we aim for contributing for three distinct areas: (i) the analy-

sis, (ii) the numerical approximation and (iii) the optimal control theory related to the
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chemotaxis model (1). The controlled model consists of the chemotaxis-consumption
model (1) with a bilinear control f : (0,7) x 2 — R, being T" > 0 a fixed and finite

final time, acting on the chemical equation:

Ou— Au= -V - (uVv), 0w —Av=—u’v+ folg,, @
2

8nu|F = 6n'U|F = O> U(O) = UO, U(O) = UO)

where €2, C 2 is the control domain, 1q_ is its characteristic function.

In what follows, we introduce the reader to part of the available literature on the
analysis, numerical approximation and optimal control theory of chemotaxis models,
focusing on the chemotaxis-consumption models (1). After that, we remark the con-

tributions of the present thesis, pointing out the chapter in which they are developed.

Background

Next we recall some developments in the chemotaxis model (1) for s = 1, beginning
with the existence theory. In [56], existence of global weak solutions which become
smooth after a sufficiently large period of time is proved in smooth and convex 3D
domains. More recently, a parabolic-elliptic simplification of (1), for s = 1, is studied
in [57|, yielding results on the existence and long-time behavior of global classical
solutions in d-dimensional smooth domains.

Still considering s = 1, there are some studies on the coupling of (1) with models
for fluids, a setting in which the model without fluids can be regarded as a par-
ticular case. In [43], the author proves local existence of weak solutions for the
chemotaxis-Navier-Stokes equations in 3D smooth domains, while in [12] the exis-
tence of global classical solutions is attained near constant states. In [60], considering
smooth and convex domains, existence and uniqueness of a global classical solution
for the chemotaxis-Navier-Stokes equations is proved in 2D and existence of global
weak solutions which become smooth after a large enough period of time is proved
for the chemotaxis-Stokes equations in 3D. In [35] the results of [60] on the existence
of solution are extended to non-convex domains, but we observe that some estimates
that were time-independent become time-dependent. In [61] the author studies the
assymptotic behavior of the chemotaxis-Navier-Stokes equations in 2D domains with
the chemotaxis and consumption terms generalized by using adequate functions de-
pending on the chemical substance, proving the convergence towards constant states
in the L>-norm. Finally, in [62] existence of global weak solutions for the chemotaxis-
Navier-Stokes equations is established in 3D smooth and convex domains and in [63]
the assymptotic behavior of these solutions is studied.

An interesting and challenging feature of chemotaxis models, both from theoretical
and numerical point of view, is that the L°°-norm of the cell density v may blow up in
finite time. Some studies focus on the proof of the existence of blowing-up solutions,

such as in [4, Theorem 3.3|, for example, while others are dedicated to the proof
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of existence of uniformly bounded solutions. When it comes to the model (1), with
s = 1, this question has been addressed for 2D smooth and convex domains, because
existence and uniqueness of classical and uniformly bounded solutions is proved in [56].
On the other hand, as far as we know, this question remains open for 3D domains.

Studying conditions that could lead to no-blow-up results for (1), with s = 1,
some researchers advanced under the assumption of adequate constraints relating the
chemotaxis coefficient with [|0°]| ;0. On this subject, we refer the interested reader
to [3] and [55], for the problem (1) with s = 1. In addition, we also have [17] and
[18], where the authors extend these results to other related chemotaxis models with
consumption.

For a exhaustive review on the analytical results on the model (1) (for s = 1) and
some variants we refer the reader to the recent survey [40|, which includes great part
of the studies cited above.

We remark that all the aforementioned works are carried out using classical in time
solution tools and therefore considering smooth coefficients and smooth domains. In
this case, the available existence theory is not well suited neither to the numerical
approximation of (1) nor to the study of optimal control problems subject to the
controlled problem (2). Indeed, with respect to the numerical approximation, one
usually employs a weak formulation of the problem posed in more general domains.
The controlled problem (2), in its turn, contains the control term fv where f = f(¢, )
is usually a L9-function and hence can be seen as a nonsmooth coefficient.

Regarding the numerical simulation of chemotaxis models, although it is a relevant
and growing research topic, when we turn to problem (1), we still find a relatively
small amount of studies on its numerical approximation. To the best of our knowledge,
we can cite two studies, [13] and [27], about the numerical approximation of (1), both
just for the case s = 1.

In [13] a chemotaxis-Navier-Stokes system is approached via Finite Elements (FE).
In fact, by assuming the existence of a sufficiently regular solution, if the initial data
of the scheme are small perturbations of the initial data of this regular solution, then
optimal error estimates are deduced. The drawback of this result is that the existence
of such a regular solution is not clear in general, especially when we consider polyhedral
domains, which are broadly used in numerical simulations.

In [27], motivated by the treatment given to the chemorepulsion model with linear
production in [28], several FE schemes are designed to approximate (1), with s = 1.
The authors focus on FE schemes satisfying properties such as conservation of cells,
discrete energy law and approximate positivity rather than convergence. In particular,
they present a scheme satisfying a discrete energy law that, in 1D domains, yields
decreasing energy. Numerical simulations are carried out to compare the performance
of the different schemes.

One of the main difficulties of addressing issues concerning the convergence of
numerical schemes towards weak solutions of (1) is probably the lack of energy (a

priori) estimates over the solutions of the schemes. As we will see in Chapter 3, even if
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we consider only time discretizations of (1), the task of designing a convergent scheme
is not straightforward. This could be attributed to the complex technique needed in
order to obtain energy estimates through the cancellation of the chemoattraction and
consumption effects.

Once we talked about the existence theory and the numerical approximation, we
finally bring the growing topic of the optimal control theory of chemotaxis models.
Some of the existing works are dedicated to the optimal control problem posed in
2D domains, where one is usually able to prove existence and uniqueness of a strong
solution to the controlled model, which allows researchers to prove the existence of
global optimal solution and to derive an optimality system, establishing existence and
regularity of Lagrange multipliers for any local optimum. For more details on this kind
of work, we refer the interested reader to the works on control problems in 2D domains
related to: a Keller-Segel model [51]; a chemorepulsion-production model [29, 31]; a
Keller-Segel logistic model [5]; a chemotaxis model with indirect consumption [65];
and a chemotaxis-haptotaxis model [54].

When we turn to optimal control problems related to chemotaxis models in 3D
domains this analysis is more complex. In great part, this is because in 3D we have
results of existence of weak solutions, however, in many cases, there is not any result
on the existence and uniqueness of global in time strong solutions. To overcome
this difficulty some authors introduce a regularity criterion, which is a mild additional
regularity hypothesis on a weak solution, sufficient to conclude that this weak solution
is actually the unique strong solution. For a motivated introduction of this kind of
adaptation we refer the reader to [8], where the author studied an optimal control
problem related to the Navier-Stokes equations in 3D domains. For a chemotaxis
related work, we refer the reader to [30], where a regularity criterion is established and
is used to study an optimal control problem related to a chemorepulsion-production
model in 3D domains. The drawback of using a regularity criterion is that it is not
clear if the admissible set is nonempty. In [30], the authors show that if Q. = €,
that is, if the control acts in the whole domain, and the initial chemical density v°
is strictly positive and separated from zero, then the admissible set is nonempty. To
do that, the idea is to define the control f a posteriori, depending on a regular pair
(u,v).

Concerning the optimal control theory of model (2), to the best of our knowledge,
the closest related work is [44], where the authors prove a regularity criterion, which
we compare to our regularity criterion in the end of this chapter, and apply it to a
control problem subject to a chemotaxis-Navier-Stokes model. Again, one can prove

that the admissible set is nonempty only for controls acting in the whole domain §2.

Main Contributions

Accounting for what has been exposed so far, we felt the need of extending the

existing theory about (1) to the weak framework, which is more suitable to the design
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of stable and convergent (time) numerical schemes and to the study of optimal control
problems subject to (2). Then, in Chapter 2, we study the existence and regularity
of solutions of (1) in a weak solution setting under mild regularity assumptions on T'.
The results of Chapter 2 have been published in [11].

For this purpose, we introduce a regularization process by using truncated models,
each one depending on a truncation parameter m € N. These models are easier to
analyze both from the theoretical and numerical point of views and we prove that the
solutions of the truncated models converge to weak solutions of (1) as m — oco. As a
consequence of this study, Chapter 2 gives the following main contributions:

(i) generalization of the model with the consumption term w®v for s > 1 (in
previous works, only the term wv has been considered);

(ii) enlargement of the class of considered domains, maintaining the no blow-up
effect in the 2D case and some weak time-independent estimates in 3D domains;

(iii) the introduction and analysis of a regularized model ( see problem (2.1) below,
in Chapter 2) for which we prove existence, uniqueness, regularity, positivity, a priori
estimates and convergence towards the original model (1).

We would like to make a comment regarding the rigor of the calculations. We have
observed that, in some papers on analysis of chemotaxis models, singular functions
are taken as test function (as for instance log(u), without taking care that one only
has w > 0). In our opinion, it should be considered only as formal computations.
Then, in this thesis, we have done a great effort in order to guarantee that all of
our computations be rigorous. Similarly to [37] for a cross-diffusion model, in order
to make rigorous computations, we rely on a regularization procedure (for instance,
taking log(u + €) as test function).

In the sequel, based on the analysis that was carried out in Chapter 2, Chapter
3 is devoted to propose a time discrete scheme convergent to (1). This convergence
is valid in 3D domains and is based on energy estimates. To the best of our knowl-
edge, excepting the case of 1D domains [27], there is no time discrete scheme for (1)
possessing an energy inequality from which one can obtain estimates for the discrete
solutions, yielding convergence.

Moreover, the proposed scheme preserves the properties of positivity and conser-
vation of the population of cells. There is evidence that, concerning the numerical
approximation of chemotaxis models, the preservation of the positivity could possibly
enhance the performance of the numerical schemes, avoiding spurious oscillations [25].

In view of the relative low number of studies on the optimal control theory of the
present chemotaxis-consumption model, in Chapters 4 and 5 we study optimal control
problems subject to the controlled model (2).

In Chapter 4, we approach an optimal control problem related to (1) for which
we are able to prove the existence of global optimal solution in the weak setting, that
is, without using any regularity criterion or hypothesis over the admissible set. To
achieve it, we introduce the concept of weak solutions of the controlled model (2)

satisfying an energy inequality. Next, we consider an optimal control problem for
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which we prove existence of global optimal solution and, to conclude, we discuss the
relation between this optimal control problem and two other related ones that might
be of interest.

In this framework, it is not clear how to deduce some type of optimality system
associated to local optimal solutions. This is mainly because it is not possible to
prove the well-posedness of the linearized problem around a local optimal solution
using only the available weak regularity. This question is addressed in Chapter 5.

Indeed, in Chapter 5, the optimal control problem is studied in a strong solution
setting. First we introduce the appropriate concept of strong solution of the controlled
problem (2), given the control f, and then prove a regularity criterion that allows us
to get existence and uniqueness of global-in-time strong solutions. In the sequel, we
show the existence of a global optimal solution. Finally, using a Lagrange multipliers
theorem, we establish first order optimality conditions for any local optimal solution,
proving existence, uniqueness and regularity of the associated Lagrange multipliers.

In addition to the contributions indicated in the outline of Chapter 5 above, we
remark two other relevant side contributions. The first one is a sharp regularity
criterion based on a generic bootstrap argument. Indeed, comparing with the available
literature, in [44], for the case s = 1, the authors prove their regularity criterion under
the hypothesis that u € L%/7((0,T) x Q) and f € L*((0,T) x Q) using a bootstrap
procedure that was designed to this particular choice as well as to their particular
chemotaxis model. In this setting, it is not clear if one can reach a similar result
under the hypothesis that v € LP((0,7) x Q) and f € L9((0,7) x Q) with p < 10/7
or ¢ < 4. In other words, it is not possible to identify the minimum possible values of
p and gq.

On the other hand, our regularity criterion is sharp in the sense that we prove it
under the hypothesis that v®, f € LY((0,7) x Q) for ¢ > 5/2 and, at least using the
techniques employed in this work, it is clear that it is not possible to reach the same
conclusion if ¢ < 5/2. This is done by means of a more generic bootstrap argument
which does not depend on the particular ¢ > 5/2 and could possibly be more easily
adapted to other models.

The second side contribution is the mathematical analysis of a generic linear cou-
pled system given in Theorem C.1. This result is applied to the linearized problem
around a local optimum, in Subsection 5.4.2, and also to the (linear) Lagrange mul-
tiplier problem, in Subsection 5.4.3, to prove additional regularity for the Lagrange
multiplier. Moreover, once the linear coupled system is written in a generic form, it

can be used in optimal control problems related to other models.

The rest of the thesis is organized as follows. In Chapter 1 we present some
preliminary results that will be used along the thesis. Chapter 2 is devoted to the
theoretical analysis of the chemotaxis-consumption models (1) varying the power s >
1, where we prove existence of global weak solutions in 3D, existence and uniqueness of

a more regular global solution in 2D is proved by means of a regularization procedure.
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In Chapter 3, we propose an energy stable and convergent time discrete scheme based
on the analysis of Chapter 2. Chapter 4 is devoted to the study of an optimal control
problem related to weak solutions of (2). Using an adequate concept of weak solutions
satisfying an energy inequality, we define an optimal control problem for which we are
able to prove existence of solution and compare it to two other related optimal control
problems. In Chapter 5, we study an optimal control problem related to (2) in the
strong setting. We prove a regularity criterion that allows us to get existence and
uniqueness of global-in-time strong solutions and use it to show the existence of a
global optimal solution. Then, applying a Lagrange multipliers theorem, we establish
first order optimality conditions for any local optimal solution, proving existence,
uniqueness and regularity of the associated Lagrange multipliers.

Finally, we present the conclusions and perspectives for future work.
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Chapter 1

PRELIMINARY RESULTS

In this section we present some technical tools which will be used in the rest of
the thesis.

For p € [1,00], we denote by LP(Q2), the usual Banach spaces of p-integrable
Lebesgue-mensurable functions, with the norm ||-[|»(qy. We denote by p’ the conju-

gate exponent of p. We recall that L?(f2) is a Hilbert space with the inner product

(f.9) = /Qf(l‘)g(fﬁ) dx.

We also denote by WHP(Q), with | € N, the usual Sobolev space, equipped with the
usual norm |[|-[|yy1p(qy; for p = 2, we denote WhH2(Q) by HY(Q), with norm [l .02y
If X(Q) is a Banach space, then LP(0,7; X(2)) is the Bochner space with the

norm

T 1/p
leloaion = ([ 1@ @) ol = esssup Lo xian,
0 t€(0,T)

C([0,T]; X(£2)) is the Bochner space of functions defined in [0,77] and continuous
with values in X (Q2) and Cy([0,7]; X(€2)) is the Bochner space of functions defined
in [0,7] and weakly continuous with values in X (€2). To simplify the notation, from
now on, we denote the spaces LP(0,T, X (€2)) by LP(X), C(]0,T]; X(£2)) by C(X) and
Cw([0,T); X (€2)) by Cy(X), suppressing both the time interval (0,7") and the domain
Q.

If p = 2 and X is a Hilbert space then L?(X) is a Hilbert space with the inner
product

T
()i = [ @O0)y dt Vo € X),

where (-, )y denotes the inner product of X.

Next we present some interpolation inequalities and other results which will be of
frequent use in the article. Unless otherwise stated, we consider Q C RN (N = 2,3)
to be an open, bounded and locally Lipschitz domain, whose boundary we denote by
r.

Lemma 1.1. (|6, 58]) We have the following interpolation inequalities: 1. Let 1 <
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p<q§ax0€mj)mdré@ghmm%:%+l%.UfEL%mﬁL%thn
feL(Q) and
WMWD§WMMMME&

2. There exist (different) constants 5 > 0 such that
(i) if N = 2 then

ol a0y < Bllollatgy vl gy, Yo € HY(Q); (1.1)
(ii) if N = 3 then

1/4 3/4
1ol 2@y < Bllvll oy vl ), Fo € H().

10l z2@) < Bllvll gy vl Fo € HY(S).

3
[0l 103y < Clloll Zargy I0ll51r gy Fo € HY(S), (1.2)
4
[l ooy < Cllolgr g llol sy, Yo € HX(Q). (13)

Lemma 1.2. ([16]) Let Q C RN be a bounded Lipschitz domain. Then the interpo-

lation inequality
A
lwllwar @) < Clwlyasa ol (1.4

holds for 0 < a, 8,7, A\ <1 and 1 < p,q,r < 00 such that « = A\ + (1 — \)y and

1A, (-

rop o d
Lemma 1.3 (Poincare’s Inequality, [14]). There is a constant C > 0 such that

Lemma 1.4. ([30]) Let Q C RY and py1,q,p2,p,G > 1 be such that

1 1— 1 1
j:( 9)+9(——L>, andjzi, with 6 € [0,1] and r > 0,
q q N P P2

then L>(L) N LP2(WTPt) — LP(LT).

Lemma 1.5. ([58]) Let X and Y be two Banach spaces such that X C Y with a
continuous injection. If ¢ € L>=°(0,T; X) and ¢ € C([0,T];Y), then ¢ € C([0,T]; X).
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Due to the nature of our problem, it is convenient to have information on the

Poisson-Neumann problem

{ —Az+z =f in{, (15)

Onzlr =0.
Then we give the following definition.

Definition 1.6. Let z € H(Q) is a weak solution of (1.5) with f € LP(Q). If this
implies that z € W?2P(Q) with

[2llw2r) < Cl—Az + 2|l Lr(a)s

then we say that the Poisson-Neumann problem (1.5) has the W2P-regularity. In the
hilbertian case p = 2 we say H>2-regularity. O

Remark 1.7. According to Grisvard [20], if f € LP(2), p € [1, o0], and the boundary
I is at least O, then the Neumann problem (1.5) has the W2P-regularity for all p €
[1,00]. The aforementioned result is also true if € is a polygon, that is, a polyhedron
in R? or if Q is convex and p = 2. For more regular domains, if f € W' (Q) and
the boundary T is at least C'*11) then the solution of the Neumann problem (1.5)
belongs to WP (). O

Lemma 1.8. Let Q) be a Lipschitz domain such that the Poisson-Neumann problem
(1.5) has the W2P-reqularity. There is a constant C > 0 such that

V2]l < CllAz||Lr), V2 € W?2P(Q) such that Onz|r = 0. (1.6)

Proof. Suppose that the result is false, that is, for each n € N there is 2, € W2P(Q)
with Onzp|r = 0 such that

IVaznllwie@) > nllAzn |l Le(o)- (1.7)
Without loss of generality, we can take z, such that
/ zn dr =0 and [[Vzu|wipq) =1 (1.8)
Q

Accounting for (1.7), (1.8) and Lemma 1.3 we have (z,), (Vz,) bounded in W1?(Q)
and
Az, — Az = 0 strongly in L*(Q). (1.9)

Using the W?2P-regularity of the Poisson-Neumann problem (1.5) we have

[znllw2p @) < CU1A2Z]lLe@) + 2l Lr )
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and thus (z,) is bounded in W?%P(£2). This allows us to conclude, using compactness

results in Sobolev spaces, that there is z € W?2P(£2) such that, up to a subsequence,
2y — 2z weakly in W2P(Q) and strongly in W1P(Q), (1.10)
Using again the W?P-regularity of the Poisson-Neumann problem (1.5) we have
Iz = zjllwzo@) < ClAzi — AzjllLe) + Cllzi — 2jll ), Vi,j €N,
and accounting for (1.10) and (1.9) we conclude that
2z, — 2 strongly in W2P(Q). (1.11)

Now, considering the properties of each z, and the convergences (1.9) and (1.11) we
have
Az =0, with Onz|r =0, / zp dz =0 and || Vz|lyip@q) = 1.
Q

But this is not possible because if z satisfies Az = 0, Opz|r = 0 and fQ z dx = 0, then
we have z = 0 and hence ||Vz|[yy1,() = 0. Therefore we must have (1.6). [ |

Lemma 1.9. ([15]) Let 2™, 2" 1 € L®(Q) and let f : R — R be a C? function. Then
n el ny _ n i "e.n n _n—1 2
Lo s = [ 1) dos o [ P @)E"@) - @) do

where ¢*(z) is an intermediate point between z"(x) and 2"~ (z). In particular, if f

1s convex then we have

/ 52" f1(2") dx > 5t/ fz™) dx.
Q Q

Lemma 1.10. Let wy and we be nonnegative real numbers. For each s > 1 we have
-1
lws —wi| < slmax {wy, we}|* |wa — wq].
Proof. Indeed, we have

w2
lws — wi| = s|/ 571 dr| < slmax {wy, wo ¥ Hwy — w1 .
w1

Using Lemma 1.10, we arrive at the following.

Lemma 1.11. Let p € (1,00) and let {w,} be a sequence of nonnegative functions
in LP(0,T; LP(Q2)) such that w, — w in LP(0,T; LP(QY)) as n — oo. Then, for every
r e (1,p), wh — w" in LP/7(0,T; LP/"(Q)) as n — oo.
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Let X and Y be Banach spaces, we say that X is continuously injected in Y and
denote it by X — Y if X C Y and, moreover, there is a constant C' > 0 such that

lelly < Cllellx, Vo e X.

Lemma 1.12. ([6]) Let B be a Banach space, let {wy,} be a sequence in B and
w € B. Fither if w, — w weakly* or weakly in B then {w,} is bounded in B and
|lw||p < liminf ||w,] 5.

Denote @ = (0,7) x © and let X, be the Banach space
X, ={v e C([0,T;WP=2P) N LP(0, T; W?P) | dw € LP(Q)}
endowed with the norm

lvlx, = HUHLOO(O,T;WP*Q/P) + [[v]l oo, w20y + 100l Lo (@)-

Lemma 1.13. ([16]) Let Q be a bounded domain of R such that T is of class C2.
Let p € (1,3), w® € W2=2/PP(Q) and h € LP(Q). Then the problem

Orw — Aw =h in Q,
Opw|r =0 on (0,7) x T,
w(0,7) = w'(x) in Q,

has a unique solution w such that

w € Xp.

Moreover, there is a positive constant C = C(p, T, Q) such that

lwllx, = llwllcqo.rwe-—2mr@) + Wlerw2e @) + 10w L (g)

. (1.12)
< ClhllLe@) + l[w”llw2-2/p0(q))-

Lemma 1.14. (Compactness in Bochner spaces, [52]) Let X, B and Y be Banach
spaces, let

F= {f e LY0,T;Y) | b,f € Ll(o,T;Y)}.

Suppose that X C B C'Y, with compact embedding X C B and continuous embedding
B CY. We have:

1. if the set F is bounded in L(0,T;B) N L*(0,T;X), for 1 < q < oo, and
{3tf, Vf € F} is bounded in L'(0,T;Y), then F is relatively compact in
LP(0,T5B), for 1 <p <gq;

2. if F is bounded in L*°(0,T;X) and {8tf, Vf e F} is bounded in L"(0,T;Y),
for some r > 1. Then F is relatively compact in C([0,T]; B).
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To define the regularized problems in Chapter 2, we use the following truncation

of the identity function, from above and from below:

1, ifu< —2,
C? extension, if u € (-2,0),
am(u) = u, if u € [0, m], (1.13)
C? extension, if u € (m,m + 2),
m+ 1, if u>m+2.

Note that a,, is globally Lipschitz. Along the study of problem (1), for s > 2, we will

need the following result.

Lemma 1.15. Let p € (1,00). Let {wy,} be a sequence of nonnegative functions
which is uniformly bounded in L*°(0,00; LP(Y)) with respect to m and defined for
every t € (0,00). If there is a > 0 such that

/me(t,x) dxr > a, Vt € (0,00), Vm € N,
then there exist § > 0 and mg € N large enough such that
/Qam(wm(t,x)) dx > B, ¥Vt € (0,00), Ym > my.
Proof. For every t € (0,00), let
S (t) = {l‘ €N ‘ W (t, ) > m}

Then, for all t € (0,00), we have

/ mP da:+/ A (Wi (t, )P do < / A (W (t, )P dx < Cy(p).
Sm(t) Q\Sm (1) Q

This implies

1S ()] = /SM dz < O (p) <m>p (1.14)
We have

/ am (Wi (t, ) dz :/ wp(t,x) dr —I—/ (Wi (t, ) dx
Q N\ S (1) S (£)
— [wntte) do= [ (wnlt.) = an(un(t.0) do
Q Sm (t)
>a— / (wm(t, x) — am(wm(t,x))> dzx.
S ()
To finish the proof, we show that

lim (wm(t, x) — am(wm(t, x))) dx =0,

m—0o0 Sm (t)
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uniformly with respect to ¢ € (0,00). In fact, using Holder’s inequality and (1.14), we

obtain

/Sm(t) (wm(t,x) — am (Wi (1, x))) dr

< </Sm(t) |win (t, ) — am(wn(t,z))|? dx)

< Colo) ( L. dx) " cow (L)

for all t € (0,00). Therefore we have

p—1

P
/ dx
Sm (t)

3=

/Qam(wm(t,a?)) dz > o — C(p) (1)101

m

and then we can choose mg large enough such that

completing the proof. |

Lemma 1.16 (Gronwall’s inequality). Let f, g and h be nonnegative functions
such that f € WH1(0,T) and g,h € L*(0,T), for some T > 0. Let

G(t) :/0 g(r) dr and H(t) :/0 h(r) dr.

If f is such that
SH0 < 9(0) + RO, ac. t € (0,T),
then

F(1) < <G(t) + f(o>)eH<t>, ae. t e (0,T).

Lemma 1.17. Let X and Y be Banach spaces. Let S : X — Y be a continuous
linear map. If f € L*((0,00); X) then Sf € LY((0,00);Y) and

/OOOSfdt—S/OOOfdt.

Proof. See the section about the Bochner’s integral in the book of Yosida [64]. W

We will apply this lemma, for S : L?(Q) — R given by Sf = / f dz.
Q
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loc

d
p (/Qw(,a:) dx) = /th(',x) dzx.
Proof. We look at the integral

/ooo/ﬂwt(tvx) da (1) dt,

for every 1 € C2°((0,00)). Since the integral over 2 is a linear map and v (¢) is a real

Lemma 1.18. If w,w; € L} ((0,00); L'()) then % (/ w(-,x) dx) € L},.(0,00)
Q

and

number, for each ¢ € (0,00), we have

[ wittoa) de o) = [ wttayice) da,

Q

for a.e. fixed t. Then we use lemma 1.17 with X = LY(Q), Y = R and f = wy) €
LY((0,00); LY(2)) to write

/OOO/QWZ’:”) dz y(t) dt = /OOO/Qw;(t 2)(t) do dt = /Q/Ooowt(t,-ﬁ)lb(t) dt do
= —/Q/O w(t, z)y(t) dt de = —/0 /Qw(t,:z:) da pi(t) dt,

for all ¢ € C2°((0,00)). |

Let C2°(0,00; L?(Q2)) denote the space of the infinitely differentiable functions
defined in [0, 00) with range in L?(f2) and with compact support in (0, 00). Consider

the space
HY(0, 00; L2(2)) = {w € L2(0,00; L2(Q) | wy € L2(0, 00; LQ(Q))} ,

which is a Hilbert space with the norm

/2
1wl 1 0,00:22(02)) = (HwH%Q(O,oo;LQ(Q)) + Hth%Q(O,oo;LQ(Q))> :
Lemma 1.19. ([41]) C°(0, 00; L%(Q)) is dense in H'(0,00; L?(£2)).

We end this section recalling the concept of positive and negative parts of a func-
tion. For w € LP(Q), 1 < p < oo, the positive and negative parts of w are given
by

w4 (z) = max {0, w(z)} and w_(x) = min {0, w(z)},

respectively. Then w = w; + w_ and |w| = wy — w_; besides, if w € H*(Q) then
wi,w_ € HY(Q) with

Vw, if w(z) >0,
0, ifw(z)<O0,

Vw, if w(z) <0,

V(@) = { 0, if w(z)> 0.

and Vw_(z)= {
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For more details on truncations applied to H'(£2) functions we suggest Gilbarg
and Trudinger [19].

Definition 1.20. (Weak solution of (2)) Let s > 1, ¢ > 5/2. Let f € L%(Q) and
let u%,0° € W?=2/99(Q) be non-negative functions. A pair (u,v) is called a weak
solution of (2) if u(t,x),v(t,z) > 0 a.e. (t,x) € Q, satisfying, for s € [1,2),

= L53/(3+s)(W1,55/(3+5))’8tu c If")s/(3+s)((I/I/vl,Ss/(4573))/)7

for s > 2,
u € LA(HY), o € L2(HYY),

for s > 1,
u € Lo(L*) N L33(Q),
v € L®(Q)N L®(HY) N LW N L2(H?),
o € L°3(Q),

and satisfying the initial conditions for (u,v), the u-equation of (2) and the boundary

condition of w in the variational sense
(Opu, ) + (Vu, Vo) = (uVv, V), (1.15)

for all p € L55/(43_3)(W1’55/(45_3)), the v-equation pointwisely (in fact, the v-equation
is satisfied in L/3(Q)) and, since Av € L?*(Q), the boundary condition of v in the
sense of H~1/2(T). O

Definition 1.21. (Strong solution of (2)) Let s > 1, ¢ > 5/2. Let f € L%(Q) and
let w0, 00 € W?2-2/949(Q) be non-negative functions. A pair (u,v) is called a strong
solution of (2) if u(t,z),v(t,z) > 0 a.e. (t,z) € Q, with regularity

(u,v) € Xg x X,

and satisfying the initial and boundary conditions of (2), the u-equation and the

v-equation of (2) pointwisely. O

Remark 1.22. Since ¢ > 5/2, if (u,v) is a strong solution of (2) then, in particular,
u,v € L>®(Q). Then, through a comparison argument we can prove that, for each
fixed f € L1(Q), the strong solution of (2) is unique. We refer the reader to the proof
of uniqueness in 2D domains from Chapter 2 that, in view of the regularity of the

strong solution, can be adapted to 3D domains. ]
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Chapter 2

UNIFORM IN TIME
SOLUTIONS FOR CHEMOTAXIS
WITH POTENTIAL
CONSUMPTION MODELS

2.1 Main Results

To present the main results of this chapter, we introduce the following regularized

problems, which depend on a truncation parameter m € N,

] (2.1)

Oy, — Aty = =V« (a4 (U )VUR),  Om — Avy = —am (Um) O,
anum‘f‘ = 8nUm’F =0, um(o) = u(r)na Um(o) = Uy

where u2, > 0 and v, > 0 are suitable regular approximations of u® and v°, respec-
tively, and a,,(-) is the truncation of the identity function (bounded from above and
from below) defined in (1.13).

With the objective of enlarging the class of considered domains, we state and
demonstrate our results in terms of the regularity of the Poisson-Neumann (1.5) (see
definition 1.6 in page 18), and, when necessary, in terms of the following technical

hypothesis:

Hypothesis (H1). For each 2 € H?(2) such that d,2|r = 0 there is a sequence
{pn} C C?(Q) such that 0,p,|r = 0 and p, — z in H*(Q).

Remark 2.1. In order to show that the Hypothesis (H1) is not too restrictive, we
prove in Lemma A.1, in the Appendix A, that Hypothesis (H1) is satisfied if the

Poisson-Neumann problem has the W?3P-regularity (see definition 1.6 in page 18), for
p > N. This is true, in particular, if T is C*! (see [20]). O
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Let us consider the average of u”

* 1/0
u'=— [ u(x) dr.
o] Jo )

Now we highlight our main results in this work:

Theorem 2.2. (3D. Existence of global weak solutions) Let Q) C R? be a bounded
domain such that the Neumann problem (1.5) has the H?-reqularity (see definition 1.6
in page 18) and Hypothesis (H1) is satisfied. Let u® € L'T5(Q), for some ¢ > 0, if
s=1, andu’ € L*(Q), if s > 1, and v° € HY(Q) N L>®() be non-negative functions.
Then there is a non-negative weak solution (u,v) of the original problem (1), for s > 1,
obtained through a limit of non-negative solutions (Um, V) of the reqularized problems

(2.1) as m — oo and such that

/Q u(t, z) do = /Q (@) dz, ae. t € (0,00)

0< U(t7$) < ||U0||L°°(Q)7 a.c. (t7$) € (0,00) x €,

(2.2)

loc

u € L2(0,00; L*(92)) N Ly3([0, 00); L5*/3(Q)), if s > 1,
w2V € L*(0,00; L2(Q)), if s > 1,

loc

Vu € L2(0, 00 L(Q) N LE ([0, 00); LT (Q)), if s € [1,2),
Vu € L%(0,00; L2(Q)), if s> 2,

uVov € L*(0,00; L5(2)), if s € [1,2),
uVv € L?(0,00; L%()), ifs>2

and

v € L>(0,00; HY(Q)) N L*(0,00; H*(R)), Vv € L*(0,00; LY(Q)).

Remark 2.3. We remark that, from the regularities of u and v that are listed in

Theorem 2.2, we can conclude that

ug € L? (O,oo; (WLS/(S_U(Q))/ , ifsel,2),
up € L2<0,oo; (HI(Q))/ , ifs>2

and

vy € L2(0,00; L¥2(Q)).

Attending to the regularity of (u,v) given so far, one has that (u,v) satisfies the u-
equation of (1) in a variational sense, while the v-equation is satisfied a.e. in (0, 0c0) x 2.
Moreover, the initial conditions have a sense because, thanks to the regularity of w,
v, u; and vy, one has that (u,v) is weakly continuous from [0, 00) to L*(Q) x H(Q),
if s € [1,2], and L?(Q) x HY(Q), if s > 2 (see Lemma 1.5). [ |

Remark 2.4. Note that, for s € [1, 2], the regularity of the fluxes of the u-equation of

(1), namely, self diffusion Vu and chemotaxis Vv, increase as s increases. When we
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consider s > 2, the regularity of Vu and uVv do not increase as s increases anymore.

On the other hand, the regularity of the function v is independent of s. ]

Theorem 2.5. (2D. Ezistence and uniqueness of global strong solution) Let
Q C R? be a bounded domain such that the Neumann problem (1.5) has the W23-
reqularity (see definition 1.6 in page 18) and Hypothesis (H1) is satisfied. Let u® €
H?(Q) and v° € H*(Q) be such that u® > 0 and v° > 0. Then there is a unique
non-negative solution (u,v) for the original problem (1), for s > 1, satisfying (2.2)

and
w,w € L2(0,00; HA(Q)),  (u—u*),v € L2(0, 003 W23(9))

Au, Av,ug,ve € L2(0,00; HY(Q)).

In particular, uw does not blow-up neither at finite nor infinite time, that is, u €
L>(0,00; L*>(Q)) (recall that in Theorem 2.2 we already have v € L (0, 00; L>(£2)) ).
Consequently, there is mg € N such that, for all m € [mg, 00), the solution of (2.1) is
also the solution of (1), that is,

(U, Vm) = (u,v) a.e. in (0,00) x Q.

In this case, both equations of (1) are satisfied a.e. in (t,2) € (0,00) x Q.

We observe that in 3D domains it is not possible to state a complete result such as
Theorem 2.5. This is due to the gap between the regularity of the solutions provided
by the existence result and the regularity needed to prove uniqueness. Notice that v
does not blow-up neither at finite nor infinite time. On the other hand, to the best of

our knowledge, whether v may blow-up or not is an open problem.

The rest of the chapter is organized as follows. Section 2.2 is devoted to discuss
the regularity’s properties of the solutions of regularized problem (2.1). In Section
2.3 we deal with the proof of Theorem 2.2 and, finally, Section 2.4 is dedicated to the
proof of Theorem 2.5.

2.2 The Regularized Problem

In this section we define and analyze the regularized problem (2.1), based on the
truncation of the identity a,,(u) given in (1.13). We remark the following properties

am(u) <wu, Vu>0,

lam ()| <m,  Jap, ()] lan(w)] <C, VYueR, (2.3)

where C' > 0 is a constant independent of m € N.
For each m € N, let (w,, vm,) be the solution of (2.1) with initial data u9,,v% €

mrm

C>(Q) with uY and v9, being mollifier regularizations of proper extensions of u°
and v° to RY. In fact, u® € LP(Q) is extended by zero in LP(RY), while v° €
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HY(Q) N L>=(R) is extended in the space H'(R™) N L>®(RY). In particular, these

regularizations have the following properties:
0 >0, /ng1 = /Quo, ud, — u® strongly in LP(Q), as m — oo, (2.4)
forp=1-+¢, forsomee >0,if s=1,and p=s, if s > 1, and
essinf ! < v% < esssup 0", v?n — oY strongly in HY(Q), as m — oo. (2.5)

2.2.1 Existence and uniqueness of problem (2.1)

We use the Galerkin’s method based on the set of eigenfunctions {¢;} of the
operator (—A+1) with Neumann homogeneous boundary condition. Unless otherwise
stated, we will proceed under the assumption that Poisson-Neumann problem (1.5)
has the H?2-regularity. Then {¢;} is a basis of H?(Q2).

Let X™ be the finite n—dimensional space generated by the first n elements of the

set {¢;}. Then, we look for Galerkin solutions (uy,vy) of the form

n

un(t, ) = Y g} (8)pj(x) and vn(t,) = Y hi(t)ps(2)
j=1

j=1
such that
(atuna Soi) + (Vuna v@z) = (am(un)vvna VSOz) , (2'6)
(a&vnv 907,) - (Avna 902) = - (am(un)svnu 902) ) (27)
un(0) = Pn(“%@): 0 (0) = Pp(vp,), (2.8)
for i = 1,...,n, where P,(u?,) and P, (v?) are orthogonal projections of u?, and v?,

from H'(Q) into X™. Since the application of the Galerkin’s method is a very standard
procedure, some details (such as the proof of existence of the Galerkin solutions, the
obtaining of a priori estimates and the passage to the limit as n — 00) will be omitted

here.

In order to obtain n-independent a priori estimates for (un,v,), we test (2.6)
by u, € X™ and (2.7) by v, € X" and —Awv,, € X"™. Then we can also test (2.7)
by A?v, € X" and (2.6) by —Au, € X". Taking the truncation a,,(-) and its
bounds (2.3) into account, it is not difficult to obtain the following a priori bounds

(independent of n) for each final time 7" > 0:

(tn, Vn)n is bounded in L®(0,T; HY(Q) x H?()), 29)
2.9
(Atp, Avp)n, (Optin, Oyvy)n are bounded in L2(0,T; L?(Q) x HY()).

Therefore the Galerkin solution, (uy,,vy,), is defined up to infinity time.
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Besides, if we assume that the Poisson-Neumann problem (1.5) has the W23-

regularity, then we have
(vn)n is bounded in L2(0,T; W?3(Q)). (2.10)

We can also test (2.6) by A%u,, € X™ and, using (2.10), we obtain the n-independent
bounds
(tn)n is bounded in L (0,T; H?(2)) N L2(0,T; W?3(Q)),
(2.11)
(Ostin ), (Auy )y are bounded in L2(0, T; H(12)).

Now, the a priori bounds (2.9), compactness results in the weak and weak™ topolo-
gies (see [7]) and compactness results in Bochner spaces (see Lemma 1.14), for each
T > 0, allow us to conclude that there exist limit functions u,, and v, such that, up
to a subsequence,

Uy — Uy, a0d Uy, — Uy,

weakly* in L>(0,T; H(9)), weakly in L2(0, T; H?(£2)) and strongly in L2(0, T; H(Q2)).
Then using these convergences and passing to the limit in the approximate system
(2.6)-(2.8) it follows that (u,,vy,) satisfies (2.1) a.e. in (0,00) x €. One can prove
that the solution (ty,, v,,) is unique by straightforward calculations.
Thus, in this subsection, for each fixed m € N, we have proved the existence and
uniqueness of (uy,, vy,), solution of (2.1), such that

Um € L ([0,00); HY(Q)) N L2 _([0,00); H2(Q)), vm € L5.([0,00); H2(Q)),

loc loc loc

O, € L2 ([0,00); L2(2)),  Oyvm, Avy, € L2 ([0, 00); HL(Q)).

loc loc

If we assume that the Poisson-Neumann problem (1.5) has the W?23-regularity, then
it stems from the stronger n-independent bounds (2.10) and (2.11) that

v € LES([0,00): H2(Q)) 1 L3, ([0, 00): W2H(Q)),

8tum,8tvm7Aum7Avm € L2 ([07 OO)?‘HI(Q))

loc

2.2.2 Regularity up to infinity time of problem (2.1)

Continuing the analysis, in the present subsection we prove the following main

result.

Theorem 2.6. (Regularity up to infinity time of (2.1)) Let u¥, and v0, be
approzimations of u® and v° as defined in the beginning of Section 2.2. Under the
assumption that the Poisson-Neumann problem (1.5) has the H?-regularity, there is a

unique solution (Um, vm) of (2.1) such that
Um(t,z) >0, a.e. (t,x) € (0,00) x £,

ess iélfvo(x)e_mst < op(t,z) < HvoHLoo(Q), a.e. (t,x) € (0,00) x Q,
Te
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with the following regularity:

(wm — uw*) € L(0, 003 H'(2)) N L*(0, 005 H*(92)),
vm € L(0,00; H2(2)) N L2(0, 00; H2(12)), (2.12)
Opum € L2(0,00; L2(Q)),  Oym, Avy, € L2(0,00; HY(R)),

where u* = ﬁfﬂ u®(x) dx. Additionally, if we assume that the Poisson-Neumann
problem (1.5) has the W23 -reqularity, then

Um € L>(0,00; H*(Q)),  Ogttm, A, € L2(0,00; H(Q)). (2.13)

The proof of Theorem 2.6 will be carried out along the subsection in several steps.
We begin with the proof of some pointwise estimates, in Lemma 2.7, and some di-
rect m-independent estimates for the solution (u,,, v,,) of the regularized problem, in
Lemma 2.8. Next we prove the weak regularity up to infinity time, in Lemma 2.9,

and use it to finish the proof of Theorem 2.6.
Lemma 2.7. (Pointwise m-uniform estimates for (., vm))
1. Iful () > 0 a.e. © € Q then upy(t,r) >0 a.e. (t,z) € (0,00) x Q;

2. If v9(z) > 0 a.e. x € Q and v° € L>=(Q) then

essiélf {02(x)} exp(—m®t) < v (t, z) < ||v0||Loo(Q) a.e.(t,z) € (0,00) x Q;
e

Proof. By testing the u,,-equation of (2.1) by (u;,)— and using that |am, ((um)-)| <

|(tm)—|, we obtain

1d

= (um)—|? + IV () |I? :/am Um)— )V U, - V(upy, ) dx
5 3710y + 19 )2y = [ @on((0m) )P - T )

< [ (um) =l 3@ I Vomll s (@) IV (wm) - L2 )
<c 1/2 3/2
< Cl[Vum| s (||(Um)—||L2(Q)||V(um)—||L2(Q) + CH(um)—||L2(Q)||v(um)—||L2(Q)>‘

Hence, using Young’s inequality and that v, € L>(0,T; W16(Q)) we can arrive at

1d

1
5@”(%@)7”%2(9) + §||V(um)*”%2(ﬂ) = C’H(um),H%z(Q).

Note that (u?)_ = 0, by hypothesis. Therefore, if we apply Gronwall’s inequality
(Lemma 1.16) we conclude that (u,,)—(t,z) =0, a.e.(t,z) € (0,T) x Q, for all T > 0,
that is, um(t,z) > 0, a.e.(t,x) € (0,00) x €.

In order to establish the positivity of v, we define the function

V(£) = min {19, (2)} exp(—m°t).
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Clearly, V is a sub-solution of the v,,-equation of (2.1), because —ay, (um,)* > —m?®.

In fact, we have
Vi(t) = AV(t) = =m°V(t) < —am(um(t, )"V (1),

Comparing V' and v,, we conclude that v,,(t,2) > V(t) a.e. in (0,00) x Q. The upper
bound on v, can be obtained an analogous argument, but now using the super-solution
V(t,z) = [|[v),|| Lo (). This implies that

essi{rzlf {02 (2)} exp(—m®t) < vp(t, ) < Hv?nHLoo(Q) a.e.(t,x) € (0,00) x Q,
Te
and using (2.5) finally leads us to the desired result. |

Lemma 2.8. (m-uniform estimates for (m,vm))

1. For everyt > 0,
[wm (D)1 (@) = /Qum(ta z) dr = |lug, || 1) = [1u°ll L) = w*[9;
2. For everyt >0,

t
Ol +2 | 1700 ds
t
[ () 20 5) gy s < 1
which allows us to conclude in particular that

YV is bounded in L*(0,00; L*(Q)), independently of m € N. (2.14)

Proof. Taking (2.4) and (2.5) into account, to prove the first item, we integrate the
the u,,-equation of (2.1) and take into account that w,, > 0, thanks to Lemma 2.7.

The second item can be proved by testing the the v,,-equation of (2.1) by 2v,,. ®

Lemma 2.9. (Weak regularity of (uy,, vy,) up to infinity time) For each fized

m € N, the following regularity at infinity time to uy, and v, holds:

(U, — u*), v € L(0, 00; L*(Q)) N L*(0, 00; H(Q)).

Proof. From Lemma 2.8.1 we have / (U (t) —u*) dz = 0, Vt € [0,00), that is,

Q
U — u* is a null mean function. Besides, by testing the the u,,-equation of (2.1) by
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2u,, and using Lemma 2.8.2, we arrive at

fom @y + [ 196Ny ds < 148 oy + 07 [ 190m(6) gy s
< by + - IolF2qey-
The latter allows us to conclude that
U € L®(0,00; L*(Q)) and Vu,, € L?(0, co; L(Q2)).
Hence, using the Poincaré’s type inequality of Lemma 1.3 we can prove that
U — u* € L0, 00; L2(Q)) N L?(0, 00; HY(Q)). (2.15)

Next, we use this fact and take vy, as a test function in the following reformulation

of the vy,-equation of (2.1)
(Um)t = Avm + am (") vm = —(am (um)® — an (u*)*)vm,

we obtain

1d *\ s
i%va(t)H%Q(Q) + [IVon )] 72i0) + am @) [vm®)ll720)

_ —/ (m (tm (£ 2))* — @ (1) Yo (£, 2)? d.
Q

Using Lemma 1.10, the right hand side can be estimated by

I/Q (am(um)® = am (u*)*)o* da| < [Jop, | (@) /Q |am (um)® = am(u*)*[vm dx
o [ PN /Q |am (m) + am ()" am (um) — am(u*)|v dz
< 277 [0 oo oy lum — 0l 2 l[vm 220

* 0 s—1 *1|2 am(u*)s 2
< O, 0" )m Hlum = w2 + =5 lvmlL2(0)s

where C(u*,v") > 0 is a constant (independent of ¢ and x). Now, considering also the

terms of the left hand side, one has

1d %
§%va(t)’|i2(9) IV om (®)[72(0) + am () lom (1)l|72(q)

< O, 0" )m (1) — 0|22

Note that a,,(u*) is a fixed positive real number if u® # 0 and ||ju,(t) — u*H%Q(Q) €
L1(0, ), because of (2.15). Hence we can conclude that v, € L?(0,00; L?(£2)) and,
together with (2.14), we finally conclude that v,, € L%(0,c0; H(Q2)). [

The regularity given in Lemma 2.9 allows us to obtain the regularity (2.12). In
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fact, first we test the vy,-equation of (2.1) by —Awvy,, € L2 ([0,00); H'(2)). After

some computations, we arrive at

1d

5 dtHv”m”L?(Q) + HAvaH + ||am(um)s/2vvm(5)ui2(ﬂ)

< C(m, [[0°| Lo (@) (I Vumll72(0) + VUmllT20))s
and this allows us to conclude that
U € L°(0,00; HY(Q)) N L%(0, 00; H*()) (2.16)

because, according to Lemmas 2.8 and 2.9 we have ||Vum||%2(ﬂ), ||va||%2(ﬂ) €
L1(0,00). Next we take the gradient of the v,,-equation of (2.1) and test the re-
sulting equation by —VAuw,, € L2 (]0,00); L*()), obtaining

loc

L TN AR 2

- s/ al, () @ (U )* 00 Vg, - VA, da +/ A, () VU, - VAv, dz
Q Q

1
< Cs,m, [0z @) IV umllZ2) + [ VomlL2() + 5 IVAUMIT2 ()
which gives us
Vm € L®(0,00; H2(Q)) and Av,, € L*(0, 00; H(Q)). (2.17)

From regularities (2.16) and (2.17), we can go back to the v,,-equation of (2.1) and
conclude that
(vm)i € L?(0, 00; H' ().

Now, we can test the um,-equation of (2.1) by —Au,, € L ([0,00); L?(£2)). Con-
sidering the bounds of the truncation a,,(-) given in (2.3), the interpolation inequality

of Lemma 1.1-2 and inequality (1.6), we have

d
%HvumH%Q(Q) + [ Aum|72 (0

= / al (Um) Vg - Vg Ay, dz +/ W, (U ) A Ay, dix
Q Q

< Ol Vum| 3@ IVomll s ) IIAumHL2 )+ mlAvmll 22 @) | Auml| L2 (o)

1/2
< OVl 550y | Voml o) | At [Faggy + mll 0]l 20y | Athn | 20y

< ClIVuml|zs (@I Vuml 2y + C(m )llAUmH%z(Q) + §’|Aum”%2(9)

After absorbing the term — HAumH 72(q)> the other terms in the right hand side of the
inequality belong to L!(0, oo) Hence, 1ntegrat1ng the last inequality with respect to
t,

Vi, € L*®(0,00; L2(Q)) and Au,, € L?(0;00; L*(Q)),
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finishing the proof of the regularity (2.12).

Finally, we consider the case in which we assume that the Poisson-Neumann prob-
lem (1.5) has the W?23-regularity. In this case, as observed in the end of Subsection
2.2.1, the regularity (2.13) already holds if we consider finite intervals (0, T"), for finite
T > 0, instead of (0,00). Then we can take the gradient of the u-equation of (2.1)
and test the resulting equation by —VAu,, € L2 (]0,00); L?(f2)), obtaining

loc

1 d
N P | 2. :/Qam(um)VAUm-VAum da

+ / al (Um) Avp Vg, - VAU, dz + / al () Vg, - D?*v,,VAu,, dzx
Q Q

+ / al, () VU, - D*u NV Aty da + / al (um) (Vum . va) (Vum . VAum> dz.
Q Q

We recall that, from (2.3), we have |an,(un)| < m and |a), (um)], |al (u,)| < C, for

some C' > 0. Then, using Hélder’s inequality we obtain
1d |
2 dt
+ Cl| Avin |l 3@ I Vtm || 25 () + CIID*vm|| 13 () [ Viim| 15 ()

At 2y + VAUl a(q) < (mll VAV 22y

+ C||Voml| oo 1 D?um | 130) + CHVUWH%G(Q)”vvaLﬁ(Q)> IV A 220

Using the continuous embedding L(Q) c H'(Q), the W?23-regularity, inequality
(1.6), the interpolation inequality for the the L3-norm (Lemma 1.1) in 3D domains

and Young’s inequality, we arrive at

d 1
@HAumH%?(Q) + §||VAum||%2(Q) < Om||VAv,| 720

+ O [|Avm 123y + ||Avm||%2(sz) + ”AumH%Q(Q)HAUmH%Q(Q)} | Awn|72 (-

Now notice that the first term of the right hand side of the last inequality belongs
to L'(0,00) and, because of the regularity obtained so far, we have C [[!Avm]]%3(ﬂ) +

HAUmHZLQ(Q) + HAUmH%Q(Q)HAUmH%Q(Q)] € L'(0,00). Therefore, using Grownwall’s

inequality (Lemma 1.16) we can conclude that
Ay, € L%(0,00; L2(Q)) N L*(0, 00; H(Q))

and hence
U € L%°(0, 00; H3(Q)).

Next we can go back to the u,,-equation of (2.1) and conclude that (u,,); € L*(0, 0o; H'(Q2)),
finishing the proof of the regularity (2.13).
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2.3 Proof of Theorem 2.2

In this section we will obtain m-independent estimates to (uy,, v, ), the solution
of problem (2.1), in order to pass to the limit as m — oo and prove the existence of

solution to the original problem (1).

2.3.1 An energy law appears: formal computations

The basic idea to obtain additional a priori m-independent estimates is that the
effects of the consumption and chemotaxis terms cancel. First of all, we present some
formal calculations to illustrate how it works. Suppose (u,v) is a regular enough
solution to the original problem (1) with u,v > 0. Consider the change o variable

z = /v, then (1) can be rewritten as

ou—Au = -V - (uV(2)?)
Vz2 otz
Oz — Az — . =—= (2.18)

Onulr = 0Onzlr =0

u(0) =ul,  2(0) = VO,

We are going to obtain estimates for v and z and then extract estimates for v from
the estimates of z.
For this, we consider a function g(u) such that ¢”(u) = u*~2. Formally, assuming

u,z > 0 we can use

u® -1

if s ,
J=4{ (-1~ = (2.19)

In(u) , if s=1.
as a test function in the u-equation of (2.18), obtaining

d " "
dt/ﬂg(u) da:—i—/gg (u)|Vul? dz = /ng (u)V(2?) - Vu

and, since ug” (u) = u®1,

4 g(u) dm—l—/us_2|Vu|2 dx:/ STV (2%) - Vu de = - /V ) dz.
(2 20)

On the other hand, we can test the z-equation of (2.18) by —Az. Then we obtain

2
/]Vz|2 dx —|—/|Az!2 dx —|—/ V| Az dx + /uS|VZ|2 dx
2 dt Q

=— u®) - V(2?%) du.
== [ V)9 d

we have

(2.21)



36 Chapter 2. UNIFORM IN TIME SOLUTIONS

Hence, if we add (2.21) to s/4 times (2.20), then the two terms on the right hand side

cancel each other and we obtain the time differential equation

d |s 1 s
et d - 2 d 2 s—2 2 d
o [4/gzg(u) x + 2/Q|Vz| $:| + 4/Qu |Vul® dz

(2.22)
1 s 2 2 V2]
+= | v¥|Vz|© dx + |Az|* de+ | ——Az dz=0.
2J)a Q Q Z
The main idea now is to estimate from below the term
2
/ IAz[? da +/ VAN o (2.23)
Q Q <

(see Lemma 2.10 below).

2.3.2 Rigorous justification of the energy inequalities

In the sequel, we consider the regularized problem (2.1) and its solution (ty,, vy,)
instead of the original problem (1) and (u,v). In this case, we have to deal with the
truncation a,,(-) in the chemotaxis and consumption terms and with the fact that u,,
is nonnegative, but not necessarily strictly positive (Lemma 2.7). In order to obtain
time independent estimates, we will also need to separate the auxiliary variable z
from zero, that’s why we are going to consider the change of variables z = /v + «,
for a > 0 to be chosen later, instead of y/v. With this modification, we will obtain
the corresponding version of (2.22). We will separate the cases s = 1, s € (1,2) and
s > 2. Note that if s = 1 then ¢'(u), given by (2.19), and ¢”(u) have a singularity at
u=0. If s € (1,2), then only ¢"(u) is singular at v = 0 and, if s > 2, then neither
g'(u) nor ¢"(u) are singular.

Let us consider the variable z,(t,z) = \/vn(t, ) + . Taking into account that
the pair (uy,, vy,) is a strong solution of (2.1), on has by straightforward calculations

that (um, zm) satisfies the following equivalent problem:

Oy, — Ay, = —V - (am(um)v(zm)Z)

IV 2 |? 1 @ A (U)*®
—As — — s & AmUm)
ath Zm Zm 2am(um) Zm + 2 Zm (224)
8num‘F = anzm’F =0

Um(0) =u®,  2,(0) = Vo0 + a.

In the present subsection, we drop the m-subscript and write (u, z) for (wm, zm)
to simplify the notation along the proofs of the forthcoming Lemmas. We remark
that all the constants obtained in these Lemmas are independent of the parameter
m € N and this is why the energy inequalities proved in this section allow us to obtain

m-~independent bounds in the rest of the chapter.

We use the following lemma in order to estimate (2.23), whose proof can be found

in the Appendix B.
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Lemma 2.10. Suppose that the Poisson-Neumann problem (1.5) has the H?-reqularity
and assume that Hypothesis (H1) holds. Then there exist positive constants Cy,Co > 0
such that

2 4
/]Az|2 dx+/ V=l As da:zol(/ |D?z|? d:v+/ WZ' /|va dz,
Q Q < Q

for all z € H*(Q) such that Onz|r = 0 and z > « in ), for some o > 0.

Now we prove the following.

Lemma 2.11. The solution (u,z) of (2.24), satisfies the inequality

2dt||v2||L2(Q)+cl(/|D22‘2 do +/

1
+/ am(u)¥|Vz|* dz < /am(u)S_IV(ZQ) -Vap(u) dx
2Ja 4Jo

V2! $)

+;\/a/am(u)s_1|Vz||Vam(u) d:n+C’2/ V2 ? da.
Q Q

Proof. We begin by testing the z-equation of (2.24) by —Az. This gives us

ld 2 2 [V2? 1 E 2
gﬁHVzHLz(Q)—i- \AZHLQ(Q)—F/Q . Az dw—|—2/gam(u) |Vz|* dz

S

SV (22) . Van (1) de + o/a | am ()Y V2| [Vam(u)| d.
<2 [ anlw) 19 Van(w) do+ 3 [ an(w 92 Vo ()] d

Then, applying Lemma 2.10, we obtain the desired inequality. |

Define, for o > 0, the functions g, and g, ;, adequate regularizations of the

function g that appears in the formal inequality (2.22), by

gm(0) = /0 gn(r) dr and g (o) = /0 g;mj(r) dr, (2.25)
where g;,, and g, ; are defined for r > 0 and given by

In(am(r)+1), ifs=1,

! (r) = 51 2.26
I (1) am (1) Cifssi, (2.26)
s—1
and )
m 1/7)% .
Gl i (1) = (am(r) + 1/]) , for s € (1,2) and j € N. (2.27)
9 87

In Lemmas 2.14, 2.15 and 2.16 below we will be interested in the terms

/Qut(t, z) gr.(u(t,z)) dz  and /Qut(t,x) G j(u(t, x)) dz,
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recalling that u(¢,z) denotes the function u,(t,z) of the solution (uy,, zmy,) of (2.24).

We have the following results on these terms.

Theorem 2.12. The weak time derivatives of g, ;(u) and gm(u) belong to L*(0, 0o; L*(£2))
and are given by
Orgm (1) = gy (1) uy (2.28)

and
DiGm,j(u) = g, () uy. (2.29)

Proof. We are going to prove (2.29). The proof of (2.28) is analogous to the proof
of (2.29). Because of Lemma 1.19, we know that there is a sequence (u™),en C
C>(0,00; L?(€2)) that converges to u in the norm of H'((0,00);L?(€2)). For these
functions "™, which are very regular in the time variable, we can write

> n / _ o / ny, n _ w(am(un)+1/j)s—1 n
[ sy g0 @t = [ sy ote) ae= | Y2 )

for all ¢ € C2°(0, 00). Then we note that the convergence in the norm of H'((0, 00); L?(f2))
is enough to pass to the limit as n — oo in the first and in the last terms of the above

equality, yielding

oo  (a (1 S\s—1
[T amat) 0y de = [TEELT o a, v e 020,00,
0 0

By the definition of weak derivative, this is precisely (2.29), as we wanted to prove. W

d d
Corollary 2.13. The weak time derivatives o7 / gm(u(t,x)) dz and 7 / Gm,j(u(t,z)) dx
Q Q

belong to L*(0,00) and are given by the expressions

% [ gnlult.a) do = /Q w(t, 2)g, (u(t,z)) do (2.30)
and J
dt/ng’j(u(t’x)) dx:/Qut(t,x)g;nJ(u(t,m)) dx. (2.31)

Proof. We are going to prove (2.31). The proof of (2.30) is analogous to the proof
of (2.31). Accounting for Lemma 1.18 and (2.29), we obtain

am(u(t, x \s—1
jt/ggm’j(u(t’m)) d””:/gigm,j(U(w)) dw:/gut(t,a:)( (ult Sﬂirl/J) .

Since (am(u(t’?_)fl/j)s_l is pointwisely bounded and u(t,z) € L?(0,00; L%(€2)) then

d

7 /ng,j(u(t,:v)) dz € L*(0,0).
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Now, we are in position to prove an energy inequality associated to the formal
inequality (2.22).

Lemma 2.14 (Energy inequality for s = 1). The solution (u,z) of the problem
(2.24) satisfies, for sufficiently small o > 0,

jt [1/gm( ) do + /|VZ|2 dx] +c/yv (u) + 1]1/2P2 dx+i/am(u)|v,z|2 do

Q

4
O (/|D2z|2 dm+/’z‘ daz) < c/ V2]? de,
Q o 2 Q

where gm(u) is given by (2.25).

(2.32)

Proof. In order to prove (2.32) we will use the cancellation effect mentioned in Sub-
section 2.3.1. Since now we are dealing with the regularized problem (instead of the
original problem), we must pay attention to two technical difficulties that arise: the
presence of the truncation a,,(-) in the chemotaxis and consumption terms, the fact
that w is nonnegative, but not strictly positive, and now we consider z = /v + .
For s = 1, this means that instead of using ¢'(u) = In(u) as a test function in the
um-equation of (2.1), we must use g’ (an,(u)+1) = In(am(u) + 1), in order to preserve
the cancellation effect, avoid divisions by zero and invalid values for the argument of
In(-).

We begin by using ¢ = In(am,(u)+1) in the u-equation of problem (2.1) to obtain

d an, (u) _ am ()
pr ng(u) dx + /Q m’VUF dr = <am(u)+1V(22),Vam(u)> ,

where

gm(r) = /07“ In(am(0)+1) do

is a primitive of In(am,(r) 4+ 1). Due to the regularity of u, u; and the functions g, (r)
and g/, (r), for r > 0, we can conclude that the weak derivative % Jo gm(u) dz =
Jo 9 (u) uy dz and belongs to L*(0,T).

Since 0 < a/,,(u) < C, we have (a,,(u))? < Cal,(u), and we can write

U (W) G20 (@ (u ) ul2da
/Q(u) Vul2d >c/ [l
_ [Vam(u )| " a (u 1/212 1
—c [ et zc/Q\V[m()H] 2da.
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1 1
Hence, using that < , we have

(am(w) +1) = Vam(u) +1

jt gm(u) dx + C/ |V [am(u) + 1121 dz = 2 (%sz,Vam(u)>
_ Vam(u)
= (V(2%), Vam(u)) — 2 <sz, R 1)

IN

(V(z%), Vam(w)) + 24/ 00 o) + al| V2] 20y [V am () + 112|120

Then we obtain

d

G | an(w) do+C [ [Vian() + 1722 do < (V). Vo) + IV

(2.33)

Now, using Lemma 2.11 for s = 1 we obtain

212 |VZ‘4 1 2
2dtuwnp +01(/ D22 | daz+/ dx)—i—2 [ am(w)|V2f? do

/v V! )dx—i—/ V2V am(w)] dz + Co| V2|22 0,

If we add the above inequality to 1/4 times (2.33), then the terms / Van,(u) - V(2?) dx
Q

cancel and we obtain

drl
G5 [ antw) do+ 519a| + € [ Vi) + 1172 da

1 2 22 /|V 2!
- d C D d d
+2/Qam w)|Vz|© de + 1(/9[ z|* dx + e x)

«
< [ VAlVan (W] ds + ol Vol

< [ ValVian(w) + 12| Van(@) + 1][72] do -+ Cal| Vol
Q

(2.34)

We can deal with the first term in the right hand side of the inequality using Holder’s

and Young’s inequality,

/Q\/a|V[am(u)+1]1/2||\/am(u)+1||v,z| do
<a C’((S)/Qam(uﬂVz\Q dx 4 6||V]am(u) + 1]1/2\&2(9) ta 0(5)/9 Vz|? da.

Therefore, we can first choose § > 0 and then « > 0 sufficiently small in order to
use the terms on the left hand side of inequality (2.34) to absorb the first two terms
on the right hand side of the above inequality and finally obtain the desired inequality
(2.32). |
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Lemma 2.15 (Energy inequality for s € (1,2)). The solution (u, z) of the prob-
lem (2.24) satisfies, for sufficiently small o > 0,

d |s 1 9 1 s 9
G |5 om0 ot 31951 | 4 1 [ an(? T3P do

4
+C1( | |D*2)? dx + [va[" dz) < C [ |Vz]? da,
Q Q 2 Q

where gm (u) is given by (2.25).

(2.35)

Proof. Analogously to the case s = 1 (Lemma 2.14) in order to preserve the can-
cellation effect and avoid divisions by zero, for s € (1,2), instead of using ¢'(u) as a
test function in the wu,,-equation of (2.1), we should consider the sequence {1/j};en
and use 9:71,3' (u) given by (2.27). Due to the complexity of the procedures that are

involved, we divide the proof in three main steps:
1. Obtain an inequality from the u,,-equation of problem (2.24);

2. Use this inequality and Lemma 2.11 to obtain the corresponding version of
(2.22);

3. Pass to the limit as j — oo to obtain (2.35).

STEP 1: By testing the um,-equation of (2.24) by g, ;(u) = (am(u)+1/5)571/(s—
1)

d ay, (u) am (u)
i Jygmst0 ot [ o Sl e = (S S V) Bt )

where

r am, \s—1
o) = [ I g

is a primitive of (a,,(r) +1/5)"1/(s —1). Since 0 < a/,,(u) < C, we have (a’,(u))? <

Cal,(u), we can write

(1) e (al, (1))
/Q<am<u>+1/j>2-s'v‘ I ZC/gmamwm/j)?-s

and hence we obtain

Vg |? da > C/ IV [am (u) + 1)%2? dz.
Q

d
dt

. a /212 gy — am(u) +1/j—1/j 22) Y (u
ng,x W do+ € [ Vo) + 1/ do = (S 292,90, ()

o 1/ T (1/5)¥2V am (u)
( + 1/J 1V( ) Vam(u)) -2 <ZVZ, (Wn(u)"i‘l/])) (am(u) + 1/j)1—s/2>

< ((am(uw) +1/5)* 7'V (2%), Vam(u)) + %\/ 1001 oo @) + @(1/7)* 21V 2] () 1V [am (1) + 1/512 [ 220
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where in the last estimate we use a,,(u) +1/j > 1/j. Then, using Young’s inequality,

we can absorb the term ||V]an, (u) + l/j}S/QHLz(Q) obtaining

d
G [ gmatu) do+C [ [Flan(u) + 117172 o

< ((am(u) +1/5)°7'V(2%), Vam(u)) + C(1/5)°[V2[Z2(q)-

(2.36)

STEP 2: We add the inequality of Lemma 2.11 to s/4 times (2.36), then we

obtain
G5 [ omstwde + 31920 ] +€ [ [Vlam(u) + 1731z
dt L4 Jo 7™ 2 L2(®) 0

2.2 |VZ’4 1/ s 2
+Cl</Q|D z| (1ﬂv+/Q o da:)+2 Qam(u) |Vz|* dx

s o
< 5va [ () VElIVan (] do+ €19z,

+ S/Q [(am(u) +1/5)5 1t — am(u)sfl] Vap(u) - 2Vz dx
< [ ValTlan() + 1/ () + 1/5772 9] o+ C| 2l

5 [ [0+ 1707 = e Vet V(:?) do.

Next, we deal with the first term in the right hand side of the previous inequality

using Holder’s and Young’s inequality,
[ ValTlan(@ + 173 @) + 152|172 da
Q
1/2
< V& | [ o) + L3IV da] 1900 + 1311200
< C0) [ (an(u) + 1/3) V2P do+ 0| Vian(w) + 1/ 0
Q

Therefore, we first choose & > 0 and then a > 0 sufficiently small to obtain

d s 1 2 15/212
i |3 [omat) do+ 51951 | + € [ 1Vlon) + 173172 o

z

4 1 1
+ cl( D2 do+ [ V2 d:c) i [am(u)s — (am(w) +1/5)%]|V2? dz
Q o 2 2Jq 2

< CHVZH%z(Q) + S/ {am(u)s_l — (am(u) + l/j)s_l]Vam(u) -V (2?) da.

4Jq
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In order to avoid problems with divisions by zero in the term C / |V [am (u) + 1/5]°/%? da

as we take the limit as j — 0o, we use the fact that this term is nonnegative and write

d |s . 1 2 2.2 /|VZ’4
p [4/{29m73(u) dx + 2HV2HL2(Q)] +Cl</Q\D z|* dx + L, 2 dac)

+1/Q [ ()* %(am(u) £1/5)°]|V2f? da (2.37)

2

< O V2200 + Z/Q [ (w)* ™~ (@) +1/5) | Van(u) - V(%) de.

STEP 3: Pass to the limit as j — oo.

Now we show that, passing to the limit as j — oo, we recover the cancellation
of the chemotaxis and consumption terms. To deal with the passage to the limit as
j — oo, we remind that m € N is fixed and that the solution (um,zm) of (2.24),

denoted for simplicity as (u, z) in the present subsection, have the regularity
(u —u*),z € L>=(0,00; H(Q)) N L*(0, 00; H*(Q)),

up € L2(0,00; L*(R))  and 2 € L*(0,00; HY()).

This means that there is a zero measure set N’ C (0,00) such that for any ¢ €
(0,00) \ V' we have

ug(t, ), Va(t, ), ult,-), z(t,-), Vu(t, -), Vz(t,-), D*z(t,) € L*(Q)

and, by Corollary 2.13, we have (2.31). Therefore each integral of the inequality (2.37)
is well defined and (2.37) is satisfied for each ¢ € (0,00) \ V.

We want to take to the limit as j — oo in (2.37). We are going to do it term
by term. Let ¢ € (0,00) \ N and let us first consider the term (2.31). We define the
functions f, F, f; € L'(Q), for all j € N, by

(am(u(t, ) +1/§)*"
s—1 ’

am(u(t,))*”"
s—1

f](x) :ut(tax) f(x) :ut(t7x)

(am(u(t,2)) + 1)*"1
s—1

Then, for almost every z € Q, fj(x) = f(x) as j — oo with |f;(z)| < F(x) for all

and Fa) = [fi(@)| = |us(t, z)]

J € N and, by the Dominated Convergence Theorem, we conclude that f; — f in
L'(2) as j — oo. This implies, in particular, that

/ fi dz — / fdx, as j — oo. (2.38)
Q Q
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Therefore, using (2.31), (2.38) and then (2.30) we conclude that

m 1 \s—1
lim d/ Gm,j(u(t,z)) de = lm [ w(t, x) (am (ut, ) +1/5) dx
jooodt Jo o j—=oo Jo s—1
m t s—1 d
= / ut(t,ac)M der = — [ gm(u(t,x)) dz, for each t € (0,00) \ N.
0 s—1 dt Q

We can follow this reasoning and take the limit as j — oo in the other terms of

the (2.37). Using the Dominated Convergence Theorem again we conclude that

jlggol i [am(utt, )" - %(am(u(t,x)) +1/)°] |92t 2)? da = i/gam(u(t,m))ﬂv,z(t,x)]Q do

and
lim s / [am(u(t,x))s—l — (am(ult, z)) + 1/j)5_1]Vam(u(t,x)) 2(t,2)V2(t,z) dz = 0,
Q

Jj—00

for each ¢ € (0,00) \ V.
Then, since the limit preserves inequalities, after we take the limit as 7 — oo in
(2.37), we obtain

d S 1 9 1 ) )

dt[4/99m<“(t’x)) dfﬁ+§|!VZ<t,:v>lle(m] +4/ﬂam(u(t,x)) Vo(t, z)|? da
2,(t, )2 [Va(t,2)[* 2

+C1 (/Q|D 2(t, z)| d.fE—l—/Q (t2)? d:c) < C||Vzl72(q)

for all ¢ € (0,00) \ NV, which means that the inequality is valid for almost every
t € (0,00). Therefore (2.35) holds. [ |

Lemma 2.16 (Energy inequality for s > 2). The solution (u,z) of the problem
(2.24) satisfies, for sufficiently small o > 0,

il

1 1
/gm(u) dx + fHVzH%Q(Q)] +/]V[am(u)}s/2’2dx+ /am(u)8|Vz’2 dx
4 Jq 2 ) 4Jq

4
+Cl< |D?2|? da + V2] dx) <C [ |Vz]? dx,
Q Q 2 Q

where gm(u) is given by (2.25).

(2.39)

Proof. We test the u,,-equation of (2.24) by

and obtain

d

pn ng(u) dx +/ (am(w))¥2al, (u)|Vul? drz = (am(u)(am(u))S*ZV(f),Vam(u)) )

Q
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where

is a primitive of (a,(r))*1/(s — 1). Since 0 < al,(u) < C, we have (al,(u))? <

Cal,(u), we can write

[ @ an(@) 2 Vul? do > € [ (@) an(w)* 2Vl do > C [ [9(an(w) P do
Q Q Q

Then we obtain

% ng(u) dx + C’/Q IV [ (w)]*/?? da < (am(u)* TV (22), Vam(u)). (2.40)

If we add s/4 times (2.40) to the inequality of Lemma 2.11 then the term

S

2 amu)* WVanm(u) - V(2?) dz
+ [ Vanw) - V() da,

which appears in s/4 times (2.40) cancels with the term

2 (W) WVa () - V(22) da
L[ o™ Van(w) - V) da,

which comes from the inequality Lemma 2.11 and we obtain

412 1wz e+ [ a7
dt[4/99m(“)dx+ IV +C/Q|V[am(U)] Pz + 5 | am(w)|VP do
212 1 |V z|* s o1
+C1< |D*z|* dx + = 5 d:c) < Va | an(uw)* V2| Van(u)| do
Q 2Ja = 2V Jo

< [ Vallan(@]"lan(w?? 7] ds
Q

Next, we deal with the second term in the right hand side of the previous inequality

using Holder’s and Young'’s inequality,

/Q V|Vt ()] Jam ()% V2] di

< a C(5) / () |V 22 da + 8|V am ()] -
Q

Therefore, choosing «,d > 0 sufficiently small we finally obtain the desired in-
equality (2.39). ]

The energy inequalities (2.32), (2.35) and (2.39) allow us to obtain m-independent
estimates for the sequence (vy, ), that are valid up to infinity time in the next Sub-

section.

Remark 2.17. In the next subsection, the aforementioned m-independent estimates
will be obtained upon integration of the energy inequalities (2.32), (2.35) and (2.39)

with respect to the time variable. Therefore we find it appropriate to remark that,
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d
for each T' > 0, we have / gm(u) dz € L?(0,T) and 7 / gm(u) dz € L?(0,T) and
Q

Q
it implies, in particular, that

/OT;:/Q%(“(W)) dz dt:/ggm(u(T,af)) dHT—/ng(U(O,w)) d.

See [6]. O

2.3.3 m-independent estimates and passage to the limit as m — oo

Now we use again the notation (u,, vy,) for the solution of the regularized problem
(2.1), zm = Vom + @ and (u,v) for the solution of the original problem (1). In this
subsection we are going to obtain m-independent estimates for (um,,v,,) that will
allow us to pass to the limit in the problem (2.1) as m — oo and prove the existence
of solution to the original problem (1).

First, we obtain some m-independent bounds for Vu,, that can be extracted from
the energy inequalities (2.32), (2.35) and (2.39). Next, we prove m-independent
bounds for (u,,vy) and pass to the limit in (2.1) as m — oo, considering the case
s €[1,2) and s > 2, respectively.
m-independent estimates for Vuv,,

Let us remind that, for s > 1, we have defined g, as

, B In(am(u)+1) ifs=1,
gm (1) = { (W) /(s —1) ifs> 1.

And let us define the energy

Er (U, 2m)(t) = Z/ng(um(t,m)) dx + ;/Q V2 (t, 2)|? d. (2.41)

We remark that, since 0 < vy (£, ) < [[0°]| 1o () a.e. (t,x) € (0,00) X Q, we have

0 <Va < zp(t,z) <4 /l[00 o) + a ae. (t,x) € (0,00) x Q

and, by straightforward calculations, we can prove the following lemma.

Lemma 2.18. There are 81, 82 > 0, depending on «, such that
B1|Vzm(t,z)| < |Vun(t,z)| < B2|Van(t, x)| (2.42)
and

61<|Azm(t,x)| + |Vzm(t,:c)|2) < |Avp(t,2)| < Bg(|Azm(t,x)] + |Vzm(t,a:)|2>,
(2.43)
a.e. (t,x) € (0,00) x €.
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We will integrate the energy inequalities (2.32), (2.35) and (2.39) with respect to
T

t, from O to some T > 0. We take into account that / |V 2 (t) H%Q(Q) dt is bounded,

0
independently of 7" and m, because of (2.42) and (2.14), and we use the m-uniform
bounds which stem from (2.4) and (2.5) on the initial data u!, and v2, in order to
conclude that the energy given in (2.41) in time ¢t = 0, Ey, (tm, 2m)(0), is also bounded,

independently of m. Thus we can conclude that
V2 is bounded in L°°(0, o0; L2(2)) N L*(0, 00; L(Q)),

am(um)S/QVzm and Az, are bounded in L2(0, 00; LQ(Q)).

But using the fact that z,, = /v, + a, (2.42) and (2.43) we can conclude that
Vy, is bounded in L>(0, 0o; L*(R2)) N L*(0, 00; L(Q)), (2.44)

(U )* Vo, and Aw,, are bounded in L?(0, co; L2(0)). (2.45)

0
In particular, since vy, (t) € H?(S2), for each t € (0, 0), and 8—vm[r =0, it stems
n

from (2.45), the H?2-regularity of the Poisson-Neumann problem (1.5) and (1.6) that
VYV, is bounded in L%(0, 00; H'()). (2.46)

Using the results obtained until this point we analyze the existence of solutions of
(1), first for s € [1,2) and then for s > 2.

m-independent estimates for (u,,, v,,) and passage to the limit for s € [1, 2)

Let

oo In(r) if s =1,
Vr > 0, 9(7“)—{ (s —1) ifse(1,2)

and let

B T B rin(r) —r ifs=1,
g(r) —/0 g (0) df = { ré/s(s —1) if s e (1,2).

Notice that ¢”(r) = 772, ¥r > 0, in all cases.
We test the u,,-equation of (2.1) by ¢'(u;, + 1) and obtain

d 4 s/212
yr Qg(um+1)dac—i—82/Q|V[um—i-1]/\ dx

B / o (1) (i + 1) 7100 - Vit (e + 1) d
Q

2 Am\Um 175/2 s s
=3 /Q (U(H))l_smam(um) P20 - [t + 1]°/2 da

§2</Qam(um)s\va\2 dx)1/2(/Q]V[um+1]S/2’2 dgg>1/2

S
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and thus we have

1
(um +1)de+ — / IV [t + 1]°/%)? dz < 4/ (U ) | Vo |2 da.

dt 0

Integrating with respect to t from 0 to T, for any fixed T' € (0, 00), we obtain
/g(um( )+ 1) d:c+/ / |V [t + 1]%/%2 da dt

/ /am U ) ¥ |V |2 da dt+/ g(ud, +1) dx.

Then, because of Lemma 2.8.1, (2.4) and the definition of g and (2.45) we conclude
that

(tm + 1)*/? is bounded in L>(0, co; L*(Q)), (2.47)
in particular,
U, 1s bounded in L>(0, co; L*(2)), (2.48)
and
V[t + 1]%/2 is bounded in L?(0, 0o; L2(2)). (2.49)

Consider the relation
Vit = V(tm + 1) = V((um + 1)°/2)%° = %(um 1) Y (up + 1)°%. (2.50)
Taking into account that we are considering s € [1,2), we can use (2.47) to obtain
(tm + 1)1 7%/2 is bounded in L(0, oo; L**/2~9)(Q2))
and then (2.49) and (2.50) to conclude that
Vi, is bounded in L*(0, 0o; L¥(Q)). (2.51)

In conclusion, using (2.48), (2.51) and the Poincaré inequality for zero mean functions
(Lemma 1.3),

U, — u* is bounded in L°(0, 00; L¥(2)) N L2(0, oo; Wh5(Q)). (2.52)

Considering the chemotaxis term of the u,,-equation of (2.1), we can write am, (tm)Vun,

as

A (Um) VO = @ ()™ 2 (1) > V0.

Then, we have a, () ~*/? bounded in L>(0, 00; L2%/(2~9)(Q)), because of (2.47),
and a,, (tm )*/?V,, bounded in L2(0, co; L2(Q2)), because of (2.45), and hence we can
conclude that

am (Um) VU, is bounded in L?(0, 00; L¥(Q)). (2.53)
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Then, if we consider the u,,-equation of (2.1), from (2.52) and (2.53) we conclude
that
Oy, is bounded in L? (0, 00; (Wl’s/(s_l)(Q))/>.

Now we turn to the v,,-equation, rewritten as
OtV — AV, + @ (W) 50, = —(am (um)® — am (1) *)vp,. (2.54)
Analyzing the term on the right hand side of (2.54), we have
o (U)® — @ (u*)* is bounded in L%(0, oo; L3/2(0)). (2.55)
In fact, using Lemma 1.10, we obtain
|am (um)® — am(u*)*| < slam(um) + am(U*Ns*l‘um —u’l.

Then, considering the m-uniform bound (2.52) and the Sobolev embedding L3¥/3=)(Q))
W1$(Q) we obtain (2.55).

With this information, now we can test (2.54) by vy, obtaining

1d 2 2 A (0)° 2 s #\8(, 2
3 g7mla) + [V om I+ 25 o) < € [ lam(um)® = am(u)lo2, da

s

< Cllomlloe (e llam (um)® = am(w)?ll 52 (o) lvmll3(0)

< CO)llam(tm)* — am ()22 + Ollvml 3y + Ol Voml 13 gy,

Note that if ug # 0 then have a,,(u*) = v* > 0 all m > u*. Hence, choosing § > 0

small enough, we can conclude that, for m > u*, there is 8 > 0 such that

5 o oml3aey + BIVuma(ey + Bllem ey < Cllam(um)® — am(u)*2s/2(q
Therefore, integrating with respect to ¢ and using (2.55) we obtain

U is bounded in L2(0, 0o; L*(Q2)). (2.56)
Hence, in view of (2.44), (2.45) and (2.56) we have

Uy is bounded in L?(0, 00; H*(Q)).

With the m-uniform bounds obtained so far we can obtain a m-uniform bound
for the function dyv,, in L*(0,00; L¥/2(Q)). In fact, going back to (2.54), reminding
that vy, is uniformly bounded in L>°(0, oo; L>°(2)) with respect to m and considering
(2.56) and (2.55), we conclude that

dyvp, is bounded in L2(0, 00; L¥2(9)).

Now we are going to obtain compactness for {u,,} which are necessary in order to



50 Chapter 2. UNIFORM IN TIME SOLUTIONS

pass to the limit as m — oo in the nonlinear terms of the equations of (2.1). Because
of (2.47) and (2.49), we have that

(um +1)%? is bounded in L>®(0, o00; L2(Q2)) N L2(0,T; H*(K2)), for every finite T > 0.
Using the Sobolev inequality H'(Q2) € L°(Q) and interpolation inequalities we obtain
(um)®/? is bounded in L'%3(0,T; L'%/3(2)),

which is equivalent to
Uy, is bounded in L>*/3(0, T; L>/3(Q)). (2.57)
By using (2.47) and (2.57) in (2.50) (remind that s € [1,2)), we also have
U, is bounded in L%/ G3+9) (0, 7; Wwi2s/B+3)(Q)).

We observe that W15/G3+9)(Q) ¢ L9(Q), with continuous embedding for ¢ =
155/(9 — 2s) and compact embedding for ¢ € [1,15s/(9 — 2s)). Then, since s € [1,2),
we have 55/3 < 155/(9 — 2s) and therefore the embedding W155/(3+9)(Q) c L5%/3(Q)
is compact. Note also that ¢ = 5s/3 > 5/3 > 1.

Now we can use Lemma 1.14 with
X = W1’5S/(3+S)(Q), B = L5s/3(Q), Yy — (H?’(Q)),

and ¢ = 5s/3, to conclude that there is a subsequence of {u,,} (still denoted by {um })

and a limit function « such that
U, — u weakly in L%/ G3F) (0, 7, w5s/G+9)(Q)), vT > 0,

and
um — u strongly in LP(0,T; LP(2)), Vp € [1,5s/3), VT > 0. (2.58)

Using the Dominated Convergence Theorem we can conclude from (2.58) that
am (um) — u strongly in LP(0,T; LP(Q)), Vp € (1,5s/3), VT > 0. (2.59)
It stems from the convergence (2.59) and Lemma 1.11 that

(am (um))® — u® strongly in L9(0, T LY(Q)), Vq € (1,5/3), VT > 0. (2.60)
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The convergence of vy, is better. There is a subsequence of {v,,} (still denoted by

{vm}) and a limit function v such that

vm — v weakly* in L>((0, 00) x Q) N L>(0, 00; H()),
vm — v weakly in L2(0, 00; H(Q)),
Vu, — Vo weakly in L*(0, o0; L*(Q)),
and dyvy, — Ov weakly in L2(0, 00; L3/2(Q)).

(2.61)

Now we are going to use the weak and strong convergences obtained so far to pass
to the limit as m — oo in the equations of problem (2.1). We are going to identify

the limits of the nonlinear terms related to chemotaxis and consumption,
(U ) VU, and ap, (U, ) vy,

respectively, with

uwVv and uv’v.

In fact, considering the chemotaxis term, because of (2.59), (2.44) and (2.61), we can

conclude that
(U ) V0, — uVo weakly in L209/Gs+12) (o 1, 1205/ Gs+12)(Q)) - v > 0.

Considering now the consumption term, considering (2.60) and (2.61) we conclude
that
(U )* vy, — v weakly in LY/3(0,T; L2/3(Q)), VT > 0.

With these identifications and all previous convergences, it is possible to pass to
the limit as m — oo in each term of the equations of (2.1). In order to finish the proof
of Theorem 2.2 we must obtain the regularity (up to infinite time) which is claimed
for w.

From (2.47) and (2.49) there exists a subsequence of {(u, + 1)/}, still denoted
by {(tm 4+ 1)*/?}, and a limit function ¢ such that

(U + 1)%/2 — ¢ weakly* in L>(0, co; L*())
V (tm + 1)%/2 — Vi weakly in L?(0, c0; L*(Q)).

Then, using the strong convergence (2.58), the continuity of the function w,, +—

f(tm) = (tm + 1)*/? and the Dominated Convergence Theorem, we prove that
p=(ut1)"

Analogously, because of (2.45) we can conclude that, up to a subsequence, there

is a limit function ¢ such that

(U ) ¥ Vv — ¢ weakly in L2(0, 00; L(92)).
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And using the convergences (2.60) and (2.61) we can conclude that
¢ = u*/*Vv.
Therefore we have proved the global in time regularity

(u+1)%% € L=(0,00; L2(Q)), V(u+1)2 e L?*(0,00; L*(Q)),

2.62
w2V € L*(0,00; L*(Q)). (2.62)

Considering (2.62) and proceeding as in the obtaining of (2.52) and (2.53) we conclude
the global in time regularity

u € L>(0,00; L*(Q)), Vau, uVov € L*(0,00; L¥(Q)),
finishing the proof of Theorem 2.2 in the case s € [1,2).

m-independent estimates for (u,,v,,) and passage to the limit for s > 2

The procedure for the case s > 2 is slightly different. First we note that, integrating
the energy inequality (2.39) from Lemma 2.16 with respect to ¢, we have

Vam (um)*? is bounded in L%(0, oo; L2(12)). (2.63)

We also remind that we defined ¢, (1) = am(r)*~1/(s — 1), for s > 2. Then we have
() =5 [ (O)an(6) 49 < Cs [ an(6)° db = (s~ g (1)
0 0

Therefore it also stems from integrating the energy inequality (2.39) with respect to
t that
am (tm)*/? is bounded in L=(0, 0o; L2(Q)). (2.64)

From (2.64) and (2.63) we can conclude that
am(tm)*’? is bounded in L'3(0,T; L'%/3()),

that is,
am () is bounded in L%/3(0,T; L>*/3(Q)). (2.65)

For each fixed m € N, consider the zero measure set N’ C (0, 00) such that
U (15, ), 0 (5, ) € HY(Q), Vt* € (0,00) \ N.
Then, for each fixed t* € (0,00) \ NV, let us consider the sets

{Oﬁumgl}:{xeﬁ’0§um(t*,x)§1}
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and
(U > 1) = {x € ‘ U (t, 27) > 1}.

Now note that, since s > 2, we have
/am(um(t*,a:)QIva(t*,:U)|2 dx
Q

< / Vo, (t*,2)|* do +/ U (U (8, 7)) Vo (87, 2)|? da
{0<um<1} {um>1}

S/ |va(t*,x)\2 dw—i—/am(um(t*,x))SIva(t*,x)F dx.
Q Q

The last inequality is valid for all t* € (0,00) \ NV, then if we integrate in the variable

t we obtain

/ / o (U (t, )2 Vo, (t, ©)|? de dt < / / Vo (t,z)|* do dt
0 Q 0 Q
+/ /am(um(t, )% | Vo (t, ) dz dt.
0 Q
Therefore by (2.14) and (2.45) we can conclude that
m (U ) VU, is bounded in L%(0, co; L*()). (2.66)

Now we test the wu,,-equation of problem (2.1) by u,,. This gives us

—— ||t + |[Vum = Am (Um )V, - Vi, dx
5 g7 ey + 1Vl By = | amn)

1 1
< 2/ (U )| V| do + §”V“m”%2(ﬂ)v
Q

hence we have

d

%Hum”%%m +[[Vam|[72iq) < /Qam(um)Q]vaP dz.

Integrating with respect to ¢, we conclude from (2.66) that
Uy, is bounded in L% (0, oo; L?(12)) (2.67)

and

Vi, is bounded in L?(0, 0o; L*(Q)). (2.68)

Then, if we consider the u,,-equation of (2.1), by applying (2.68) and (2.66) we
conclude that

Ay, is bounded in L2(0, oco; (H1(Q))). (2.69)

1
Let (am(um)®)* = ‘Q]/ apm (U)® dx, from (2.64) and (2.63), we can also conclude
Q
that
YV, (ty,)* is bounded in L2(0, co; L*(Q)).
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In view of Lemma 1.3, the latter implies
am (Um)® = (am(um)®)* is bounded in L2(0, co; WH(Q))
and, in particular, by the Sobolev embedding, we have
o (U)® — (@ (p)®)* is bounded in L2(0, oo; L¥/2(Q)). (2.70)
Now we consider the v,,-equation of (2.1) written as

OV — Avpy + (Wm (Um)®) v = —(am (um)® — (am (um)®)*)vm. (2.71)

Testing (2.71) by v, and using Holder’s inequality we can obtain
1d
2 dt
< CHUSnHLOO(Q)Ham(Um)S - (am(um)s)*”L3/2(Q)||vaL3(Q)

< Cllam(m)® — (@ (m)*) a2y + Slltml 22y + 811 V0m 220

loml 720y + IV0mlI72() + (am (um)®) lvml 720y

In order to bound (a,,(um)®)* from below, we will apply Lemma 1.15. Indeed,

(@) = C( [

; A, (U dm)

and applying Lemma 1.15 (with wy, = um, p = 2, and using (2.67)) we conclude that
there exist 5 > 0 and mg large enough such that (am,(um)®)* > 5> 0, a.e. t € (,00),

for all m > mg. Therefore
ld
2dt
< Cllam(um)® — (am(um)s)*H%Bﬂ(Q)‘

lm 220y + (1 = 8| Vom 22y + (8 = 6) [oml32()

Now, choosing ¢ small enough, integrating the last inequality with respect to ¢ and

using (2.70) we obtain
Up, is bounded in L?(0, 0o; L*(Q)). (2.72)

With the m-independent a priori bounds obtained so far we can also give an m-
independent a priori bound for dyv,,. In fact, if we consider again the equation (2.71),
then the m-independent estimate in the L*-norm for v,, given by Lemma 2.7-2 and
the m-independent a priori bounds (2.72), (2.70) and (2.45) allow us to conclude that

Ayvy, is bounded in L?(0, o0; L3/2(0Q)).
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Now, using (2.67), (2.68) and (2.69) we can conclude that there is a subsequence
of {um}, still denoted by {u,}, and a limit function u such that

U — u weakly* in L>(0, oo; L2(2)),
Vi, — Vu weakly in L2(0, c0; L?(2)),
Oy, — u weakly in L? (0, 00; (Hl(Q))/)

By applying the compactness result Lemma 1.14, one has
U, — u strongly in L*(0,T; L*(Q)), YT > 0.
Using the Dominated Convergence Theorem and (2.65) we can also prove that
am (Um,) — u strongly in LP(0,T; LP(2)), Vp € (1,5s/3),
and using Lemma 1.11,
am (U )® — u’® strongly in LP(0,T; LP(R2)), Vp € (1,5/3).
From the global in time estimate (2.64) we can conclude that, up to a subsequence,
am (Um) — u weakly™ in L>°(0, oo; L*(£2)),

hence, in particular,
u € L%°(0,00; L*(Q)).

For s > 2, if we consider the functions v,,, we have the same m-independent
estimates that we had for s € [1,2). Then we have the same convergences given in
(2.61).

Following the ideas of Subsection 2.3.3, we can identify the limits of @y, () Vo,
and a, (U, )%y, with uVo and u®v, respectively.

This finishes the proof of existence of solution to the original problem (1) as a

limit of solutions of the regularized problems (2.1) for s > 2.

2.4 Regularity and Uniqueness in 2D

In this section, we show that, for two dimensional domains, we can improve the
results on the uniqueness and regularity of the solution of (1). The key point is the
inequality (1.1), which allows us to improve the a priori estimates of u,, and then of

Um, Where (u,, Up,) is the solution of (2.1).
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2.4.1 Uniqueness in 2D

Theorem 2.19. In the two dimensional case, we have uniqueness of solution in the

class of functions (u,v) such that

we L®(0,T; L2(Q)) N L%(0,T; H*(Q)) N L¥*4(0, T; L*~4(Q)), (2.73)
uwe LY0,T; LY(Q)) if s =2 (2.74)

and
v e L®0,T; L>(Q)) N L®(0,T; HY(Q)) N L*(0,T; H*(Q)). (2.75)

Remark 2.20. The regularities (2.73) and (2.75) imply in particular that
u € L(0,T; (H'(Q)))

and therefore, the solution u can be taken as test function in the u-equation of (1).
The regularity u € L*~4(0,T; L*~4(Q)) is an additional hypothesis only if s > 2,

because in 2D domains, the regularity u € L>(0,T; L?(2)) N L%(0,T; H'(£2)) implies

u € L*0,T; L4(%)). O

Proof of Theorem 2.19. Suppose (ug,v1) and (ug, v2) are two solutions of the origi-
nal problem (1) with the regularity given in (2.73)-(2.75). Define (u,v) = (ua—u1, v2—
v1). Then (u,v) satisfies

(ue(t), ) + (Vu(t), Vo) = (u(t)Vua(t), Vo) + (ur(t) Vo, V), Yo € H(Q), a.et € (0,T),
(2.76)

and

ve(t) — Av(t) = —[(u2(t))® — (u1(t))*]va(t) — (u1(t))sv(t), a.e t € (0,T), (2.77)

with (u(0),v(0)) = (0,0). Note that we can conclude from (2.76) that u is a zero
mean function.

Now we test (2.76) by u. We obtain, first using the interpolation inequality from
Lemma 1.1-2, for 2D domains, and the Poincaré inequality for zero mean functions

from Lemma 1.3, and after Young’s inequality

1d
5@”“”%2(9) + [ VullZ2i) < lull Loyl Voall s Vull L2

1/2 3/2
[l s Vol s I Vull 2y < Cllullistg IVosllzao I Vul3tg,

+Clun | @ IVl oty | Vol g |Vl 2o
< COIVoallfa oy llull3z o) + COlulla oy IVl2 )

+0lIVullZaq) + 3lIVUllF )
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for each § > 0. Then, accounting for (1.6), we get

5 gl + IV ulFag) < COIVeal sl

+C(0)[ull 74 () I V0lIZ2(0) + 8l Vullta(q) + 6CI Av72(q)

(2.78)

Next we test (2.77) by v — Av. Taking into account that ve € L*°(2), we obtain

1d .
3 510l + 1801y + Vol + [ wi® da
Q
/|U2 (u1)®||v2]|v — Av] dm—l—/ |us/2v||Av| dz
()" (12)") [y + CO) )"0y + Slolai0y + 2514012 g,

for each 0 > 0. We must estimate the terms ||((u2)® — (u1)® )||L2(Q and ||(u1)sv||%2(m.

For the first of these two terms we use
s s s—1 s—1
lug — uf] < slmax {uy, ua}|* " |ue — ur| < slug 4+ ual® " ug — uy,
and, considering Lemma 1.3 applied to zero mean function u, we find

[(u2)* = (1) 220y / (u2)® — (un)*]? da

< 52/ lug + w1 2Jug — uq|? do < $?|jug + ulyyii;_24(muu\|i4(m
Q

< lug + U1||is4;24(g)HUHLZ(Q)HVUHL?(Q) < Jug + 1] 184?}4(9)”“”%2(9) + 5HVU||%2(Q)

For the second term we have, for any & > 0,

[(w1)* 0|72y = /Q (u1)**v* da < HU1HL2s+s(Q)”UHL<2s+s>/e( Q) S C(e)lurl[2ere () 01l 0

Using the estimates of these two terms we obtain

1d
A L A
131V ulZa ) + C6, ) lZhen i 0121 ) + 8110122y + 311 Al g,

+1A0]130) < C@)lJuz + w3 g lulF2q) (2.79)

If we sum up (2.78) and (2.79) and choose § > 0 small enough so that the terms
that are multiplied by § on the right hand side can be absorbed by the corresponding

nonnegative terms on the left hand side, we obtain

1d
2 ) + 100 @) < CIVelLq luliao
+CHU1H4 HVUHLQ(Q) +C”u2+“1”L46 4( )HUH%%Q)

+OE) [l Faer= o W11 ) + Cllvll 2o
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Now, taking into account that

ol 72 IVUllZ20) < 0l q)

and grouping the common factors, we have

1d o
575 (10 + 1013110y ) < CUTOI i) + Il + w3524 o) 20y

+H(Cllurl gy + CEualF2eiegy + O 0l -

(2.80)

Finally, we recall from the regularity hypotheses that we have, in particular,

w1, uz, Vor, Vg € L0, T; L4(Q)) and u1,us € L¥4(0,T; L*¥*4(Q)).

Therefore, it suffices to verify that there exists € > 0 small enough such that
u1,ug € L?%(0,T; L**T5(Q)). (2.81)

For s € [1,2), since u1,us € L*(0,T; L*(Q)), then in particular one has (2.81). For
s = 2, (2.81) is in fact the hypothesis (2.74). And for s > 2, hypothesis uj,us €
LA=4(0,T; L*~%(2)) implies in particular that there is a ¢ > 0 such that (2.81)
holds. Therefore, recalling that u(0) = v(0) = 0, we are able to apply Gronwall’s
inequality (Lemma 1.16) to (2.80) and conclude that u = v = 0, that is, u; = ug and

V1 = V2. [ |

2.4.2 Proof of Theorem 2.5

In the two dimensional case, we can study the regularity of the solution (u,v)
of (1) for all s > 1 at the same time. These solutions can be obtained as a limit
of the regularized solutions (t,,v,,) of (2.1) as m — oo, considering initial data
(u?,v%) € H?(Q) x H%(2). In this case, it is not necessary to regularize the initial
data, taking directly (ul,,v%,) = (u°,°).

In order to prove that the solution (u,v) of (1) provided by Theorem 2.2 is in fact
more regular, it suffices to prove the corresponding extra m-independent estimates for

(Um, U ) in the spaces given in Theorem 2.5.
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We take ub,, for any 1 < p < oo, as a test function in the u,,-equation to obtain

1
i L@ ey [ @V @) da

p /Q (e (2)) V() - Vit ()02 () dae

< [ @IV @) [V (@) da

<o [ BV @l V()] do

< 22 s [Tl [ ot @IV d)
< Ol 2 2o Vs ([ o @) Fum (o) )"

B 3/4
+ Cov/p 12 g Vol ([ b @IV @) do)

By using Young’s inequality, we obtain

]ﬁl;/gupm“(x) dx + g/QuﬁL_l(mﬂVum(m)F dx
< CplVoml[7a /Qufnﬂ(ﬂf) dz + Cp(p + 1)2\|va||%4(9)/9“%+1(37) dx.
By estimates (2.44) and (2.46) we have
Hva\|%4(Q), ]\va\\%4(ﬂ) are bounded in L'(0, c0),
then, Gronwall’s inequality (Lemma 1.16) leads us to

Uy, is bounded in L%°(0, oo; LPT1(Q)), for 1 < p < oo, (2.82)

ugfl)ﬂvum is bounded in L?(0, 00; L*(Q)), for 1 < p < oo. (2.83)

Remark 2.21. The m-independent bounds in (2.82) and (2.83) depend exponentially
on p(p +1)2 O

Then we recall from (2.12) that
O, Avy, € L?(0,00; HY(Q)).
Hence, the following system is satisfied a.e. (t,z) € (0,00) x §:
V(04m) — VAU, = =5 @ (tm)* YV am (tm)Vm — (U )* V. (2.84)

Since all the terms in this system are in L?(0, oo; L?(f2)), we can take the inner product
with —VAv,, € L?(0,00; L?>(Q)) and integrate over 2. Using integration by parts,

Holder’s and Young’s inequalities and the estimate of v, in L*(0,00; L>®(Q)), we
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obtain

d
%HAUTHH%Q(Q) + ||VAUT)’L”%2(Q)
< C“am(um)sflvam(um)H%Q(Q) + CHam(um)H%Szis(Q)vamH%zl(Q)

(2.85)

Then, integrating (2.85) with respect to ¢ and using (2.83) with p = 2s — 1, (2.82)
with p = 4s — 1 and (2.44) we conclude that

U is bounded in L>(0, co; H2(Q2)),

] o (2.86)
Av,, is bounded in L?(0, c0; H()).

Now we can use (2.84) to write
Vo, = VAv,, — s am(um)s_1Vam(um)vm — U (U)* VU

Then, using the estimate in the L*-norm for v, given by Lemma 2.7-2, (2.82) with
p=4s—1,(2.83) p=2s—1 and (2.86), we also conclude that

dyv is bounded in L%(0, 00; H()). (2.87)
Then, because of the regularity of the solutions (u,,vy,), we can use —Au, €
L%(0,00; L%(9)) as a test function in the u,,-equation of (2.1),
1d
2dt
= / A (U ) AU Ay, dix +/ Vam () « Vo Auy, dx
Q Q

Va2 () + [ Aumll72)

< um|lLa@) lAvim |l Loy | Aum | 2 ) + [Vum|l 2@l Vomll L2 | Atml| 220

< et | 5 ) | Al gy [ Al 200 + ClIV e | o5 | V0| g0y | At [ F iy

Using Young’s inequality we get

d
IVt 220 + || AU |12
N Vumllis ) + 1Atz q) (2.88)

< CHumH%‘l(Q)HAva%A(Q) + CHV,UTTLHZ[LA(Q) HvumH%Z(Q)’

Therefore, using (2.44), (2.82) for p = 3, (2.86) and Gronwall’s inequality (Lemma
1.16) in (2.88) we conclude that

Vi, is bounded in L% (0, oo; L*(12)). (2.89)

Ay, is bounded in L?(0, 00; L*(Q)). (2.90)

Considering the u,,equation of (2.1),

Oy, — Ay, = = (Uny)) AV, — Vg, (U ) Vo,
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and estimates (2.82), (2.86), (2.89) and (2.90) we obtain
Dyt is bounded in L*(0, 00; L*(Q)), (2.91)

We can use (2.82), (2.89), (2.90), (2.86), (2.91) and (2.87) and compactness results
in the weak*, weak and strong topologies and the uniqueness of the limit problem (1)
for functions satisfying (2.73)-(2.75) to conclude that there is a unique limit (u,v)
satisfying (1) a.e. in (0, 00) x €.

Finally, if now we suppose that € has the W?23-regularity then we can prove better
m-independent estimates for u,,. We would like to test the u,,-equation of (2.1) by
A%u,,, but we do not have enough regularity about A%u,,. Instead of it, we argue as
in (2.84), first we take the gradient of the u,,-equation of (2.1) and after we test the
resulting equation by VAu,,.

Before doing this, we recall that, in case the Poisson-Neumann problem (1.5) has
the W23-regularity, the solution (t,,vy,) of (2.1) have the regularity (2.13). Hence,

if we take the gradient in the wu,,-equation of (2.1) we obtain

V(Oium) — VAU, = —am(tUn) VAV, — Vam () Avy,
(2.92)
—D?0,, YV (Um) — D% (U ) Von,.

Now we test (2.92) by VAu,,. Using the m-uniform bounds obtained so far we can

conclude that
Ay, is bounded in L>°(0, 00; L*(2)) N L?(0, 0o; H'(Q)).
Finally, if we look at (2.92) again we can also conclude that
Dyt is bounded in L?(0, 00; H()).

This finishes the proof of Theorem 2.5.
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Chapter 3

CONVERGENCE OF A TIME
DISCRETE SCHEME FOR
CHEMOTAXIS-CONSUMPTION
MODELS

3.1 Main Results

As it was mentioned in the introduction, the design of the time discrete scheme
is based on the analysis that was carried out in Chapter 2. In Chapter 2, it was
convenient to rewrite (1) in terms of the variable z = Vv + a2, because the test
functions involved in obtaining a discrete energy law become simpler. Hence, in the

present work we consider the following reformulation of (1)

2 2
O — Au=—V - (uV(2)?), Oz - 'vf iy — ( - CZ) SRNERY
Ontlr = Oazle =0, u(0) =u’, 2(0) = Vo + a2,

where a > 0 is a fixed real number to be chosen later in Lemmas 3.7 and 3.8. Since
it is proved in Chapter 2 that the v-equation of (1) is satisfied in the strong sense,
with v € L%(0, 00; H%(Q)), one can check by straightforward calculations that (3.1) is
equivalent to (1) if we use the change of variables z = v/v + a2. We summarize this

statement in the following lemma for further use.

Lemma 3.1. Problems (1) and (3.1) are equivalent. More precisely, (u, z) is a weak-

strong solution of (3.1) if, and only if, (u,v) is a weak-strong solution of (1), with
2 2
v=2z"—a.

For the time discretization we will divide the interval [0, co) in subintervals denoted
by I, = (tp—1,tn), with tg = 0 and ¢, = t,—1 + k, where k£ > 0 is the length of the

intervals I,,. If {z"},, is a sequence of functions, then we use the notation

2N n—1
b = T Vn =21, (3.2)



3.1. Main Results 63

for the discrete time derivative. We will also use the following upper truncation of u

T (u) =
() m, ifu>m.

{ w, if u <m,

In this chapter, we propose the following time discrete scheme:
Initialization: Let u0, = u° € L?(Q), 2%, = Vo0 + a2 € L®(Q) and v, = v° €
L>(Q).
Step n: Given u? ! € L2(Q2), 21 € L>°(Q) and v/ 1 € L>(Q),

1. Find (u?,2") € H?(Q)?, satisfying the bounds
up(x) >0 and HzﬁleLm(Q) >z (x) > a ae €,
and the boundary-value problem

Suuy, = A, = V- (17 () V (=5,)°)

V2 2 1 2
- B a -y (- %) 6
m
Opiy| = 0pm| =0,

2. Two variants for the approximation of v are possible (equally denoted), either

3 n m.
depending on 2], or u;":

e Find v? = v (21) € H?() as
= (2)* — o2 (3.4)
e Find v = v? (u?,) € H?(Q2) as the unique solution of the linear problem

Svy, — Avly, + T (uyy,) vy, =0, Opoy, —_— 0. (3.5)
Now, we are in position to present the main result that will be proved along the

present work.

Theorem 3.2. For each n € N, there exists at least one solution (u),,zl) of (3.3),

that jointly to vy, defined by (3.4) or (3.5) leads us to (ull,,v)) satisfying

up (x) >0, ”UOHLOO(Q) > vy (x) >0 ae x€Q.

m

In addition, up to a subsequence, (u),,vy,) converges towards (u,v) a weak solution of

(1) as (m,k) — (00,0).

Remark 3.3. The number « is a sufficiently small positive real number that is chosen
in Lemmas 3.7 and 3.8 independently of m and k. The convergence result given in
Theorem 3.2 as (m, k) — (00,0) is unconditional, that is, there is not any constraint

over m and k as long as m — oo and k — 0. |
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In particular, we also prove the result on existence of weak solutions to (1) in 3D
domains given in Theorem 2.2 of Chapter 2 but, this time, as a consequence of the

convergence of the time discrete scheme introduced in this chapter.

In 2D domains, there exists a unique strong solution of (1), see Chapter 2. The
proof is achieved through the obtaining of stronger m-independent estimates for the
solution of an adequate truncated problem. Unfortunately, it is not clear how we could
adapt these strong estimates for the time discrete scheme. Consequently, in 2D, the
convergence of the whole sequence of solutions of the time discrete scheme towards

the unique strong solution of (1) as (m, k) — (0,00) remains as an open problem.

In order to prove Theorem 3.2, the chapter is organized as follows. In Section

3.2 we establish the existence of solution (u],,z2),) of the (u,z)-scheme (3.3), some

pointwise estimates independent of (m,k,n) and an energy inequality for (ul,,z).

In Section 3.3, starting from this energy inequality, we deduce additional a priori

n ZTL

estimates for (uy,, 27,

), independent of (m,k,n), that allow us to pass to the limit
as (m, k) — (00, 0), obtaining convergence of (3.3) towards the (u, z)-problem (3.1).
Finally, in Section 3.4 we prove the convergence of (u,, v"), with v}, defined by (3.4)

m? rm
or (3.5), towards the (u,v)-problem (1).

3.2 Study of the (u, z)-Scheme (3.3)

3.2.1 Existence of solution of (3.3)

For simplicity, in the present subsection and in the following one we drop the m
subscript and denote the solutions of (3.3) by (u",2"). In Subsection 3.3 we go back

n zn

to the notation (uj,, z),).

Theorem 3.4. (Existence of solution to (3.3)) Suppose (u"~!,2"71) € L?(Q) x
L®(Q) with w1 (z) > 0 and 2" 1 (x) > a a.e. x € Q. Then there is a solution
(u™,z") of (3.3) which satisfies ull,(z) > 0 and ||z | o) = 2 (2) > a a.e. z € Q.

Proof. In order to avoid divisions by zero in some terms of (3.3) and obtain u"(z) > 0

a.e. x € ), we define the lower truncation for z

() a, if z <a,
zZ) =
“ z, if z > q,

and the lower-upper truncation for u

0, ifu<o,
T (u) = u, if u € [0,m)],

m, if u>m,
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Then, we consider the auxiliary problem

Su™ — Au =V - <T0m(u")V(z")2>,
B V2" |2 B a? ) (3.6)

1
n no_— _Zm(m)s n __
0tz (o) z 516 (u™) <z TNED)

with the same boundary and initial conditions of (3.3).

We prove the existence of a solution (u", ") to (3.6) via Leray-Schauder fixed point
theorem [19]. Along this proof, we also have that any solution (u", 2™) of (3.6) satisfies
u™(z) >0 and [|2" 7| o) > 2"(x) > o a.e. x € Q, which implies that Tp(2") = 2",
T§(u™) = T™(u™) and therefore we conclude that (u", 2™) is also a solution of (3.3).

Now we proceed with the proof of existence for (3.6) which is divided in three steps.

Step 1 (Definition of the compact mapping S): For all (7,z) € Wh4(Q)2, we
define (u,2) = S(u,z) € H?(2)? as the solution of

n—1
u I u
z~ Au =2V - (To (u) ZVZ) + T (3.7)
z 1 _ a? vz|2 !
——Az+ T () | 2 — = : :
T (o rg) S ng (338)

We can use standard results on linear elliptic problems to conclude that (u,z) =
S(w,z) is well defined. In fact, given (u,z), we begin by solving the z-equation (3.8).
Since 0 < % + %Té"(ﬂ)s < % + %57 we first prove the existence of a weak solution
z € H'(Q) by means of the Lax-Milgram Theorem and then we use the H2-regularity
of the Poisson-Neumann problem (1.5) to prove that z € H?(£2). Once proved the
existence of z € H?(), we have V- <T6” (@) EVZ) € L?(2) and therefore we are able to
solve the u-equation (3.7) and, using again the H?-regularity of the Poisson-Neumann
problem (1.5), we obtain u € H?(Q2). Hence, S(u,z) € H?(Q)? and therefore S is a
compact mapping defined in W14(Q)2.

Step 2 (Pointwise bounds for u and z/A for any (u,z) = AS(u, z)): Let
A € [0,1]. We will study the pairs (u, z) such that (u,z) = AS(u, z). If we consider
A =0 then S(u,z) € H?(Q)? is well defined and (u, z) = (0,0). Once the case where
A = 0 is treated, we consider A € (0, 1], therefore we can write S(u,z) = (1/\)(u, z)

and we have (u, z) satisfying

unfl

A=V (T w)V()?) + AT

1z |Vz]? z 1 z a? 1
- —A*I—me s = _ - n—l‘
P To)  SnT 2w <>\ o)) Tk

(3.9)

If we test the u-equation of (3.9) by the negative part of u defined, as u_(z) =
min {0, u(z)}, we conclude that u > 0. Now let ¢ = |[2" || poc(q). We rewrite the
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z-equation of (3.9) as

2
1 2z ‘V(X - C)| z
—(=—c)— )2 A(-—c
Ay ()) To(2) ” (AQ ) . (3.10)
It (u)t 2 19" (u)® , o 2" —c
=y Gy gy 9t
Now we test (3.10) by the positive part of (; — ¢), defined as
z z
(£ o)) = max {0,C — ) (@)} 0.
Since ¢ = [|2" 7| 1o (), we have 2"t — ¢ < 0. Moreover, note that (; —c¢)+ >0

and (; —¢)4+ # 0 <= z > Ac. Then, an analysis taking account of the possible cases

a < Ac and o > Ac leads us to

<

>| =

Hence, reminding that A € (0,1] and T, (z) > «, if we test (3.10) by (z/\ — ¢)4+ we

obtain

1, .z z
S )+ l172() + V(S - )+ 11720
z 1 s z
< AHV(X — )+l F2i) + 5 19" (u)*(a — C)(X — )4

By hypothesis we have 2" ! > «, which implies in particular a < ¢ and then we can
z
conclude that " < 2" M| oo (q)-

Next we prove an inferior bound for z/A. Considering the definition of T, and

V2 1
|T ?’) + %2”4 > %, which comes from the hypotheses of the theorem, we can use
w2
the z-equation of (3.9) to write
1,z z 1 z 1 a?
—(~—a)—A(= — T (= — «) > =17 (u)® — ). 3.11

Now we test (3.11) by the negative part of (z—A«), (z—Aa))—. Note that (z—Aa)— <0
and (§ —a)- # 0 = z < A < a. Therefore, testing (3.11) by (; — a)— and
reminding that A € (0, 1], we obtain

z

1, .z z 1o, s
A @) |72 + V(s = @)-|F20) + S 175" (w) /2()\ @)~ 720

1 s, Q2 z 1 s s, O z
<5 [ TrGg G- =5 [ T -G —a)-

Thus we conclude that (= —a)_ = 0, that is, ; >a>0.

>
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Step 3 (A-independent bounds for any (u,z) = AS(u,z)): As we mentioned
before, we consider A € (0, 1] because if A = 0 then we have (u, z) = (0,0). Because

of the upper bound for z that we proved in the anterior step we have
§ is bounded in L>(2), (3.12)
independently of A. Then we can integrate the z-equation of (3.9) and conclude that
HVZH%?(Q) < Ok, o, m, [|2" 7 oo (a)- (3.13)

Since z > 0, we can multiply the z-equation of (3.9) by AT, (z)/z. This gives us

< 2 alZ a? n(z) 21
Talz) —A'V ®_ Tl )Az: —%TS”(U)S(TQ(Z) — Z/—A)Jr TZ/(A) T (3.14)

k z z

Now we test (3.14) by —Az and, using that T,,(2)/z > 1, z/A > « and (3.12), we

obtain

2
k/ (2)|V2[? dz + (1 — X /|Az[2d:p+)\/|Az|2dx—|—)\/ NN da

<3 [z + S 1ae der [ E2E ) 16z a

< gC(m,aZ, 12"l oo () + 811 A2] 22

Then, applying Lemma 2.10 and using (3.13) and the H2-regularity we obtain

4
k:/ (2)|Vz|* do + (1 — X /|Az|2 dx + C1 A /|Az|2d +/ |Vz| x)

< CQ)\HVZHL2 + 5C(m a?, ||z~ 1”Loo(ﬂ))+5||AZHL2

Ok, m, o, |[2" | poote) + 1 Az 20

<

| =

Taking into account that /(Ta)’(z)|Vz|2 dxr > 0 and denoting C' = min{1,C1} we
Q
have 1 4+ (C1 — 1)\ > C for all A € [0,1] and

C/|Az2 dx+0)\/ v

and therefore we can choose § > 0 small enough such that

~Cm, 2, 1" poeiey) + 0112220

Az is bounded in L?(Q). (3.15)

Because of the homogeneous Neumann boundary conditions, the H?-regularity and
the A-uniform bounds (3.12) and (3.15), we can conclude that

z is bounded in H%(1). (3.16)
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By Sobolev inequality in 3D domains, the latter implies that
2 is bounded in W14(Q). (3.17)

Considering the A-independent bounds 0 < z < [|2" | oo (), T5" (1) < m and (3.16),
we can test the u-equation (3.7) by u and prove that u is bounded in H!(Q2). Using
again the A-independent bounds 0 < z < ||z | oo (q), T3 (u) < m, (3.16) and (3.17),
we have that the chemotaxis term 2V - (Té”(ﬂ)EVz) is bounded in L?(£2). Then we
can test the u-equation (3.7) by —Au, obtaining u is bounded in H?(Q), which implies,
in particular, that

u is bounded in W14(Q). (3.18)

With (3.17) and (3.18) we can finally conclude, using the Leray-Schauder fixed point
theorem [19] that the auxiliary problem (3.6) has a solution (u,z). Because of the
properties showed along the steps of the proof we can also conclude that (u,z) €
H*(Q)?, u(z) > 0 and [|2" Yoy > 2(z) > a ae. x € Q. Therefore we have
To(2) = 2, T§*(u) = T™(u) and we conclude that the solution (u,z) of (3.6) is a

solution of (3.3), finishing the proof of existence of solution. |

3.2.2 First uniform in time estimates

The following direct estimates and the energy inequalities obtained in this subsec-

tion are valid for any solution (u", 2") of (3.3) given by Theorem 3.4.

Lemma 3.5. ( (m, k,n)-uniform estimates) Let (u”,z") be a solution of (3.3).

Then we have

1. /u" daz:/uo dz, for all n € N;
Q Q

n
2. HZnH%Q(Q) + Z”Zj — ZJ_1H%2(Q) < HZOH%Q(Q), f07' all n € N,’
j=1

n ' 1
2 0., 212
3. k:E 1||Vz3||L2(Q) < 4052HU + & |72(q), for alln € N.
J:

Proof. The proof of item 1 is achieved by integrating the u"-equation of (3.3).
For the items 2 and 3 we take the product of the z"-equation of (3.3) by z". We

obtain

5u(=")? + %(z” — 22 AR 4 T (W) ((2)? — a?) =0, (3.19)

Since ((2™)? — a?) > 0 and /A(z”)2 dx = 0, by integrating (3.19) we prove item 2.
Q
On the other hand, testing (3.19) by k(z2")? leads us to

kfst”(zn)QH%%Q) + k”V(Zn)QH?;?(Q) <0.
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Then, summing up from 5 = 1 to n gives us
n .
EY IVE 720 < G220 = 100+ 21320

Now using that 2/ > a we have

/Q|vﬁzj|2 d:v:/g i Vi d:c</;2|V(zj)2|2 da,

hence we obtain item 3. [ |

3.2.3 Energy inequality

Now we turn to the energy inequalities given for s € [1,2) in Lemma 3.7 and s > 2

in Lemma 3.8 below. We will need the following lemma.

Lemma 3.6. Any solution (u™,z2") of (3.3), satisfies the inequality

1 n||2 n—1 2_n|2 ‘V n’4
SV 13 HVz = Va2, 0, + Co D22 do+ dz)
1
/ ™3|V ? d < /Tm(un)s IV(Z )2 -VTm(u”) dz
2 1/q

e /Tm( VIV o+ Co [ VP d
Q

Proof. We begin by testing the z"-equation of (3.3) by —Az™. This gives us

1 n 1 n n— n
50V 720y + oI Ve" =V Y220y + 182" 72

n|2 2
+/ |Vzn| A" d:E—i—l/ (1+ 5) T (u "MV "2 da
o Z 2 Ja (27)?

T (™ s—1
= S/ T™(u™)* IV (2™)? - VT™(u") dx + sa2/ LVZ” VT (u") dx.
4 9] 2 QO Al
Then, estimating the last term on the left hand side from bellow, the last term on
the right hand side from above and applying Lemma 2.10, we obtain the desired
inequality. ]

Next we will obtain a local energy inequality for (u",2"), first for s € [1,2) and
T

then for s > 2. We consider the function f,,(r) = / fr(6) df, where
0

In(T™(r)), if s=1, for r >0,
frr) = T (r)*!

if 1.
(3—1) , s>
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Lemma 3.7 (Energy inequality for s € [1,2)). Any solution (u™,z"™) of the prob-
lem (3.3) satisfies, for sufficiently small a® > 0,

5t /fm ) dx + 5 HvanLQ(Q)}

1 1
—|——HVZ - vz 2 2 + 4/Tm(u")5]Vz"]2 dx (3.20)

n4
—|—C’1</D2 n2 d:c+/| | a:) < C||VZ"H%2(Q)

Proof. The proof follows the same ideas of the analogous result that was proved in
Chapter 2 for the truncated model (2.1). We are going to show the main steps of
the proof, calling the attention to the differences that appear due to the fact that we
are considering the time discrete scheme (3.3). In fact, we begin by considering the
sequence {1/} jen, the function f, (u") = f},(u" +1/5) and testing the u"-equation
of (3.3) by fy, ;(u"). A difference appears in the treatment of the term of the discrete

time derivative. Namely, accounting that f, ; is convex, we use Lemma 1.9 to obtain

Y@ o
6 f ) ot | iy g e T
(@)

< ((Tm(m) meyrE= MG VTm(“n)> |

Then we can follow the ideas in Chapter 2 until the point that we reach the inequality

o /fm,] ) do + + HVZ"H%Q )
n|4
HVZ — Va2, +C’1(/]D2 "2 gy +/|V i d:c)

(3.21)
+;/Q () §<Tm<u"> +1/5)[IV2"? dz < C|V2" g
+481/Q {Tm(un)s_l —(T™(u") + 1/1)8_1} VT (u") - V(2")? dw.

Finally we pass to the limit as j — oo in (3.21). The presence of the discrete
time derivative d; instead of J; is what allows us to give an unified treatment for the
case s € [1,2), differently from Chapter 2, where the cases s = 1 and s € (1,2) are
separated. We proceed with the passage to the limit term by term. We detail the

passage to the limit in the term which involves the discrete time derivative,
5 / Fos (0™ () da. (3.22)
Q

We define the functions gm.j, gm, G € LY(Q) by gm.j(x) = 6t fim;(u™(x)), gm(z) =
Ot fm(u"(x)) and G(x) = |gm,1(x)|. Then, for almost every = € Q, gm () = gm(x)
as j — oo with [gn j(z)] < G(x) for all j € N. Therefore, using the Dominated



3.3. Energy Estimates and Passage to the Limit as (m, k) — (o0, 0) 71

Convergence Theorem, we can conclude that

lim (5t/ fmj(u"(x)) de = lim | gm (x) de= /ng(x) dx = 5t/ﬂfm(u”(a:)) dx.

J—0 j—o0 [¢)

For the other terms of (3.21), one can again follow Chapter 2, take the limit as
J — oo and obtain the desired result. ]

Lemma 3.8 (Energy inequality for s > 2). The solution (u",2") of the problem
(3.3) satisfies

n 1 n n—
5t /fm ) dz + *||VZ IZ2q ] +opIVe" = Ve 2@
+ [ v e + 5 [ T da (3.23)

enl /Q D272 da + /Q | (Zn)'Q dr) < OV gy

Proof. The proof follows the same ideas of the analogous result that was proved in
Chapter 2 for the truncated model. Having in mind that we use Lemma 1.9 to treat
the term which involves the discrete time derivative d;, we refer the reader to Chapter
2 for the details of the proof. |

The energy inequalities (3.20) and (3.23) allow us to obtain (m, k, n)-independent

estimates for the function 2™ in the next subsection.

3.3 Energy Estimates and Passage to the Limit as (m, k) — (oo, 0)
Now we use again the notation (w2 ) for the solution of (3.3). We define the

piecewise constant function uf,f and the locally linear and globally continuous function

up, by

ul (t,2) = u” (z) and

i 3.24
Cot) (o)~ @), € ).

up, (8, @) = uj, () +

Analogously, we define the functions %", z*  oE" and vF . With these functions we

can rewrite (3.3) as the differential system, a.e. in (¢,x) € (0,00) x €,

Oy, — Aupi =V - (T (Wl )V (H")?),

Ve r__1 2 (3.25)
8t27kn — ‘ 21:1| . Azrl%’ _ _§Tm(u7l§%r)s <z7};;177» _ ir) .
Zm 5

In this subsection we are going to prove (m, k)-independent estimates for uﬁf, zfnr,

uk and 2% which are also uniform in time, that will allow us to pass to the limit in
(3.25).
First, in Subsection 3.3.1, we will obtain estimates for Vz,’i;r from the energy

inequalities (3.20) and (3.23). Next we prove bounds for u¥, and ul” and pass to
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the limit in (3.25) as (m, k) — (00,0), considering the cases s € [1,2) and s > 2,

separately.

3.3.1 Estimates for Vz’;f

Let us define the energy
S n 1 n 2
=— [ fo(un(t,z)) de+ = [ |Vz](t,z)|° d.
4 Jo 2 Ja
We use the regularity of the initial data «” and z° in order to conclude that the

initial energy EY,, is also bounded, independently of (m,k). If we consider either
(3.20) or (3.23), multiply it by k£ and sum from j = 1 to n we can obtain

. 1 A .
3 [ ) dot 5IVE sy + 5 3IVE — V59 g,
j=1
m(,.J \S j j VZ%—L4
+kZ/T (ul,)*|V 2L, 2 dx+01k2(/|D2zfn\2 dx+/’ Zﬂ’ d:c) (3.26)
o :

<CkZHVz . / Fm(0,) d+ 51V 220

Thus, accounting that 2/ > a and that Lemma 3.5.3 and (3.26) are valid for any

n € N, we can conclude that

V2R is bounded in L% (0, c0; L2(Q)) N L*(0, o00; L*(Q)), (3.27)
T™(uk)2V 25T and AzF" are bounded in L?(0, 00; L2(Q)), (3.28)
S5 = gy < O (3.20)

j=1

From (3.29), we can prove the following.

Lemma 3.9. There is a positive constant C, independent of m and k, such that
k k
lzm — Zm‘|%2(07oo;Hl(Q)) < Ck. (3.30)

Proof. From the definition of zm and z , we observe that

for t € (th—1,t,). If t € (tj—1,t;) then 0 < t; — ¢ < k and hence
1447 = Al )—Z [ e

< k‘z 127 = 27 M3 q
j=1



3.3. Energy Estimates and Passage to the Limit as (m, k) — (o0, 0) 73

Therefore, using (3.29) we conclude the proof. [ |

0
In particular, since z;" € H2(Q) and a—sz = 0, it stems from (3.28), the
n

H?-regularity of the Poisson-Neumann problem (1.5) and (1.6) that
V2R is bounded in L2(0, 00; HY(Q)). (3.31)

Using the results obtained until this point we analyze the convergence towards
problem (1), first for s € [1,2) and then for s > 2.

3.3.2 Estimates for (u”", 2F") and passage to the limit for s € [1, 2)

Let
In(r) its=1,

L(s—1) ifse(1,2),

:/Tf'(e)cw: rin(r) —r if s =1,
0 r¥/s(s—1) ifse(1,2).
Notice that f”(r) =772, ¥r > 0, in all cases.
We test the ul',-equation of (3.3) by f/(u’, +1). Using Lemma 1.9 we obtain

vr >0, f'(r) = { .
-

4
(5t/ flup, +1) de+ — / I —u N2 do + 32/ |V[u?, +1]%/2)? da+
Q
= 2/ T (Wl ) (ul, + 1)1 20 V2l - Val, (ul, +1)%/27 da
Q

Tm (g \1—5/2
4/( W) " o )5/ 2 -t + 1572 da

— s +1)1 s/2 m
4 1/2 1/2
< =[|2°| oo V| d /v 1R d
< S o ([ T Va? do) ([ Vi + 1172 o)
and thus we have
6t/fu +1)de+ — /f” — w2 dx

45 IVl + 172 e < c/ T ) [V da
s% Jo Q

Multiplying by k and summing up from 0 to n, for any n € N, we obtain

/fu +1) do + = Z/f” =l )2 dx+kz /\vuﬂ +1)°/%% dx
§CkZ/Tm(u,jn)s|Vz%]2 dx—i—/f(u,%%—l) dx
=7e Q
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Then, from (3.28) and the definitions of f, up’ and uk we conclude that

Z/ FUAN(ud, — i1 de < O, (3.32)
j=1"7%
(uF" 4 1)%/2 is bounded in L™ (0, co; L2(£2)), (3.33)
hence, in particular,
ul" is bounded in L°°(0, 00; L*(2)), (3.34)
V[ukr 4 1]*/2 is bounded in L?(0, 0o; L?(Q2)). (3.35)

With these bounds it is possible to prove the following.

Lemma 3.10. There is a positive constant C, independent of m and k, such that

[ ulran%Q(Opo;LS(Q)) < Ck. (3.36)

Proof.

Step 1: We remind that in (3.32) we have f”(c¢/) = (¢/)*72, Where s € [1,2)
and, for each j and for each z, ¢/ is a point between (ul,(z) + 1) and (uly H(z) +1).
Hence let us write ¢/ () as ¢/ (z) = 67 (z) (ulp(x) + 1)+ (1 — 67(2)) (uly *(z) + 1), where
09 (z) € [0,1]. Since ul, (), uly *(x) > 0 and 67(x), (1 — 69(x)) € (0,1) we have

(uj _ uj—1)2 (uj _ uj—1)2
(uh() +1) + (udy () + 120~ (I(@)* (3.37)
= f"(d(2) (W — /7).

Step 2: Now we estimate |(ud, + 1)/2 — (uly ' + 1)5/2]2 by f"(c? (@) (w) —ui~1)2.

If we consider the identity

ﬁ—\fb:\/‘j;:’/g, Va,b> 0,
a
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and next apply Lemma 1.10, we have

|(d + 1)° — (uly " +1)°

wl +1)%% — (Wl +1)?) = =& , |
I ) ( ) (wh + 1)%/2 + (ufy '+ 1)/2

[(udy + 1) + (udy '+ 1]
(hy + 1)57/2 + (uly ' + 1)/

< slul, —ul !

(e + 1) + (e * + 1))
[ + 1) + (u + 1))

1
(e + 1) + (uda* + 1))

< 225\l — ul!

210 j—
< 2/2sful, — |

Using (3.37)
|(U’Zn + 1)5/2 _ (U‘Zr?l + 1)3/2‘2 < C’(uj —u] 1)2 _
[0+ n)] (3.38)
< CF( ) — u ).

Step 3: Finally, we use (3.32) and (3.38) to prove (3.36). Considering the defini-

tion of ufy” and uk and using Lemma 1.10, for ¢ € (t"~1 ") we have

Ju” (8) = up (O] < [ — a7 < (" + 1)) — (" 1))

< S’(un + 1)5/2 . (unfl + 1)3/2’8’(71,” + 1)5/2 + (unfl + 1)3/2’273.

Integrating and using Holder’s inequality with the conjugate powers 2/s and 2/(2 — s)

we obtain
k 2 Ly 1)s/2)2 5/2
/u’“ ok yde<s/\u+1s/ (" + )P de)
(2—s)/2
/\(u"+1)5/2+ (w41 2P )
Q
Considering the (m, k)-uniform bound (3.33), then the latter implies that
o (6) = sy < © [ 104172 = @4 1) d
Then, using (3.38) we obtain
4 (0 = (Ol < C [ 1)t = i) o

Finally, if we integrate in ¢ and use (3.32) we get

/ [l (8) — b, (1) 2y < OB / £, — ulTV? de < OF,
0 oJe
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which concludes the proof. [
Consider the relation
Vulr = V(b 4+ 1) = V(b7 +1)¥2)%° = %(uff + )12 (b +1)5/2. (3.39)
Taking into account that we are considering s € [1,2), we can use (3.33) to obtain
(uFm 4+1)175/2 is bounded in L=(0, oo; L2/ =9 (Q))
and then (3.35) and (3.39) to conclude that
Vuk:" is bounded in L%(0, co0; L*(€2)). (3.40)

In conclusion, using (3.34), (3.40) and the Poincare’s inequality for zero mean func-

tions (Lemma 1.3),

ul" — u* is bounded in L*(0, 0o; L¥(Q)) N L*(0, co; W5 (Q)). (3.41)

m

Considering the chemotaxis term, we can write T™(uky )V (25")? as

Tm(uﬁf)V(sz,;r)Q — 2Tm(ul;ﬁr)1fs/2Tm(ufﬁr)s/szjl,rvzfn,r.

Then, we have T™ (uf;")! /2 bounded in L*(0, 00; L25/(279)(Q)), because of (3.33),
and T™(u")5/2287 V25" bounded in L2(0, 00; L%(9)), because of (3.28), and hence

we can conclude that
T™(ukm)V (25?2 is bounded in L2(0, o0; L*(Q)). (3.42)
Then, if we consider the u-equation of (3.25), from (3.41) and (3.42) we have

dyu” is bounded in L? (0, 00; (Wl’s/(s_l)(Q))/>.

Now we turn to the z-equation of (3.25), rewritten as

v k2 . . o?
8tz,’§1—7’ ,:'1‘ — AN —i—Tm(u*)S(zf,; - k,r)
Zm Zm (3.43)
1 m(, ks m(, %\s\/( kT o?
= =5 (T (un’)” = T (w")*) (2m” — z’”)'
m

Since 25" > o, we have s k02 / s kT 0 >0 and then we can write

kor 2
WGl —)E Al — ) + Ty (e = )
o (3.44)

1
< ST () = T )

k
Gtzm —
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Analyzing the term on the right hand side of (3.44), we have
T™(ukm)* — T™(u*)* is bounded in L2(0, 00; L3?(12)). (3.45)
In fact, using Lemma 1.10, we get
(T (g )* = T ()| < 22T (upy?) + T ()P gy — w®
and therefore
[k = o

< 83/2/ |Tm(u7ljir)+Tm(u*)|3(s—1)/2 d:L‘/ |US%T—U*|3/2 dz.
Q Q

We use Holder’s inequality with the conjugate exponents 2s/(3s — 3) and 2s/(3 — s)

to obtain
[T ) = T 2y < ST () + T ) 2Dl = w25 g

Then, considering the (m, k)-uniform bound (3.41) and the Sobolev embedding W1*(Q)
c L?/3=9)(Q)) we obtain (3.45).
With this information, now we can test (3.44) by k (zf,f — «), obtaining, for each

time interval (t,—1,t,),

1

5(”231 - a||i2(§z) — [l - 04”%2(9))
n T (ur)®
+k‘|v(zm_a)H%Q(Q)+kTHZ —al?aq)
2
§C’k‘/ [T (up)® — T™(u*)*| 2 (2 — o) dx +/ Venl® m’ —a) dr
0

< Ckllzmlleo@)IT™ (up,)* = T™ (@) || 72 2 — OéHL5 + k[ Vap 72 q)
CO)EIT™ (up,)* = T™ (W) (252 + Okll2m — allfz(q) + (1 + )k V[ 72(q)

Note that if ug # 0 then have T™(u*) = u* > 0, for all m > u*. Hence, choosing
6 > 0 small enough, we can conclude that, for m > u*, there is 8 > 0 such that

1
Sl = alagg) — 27" = allagy) + KBlI2E — el

< CR|T™(um)® = T™ () |35/ + KIIV 201720

Therefore, summing in n and using (3.45) and Lemma 3.5 we obtain

2Em — o is bounded in L?(0, oo; L*(9)). (3.46)

m
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Hence, in view of (3.27), (3.28) and (3.46) we have

28T — o is bounded in L?(0, 0o; H%(Q)).

With the m-uniform bounds obtained so far we can derive a m-uniform bound for
Ok in L?(0,00; L3/2(Q)). In fact, we notice that

2 2

> (22 -a - (2h7)2 — o2 - 12°)| Loe () +

0< kor _ kor
S 2 ZTkrzir Zrk;ir — a —= o (Zm Oé),
hence, in view of (3.46), we also have
o2
Zhr . is bounded in L%(0, 00; L*(2)). (3.47)
Zm

Therefore, going back to (3.43), reminding that 28" is uniformly bounded in L (0, 00; L>®(2))
with respect to m and k and considering (3.47) and (3.45), we conclude that

9,2" is bounded in L?(0, o0; L¥/%(Q)).

Now we are going to obtain compactness for {u# } and {uf;"}, which is necessary
in order to pass to the limit as m — oo and £k — 0 in the nonlinear terms of the
equations of (3.3). Because of (3.33) and (3.35), we have that

(uF" 41)%/2 is bounded in L>(0, 00; L2(Q)) N L2(0,T; HY(Q)),

for every finite T' > 0. Using the Sobolev inequality H*(Q2) C L5(f2) and interpolation

inequalities we obtain
(u®)*/? is bounded in L'%/3(0, T; L'°/3(Q2)),

which is equivalent to

uf" is bounded in L>/3(0, T; L>*/3(Q)). (3.48)
By using (3.33) and (3.48) in (3.39) (remind that s € [1,2)), we also have

u®" is bounded in L2/ 39 (0, T; W12s/B+3)(Q)). (3.49)

For any norm ||-|| we have

i ()11 < Nl (8) = " (8)1] + [luay” (£)1]

k k — _
et (8) = " O] < gy, = < M |+ gl VE € (Enet,t0),

m
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because of (3.48) and (3.49) we can also conclude that
u¥ is bounded in L>/3(0, T; L>*/3(Q)) N L>*/3+) (0, T; W5/G+9)(Q)).  (3.50)

We observe that W12s/G+s)(Q) ¢ L(Q), with continuous embedding for ¢ =
15s/(9 — 2s) and compact embedding for g € [1,15s/(9 — 2s)). Then, since s € [1,2),
we have 5s5/3 < 15s/(9 — 2s) and therefore the embedding W125/G+5)(Q) ¢ L5%/3(Q)
is compact. Note also that ¢ = 5s/3 > 5/3 > 1. Now we can use Lemma 1.14 with

X = W1,58/(3+8) (9)7 B = L5S/S(Q), Y — (HS(Q))/

to conclude that there is a subsequence of {uF } (still denoted by {u,,}) and a limit

function v such that

uF — u weakly in L5%/G3+9)(0, T; Wh9s/B+5)(Q)), VT > 0,

m

uk — w strongly in LP(0,T; LP(2)), Vp € [1,55/3), VT > 0.

m

We note that, because of the (m,k)-independent bounds obtained for ub” and the

convergence (3.36), we can conclude that these convergences are also valid if we replace
u by ufi". Therefore we have

ulr —s u weakly in L2/G+8) (0, 7; W/ 3+ (Q)), vT > 0,

m

ulm — w strongly in LP(0,T; LP(2)), Vp € [1,5s/3), VT > 0. (3.51)

m

Using the Dominated Convergence Theorem we can conclude from (3.51) that

T™(uF") — w strongly in LP(0,T; LP(Q)), Vp € [1,55/3), VT > 0. (3.52)

m

It stems from the convergence (3.52) and Lemma 1.11 that
(T™(uk))® — u® strongly in L9(0,T; LY(Q)), Vg € [1,5/3), YT > 0. (3.53)

The compactness of {zf;'f} is also necessary. Concerning the functions zfi{r and
k

%, if we consider the (m, k)-independent bounds derived so far, (3.30) and use the

z
compactness result Lemma 1.14 then we conclude that there are subsequences of {z’ﬁf}
and {zF} (still denoted by {zE:" and {zF 1) and a limit function z such that, for each

T >0,

287 = 2 weakly* in L% (0, 00; L (2)) N L (0, oo; H!(2)),
28" — z weakly in L2(0, 00; H2(12)),
2B s 2 strongly in L2(0,T; HY(Q)) N LP(0,T; LP(2)),p € [1,00), (3.54)
Vi — Vz weakly in L4(0, oo; L4(€2)),
and 9,25 — 0,z weakly in L?(0, 0o; L3/2(Q)).

Taking the nonlinear terms of (3.25), where we have to pass to the limit as (m, k) —
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(00,0), it is convenient to consider two functions of z&;", namely gy (24") = (257)2 and
G2(25TYy = 1/257 . Since 0 < v < 2" < 12°]| o< (), we can use the (m, k)-independent
bounds derived so far and (3.54) to show that

1/25" — 1/ strongly in LP(0, T; LP(12)), for each T > 0 and p € [1,00),
V25712 — | V2|2 weakly in L2(0, co; L2(12)), (3.55)
V(252 5 V(2)? weakly in L4(0, oo; L*(Q)).

Now we are going to use the weak and strong convergences that we proved for uf,f,

uk | 25T and 2k to pass to the limit as (m, k) — (00,0) in the equations of problem

(3.3). We are going to identify the limits of the nonlinear terms T™ (uk" )V (257)2,
v k,r2 Tm k,ry\s \v4 2 s
| Z];n | (uni ) V2] , u®z and Ly
T k,r
z Z z

, Tm(ulﬁrzr)sz,]ff and , respectively, with uV (z)?,

In f?fct, considering the chemotaxis term, because of (3.52), (3.27) and (3.55), we can

conclude that

Tm(uk,r)v(zk,r)2 SN UV(Z)2 weakly in L205/(53+12) (O,T; LQOS/(55+12) (Q)),

m m

for each fixed T' > 0. Using (3.54) and (3.55) we can also conclude that

VeI V2P

k,r
Zm

weakly in L?(0,T; L*(Q)), for each fixed T > 0.

Regarding the consumption term, considering (3.53) and (3.54) we prove that

T (uFm )3 2k — wf 2 weakly in L/3(0,T; LP/3()), for each fixed T > 0.

m

Finally, using (3.53) and (3.55) we obtain

M—ﬁ‘f kly in L%3(0, T; L>3(Q)), for each fixed T > 0

e ~ weakly in (0,T; (€Q)), for each fixe > 0.

With these identifications and all previous convergences, it is possible to pass to
the limit as (m, k) — (00,0) in each term of the equations of (3.3). This finishes the
proof of existence of a solution (u, z) of (3.1) for s € [1,2). In order to finish, we will
prove the regularity (up to infinite time) of w.

From (3.33) and (3.35) there exists a subsequence of {(uF, + 1)¥2}, still denoted
by {(u¥ +1)*/?}, and a limit function ¢ such that

(ub™ +1)/2 —  weakly* in L>(0, 00; L2())
V(ub™ +1)5/2 — YV weakly in L2(0, oo; L2(12)).
Then, using the strong convergence (3.51), the continuity of the function uk’
by = (uf +1)%/2 and the Dominated Convergence Theorem, we prove that
o= (u+1)"2
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Analogously, because of (3.28) we can conclude that, up to a subsequence, there

is a limit function ¢ such that
T (uFm )32 2k — ¢ weakly in L2(0, 00; L2(92)).

And using the convergences (3.53) and (3.54) we can conclude that ¢ = u*/?Vz.

Therefore we have proved the global in time regularity

(u+1)%2 € L=(0,00; L*(R)), V(u+ 1)%% € L?(0,00; L*(Q)),

3.56
u?/?Vz € L*(0,00; L2(Q)). (3.56)

Considering (3.56) and proceeding as in the obtaining of (3.41) and (3.42) we conclude
the global in time regularity u € L>(0,00; L*(9)), Vu, uV(z)? € L?(0,00; L*()).
This finishes the proof that (u,z) is a weak solution of (3.1) and that {(uf", z5")}
converges to (u,z) as (m,k) — (00,0) in the sense indicated in this section, for

s €[1,2).

3.3.3 Estimates for (u®", z%™) and passage to the limit for s > 2

The procedure for the case s > 2 is much more similar to the case s > 2 in
Chapter 2. In the sequel, we highlight the main steps of the proof and refer the reader
to Chapter 2 for details. First we note that, multiplying the energy inequality (3.23)

from Lemma 3.8 by k and summing in n, for each n € N, we have
VT™ (uF)/? is bounded in L?(0, 00; L2(12)), (3.57)
T™(uk)*/? is bounded in L>(0, co; L2(R)). (3.58)
From (3.58) and (3.57) we can conclude that

T™ (") is bounded in L**/3(0, T; L>*/3(Q)). (3.59)

m

Analogously to Chapter 2 we use (3.28) and Lemma 3.5 to prove that

T (ukm)V(257)? is bounded in L2(0, 00; L2(Q)). (3.60)

m

Now we can test the u/’-equation of problem (3.3) by ku!’, and, after bounding

some terms, we sum the resulting inequality and use (3.60) to conclude that

u®" is bounded in L>(0, 00; L?(Q)), (3.61)
Vb is bounded in L2(0, 00; L2(Q)), (3.62)
o . .
Y N =G < C, (3.63)

J=1
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and then, analogously to (3.30), we prove that
||u7]f,f - U:m||i2(o,oo;L2(Q)) < Ck. (3.64)

Then, if we consider the u-equation of (3.25), by applying (3.62) and (3.60) we
conclude that
dpuk is bounded in L?(0, o0; (H(R))). (3.65)

Using the (m, k)-independent bounds obtained so far, we can follow the ideas of
Chapter 2 and subsection 3.3.2 in order to prove that

zE" — o is bounded in L2(0, oo; L*(Q)), (3.66)

d,2" is bounded in L%(0, oo; L¥/2(Q)).

Now, using (3.61), (3.62), (3.64) and (3.65) we can conclude that there are subse-
quences of {ur;"} and {uk }, still denoted by {um’} and {uF}, and a limit function u
such that

uk” — w weakly* in L°(0, 00; L2(12)),
Vuk” — Vu weakly in L?(0,00; L2()),
Ok, — u weakly in L2 (0, 00; (HI(Q))/>

By applying the compactness result Lemma 1.14 to the sequence {ufn} and using
(3.64) we have

ul" — w strongly in L2(0,T; L*(2)), YT > 0.

m

Using the Dominated Convergence Theorem and (3.59) we can also prove that
T™(uk") — u strongly in LP(0,T; LP(Q)), V¥p € (1,55/3),
and using Lemma 1.11,
T™(ukm)s — u® strongly in LP(0,T; LP(Q2)), Vp € (1,5/3).
From the global in time estimate (3.58) we can conclude that, up to a subsequence,

T™(uk) — u weakly* in L™(0, 00; L*(Q)),

m

hence, in particular, u € L>(0, co; L*(12)).

For s > 2, if we consider the functions P %, we have the same (m,k)-

and zF
independent estimates that we had for s € [1,2). Then we have the same convergences
given in (3.54) and (3.55).

Following the ideas of Subsection 3.3.2, we can identify the limits of 7™ (uk" )V (28")2,
V2l 12287 T (s )s 2K and T (ul")s /287 with uV(2)2, |V2|2/z, u®z and u®/z,

respectively.
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This finishes the proof that (u,z) is a solution of (3.1) and that {(uk", z5")}

converges to (u, z) as (m, k) — (00,0) in the sense indicated in this section, for s > 2.

k,r
3.4 Convergence of v

Until this point, for any s > 1 fixed, we have proved that (ut", 257) converges to

(u, z) a solution of (3.1) as (m, k) — (00,0). Now, to conclude the proof of Theorem
3.2, we are going to prove that (uﬁf, Ufrf) converges to (u,v) a weak solution of (1)
as (m, k) — (00,0), where VR s given either by (3.4) or by (3.5). For simplicity, we

consider (u,’ﬁlf, zfrzr) to be the subsequence which converge to the limit function (u, 2).

3.4.1 ov*" given by (3.4)

In this case, it is enough to show that the sequence R = (zf,{r)Q — o2 converges

tov = 22 —a? as (m, k) — (00,0). Then, thanks to the equivalence of problems (3.1)
and (1) (Lemma 3.1), we know that (u, z) is a solution of (3.1) if, and only if, (u,v)
is a solution of (1), with v = 22 — a2,

In fact, if we consider the (m, k)-uniform bounds obtained for 2R (especially the
pointwise estimates of Theorem 3.4, (3.27) and (3.28)) and the convergences listed in
(3.54), we can prove by straightforward calculations that the sequence vh;" = (257)% —

2 2

a? converges to v = 22 — a? in the same senses indicated in (3.54). Hence, by Lemma

3.1, we have that (u,v) is a solution of (1).

Therefore, we conclude that (u¥",v%") converges to (u,v), a solution of (1), as
(m, k) — (00,0).
3.4.2 ov*" given by (3.5)

We rewrite (3.5) as
Ok, — AvE + T (ukm) sk = 0. (3.67)

Using the (m, k)-independent bounds obtained for 77" (u;,) in Subsections 3.3.2 and
3.3.3 we can test (3.5) by v}, and by —Av" and conclude that

v®7 is bounded in L°(0, 00; H(Q)), (3.68)
Avf" s bounded in L?(0, 003 L(12)), (3.69)
[ vq’%THLQ(O,oo;Hl(Q)) <Ck. (3.70)

Considering the ideas used in Subsections 3.3.2 and 3.3.3 to show that BT s
bounded in L?(0, 00; H2(R2)) and that 9;2F, is bounded in L?(0, co; L3/%(2)), we prove
that

v®" is bounded in L?(0, oo; H*(Q)), (3.71)

dvk is bounded in L%(0, 00; L¥/2(Q)). (3.72)
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Then, using (3.68), (3.69), (3.70), (3.71) (3.72) and Lemma 1.14 we prove that there

is a function v such that, up to a subsequence, for each fixed T' > 0, we have

VT =5 v weakly* in L>=(0, 00; L(2)) N L>(0, 00; HY(Q)),
vk — v weakly in L2(0, 00; HX(Q)),
VT 5 v strongly in L2(0,T; H(€)) N LP(0,T; LP(R)),p € [1, ),
and 9wk, — 9yv weakly in L?(0, c0; L3/2(Q)).

(3.73)

Now, using the convergence obtained for Tm(uf,f) in Subsections 3.3.2 and 3.3.3

and (3.73) we conclude that the limit function v is the unique solution of
v — Av +u’v =0,

where u is the function of the pair (u, z), fixed in the beginning of Subsection 3.4.
Therefore, thanks to the uniqueness of the limit function v, we conclude that the

whole sequence vfi” converges towards v as (m, k) — (00,0). In addition, combining

Lemma 3.1 and the uniqueness of the function v, given u, we deduce that v = 2% — a2

Thus we conclude that {(uk, vk")} converges to (u,v), a solution of (1), as
(m,k) — (00,0) in both cases, v}, given by (3.4) or (3.5), finishing the proof of

Theorem 3.2.
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Chapter 4

OPTIMAL CONTROL RELATED
TO WEAK SOLUTIONS OF
CHEMOTAXIS-CONSUMPTION
MODELS

4.1 Main Results

Along this chapter, it will be necessary to impose the hypotheses:

Q) C R? is a bounded domain with boundary T of class C*1,

Q=(0,T) x Q,
f € LYQ), for some ¢ > 5/2, (4.1)
(u®,0°) € LP(Q) x W?2/29(Q), (4.2)

with p=1+4¢, forsome ¢ > 0,if s=1,and p = s, if s > 1.
Remark 4.1. In particular, Hypothesis (H1) is satisfied. O
Let us define the specific functional spaces appearing for the weak solution setting.
For s € [1,2),
U= {u € L®(0,T; L*(Q)) N L>/3(Q) n L5/G+s)(0, T; Ws/B+s)(Q));
Byu € L5/B+9)(0, T, (Wl,Bs/(4s—3)(Q))/)}7

for s > 2,

U= {ueL”(O,T;LS(Q)) N L5/3(Q) N L2(0,T; HY());
dyu € L2(0,T; Hl(Q))/)},
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and for s > 1,

V= {v € L(Q) N L™(0,T; H(Q)) N L0, T; Wh4(Q)) N L2(0,T; H2(Q));
B € L5/3(Q)}.

We also introduce the bounded convex set for the control

By(M) = {f € LYQ) ‘ HfHLq(Q) < M}

Definition 4.2 (Weak Solution of the controlled problem (2)). A pair (u,v) is
called a weak solution of (2) if u(¢,z),v(t,z) > 0 a.e. (t,z) € Q, with

ueU, vey

and satisfying the initial conditions for (u,v), the u-equation of (2) and the boundary

condition of w in the variational sense
((%’LL, SO) + (VU, VSO) = (UV’U, VSO) 5

for all ¢ e L5%/(45=3) (0,7 W1*5S/(4s_3)(Q)), the v-equation pointwisely (in fact, the
v-equation is satisfied in L5/3(Q)) and, since Av € L*(Q), the boundary condition of
v in the sense of H~/2(T). O

The proof of existence of weak solution to the controlled problem (2) is based
in the treatment of the uncontrolled model (1) given in Chapter 2. This is because
Chapter 2 is oriented to weak solutions and then it is well suited to extend (1) to a
model in which we have a nonsmooth control f as coefficient in (2). An important
step in Chapter 2 is the obtaining of an energy inequality using the change of variable
from (u,v) to (u,z), with z = Vv + a2, where a > 0 is a sufficiently small but fixed
real number chosen in Lemmas 4.12, 4.13 and 4.15 below, independently of (u,v) and
f. Here, the energy inequality satisfied by the constructed weak solutions of (2) will

also be written in terms of (u, z). In fact, we consider the energy

Bu, 2)(t) = 4/Qg(u(t,x)) di + % /Q Va(t,2)|? de,

where
(u+1)in(u+1)—u, ifs=1,
g(u) = u?
s(s—1)’

if s > 1.

We have the following result of existence of weak solutions to (2).

Theorem 4.3 (Existence of energy inequality weak solutions). Given f €

LY(Q), there is a non-negative weak solution (u,v) of (2). Moreover, this weak solution
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(u,v) can be built satisfying the energy inequality

to
E(u,z)(t2) + B /\V u+ 127 de dt + / / u®|Vz|? dx dt

4
+8 / /!DQZ\Q dz dt+/ Vel g i) (4.3)
t1 Q t1 Q <
< E(u, 2)(t1) + K| flla(@)- lvollw2-2/0.0(0):

fora.e. t1,ty € [0,T], with ta > t1; where K(|| fllLa(q), lvollw2-2/0.0(0)) s @ continuous
and increasing function with respect to || f||La(q) and 8 > 0 is a constant, independent
of (u,v, f). Finally, in case s > 1, inequality (4.3) also holds for all ta € (t1,T).

Remark 4.4. The existence of weak solutions satisfying an energy inequality is com-
monly seen, for instance for fluid models, and is used to prove either weak-strong
uniqueness results [42] or large time behavior [45]. In this chapter, we use this “energy
inequality weak solution setting” in order to prove the existence of a global optimal
solution to an optimal control problem. To the best of our knowledge in chemotaxis
PDE problems, this is the first time that the concept of weak solution with energy
inequality is applied to this purpose. U

To highlight the main results of the present chapter we introduce the minimization

problems. Consider the functional
J: LP3(Q) x L*(Q) x LY(Q) — R

given by
S’Yu 5s/3
J(u,v, f) = = ; HU(t) = ()|l 5s75 g
T

+2 [ 100~ O ey e+ 2 / OIS

where (ug,vq) € L*/3(Q) x L*(Q) represents the desired states and 7,7y, v; > 0
measure the costs of the states and control. In view of the existence result, Theorem

4.3, one could expect the following admissible sets

ad = {(vaaf) eUxVxLUQ); (u,v) is a

weak solution of (2) with control f}

or

SE = {(u,v,f) eU xV x LUQ); (u,v) is a weak solution of (2)

a

with control f and satisfies the energy inequality (4.3)}

with the corresponding minimization problems

min J(u,v, f)
subject to (u,v, f) € S¥,
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or

{ min J(u,v, f) (4.5)

subject to (u,v, f) € SE,.

Thanks to Theorem 4.3 we have that both S, and S aEd are nonempty sets. However,
we are not able to prove that problem (4.4) or (4.5) has a solution, as we will analyze
in Remark 4.7 and Subsection 4.3.1, respectively.

Hence, to prove existence of optimal control related to weak solutions of (2), we
define the following admissible set for each M > O:

SM = {(u,v,f) €U XV x By(M); (u,v) is a weak solution of
(2) with control f and satisfies (4.3) changing the
constant K([| | z4(@), [vollw2-2/a.0(q)) for K(M, HUOHWQ—?/M(Q))}

and the corresponding minimization problem

{ min J(u,v, f) (4.6)

subject to (u,v, f) € SM.

Again, from Theorem 4.3, we have S(% # (). But now, we are able to prove the

following.

Theorem 4.5 (Existence of optimal control). For each M > 0, the optimal
control problem (4.6) has at least one global optimal solution, that is, there is (U, v, f) €
S% such that
J@v, f) = min J(u,v, f).
(u,v,f)ES%

Moreover, we have the following relation between the three minimization problems

(4.4), (4.5) and (4.6).

Theorem 4.6. For

M > 4 inf  J(u,v, f),
Vf (uw,f)ESE,

we have the relations

inf  J(u,v,f) < min  J(u,v, f) < inf  J(u,v, f).
(uv,f)ESY, ( ) (uw,f)esM ( ) (uv,f)eSE, ( )

Remark 4.7. From Theorem 4.5, for each M > 0 there is (u™,vM, fM) € SM guch
that

J@M oM MY = min  J(uo, f).
(u,v,f)ESéV([i

Let My > M; > 0. Since S%l C S%Q then J(uM v fM) decreases as M increases.

Therefore, since J(uM, vM, fM) is bounded from below, there exists lim J(uM, oM, fM)

M—o0
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and, accounting for Theorem 4.6, we have

inf  J(u,v, f) < lim J@M, oM, M) < inf  J(u,v, f).
P (w,v, f) < lim ~J( ) o g (u, v, f)
In particular, {(u™,v™, M)}, is bounded in L>/3(Q) x L*(Q) x L%(Q) indepen-
dently of M. Thus we conclude that there is (u™,v>, f®) € L5/3(Q) x L*(Q) x
LY(Q), defined as the weak limit in L>/3(Q) x L*(Q) x LI(Q) of a subsequence of
{(u™, oM M)}y Then, the lower semicontinuity of .J leads to

J(®, 0>, f°) < lim J@M, oM, M), (4.7)

M—oo

In our opinion, the proof or the refutation of the following two questions are

interesting open problems:
Lo (u™, v, f*) e Sy, ?

2. lim J@M, oM, fMy=inf J(u,v,f)?
Mgnoo (’LL v f ) (u,v,IBES}L”d (U’Uf>

If item 2 were valid, then ( i}%f 5 J(u,v, f) could be approximated by the mini-
u,v,f)ESY,

mums min J(u,v, f) as M — oo. Additionally, if items 1 and 2 were valid, then
(uv,f)ES

(u, v, f>°) would be an optimal solution of (4.4). Indeed, from item 1 we have

inf  J(u,v, f) < J(Ww™, v, ).
. (u, v, f) < J( %)

On the other hand, from item 2 and (4.7), we also have

J(u>, 0>, )< inf  J(u,v, f),
O T it T f)

which allows us to conclude that

J(W®, 0>, f)y = inf J(u,v,f),
(0 ) = T )

that is, (u™,v>, f>°) € S, is a global optimal solution of (4.4). d

The rest of the chapter is organized as follows. The existence of weak solutions
satisfying an energy inequality for the controlled problem given in Theorem 4.3 is
established in Section 4.2 and in Section 4.3 we study the optimal control problem,

proving Theorem 4.5 and Theorem 4.6.

4.2 Existence for the Bilinear Controlled Model

The existence of weak solutions of the uncontrolled problem (1) is proved in Chap-

ter 2, by means of a sequence of truncated problems. Here, we prove the existence
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of the controlled problem (2) satisfying in addition the energy inequality (4.3), using

the following controlled truncated problems:

Oyt — ADttyy = =V - (T™ () Vo, ),
Otvm — Avpy, = =T (U)*vim + fomla,, (4.8)
Ontim|r = Onvm|r =0,  um(0) =ul, v, (0) =",

for each m € N, with initial data u!, and v" satisfying (4.2). In fact, u¥, is an adequate

regularization of u° (see Chapter 2 for more details).

4.2.1 A L*° function that bounds v,, from above

In Chapter 2, where the uncontrolled model (f = 0) is considered, a crucial step
to prove the existence of a weak solution to (1) as a limit of solutions of the trun-
cated models (4.8) was the obtaining of a m-independent bound for |[vy, | Lo (). This
remains essential now, with f #Z 0. But, while in the case where f = 0 this m-
independent bound is obtained by straightforward calculations, it is not so obvious if
we consider a control f such that fi # 0.

The next result will help us build a function w € L*° in Theorem 4.9 below that
will be an upper bound for v,,, for all m. Moreover, (4.10) will provide an estimate
for ||| oo (@) in terms of the control f. We remark that it is because of this Lemma
4.8 that we need to assume that f € L(Q), for some ¢ > 5/2.

Lemma 4.8. Let Q be a bounded domain of R such that T is of class C?. Let
w® € W 2/99(Q) and fe LYUQ), for some q > 5/2. Then the problem

8tw—Aw:fw, in Q,
Onw|r =, on (0,T) xT, (4.9)

w(0,7) = w® in Q,
has a unique solution
w e C([0, T W2=/29(Q)) N LU0, T; W*4(Q)), dyw € LU(Q),
In particular, there is a positive constant C’(HfHLq(Q), Honwg_z/q,q(Q)) such that
[0l (@) < CUIfllLa(@) ||w0\|w2—2/q,q(sz))- (4.10)

Proof. The key idea here is the injection W2~2/¢4(Q) c L*(fQ), the reason why we
suppose that ¢ > 5/2. The proof is divided in two steps.

Step 1 (Existence and uniqueness of problem (4.9)):
For any solution w of (4.9) such that

w € L°°(0,T; H'(Q)) N L*(0,T; H*(Q)), dyw € L*(Q), (4.11)
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we have

lw (O + B Jo IV [w(r)P/2 )32, dr

~ (4.12)
< w0y ex0 (Co2 J (TS + 1) dr)

a.e. t € (0,T). In fact, we test the equation in (4.9) by pw?~! and define w := w?/2.
Using inequality (1.2), we obtain

dy oo 4p(p—1)/t 2 /~~z
t dr < d
IO + P [ Vil ar<p [ fa? e
< Opl fll gy 16120750

3 6/5
< Cpl| fll vz 101 oty 111

2 -
CEOWP 20 18172y + OllB1 () + VD] 72 q

Hence, choosing § > 0 small enough to absorb the last term in the right hand side

and going back to the notation w we obtain

d 5/2
Oy + / IV E (P gy dr < Cp (T2 ) + D@

and Gronwall’s Lemma leads us to (4.12).
For f regular enough one can prove that (4.9) has a unique solution satisfying
(4.11) by using Galerkin’s method, for example. But accounting for the dependence

of w on HfH given by (4.12), we are actually able to prove that problem (4.9)

L5/2 )
has a unique strong solution satisfying (4.11) and (4.12) under a weaker assumption

on the regularity of f. It is enough that f € L5/2(Q), for instance. The uniqueness is
proved by comparing two possibly distinct solutions of problem (4.9) and concluding

that they are in fact the same solution.

Step 2 (Proof of the L™ estimate (4.10)):
Since f € LYQ) and ¢ > 5/2, (4.12) implies that there are § € (5/2,¢) and a
positive constant C([| f| Laq), [l lly2-2/04(q)) such that fw € LI(Q) with

1f wliza) < CUSLa) 10’ lw2-2/a0(0))- (4.13)
From (4.13) and (1.12) we can conclude,

||wHC([O,T];W%WM(Q)) < C(”f”L‘?(Q): ||w0||w272/q,q(9))-

But since § > 5/2, we have C([0,T); W?~2/%9(Q)) ¢ L*®(Q) and there is another
positive constant C(HfHLq(Q), Honw2—2/q,q(Q)) such that

lwll (@) < CUI Iy 1w’ llwa-2/a.a(a)-
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Finally, since w € L>®(Q), we have f w € L9(Q) and therefore we can use Lemma
1.13 to conclude that

w € O([0,T); W2=/29(Q)) N LU0, T; WH4(Q)), dw € LI(Q).
|
4.2.2 Existence for the controlled truncated problem and the first

uniform estimates

Theorem 4.9. Given f satisfying (4.1) and (u®,v°) satisfying (4.2), there is a unique

solution (U, vy, of the truncated problem (4.8) with regularity

um € L0, T; L2(Q)) N L2(0,T; HY(Q)), Oum € L*(0,T; (H' ()",

Um € L®(Q) N L>®(0,T; H'(Q)) N L*(0,T; H*(Q)), dyvm € L*(Q), (4.14)

and satisfying
U (t, @), vy (t,2) >0, a.e. (t,x) € Q, (4.15)

/Qum(t,:v) dx:/ﬂugn(x) dx:/QuO(:c) do, ae te(O,T). (416

Moreover, there is a positive, continuous and increasing function of ||f||Lq(Q),

K([l £l za@)s 10 we-2/a.0(a))s

also independent of m, such that

[omll L (@) + lvmll L2031 ) < Ka(lFllza(@), 10° lw2-2/0a(a)- (4.17)

Proof. Concerning the proof of existence and uniqueness of solution of (4.8), the
truncation 7" (-) simplifies the treatment of the chemotaxis and consumption terms,
—V - (T (Up) Vo) and =T (up,)*vp, respectively. Then, one can deal with the
control term, fuv,,, likewise in the proof of existence of (4.9), in Lemma 4.8. The
uniqueness is proved by comparing two possibly different solutions. Properties (4.15)
and (4.16) can be proved following the ideas in Chapter 2. Finally, we prove (4.17),
beginning by the estimate in the L*°-norm. Using the already proved property (4.15)

of vy, in the vy,-equation of (4.8), we obtain

Oyom — Avy, < frog  ae. (t,x) € Q. (4.18)

On the other hand, considering Lemma 4.8, as well as (4.9), with f=frand w® =Y,

we have that w satisfies

Ow—Aw = frw a.e. (t,x) €Q, (4.19)
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with Opw|r = 0 and w(0, x) = v°(z). Subtracting (4.19) from (4.18) we conclude that

(v — w) satisfies

O(vm —w) — A(vy, —w) < fy (v, —w)  ace. (t,x) € Q,
On(vm —w)|r =0, (v, —w)(0,z) =0.

Multiplying the above inequality by (v, — w)4+ and using (1.2) to estimate the right
hand side term leads us to (v, —w)4(t,z) = 0 a.e. (t,x) € Q, that is, vy, (¢, 2) < w(t, z)
a.e. (t,z) € Q. Then the bound in the L*>*-norm for v, is a consequence of the
estimate for w given in (4.10), with f = f4 and w® = ¢°. The bound of v, in the
norm of L2(0,T; H(Q)) is obtained by testing the v,,-equation of (4.8) by vy, and
estimating conveniently the term on the right hand side using Holder’s inequality, the

interpolation inequality (1.2) and Young’s inequality. [ |

4.2.3 Energy inequality

Analogously to Chapter 2, we consider the variable 2, (t, ) = \/vm(t,z) + @? and

the rewritten problem

Oy, — AUy, = Um )V (2m)?)
|V 2 |2 a2
Oz, — Nzpyy — ———— :—me m) — )1
t : Zm (u f T em) (4.20)
anumh‘ = an|F =0

um(0) =ud,  2,(0) = V0 + a2

which is equivalent to the controlled truncated problem (4.8). From the equivalence

of (4.8) and (4.20) and from the results given in Lemma 4.9, we have the following.

Corollary 4.10. Given f satisfying (4.1), there is a unique solution (U, zm) of
problem (4.20) with regularity

um € L®(0,T; L2(Q)) N L2(0,T; HY(Q)), Osum € L*(0,T; (H(R))"),

(4.21)
zm € L2°(Q) N L>°(0,T; HY () N L*(0,T; H*(Q)), Orzm € L*(Q),
and satisfying the m-uniform estimates
Um(t,x) >0 and zp(t,x) > a, ae. (t,x) € Q, (4.22)

/ U (t,x) do = / ud (z) dr = / u’(z) dz, a.e. t € (0,T), (4.23)
Q Q Q

1zl oo (@) 1 2ml 20,251 (@)) < Ka (I Loy 10 lwr—2/0.0(q))- (4.24)
Using this change of variables, we obtain an energy inequality involving the control

f. In this subsection, in order to simplify the notation, we drop the m subscript and

denote the solution (um, zm) of (4.20) by (u, z). We begin with the following lemma.
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Lemma 4.11 (Chapter 2). The solution (u, z) of (4.20), satisfies the inequality

4wz +C |D2z|2 d + |VZ|4 x)+1 T™(w)*|V2|? da
2dt L) 1 2 Jq

sga[jwuosHvaWme»dx+Kmfﬁ%m

S
o[ V225 ) + 4/QTm(u)5_1V(22) T () da.

Next we recall the function g, defined by g, (r) = / gr.(0) df, where ¢'(0) is
0
defined for 8 > 0 by

{ In(T™(0) + 1), ifs=1,
/
Im(0) = O

W, if s > 1,
and the energy

1
En(u,2)(t) = s / gm(u(t,x)) de + / |V2(t, x)|? da. (4.25)
4 Jo 2 Ja

Lemma 4.12 (Energy inequality for s = 1). The solution (u,z) of the problem
(4.20) satisfies, for sufficiently small o > 0,

diE (u, 2)(t) + /\V[Tm( )+1]1/2|2 dx + 4/Tm(u)yv2\2 dx

st s [V : : (4:20)
+5/W2\d+/ 2) < O V220 + K3 oy

Proof. We follow Chapter 2, pointing out the most relevant steps to deal with the
control term and make explicit the dependence on K1 = K1 (|| f|| 4(q). [|0° lw2-2/a.0(02))

from Corollary 4.10. By testing the u-equation of problem (4.20) by In(T"™(u) + 1),
we obtain

% ng(u) dx+/ :;ZT))( Vu|? do = < ),VTm(u)>.
Since 0 < (T™)/(u) < C, we have ((T™)'(u))? < C(T™)'(u), and we can write

/ng(n))( Y \Gup dr > c/ “))12\vu|2 dx > C/Q|V[Tm(u)+1]1/2|2 da.

1
T +1) = /Tm(a) 1 1

Hence, using that , we have

4 u) do mi) 4 V22 de =2 (LW L= o Gy
75/ng( ) d +C/Q\V[T (w) + 1)Y2P2 d 2( T Ve VT ())
m V™ (u)
(V(ZQ),VT (u) — <sz ()‘f'l)
< (V(2%), VT™ () + 2]z oo o) [ V2l 20  VIT™ (1) + 112 2
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Using Young’s inequality and (4.24), we arrive at

d

dt/gm( )da:+C’/|VTm (u) +1]Y2)? da

< (V(2%), VT™(u)) + K7 || V2|72

(4.27)

If we add the inequality of Lemma 4.11, for s = 1, to 1/4 times (4.27), then the
terms / VT™(u) - V(2%) dx cancel and we obtain
Q

drl 1 "
{/gm(u) do+ 2| Vel 3o +c/ VT () + 112 da
Q 2 )

dt L4
1 |Vz]4
- Tm 2 D2 2 /
+2/Q (u)|Vz] dx—l—C’l(/Q] z|* dx + L 2 dx)
L Vo V| |VT™ (w)| dz + K2 f))? Co+ K| Vz|? 4.28
) Q’ 2| ()| dz + Kyl fl720) + (C2 + KDI[Vzl72 0 (4.28)

/OW[TW A2/ ) 1] V2| da
Q

K £1320) + (Co + KDV 2(0-

We can deal with the first term in the right hand side of the inequality using Holder’s

and Young’s inequality,

/aW[Tm 12| /T ) £ 11 |V2| de < o? C( )/ T ()| V22 dae
Q Q

+8[V[T™ () + 12|32 + 0(5)/sz|2 dz.

Therefore, we can first choose § > 0 and then a > 0 sufficiently small in order to
use the terms on the left hand side of inequality (4.28) to absorb the first two terms
on the right hand side of the above inequality and finally obtain the desired inequality
(4.26). |

Now we obtain the energy inequalities for s € (1,2) and for s > 2, respectively.
Analogously to Lemma 4.12, we follow the ideas of Chapter 2, making the necessary
changes in order to deal with the control term and to make explicit the dependence on
the positive constant Ky = K1 (|[f|| £a()s Hv0||W2,2/q,q(Q)), from Corollary 4.10. Since
these changes were covered in Lemma 4.12, next we will state the results, skipping

their proofs.

Lemma 4.13 (Energy inequality for s € (1,2)). The solution (u, z) of the prob-
lem (4.20) satisfies, for sufficiently small o > 0,

%Em(u, 2)(t) +ﬁ/|V [T™ (u) + 1])%/2? da + i/Tm(u)ﬂva dx
Q

2_12 [V2|* 2 2 (4.29)
+8( [ 1D do+ [ S5 do) < CURDIValey + K31y
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Remark 4.14. In Chapter 2, when the authors prove the energy inequality for s €
(1,2), the term /\V[Tm(u) +1/4]%/? da is estimated by
Q
/yV[Tm(u) +1/4)%/2)? dz > 0, for all j € N,
Q
but it can be estimated by
/\V[Tm(u) +1/5%2)? da > /|V[Tm(u) + 1)/ da, for all j € N,
Q Q

instead, yielding (4.29). O

Lemma 4.15 (Energy inequality for s > 2). The solution (u,z) of the problem
(4.20) satisfies, for sufficiently small o > 0,

1
iEm(u, 2)(t) +/\V[Tm(u)]s/2|2dx—|— /Tm(u)s|Vz|2 dz
i ZL e (4:30)
+5</Q|D2Z\2 dx +/Q 5 d96> < C(KD[V2ll72(q) + K11f 1720

z

4.2.4 m-independent estimates and passage to the limit as m — oo
In the present subsection we go back to the notation (uy,, zm) and (tm,, vm,) to the

solution of problems (4.20) and (4.8), respectively.

m-independent estimates for Vuv,,

We will integrate the energy inequalities (4.26), (4.29) and (4.30) with respect to
t, from 0 to T' > 0. We take into account that, because of Corollary 4.10, we have the

following bounds independently of m:
Vzm is bounded in L*(Q)

and
0<a<zp(tz) <Ki, ae. (t,z) € Q. (4.31)

We also use the hypothesis (4.2) on the initial data u",v° to prove that the energy
given in (4.25) at time ¢ = 0, Ey(um, 2m)(0), is also bounded, independently of m.

Thus we conclude that
V2, is bounded in L%°(0,T; L*(Q)) N LY(Q),

T™(t)*?V 2y, and Az, are bounded in L(Q).

But using the fact that 2z, = Vv, + @? and (4.31) we can conclude that

VYV, is bounded in L>(0,T; L*(Q)) N LY(Q), (4.32)
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T™ (tp)** Vv, and Av,, are bounded in L?(Q). (4.33)

Case s € [1,2)

First, following Chapter 2, to which we refer the reader that might be interested
in more details, we prove the existence of weak solution (u,v) of problem (2). Next,
to conclude the proof of Theorem 4.3, letting z = v + a2, we prove the energy
inequality (4.3).

Existence of weak solution to (2):

In order to prove the existence of a weak solution (u,v) to (2), first we obtain m-
independent estimates for the solutions (uy,, vy,) of (4.8) and then we use compactness
results in weak*, weak and strong topologies to pass to the limit as m — co.

Let

b In(r) if s =1,
gr) = { s (s—1) ifse(1,2), =0

and let

o, _ ) orin(r)=(r=1) ifs=1,
otr) = [ o(0) a0 = { rs(s—1) s e (L2).

Notice that g”(r) = r¥72, Vr > 0, in all cases.

We test the u,,-equation of (4.8) by ¢'(um + 1) and obtain

- (um+1) d:z—i—/|Vu +1)°/%% dx

_ / T™ ()t + 12"V 0y - Vg (0 +1)*271 da
Q

2 T (u )1—5/2
=5 Jotomr 2 : m 4 1]%/2
S/n(umﬂ)l—s/? (um )™ Vv - V[um +1]%7 dx
2

< (/QTm(um)s‘vvm‘Q d$>1/2</QV[Um+1]5/22 dx>1/2

S

and thus we have

(um—i-l) d:c+/ IV [t + 1132 da < = /Tm(um)Sva\Z dz.
dt 1 Jq

Integrating with respect to t from 0 to T" we obtain
/ g(um(T) +1) do + = / / |V [t + 1]%/2? daz dt

/ /Tm U ) ¥ [V 0y |2 dxdt—l—/ g(u® + 1) dz.

Then, because of (4.17), (4.2) and the definition of g and (4.33) we conclude that

(um 4+ 1)*? is bounded in L>®(0,T; L2(Q)) N L0, T; H'(Q)). (4.34)
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Using the Sobolev inequality H'(2) C L°(Q) and interpolation inequalities we obtain
(um)*? is bounded in L'%/3(Q).
The latter and (4.34) imply that
Uy, is bounded in L>(0,T; L*(Q)) N L>/3(Q). (4.35)
From (4.35) we can conclude, using the v,,-equation of (4.8) that
OsUyy, 1s bounded in L5/3(Q).
Reminding that s € [1,2), if we use (4.34) and (4.35) in the relation
Vit = V(e +1) = V(172 = 2 1)1 i +1)°7
then we also have
Un, is bounded in LP/G+3) (0, T; W5s/3+9)(Q)). (4.36)

Considering the chemotaxis term of the u,,-equation of (4.8), we can write T (t,) Vo,
as
T™ () VU = T () =52 T (1) > V.

Then, we have 7™ (u,,)'~*/2 bounded in L'9%/(6=39)(Q), because of (4.34), and T"™ (u,)*/ >V,
bounded in L?(Q), because of (4.33), and hence we can conclude that

T™ (U ) Vr, is bounded in L%/ G+9)(Q). (4.37)

Then, if we consider the u,,-equation of (4.8), from (4.36) and (4.37) we conclude
that
Ayt is bounded in L%/ G3F9) (0, T; (W55/(4s=3)(Q))"). (4.38)

Now we are going to obtain compactness for {u,,} which is necessary to pass to
the limit as m — oo in the nonlinear terms of the equations of (4.8).

We observe that W15/G+5)(Q) ¢ LI(Q), with continuous embedding for ¢ =
15s/(9 — 2s) and compact embedding for g € [1,15s/(9 — 2s)). Then, since s € [1,2),
we have 5s/3 < 15s/(9 — 2s) and therefore the embedding W155/G+5)(Q) ¢ L5/3(Q)
is compact. Note also that ¢ = 5s/3 > 5/3 > 1.

Now we can use Lemma 1.14 with

X — W1,5s/(3+s)(Q)7 B = L5s/3(Q), Y — (W1,5s/(4s—3)(Q))/
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and ¢ = 5s/3, to conclude that there is a subsequence of {u,,} (still denoted by {u,})

and a limit function « such that
U, — u weakly in L2/G+3) (0, 7; wos/3+9) (),

and
Uy, — u strongly in LP(Q), Vp € [1,5s/3). (4.39)

Using the Dominated Convergence Theorem we can conclude from (4.39) that
T™(uy,) — u strongly in LP(Q), Vp € [1,5s/3). (4.40)
It stems from the convergence (4.40) and Lemma 1.11 that
(T™(um))® — u® strongly in LY(Q), Vq € [1,5/3). (4.41)

The convergence of vy, is better. There is a subsequence of {v,,} (still denoted by

{vm}) and a limit function v such that

Vm — v weakly™ in L*°(Q) N L>=(0,T; H(Q)),
vm — v weakly in L2(0,T; H2(Q)),
Vo, — Vv weakly in L*(Q),
and Oyv,, — Jv weakly in L5/3(Q).

(4.42)

Now we are going to use the weak and strong convergences obtained so far to pass
to the limit as m — oo in the equations of problem (4.8). We are going to identify

the limits of the nonlinear terms related to chemotaxis and consumption,
T™ (Um,) VU, and T™ (U, ) *vm,
respectively, with
uVv and u’v.

In fact, considering the chemotaxis term, from (4.40), (4.32) and (4.42), we can con-
clude that
T™ (U ) VU, — uVo weakly in L203/(5S+12)(Q)'

Considering now the consumption term, considering (4.41) and (4.42) we conclude
that
T™ () * vy — uv weakly in L%/3(Q).

With these identifications and all previous convergences, it is possible to pass to

the limit as m — oo in each term of the equations of (4.8).

Energy inequality (4.3):
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In order to finish we must prove the energy inequality (4.3). First we obtain an
integral inequality for the solution (s, zm) of (4.20), where we remind that z,, =
VU + a2, for small enough but fixed a > 0, being (u,,vy,) the solution of (4.8).
According to Lemmas (4.12) and (4.13), (u, zm) satisfies

B (W, 2m) (t2) + /|V [T™ () + 1]%/22 da: dt

to
/ /Tm U )¥|Vzm|? dz dt
. (4.43)
+8 / /|1)2,zm|2 dz dt+/ ’Vzg”’ do dt)
t1 Q " Zm

2
< Bty 2m)(t1) + C(K3) / 1V 2220 dt+/c2/t 11220y dt.
1

where E,, is given by (4.25). Next we collect some convergences that can be obtained
from the m-independent bounds and the weak and strong convergences proved so far
and that will be useful to pass to the limit in the inequality (4.43). Recalling that we
denote z = v/v + a2, we have, in particular,

(Um +1)*/? — (u+ 1)%/? weakly* in L>®(0,T; L*(Q)),
(Um +1)*/? — (u+ 1)%/? weakly in L2(0,T; H(Q)),
VT (up)*? — Vu®/? weakly in L(Q),
T () %V 2 H uS/QVz weakly in L?(Q), (4.44)

Vz
—_ weakly in L4(Q),
VZm \f

D2z, — D2z weakly in L?(Q),
V2 — Vz strongly in L2(Q).

Recalling that we are dealing with the case s € [1,2), let

E(u, 2)(t) = Z/Qg(u(t,x)) dx + % /Q V2 (t, 2)[? da,
where
(u+1Din(u+1) —u, ifs=1,
9lu) = ﬁ if s € (1,2).

Then the following convergence will be also necessary.
Lemma 4.16. E,,(um, 2m) — E(u,2) in L*(0,T).

Proof. From (4.44) we have that Vz,, — Vz in L?(Q) which, in particular, leads us
to

/ Vem(t, 2)|? dz —>/ Va(t, 2)|? dz in LL(0,T).
Q Q

Then, it remains to prove that

/ Gm (U dx — / ) dz in L*(0,T). (4.45)
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We begin by rewriting g, (um,) — g(u) as
gm (Um) = g() = gm(um) — gm(u) + gm(u) — g(u). (4.46)

For the first difference in (4.46), g (um) — gm(u), using that ¢/, and ¢’ are monotone

increasing functions and that g/, (r) < ¢'(r) for all r > 0, we have

) = g ()] = | [ u(6) a8
< Jum — ul (gm (wm) + g (w))
< Jum = ul (g (um) + g'(w).
Then, for s = 1, we have
|9m (tum) = gm (w)] < Clum —u|(In(um +1) + In(u+ 1))
and, for s € (1,2), we have
|9m () = gin (w)] < Clugm — | (Jum[*~F + |ul*7).

Considering the case s € (1,2), since from (4.35) we have (|um,|*~1 + |u|*~!) bounded
in L5%/65=3)(Q) and, from (4.39), we have |, — u| — 0 in L>/(2s+3)(Q), we conclude
that

Gm (Um) — gm(u) — 0 in L1(Q). (4.47)

Considering now the case s = 1, from (4.35) we have (n(um, + 1) 4+ In(u+ 1) bounded
in LP(Q), for all p € [1,00). Then, analogously to the case s € (1,2), we use (4.39)
and obtain (4.47) also for s = 1. From (4.47) we conclude, in particular, that

/ gm (up,) dx — / gm(u) dz — 0 in L1(0,T). (4.48)
Q Q

For the second difference in (4.46), g, (u) — g(u), we use the Dominated Convergence

Theorem. In fact, we write

Using this expression one can verify that

gm(u) — g(u) — 0, a.e. (t,z) € Q.

Next we note that g,,(u) —g(u) is bounded by 2g(u) € L'(Q). Therefore we conclude,
by using the Dominated Convergence Theorem, that g,,(u) — g(u) — 0 in L'(Q) and,

in particular
/ gm(u) dx — / g(u) dz — 0 in LY(0,T). (4.49)
Q Q
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With (4.48) and (4.49) we obtain (4.45), finishing the proof. [
Lemma 4.17. For s > 1 we have v € Cy, ([0, T); H(2)) and u € Cy ([0, T]; L¥(Q)).

Proof. Forany s > 1, we have v € L>®(Q) C L?3(Q) and v, € L°/3(Q), which implies

that v € C([0,T]; L>/3(Q)) and, in particular, v € C, ([0, T]; L?/3(Q)). Since we also

have v € L>(0,T; H'(2)), we use Lemma 1.5 to conclude that v € C, ([0, T]; H*(R)).
Considering u we have u € L5/G+s) (0, T, W15s/3+9)(Q)) < LP/G+9) (0, T; (W15s/(4s=3)(Q))")
and Qyu € 55/ (3+s) (O,T; (W175S/(4S—3)(Q))/)7

which implies that u € C([0, T]; (W5%/(4s=3)(Q))’) and, in particular,

u € Cy([0, T); (WHPs/(45=3)(Q))). Since from (4.44), u € L>(0,T; L*(R)), we con-

clude, using Lemma 1.5, that u € Cy, ([0, T]; L*(2)). [

Next we pass to the limit in inequality (4.43). Because of Lemma 4.16, we conclude

that, up to a subsequence,
Ep(tm, 2m)(t) — E(u, 2)(t) a.e. t €0, T). (4.50)

Therefore, using the convergences (4.44), the weak lower semicontinuity of the norm
(Lemma 1.12) and the almost everywhere pointwise convergence (4.50), we are able
to pass to the limit in (4.43) and conclude that, for a.e. t1,t2 € [0,T], with t2 > ¢,

we have

to
E(u,z)(t2) + 5 /Vu+13/2\2 dx dt + / / u®|Vz|? dr dt

to t2 |v ’4
+3 / /|Dzz\2 dx dt+/ 5 dx dt)
t1 f% z

2
< B, 2)(tr) + C(K2) / IV 2l dt + K3 / 11220 dt

Accounting for the m-independent bound for Vz,, given in (4.24) and the strong
convergence of Vz, to Vz given in (4.44), we have [[Vz|[2g) < Ki. And since
K1 = Ki(llf e @) HUOHWQ_Q/Q,,J(Q)), we conclude that there is other constant I =
KU flza() |]1)OHW2_2/q,q(Q)), which is increasing and continuous with respect to || f{| L¢(q),
such that, for a.e. t1,t2 € [0,T], with to > t1, we have

to
E(u,z)(t2) + 8 /]Vu+ 1%/2)2 dz dt + / / u¥|Vz|? dr dt
t1

to 4
+8 / /\D%Z dz dt+/ IVl g ) (4.51)
t1 Q t1 Q <
< E(u, 2)(t1) + K| fll La@ys 10°llw2-2/000))-
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To finish, we consider the case s > 1. For simplicity, let us write (4.51) in terms of

the energy E(u,z)(-) and the dissipative term

to 1 to
D(u, 2)(t1,t2) = f8 /|V[u+ 1)°/2)? dz dt + / /usyva dx dt
t1 Q 4 t1 Q

to to 4
+8 D222 dz dt + Ve ar).
2
t1 Q t1 Q <

for a.e. t1,ty € [O,T], with to > t1, as

E(u, 2)(t2) + D(u, 2)(t1,t2) < B(u, 2)(t1) + K(If | oy, 10" lw2-2/00(0)-

Now, let t2 € (t1,7] and let {t5}, be a sequence such that t§ — t2 as n — oo and

such that, for all n, we have

E(u, 2)(t3) + D(u, 2)(t1, t5) < Bu, 2)(t1) + K|l 2a@), [10°lwa-2/00(q)-  (4.52)
If we take the liminf in both sides of (4.52), we obtain

limin B, 2)(#5) + D(w,2)(t1.£2) < B(u,2)(1) + K Fllin()- [0 ly-2/aaen):
Then, from the definition of E(u,z) for s > 1 and Lemma 1.5, we have

Blu, 2)(t2) < liminf B(u, 2)(15)

and therefore we conclude that, for s > 1, the energy inequality (4.51) is satisfied for
a.e. t1 € [0,T], and for all ty € (¢t1,T].

Case s > 2

Existence of weak solution to (2):
The procedure for the case s > 2 is slightly different. First we note that, integrating
the energy inequality (4.30) from Lemma 4.15 with respect to ¢, we have

VT™ (up)*'? is bounded in L?(Q). (4.53)
We also remind that we defined ¢/, (1) = T™(r)*"1/(s — 1), for s > 2. Then we have
17y =5 [ @Y OT6) 7 do < Cs [ T0) db = s - gnlr).
0 0

Therefore it also stems from integrating the energy inequality (4.30) with respect to
t that
T™(up)*? is bounded in L0, T; L*(Q)). (4.54)
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From (4.54) and (4.53) we can conclude that
T™(um)*'? is bounded in L'%3(Q),

that is,
T™ () is bounded in L>*/3(Q). (4.55)

For each fixed m € N, consider the zero measure set N' C (0,7) such that
U (T, ), v (5, ) € HY(Q), Vt* € (0,T) \ V.
Then, for each fixed t* € (0,7) \ NV, let us consider the sets
{Ogumgl}:{er ’ Ogum(t*,x)gl}

and
(U > 1) = {x €0 ] U () > 1}.

Now note that, since s > 2, we have
/Tm(um(t*,a:)ZIva(t*,JU)|2 dx
Q
< / Vo (t,2)2 do +/ T (g (£, 2))* | Vo (¢, 2) 2 da
{0<u,, <1} {um>1}
S/ Vo (t*, x)|? dav—l—/Tm(um(t*,JU))S\va(t*,aU)|2 dzx.
Q Q

The last inequality is valid for all t* € (0,7") \ NV, then if we integrate in the variable

t we obtain
/ / (t (t, )% Vv (t, ) |? do dt < / / (Vo (t,z)|* do dt
0 Q
+/ /Tm(um(t,x))s|va(t,a:)]2 dx dt.
0 Q
Therefore by (4.17) and (4.33) we can conclude that
T™ (U ) VU, is bounded in L?(Q). (4.56)

Now we test the wu,,-equation of problem (4.8) by u,,. This gives us

1d

U, + [Vupm, :/Tm Uy ) VU + Vi, dx
3l + [Vl = [ 77(m)

1 1
< 2/ T (um)?[Vom|* d + §HV“mHQL2(Q)v
Q
hence we have

d m
Glnllay + 1Vl < [ T[T do
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Integrating with respect to ¢, we conclude from (4.56) that
Uy, is bounded in L>(0, T; L*(Q)) (4.57)
and
Vi, is bounded in L?(Q). (4.58)

Then, if we consider the wu,,-equation of (4.8), by applying (4.58) and (4.56) we
conclude that
O is bounded in L*(0,T; (H'(Q))'). (4.59)

Considering (4.33), (4.17) and (4.55) we conclude from the v,,-equation of (4.8)
that
dyvm is bounded in L2(0,T; L3/%(Q)).

Now, using (4.57), (4.58) and (4.59) we can conclude that there is a subsequence
of {um}, still denoted by {u,}, and a limit function u such that

U — u weakly* in L>°(0,T; L?(Q2)),
Vi, — Vu weakly in L2(Q),
Oty — u weakly in L? (0, 00; (Hl(Q))/)

By applying the compactness result Lemma 1.14, one has
Uy — u strongly in L2(Q).

Using the Dominated Convergence Theorem and (4.55) we can also prove that
T™(uy) — w strongly in LP(Q), Vp € (1,5s/3),

and using Lemma 1.11,
T™ (um)® — u’ strongly in LP(Q), Vp € (1,5/3).

From the global in time estimate (4.54) we can conclude that, up to a subsequence,
T™(up,) — u weakly™ in L°°(0,T; L*(2)),

hence, in particular,
u € L>(0,T; L°(Q)).

For s > 2, if we consider the functions v,,, we have the same m-independent
estimates that we had for s € [1,2). Then we have the same convergences given in
(4.42).

Following the ideas of Subsection 4.2.4, for s € [1,2), we can identify the limits of

T (U, ) VU, and T™ (ty, ) vy, with uVo and u®v, respectively.
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Energy inequality (4.3):

One can reach it by following the reasoning used in Subsection 4.2.4 for s € [1,2).

4.3 Existence of an Optimal Control

In the present section we first prove Theorem 4.5, in Subsection 4.3.1, establishing
the existence of solution to the minimization problem (4.6). Afterwards, we prove
Theorem 4.6 in Subsection 4.3.2.

4.3.1 Proof of Theorem 4.5

Since the functional J in (4.6) is nonnegative,

Jing := inf  J(u,v, f) >0
£ i o (u,v, f)

is well defined and there is a minimizing sequence {(upn, vn, fn)} C S such that

lim J(un,vn, fn) = Jing- (4.60)

n—oo

Next we prove that there is (@, v, f) € S that will be defined as the limit of a
subsequence of {(uy, vy, fr)}n, such that J(u, v, f) = Jips.
Since (up, vp, fn) € Sad, then

(875“717 30) + (vuna VCP) = (unvvna VSO)
Oy, — Avy, = —udvp + frunla,, (4.61)
anun|F = an'Un|1" =0, un(o) = an Un(o) = U07

for every ¢ € L?/(4s=3)(0, T; W155/(4s=3)(Q)). Denoting 2z, = Vv, + a2, we have

E(un, z0)(t2) + /\v U + 1]%/%|? da dt
to to
/ / S| Vznl|? dx dt+ﬁ /|D22n12 dzx dt (4.62)
t1 t1

V n 4
+/ Q| kO dt) < B(un, 20)(t1) + KO, 0o ly2-2/aa(c)-
t1

Since (un, vn, fn) € SM, we have
| fallLa) < M. (4.63)

Then, comparing v, with the solution w,, of (4.9), with f = fnand w° = 0, yields
0 < vp(t,x) < wy(t,z) ae. (t,z) € Q. From Lemma 4.8 and (4.63), we obtain

[vnllLee(@) < llwnllze(@) < K1(M) and, in particular, we conclude that there is a
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constant C (M) > 0 such that
0<a<z(tz) <CM), ae. (t,x) € Q. (4.64)

With the energy inequality (4.62) and the pointwise bound (4.64), we are able to get
the same estimates of Subsection 4.2.4 and pass to the limit as n — oco. In fact, from

(4.62), we conclude that, for s > 1, we have the following bounds independently of n:

Vz, is bounded in L*°(0,T; L?(2)) N L*(Q),
u3/*V 2, and D2z, are bounded in L3(Q).

But using the fact that z, = Vv, + @? and (4.64) we can conclude that

Vu, is bounded in L%°(0, T; L?(2)) N L*(Q),
us/*Vv, and Av, are bounded in L3(Q).

From (4.62) (and by testing the u,-equation of (4.61) by ¢ = 1, in the case s = 1) we

also have
V[uy + 1]%/? is bounded in L?(Q),

(un, +1)*/? is bounded in L>(0,T; L*(R2)).

Afterwards, using some ideas of Subsection 4.2.4 we conclude that for s € [1,2) we

have
u,, is bounded in L°%/G+9)(0, T; W15s/B+5)(Q)),

dyuy, is bounded in L5/G+s) (0, T; (W15s/(45=3) (),

for s > 2 we have
uy, is bounded in L?(0,T; H'(Q)),
Oyuy, is bounded in L2(0,T; (HY())'),

and, for s > 1, we have

Uy, is bounded in L0, T; L*()) N L>/3(Q),
vy, is bounded in L®(Q) N L0, T; WH4(Q)) N L?(0,T; H2()),
dyvp is bounded in L%3(Q).

In view of these n-uniform bounds we follow the reasoning of Subsections 4.2.4 and
4.2.4 and conclude that, up to a subsequence, there is (u, v, f) such that, if s € [1,2),

we have

U, — T weakly in L%/3(Q) N LP/G+9)(0, T; W15s/B+5)(Q)),
up, — u strongly in LP(Q), Vp € [1,5s/3) (4.65)
and Qyu,, — 9,7 weakly in L5/G+3)(0, T; (Wh5s/(4s=3)(Q))"),
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for s > 2 we have

u, — @ weakly in L>/3(Q) N L?(0,T; H'(Q)),
u, — @ strongly in LP(Q), Vp € [1,5s/3) (4.66)
and Oyu,, — Oyu weakly in L2(0,T; (H'(Q))"),

and, for s > 1,

vp, — U weakly* in L>°(Q) N L>(0,T; H(R)),
vy, — U weakly in L4(0, T; WH4(Q)) N L2(0, T; H?()), (4.67)
and Oyv, — 0T weakly in L5/3(Q)

and
fn — f weakly in LI(Q). (4.68)

With these convergences we can pass to the limit as n — oo in (4.61) and conclude
that (w, ) is a weak solution of (2) with control f.

Now we are going to prove that (u,v) satisfies the energy inequality (4.62) and
therefore (u,v, f) € SM. Let z = VT + a2, if we follow the ideas of Subsection 4.2.4

(for the cases s € [1,2) and s > 2) we conclude the convergences

(tn + 1)%/? — (@ + 1)*/? weakly* in L>°(0,T; L*(Q)),
(uy, + 1)%/2 — (@ + 1)*/? weakly in L2(0,T; H'(Q)),
ufl/QVzn — V@*/?VZ weakly in L?(Q),

Va V2
Vi Vz
D2z, — D2z weakly in L?(Q),
Vz, — VZ strongly in L?(Q),

weakly in L*(Q), (4.69)

Eun, 2)(t) = E(@,Z)(t) ae. t € (0,T), (4.70)

and the weak continuity regularity
T € Cy([0,T]; HY(Q)) and @ € Cy ([0, T]; L*(Q)), for s > 1. (4.71)

Therefore, using (4.69), (4.70) and (4.71) we are able to pass to the limit in the energy
inequality (4.62) and conclude that (@,v, f) € SX.

Finally, we prove that the infimum is attained in (@, , f). Since (u,, f) € S% ,
we have Jip < J(u,v, f). On the other hand, considering again Lemma 1.12, the
functional J is weakly lower semicontinuous and then

J(@,, f) < linrr_lgéf J(@W"™, 0", ") = Jing-

Therefore we conclude that there is at least one (%, v, f) € S such that J(u,v, f) =

Jing, as we wanted to prove.
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4.3.2 Proof of Theorem 4.6

Since the functional J in (4.5) is nonnegative,

Jing:= inf  J(u,v, f) >0
f (u,v,f)ESfd ( )

is well defined and there is a sequence {(uy, vn, fn)} C SE, such that

im J(un, vn, fn) = Jing- (4.72)

n—o0

Since (up,vn, fn) € SE,, in particular it satisfies the system (4.61) and the energy

inequality

to
E(un, zn)(t2) + 5 /|Vu +1)*/%2dzx dt + / / ul |V z, |2 dt
i+ 4
+8 / /|D2zn|2 dx dt+/ Vel g, dt) (4.73)
t Jo

2
z
< E(un, 20)(t1) + K(|| full o) [oollyw-2/aagay):

Following the proof of Theorem 4.5, in Subsection 4.3.1, but this time using (4.73),
we conclude that there is a continuous and increasing function of || fy | re(q), let us
denote it by C(||fnllre(q)) > 0, such that

”un||L5s/3(Q) HunHLfvs/(BJrs)(OTWl 55/(3+5) () = CllfallLa@));
(4.74)
Hatun”Liié/ (8+)(0,T;(W 155/ (45=3)(Q))/) < C(” HLq )7

for s € [1,2),

lunll pss/3(qys lunllL2o.r;mr (@) 10l L2 0,7 )y < CUlFnllLa@)), (4.75)

for s > 2 and

[vnllLee (@) lonllLao,rwray)s lvnllL20,m;m2(0)) < CUlfallLe@))

(4.76)
10wl 53¢y < Cllfnll o))

for s > 1. From the definition of the functional J and (4.72) we also conclude that
frn is bounded in LY(Q).

Analogously to Subsection 4.3.1, from the latter and (4.73) we prove that there is
(w,v, f) such that, up to a subsequence, we have the convergences (4.65), (4.66),
(4.67) and (4.68). These convergences allow us to conclude that (u,v) is a weak
solution of (2) with control f. Because of the weak lower semicontinuity of the norm
(Lemma 1.12)

J(@,v, f) < liminf J(un, Un, fn) = Jing- (4.77)

However, we are not able to prove the (u,, f) € Sfd and then we can not guarantee
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that Jinr = J(u, 7, f). In fact, following the ideas of Subsection 4.3.1, we are able pass
to take the liminf in (4.73) and, using that the map r € Ry = K(, [[volly2-2/0.0(0))

is continuous and therefore
lim inf K([| frll La(@)» [lvollwe-2/0a(0)) < UM E | fol| La(@)s [vollwz-2/0.4(a));

we obtain

to
E(w,z)(t2) + 5 /|Vu+ 122 da dt + / /S\Vz|2 dx dt
t1

4
+5/ /|D222 dz dt+/ /‘VZ’ da dt (4.78)
t1

< E(u,z)(t1) + lC(hmlananLq )s ”UOHW272/q,q(Q)).

Since by Lemma 1.12 we have || f||a(g) < iminf| fu|[1e(q), it is not clear that (u,z)
n—oo

satisfies (4.3), that is, we can not guarantee that (u,v, f) € SZ,.

On the other hand, we can prove that for M > %Jmf we have (u,v, f) € SM.
Indeed, because of the convergence (4.68), the weak lower semicontinuity of the norm
(see Lemma 1.12) and (4.72) we have

q

- . q . .
1f o) < liminf [ full o) < —~ liminf J (un, vn, fn) = 7Jinf- (4.79)

Then, taking M > Jmf, we have || f||1q() < M. Moreover, from (4.78) and (4.79)

we also have (4, z) satlsfymg

to
E(,7)(t) + B /vu+1s/2|2 dz dt + / / w*|Vz|? dx dt
t1

4
+8 / /|D22|2 dz dt+/ |V§’ dx dt)
t1 0 <

< E(,z)(t1) + KM, [[volly2-2/0.0(02))

which allows us to conclude that (w,v, f) € SM.
Hence we have

inf  J(u,v, f) < J(@,v, f),
(u,v,f)ES%

and using (4.77) we finally conclude that

inf  J(u,v, f) < inf  J(u,v, f),
(u,v,f)ES{% (u,v,f)GSfd

as we wanted to prove.
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Chapter 5

AN OPTIMAL CONTROL
PROBLEM SUBJECT TO
STRONG SOLUTIONS OF
CHEMOTAXIS-CONSUMPTION
MODELS

5.1 Main Results

The first main contribution of this chapter is to give a regularity criterion that,
under a mild additional regularity hypothesis over the u-component of a weak solution
(see Definition 1.20 below) of the controlled problem (2), allows us to conclude that it
is actually the unique strong solution (see Definition 1.21 below) of (2). In this result
it is also established the continuous dependence in the strong regularity (see relation
(5.1) below), which is essential to prove the existence of global optimal solution.

We have the following result.

Theorem 5.1 (Regularity criterion). Let (u,v) be a weak solution of problem (2)
with f € LY(Q), for some q > 5/2. If, additionally, we suppose that

u® € LY(Q),

then (u,v) € Xq x X4 and is the unique strong solution of problem (2). Moreover,
there is KC = K(||u®|| (@), | fllLa(q)) > 0, where K(-,+) is a continuous and increasing
function with respect to each entry, ||u®||zq(q) and || f||Le, such that

1w, )l xgxx, < K(l[u*l[La@), 1 fllLa(@))- (5.1)

Remark 5.2. Following the proof of Theorem 5.1 we observe that the power 5/2 is
critical in the sense that the result is proved for any ¢ > 5/2 and, at least using the

techniques employed in this proof, it is not possible to reach the same conclusion if
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g < 5/2. We also recall that the hypothesis ¢ > 5/2 is essential in Lemma 4.8 and
therefore in the proof of existence of weak solutions to (2) with control f € L9(Q).
Moreover, if ¢ > 5/2 then X, < L*(Q). Then Theorem 5.1 also gives an additional
regularity hypothesis over a weak solution of the controlled problem (2) such that the

cell density u does not blow up at finite time. O

The second main contribution is the existence of optimal solution to the following
optimal control problem. Let F be a closed and convex subset of L(Q), for a given

q > 5/2. Consider the cost functional

J:LMQ) x L*(Q) x F —R

given by
v [T s
Tusw. £) =22 [ ut) = wato) i
T 7/ 0 . (5.2)
Tv 2 ¥ q
+? 0 Hv(t) - Ud(t)HL? dt + ; 0 ||f(t)||Lq(Qc) dt,

where (ug,vq) € L*9(Q) x L?(Q) represents the desired states and the parameters
Yus YoV = 0 measure the costs of the states and control. In addition, we will consider
Yu, Vs satisfying

Yy > 0 and

5.3
v¢ >0 or Fis bounded in L9(Q). (5:3)

We are going to minimize J(u,v, f) subject to the admissible set of the triples

(u,v, f) satisfying the controlled problem (2) in the strong setting, that is

Saa = {(u,v, f) € Xy x X¢ x F;(u,v) is the
strong solution of (2) with control f}.

Then, the following minimization problem is considered:

{ min J(u,v, f) (5.4)

subject to (u, v, f) € Sga-

Since, given f € F, one can not assure the existence of a strong solution (u,v)

associated to f, we are going to assume that

Sua # 0. (5.5)

Remark 5.3. Analogously to [30] and [44], if Q. = Q, that is, if the control acts
in the whole domain, then (5.5) holds. In addition, when Q is a 2D domain then
(5.5) also holds. Indeed, from Theorem 2.5 we have the existence and uniqueness of
weak solution (u,v) with u € L*°(Q), of the uncontrolled problem, that is (2) with
f=0. Since (u,v) and f = 0 satisfy the hypotheses of Theorem 5.1, we conclude that
(u,v) € X4 x Xy is the strong solution of (2) with f = 0. In particular, (u,v,0) € Suq
and hence S,q # 0. d
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Theorem 5.4 (Existence of optimal control). Assume S,q # 0. Then the optimal
control problem (5.4) has at least one global optimal solution (U, v, f) € Saq.

The third main contribution of this chapter is the existence and uniqueness of
Lagrange multipliers associated to any local optimal solution of (5.4). Let ¢’ = q/(q—
1), the conjugate exponent of g, let (%, v, f) € Suq be a local optimal solution of
(5.4) and consider the following Lagrange multiplier problem for (\,n) associated to
(@7, f):

—OA — AN — Vo - VA + su°~lon = g),

—0m — An+ 7w — fn lo, + V- (UVA) = gy, (5.6)
OnA|r = Onnlr =0, N(T,z) =n(T,x) =0,

where

g = Yusgn(@ — ug)[@ — ua|*™t, gy = Y0 (T — va). (5.7)

Definition 5.5. (Very weak solution of (5.6)) Let s > 1, ¢ > 5/2 and f € LY(Q).
A pair (\,n) € LP (Q) x L” (Q) is called a very weak solution of (5.6) if (\,7) satisfies
(5.6) in the sense of the dual space of X, x X, that is, the following variational
formulation holds for any U,V € X, with 0,U|r = 0,V |r =0 and U(0) = V(0) = 0:

T T
/ /A(@tU ~AU+V- (UW)) dz dt +/ /suslm, U dz dt
0 JQ 0 JQ

: (5.8)
:/ /gAU dx dt,
0 Q
T B T
/ /n(atV—AV—l—uSV—fVch) da:dt+/ /)\ V- (@VV) dzdt
0 JQ 0 JQ
. (5.9)
:/ /977 V dz dt.
0 JQ
O

Theorem 5.6 (Existence of Lagrange multipliers). Let (4,7, f) € Sqq be a local
optimal solution of (5.4). Then there exists a unique Lagrange multiplier (\,n) €
LY(Q) x LY (Q) which is a very weak solution of the optimality system (5.6) and

satisfies the optimality condition

T
/D /Q (ypsgn(PFIT 4 Tm)(f —T) de dt >0, YfeF.  (5.10)

Remark 5.7. If vy > 0 and there is no convex constraint on the control, that is
F = LYQ), then (5.10) is equivalent to

vesgn(F)IfF|T +on = 0.
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Since v > 0, we conclude that

B 1 1/(g—1)
f=—sgn(n) (Mn\) :
vf

O

Remark 5.8. The key to establish the existence of a Lagrange multiplier is to prove
the existence of solution to the linearized problem given in (5.38) below. To help
with this proof, in the Appendix C, we provide a result of existence of solution to an
adequate generic parabolic linear system. This result is also useful in the study of the
regularity of the Lagrange multiplier provided by Theorem 5.6 that is carried out in
Theorem 5.9 below. O

Finally, we establish a result on the additional regularity of the Lagrange multiplier

(A\,n) given by Theorem 5.6 depending on the L regularity of the right hand side term
gx-

Theorem 5.9. Let (U, v, f) € Saq be a local optimal of problem (5.4). We have:

1. if g» € LP(Q), for p € [10/9,10/7), then the Lagrange multiplier (\,n) €
L2(Q) x L*(Q) and satisfies (5.6) in the very weak sense;

2. if g € LP(Q), for p € [10/7,2], then the Lagrange multiplier (A\,n) € X, x X,

and satisfies (5.6) in the strong sense.

Remark 5.10. Since we consider vg € L?(Q), which implies gn € L?(Q), the previous

analysis for p > 2 does not seem to lead to more relevant conclusions. O

Remark 5.11. To guarantee that the terms of the functional J given in (5.2) make
sense it is enough that ug € LI(Q), with § > sq, and vg € L?(Q). With this regularity,
gn € L*(Q) and gy € LP(Q), where p = p(s,q,q) = G/(sq — 1). Hence the regularity
of gy depends on s > 1, ¢ > 5/2 and ¢ > sq, and is decreasing with respect to s with
p(s,q,G) — 1 as s — oo. For instance if § = sq, we have p = sq/(sq¢ — 1). In this
case, since s > 1 and ¢ > 5/2, then p € (1,5/3). Let us fix ¢ > 5/2 close to 5/2 and
vary the values of s. Then, if s € [1,10/3¢] we are in item 2 of Theorem 5.9, and if
s € (10/3q,10/q] we are in item 1 of Theorem 5.9. But, if s > 10/q then p € (1,10/9)
and we only have the existence and uniqueness given in Theorem 5.6 because, in this

case, additional regularity for the Lagrange multiplier is not clear. O

The rest of the chapter is organized as follows. In Section 5.2 we prove Theorem
5.1 after establishing some preliminary results. In Section 5.3 we prove Theorem
5.4. In Section 5.4 we prove Theorem 5.6 and study the additional regularity of the

Lagrange multiplier demonstrating Theorem 5.9.

5.2 Regularity Criterion

The main objective of the present section is to prove Theorem 5.1. To do it, we

first introduce and prove a series of useful results.



5.2. Regularity Criterion 115

Lemma 5.12. Let Q C R? be a bounded Lipschitz domain. Then we have:
1. X, < LW/G-2)(Q), if p e [1,5/2);
2. X, — L>®(L?), for all g € [1,00), if p=15/2;
3. Xp = L>®(Q) if p>5/2.

Proof. By definition of X, if w € X, then we have w € C(W?2~2/PP) 0 LP(W?P). If
p € [1,5/2), this implies

w e C(W22/PPy 0 LP(W2P) s L°(L3/ G200y 0 LP(W2P).

Then, using Lemma 1.4 yields the desired result. For p = 5/2 we use the continuous
injection W2=2/PP(Q) < L(Q), for all ¢ € [1,00), and for p > 5/2, the continuous
injection W2=2/PP(Q) < L>(Q). u

Lemma 5.13. Let Q C R? be a bounded Lipschitz domain and p € (1,5). If w € X,
then Vw € L/G=P)(Q). Moreover, there is a constant C > 0 such that,

IVl pspr5-9(q) < Cllwlx,, Yw € Xp.
Proof. Suppose p € [2,5). Since w € X,,, we have by definition that
Vw € L®°(WI=2/PP)y 0 LP(WHP) s L°(L3P/O=P)) n LP(W1P)
and using Lemma 1.4 we conclude that
Vuw € L5p/(5*p)(Q)'

Now we must deal with the case p € (1,2). In this case we have, from the definition
of X,
w e L®(W22/pPy 0 LP(W2P(Q)).

Then we have
D*2/Pyy € L®(LP) N LP(W?/PP)

and this implies that

D*2/Pyy € L°(LP) N LP(WHSP/U+BP)) - for any B € (1,2/p).

Now, using Lemma 1.2 with

we obtain
38p?
—Bp?*+ (58 +2)p—4

Azg—landr:
b
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with

D2—2/pwH(2—2/p)T

||D2—2/p,w”7‘ Q) < C||D2—2/p,wH(2/P—1)r el

WQ/P—LT( Wﬁ73p/(1+ﬁp)(Q) ||

For the right hand side of this inequality to be integrable, we must choose 3 such that
(2/p — 1)r = p. Therefore, choosing

10 — 5p
R —
p—Pp
we conclude that Vw € L"(Q), with
10p —5p*  B5p

T:p2—7p+10_5—p'
|

Lemma 5.14. Let (u,v) be a weak solution of (2). Suppose uw € LP(Q), for some
p>5/3, and v € Xy, for some q > 5/2. We conclude that u € Xpq/(p+q) and that
there is C' = C(||ul|r (@), [[Vull £5/2(y- vl x,) > 0, which is continuous and increasing
with respect to each entry, [[ullzr(@), [Vullps/aq) and ||v|x,, such that

Hu||qu/(p+q) < C(HUHU’(Q)? HVUHL5/4(Q)7 HU”Xq)' (5'11)

The result is also valid for p = oo and, in this case, we conclude that u € X, with

ullx, < CllullLe ), IVullLs/1(q)- 0]l x,)- (5.12)

Proof. The basic idea of the proof is a bootstrapping in the u-equation of (2) that
allows one to arrive at the desired regularity in a finite number of iterations. We
are going to consider the case p < oo and, with small adaptations, one can follow
the same reasoning to prove the result for p = co. Also, we are going to prove that
U € Xpg/(p+q)- The proofs of (5.11) and (5.12) come from the fact that all the results
used along this proof, such as Lemmas 5.13 and 1.13, for example, give us continuous
injections. Indeed, since the number of steps of the procedure of gaining regularity,
to be presented in what follows, is finite, one can follow the estimates furnished by
Lemmas 5.13 and 1.13 each time they are applied and, at the end, conclude (5.11)
and (5.12). Bearing that in mind, we proceed with the proof of u € X, (p4q), for
finite p.

Using Lemma 5.13 for v we conclude that Vo € L?/(~9(Q). Since ¢ > 5/2 we

have, in particular, that

there is > 1 such that Vo € L*?(Q). (5.13)
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And since (u,v) is a weak solution of (2) we have, in particular,
Vu € L4(Q).
By hypothesis and by the definition of X, we have
u € LP(Q), with p > 5/3 and Av € LI(Q) with ¢ > 5/2.

Considering these regularities, we have the u-equation satisfied in the strong sense

Ou — Au = —ulAv — Vu - Vu (5.14)
with
ulAv € LPY P (), with NS 1, 5.15
(@), with 21 (5.15)
and
56

Vu-Vov e L™, with rg = > 1. (5.16)

A3+ 1

Hence, using Lemma 1.13 for (5.14) we conclude that

u € X, Withr:min{m, Pa }>1
p+gq

If rg > % then r = 2L and the proof is finished. Therefore let us treat the case

p+q
in which ro < -BL. Since for uAv we already have (5.15), we focus on enhancing the
regularity of the term Vu - Vu.

In this case, we have u € X,,. Using Lemma 5.13 we obtain
Vu € LPo/6=m)(Q)

Considering this regularity and (5.13), where 8 > 1, and (5.16), where 79 > 1, the
new regularity of Vu - Vv is L7(Q), with

56 - 58
= — 7 To-
T (B ' 441
Define o = 55/(48 + 1). Note that & = 9 > 1 and v > arg. Then, let us define
r1 = arg. Since a > 1, we have r1 > rg > 1. Now, if r| < % then, from Lemma

1.13, we have u € X,,. Proceeding by induction, if we have Vu - Vv € L™~ with

Tme1 = a" lrg < %, then we have u € X, | and, by Lemma 5.13 we obtain

Vu € Lorn=1/G=m-1)(Q).

And using again (5.13), where § > 1, and (5.16), where ry > 1, the new regularity of
Vu - Vo is LY(Q), with

53 S
58— (B—rat "7 4841

Tn_1 = Qrnp_1 = a"rg.

’y:
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Therefore we can define r, = a™r¢ and again using Lemma 1.13 for (5.14) we conclude
that

u € X,, with r = min {a"ro, pa }
pP+q
Since a > 1, there is an index ng such that a™ry < % but a0t rg > %. Therefore
we conclude, using the result proved by induction, that in fact we have u € X,q/(p4q);

as we wanted to prove. |

Theorem 5.15. Let (u,v) be a weak solution of (2) given f € LY(Q), ¢ > 5/2. If,
additionally, v € LI(Q) then v € X, and u € L*(Q). This implies, in particu-
lar, that Vv € L2Y6-9(Q) — L*(Q), v € X, and that (u,v) is the unique strong
solution of (2). Moreover, there is C = C(|[u’||La(q), I/l za@): IVulls/ag)) > 0,
which is continuous and increasing with respect to each entry, [|u’|raqy, || fllLe and

HVUHLS/4(Q), such that

[1(; 0)Lxgxxq < CUlWl[Lag@)s 1l za(@ys IVullpsragy)- (5.17)

Proof. Analogously to Lemma 5.14, we are going to prove that (u,v) € X, x X, and,
since the number of steps of the procedure of gaining regularity, to be presented in
what follows, is finite, the proof of (5.17) is a consequence of the estimates furnished
by Lemmas 1.13, 5.12 and 5.14.

Considering the regularity v € L>°(Q) given by the regularity of the weak solution
(u,v) of (2), if we have u®, f € L1(Q) then, by applying Lemma 1.13 to the v-equation
of (2), we conclude that

ve X (5.18)

Now denote pg = sq > 5/2. Then we have u € LP°(Q), Av € L4(Q) and we can apply
Lemma 5.14 to conclude that

U € Xypo/(g+po)-

At least in this first iterations, we assume that we are in the case in which we have

qpo/(q + po) < 5/2. Then, if now we apply Lemma 5.12 we obtain

ue L'(Q),

with
9q

r= Do
5q + 5po — 2qpo

Since ¢ > 5/2 we can say that that there is @ > 1 such that ¢ = 5a/2. Then using
the fact that pg > ¢, we obtain

. 54 poqu():(H(a—l)m) o
5¢ —5(a—1)po q—(a=1)po q—(a=1)po

-1
> <1+(qu)p0> po> (14+a—1)py = apy
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Define p; = app. Since r > p; we have, in particular v € LP'(Q). Proceed-
ing by induction, if we have v € LP-1(Q), with p,_1 = " !py > ¢ satisfying
qPn-1/(q + pn—1) < 5/2 then we can apply Lemmas 5.14 and 5.12 and conclude that

u € LP"(Q), with p, = a"pp.
As a consequence, we can apply Lemma 5.14 and obtain

u € Xop, /(g+pn)-

Since a > 1, p, = a''pg = a™sq grows as n increases in such a way that there is an

index ng such that
qPno—1/(q + Pno—1) < 5/2

but applying the result proved by induction we conclude that

. 4Png
u€e X , with ————
qPng /(q+png) (g + Pny)

Hence, applying Lemma 5.12 we obtain
u € L™(Q).
Finally, once we have u € L*(Q), we use (5.18) and Lemma 5.14 to conclude that
u € Xg,

finishing the proof. ]

Now let 2 = vv + a2, for some a > 0, and consider the energy

1
B(w)(t) = § [ lutt.o) do+ 5 [ [Vat.o) da,
4 /q 2 Ja
where
(u+ Din(u+1) —u, ifs=1,
g(u) = u’ ,
S5=1) if s > 1.

We have the following.

Lemma 5.16. Let (u,v) be the strong solution of (2) given f € LY(Q), with ¢ > 5/2,
let o be a positive real number and z = Vv + a2. There is ag > 0, independent of
(u,v, f), such that if 0 < a < ayg then (u,v) satisfies

0<a<ztz) <KilfllLag): ||UO||W2*2/M(Q)) (5.19)
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and the energy inequality

to 1 to
E(u,z)(t) + B /yV[u+ 1%/2)? da dt + / /uS|Vz|2 dzx dt
t1 Q 4 t1 Q

t2 to 4
+5(/ /|D2z|2 dz dt+/ Wj' dz dt) (5.20)
t1 Q t1 Q =z
< E(u, Z)<t1) + Kl(”fHLq(Q)? HUOHWQ*Q/‘M(Q)%

fora.e.ti,ty € [0,T], withty > t1; where K1 (|| f |l £a(q)» ||v0||W272/q,q(Q)) is a continuous

and increasing function with respect to || f||La(q) and 8 > 0 is a constant, independent

Sketch of the proof. In Chapter 4, given f € L9(Q), the existence of weak solutions
of (2) satisfying the pointwise bound (5.19) and the energy inequality (5.20) is proved.
In the present lemma, we state that the unique strong solution of (2) satisfies (5.19)
and (5.20). For the proof of this statement we refer the reader to Chapter 4, where
the authors first prove the pointwise bound and the energy inequality for the solution
of a truncated problem, depending on a parameter m, and then pass to the limit as
m — oo, proving (5.19) and (5.20) for the weak solution of (2) obtained through this
limit. In the present case, due to the strong regularity, the ideas of Chapter 4 can be
applied directly to the strong solution (u,v) of (2), yielding the desired result. [ |

Now the idea is to eliminate the dependence on Vu in (5.17). Using the results

developed in the present section we are finally in position of proving Theorem 5.1.

5.2.1 Proof of Theorem 5.1

Let (u,v) be a weak solution of (2) given f € L%(Q), g > 5/2, satisfying, addi-
tionally, u® € LI(Q). It stems from Theorem 5.15 that (u,v) € X, x Xj, is the strong
solution of (2) satisfying (5.17). Therefore it suffices to prove that [[Vu| 1s/4(¢) can
be estimated in terms of || f[|z4(q) to obtain (5.1), finishing the proof. We analyze the
cases s € [1,2) and s > 2 separately.

Case s € [1,2): From (5.20) with ¢; = 0 (and by integrating the u-equation of (2),
in the case s = 1), we have
1w+ 1) oo 12y < Eu, 2)(0) + K1 (|l pa@), [10°lwa-2/0.0(0))s

(5.21)
IV + 1772 12y < E(u, 2)(0) + Ki (1 f 1| Lag@ys 100 lwa-2/0.0(c))-

This implies that there exists C1 = C1(||f||1s(g)) > 0 (C1 also depends on (u”,2?),
but since the initial data are fixed we omit it from now on) which is continuous and

increasing with respect to || f||zq(g) and such that

I+ 1) e 2z < Callf e
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In particular, by interpolation we have

1w+ Dl pssr3 (@) < Calll fllLa))- (5.22)
Now, reminding that s € [1,2), if we use (5.21), (5.22) and the relation
s 2 _
Vu=V(u+1)=V((u+1)72)*° = “(u+ 1)'5/2 Y (u+1)%/2,

we conclude that there exists Cy = Cs(|| f||ra(g)) > 0 which is continuous and increas-

ing with respect to || f||L¢(q) satisfying

||Vu||L55/(3+s)(Q) < C4(||f||Lq(Q))'

Since s > 1, we have 5s/(3 +s) > 5/4 and this implies, in particular, that there is
C > 0 such that

IVl 54y < C Calll FllLo(@))- (5.23)

Therefore, using (5.23) in (5.17) we conclude (5.1).

Case s > 2: From (5.19) and (5.20) with ¢; = 0 we conclude, in particular, that
there is C7 = Cl(”f”Lq(Q)) > 0 such that

2l oo (@) 1V 2l oo 2y, 62V 2 L2y < C1ll fll za(@))- (5.24)
Now, let us consider the sets
{0§u§1}:{(t,x)e£2 ‘ ogu(t,x)gl}

and
(u>1) = {(t,x) €0 ‘ ult,z) > 1}.

Note that, since s > 2, we have
T
/ / w(t, 22|V 2(t, ) Pdz dit
o Jo
T T
< / / Ve (t, 2)|2de dt +/ / u(t, )|V (t, 2)|2dx dt
0 J{o<u<1} 0 J{u>1}
T
< / / |V2(t,x)|? do + / u(t, z))*|Vz(t, z)|? dr.
0o Jo Q
Thus, by (5.24) we conclude that there is C' > 0 such that

||US/2VZHL2(Q) <O Ci([[fllzaq))- (5.25)
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Now we test the u-equation of (2) by u and obtain

1d
5@”“”%2(9) + ”VUH%Q(Q) = Q/QUZVZ -Vu dx
1
< C]Z\%oo(Q)/QUQ‘Vdex—i— IVl 0y
Hence we have
Dl + IVl < Cl2I3 2|90|2d
dt |U|L2(Q) u|L2(Q) > 2l Leo (@) QU |Vou|“dz.

Integrating with respect to ¢, we conclude from (5.24) that there is Co(|| f||za(q)) > 0
such that

IVullz2(q) < Co(llfllLa(q))-

This implies, in particular, that we have (5.23) also for the case s > 2 and therefore,
using again (5.23) in (5.17) leads us to (5.1).

5.3 Existence of Global Optimal Solution

From (5.5) and since the functional J in (5.4) is nonnegative,

Jing = inf  J(u,v,f) >0
is well defined and there is a minimizing sequence {(un, vy, fn)} C Saq satisfying

{ Oy, — Auyp = =V - (up,Vuy), 0w, — Av, = —udv, + fronla,, (5.26)

Ontn|r = Opvn|r =0,  u,(0) =u®,  v,(0) =Y,

and
lim J(un, vn, fn) = Jins-

n—oo

Next we prove that there is (, D, f) € Suq, defined as the limit of a subsequence of

{(tn, vn, fn)}n, such that J(u,7, 7) = Jins-
In fact, from the definition of J and the hypothesis (5.3), we have

{u; }n is bounded in LY(Q),

{fn}n is bounded in LY(Q). (5.27)

Since (Un, Vn, frn) € Sad, (un,vy) is the strong solution of (2) with control f,,. Then,
from (5.27) and Theorem 5.1 we obtain

{un}n and {v,}, are bounded in X,. (5.28)
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We recall that since F is a closed and convex subset of L(Q) then F is also weakly
closed in L(Q). Therefore, accounting for the n-independent bounds (5.27) and (5.28)
we conclude that there exists (u,v, f) € X, x X, x F such that, up to a subsequence,

we have the weak convergences as n — +o0:

(tn, vy) = (W, T) weakly* in L®(W?2-2/0:0) x L°(W?22/04),
(tn,vn) — (u,0) weakly in LI(W29) x LI(W29),
(Optn, Opvy) — (Ofu, 0,0) weakly in LI(Q) x L1(Q),
fn — f weakly in LI(Q).

(5.29)

Since g > 5/2, we have W?2~2/249 compactly embedded in C°(Q) and 5¢/(5 — q) > 2q,

hence, from Lemma 1.14 we also have the strong convergences:

(Un,vyp) — (u,v) strongly in C(Q) x C(Q),

o . (5.30)
(Vn, Vu,) = (Va, Vo) strongly in L2(Q) x L*(Q).

From the above strong convergence we conclude that w(0) = u® and (0) = v°. With
the convergences (5.29) and (5.30) we pass to the limit in the nonlinear terms of (5.26)
and prove that

Vuy, - Vo, + upAv, — VU - VU + AT weakly in L1(Q),

us v, — 0 U strongly in C(Q),
favnla, — folg, weakly in L4(Q).

Since, passing to the limit in the linear terms of (5.26) is rather standard, we prove
that (u,v) € X, x X, is the strong solution of (2) with control f € F, that is,

(@, v, f) € Sqq. Hence, we have, in particular,

inf  J(u,v, f) < J@,7, f). 5.31
o (u,0, ) < J(w,, f) (5.31)
On the other hand, using the fact that the functional J is lower weakly semicontinuous,

we also have

J(u,v, f) < inf  J(u,v, f).
@<, it Iwof)

Thus, jointly to (5.31), one concludes that that (@, v, f) is a global optimum.

5.4 First Order Necessary Conditions for a Local Optimal

Solution

In the present section we derive the first order necessary optimality conditions
for a local optimal solution (%, w, f) of the optimal control problem (5.4). To this
purpose, we use a Lagrange Multipliers theorem given by [66] in an abstract setting

that we introduce in Subsection 5.4.1. Then, in Subsection 5.4.2 we prove that any
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local optimal solution is a regular point (see Definition 5.19 below) and in Subsection

5.4.3 we prove Theorem 5.6.

5.4.1 Abstract setting and a Lagrange multipliers theorem

Let us consider the following abstract optimization problem:

min J(r) subject to G(r) =0, (5.32)

reM

where J : X — R is a functional, G : X — Y is an operator, X and Y are Banach
spaces and M C X is a closed and convex subset. Note that the admissible set for
problem (5.32) is
S={reM|G(r)=0}
Next we define the Lagrangian functional, the Lagrange multipliers and the so
called regular points.

Definition 5.17. (Lagrangian functional) The functional £ : X x Y — R, given
by

E(T,f) = J(T) - <£7 G(r)>Y/7 (533)
is called the Lagrangian functional related to problem (5.4). U

Definition 5.18. (Lagrange multipliers) Let 7 € S be a local optimal solution of
problem (5.32). Suppose that J and G are Fréchet differentiable in 7, the derivatives
being denoted by J'(F) and G'(7), respectively. Then, £ € Y’ is called a Lagrange
multiplier for (5.32) at the point 7 if

L,.(7,8)[c] = J'(7)[c] = (§,G'(7)c))yr > 0, Ve € C(7), (5.34)

where C(T) = {0(r —7) | r € M, 6 > 0} is the conical hull of 7 € M. O

Definition 5.19. (Regular point) Let 7 € S be a local optimal solution of problem
(5.32). The point 7 is called a regular point if

G'(F)[C(F)] =Y.

Finally, we state the theorem on the existence of Lagrange multipliers.

Theorem 5.20. ([66]) Let 7 € S be a local optimal solution of problem (5.32).
Suppose that J is Fréchet differentiable and G is continuously Fréchet differentiable.
If 7 is a regular point, then the set of Lagrange multipliers for problem (5.32) at T is

nonempty.
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5.4.2 Local optimal solutions are regular points

To apply the theory of Subsection 5.4.1 to our optimal control problem (5.4)
and derive the first order necessary conditions for a local optimal solution, we will
reformulate (5.4) using the abstract setting of (5.32). Since we want X and Y to be

Banach spaces, let us define them as
X=X, x X, x LYQ), Y =L1Q) x LY(Q),

where X, = {w € X, | Opw|r = 0}. Next we define the operator G = (G1,Ga) : X —
Y, where
G1:X = LYQ), G2 : X — LYQ)

are defined for each r = (u, v, f) € X as

Gi(r) = Ou — Au+V - (uVv)
Ga(r) = 0w — Av+u’v — fou 1g,.

Now, to consider the initial conditions (u°,v°), we introduce the space

X, ={we X, | w0,z) =0}

and we define M, the closed and convex subset of X, as

~ ~

M = (i1, 8, f) + Xg x Xg x (F = f),

where (i, 0) is the strong solution of (2) given the control f € L9(Q). With the

operator G and the set M defined, we rewrite the optimal control problem (5.4) as

mlﬁ J(r) subject to G(r) =0, (5.35)
re

The admissible set for problem (5.35) is
Sea ={r e M | G(r) = 0}.
We have the following results on the differenciability of the functional J and the
operator G.

Lemma 5.21. The functional J : X — R is Fréchet differentiable and the Fréchet
derivative of J in 7 = (u,v, f) € X in the direction ¢ = (U,V, F) € X is

T
"(7)[e] = sgn(T — ug)|[@ — ug|* U dzx
J(T)[C]—%/O /Qg( ol dl* U dx di s

T T
+%/ /(v— vg) V dz dt+’yf/ / sgn(f)[f|71F dx dt.
o Ja 0 Ja.
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Lemma 5.22. The operator G : X — R s continuously Fréchet differentiable and the
Fréchet derivative of G in 7 = (u,v, f) € X in the direction ¢ = (U,V,F) € X is the
linear operator G'(T)[c] = (G}(F)[c], G4(T)[c]) given by

{ G\(F)[d =0U — AU +V - (UVD) + V - (@VV) (537)

GhHF)[c] = 0V — AV + sus WU +w*V — fV 1, — Fv 1g,.

Next we prove the existence of Lagrange multipliers for the problem (5.35) associ-
ated to a local optimal solution 7 = (u, 7, f) € Saq. Accounting for Lemmas 5.21 and
5.22 and Theorem 5.20, now it suffices to prove that 7 is a regular point. From the
definition of regular point and (5.37) we conclude that 7 is a regular point if, for each
(gu,g9v) € Y, there is ¢ = (U, V, F) € X, x X, x C(f) such that

U — AU +V - (UVD)+ V- (uVV) =gy
HV — AV + suTUv + wV — fV 1g, — FU 1o, = gv.

where C(f) = {0(f — f) | f € F, 6 > 0} is the conical hull of f € F. Since 0 € C(f),
we can take F' = 0 and therefore, in order to prove that 7 = (U, D, f) € S,q is a regular
point, it suffices to prove that, given (g, gv) € Y, there is (U, V) € Xq X Xq such
that

(5.38)

oU =AU+ V- (UVD) +V - (aVV) =gy
OV — AV + sus tUv +uw'V — fV 1o, = gv.

Problem (5.38) is sometimes called the linearized problem related to (2). Now we
prove that 7 is a regular point. For this, we will use the generic result Theorem C.1

given in the Appendix C. Here, we consider the Banach space for weak solutions
Wy = {v e L®(L*) N L*(H"Y); 0,0 € L*((H'))}.
endowed with the norm
[ollw, = lvllzee ey + vl oqrrey + 100l Lo 1wy

Theorem 5.23. Let 7 = (U, v, f) € Saq. Then 7 is a regular point.

Proof. As it was mentioned above, it suffices to prove that for each (gr,9v) € Y
there is (U, V) € X, x X, satisfying

U — AU = -V - (UVD) — V- (@VV) + gu,
OV — AV = —su* " UD — w0V + fV 1, + gv, (5.39)
OUlr =0, Vir =0, U(0,z) =V (0,2) =0.

Using Theorem C.1, case 2a, with a1 = b =0, & = Vo e LY/06-9 d=7e L>(Q),
ag =+ flg, € LY(Q), by = su* v € L>®(Q) and & = 0, we conclude that there is

(U, V) € Wy x X, (5.40)
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solution of (5.38). Therefore it suffices to prove that actually (U,V) € X, x X,.
In fact, since V€ Xp, we have from Lemma 5.12 that V € L(Q). Let Z; =
—su* T UT—u*V + fV 1g,+gy be the right hand side of the V-equation of (5.38), then,
accounting for the extra regularity of the coefficients (when compared to Theorem C.1)
we conclude that Z; € L'09/(10+9)(Q) and, from Lemma 1.13, we have

Ve Xqu/(10+q)' (5.41)

Note that 10g/(104¢) < ¢. We will enhance the regularity of V and prove that V' € X,
by induction. In fact suppose that Z; € L10¢/(10n+6G=4)0) () with 10q/(10n 4 (5 —
4n)q) < q. From Lemma 1.13 we have

V€ X10g/(10n+(5-4n)q)-

Using Lemma 5.12 we have V e L10¢/(10n+G-4(+1))a) (). Applying this regularity

to the less regular term of Z1, fV 1gq,, we conclude that

?V 1o € Lqu/(lO(n+1)+(5—4(n+1))q)(Q).

Thus, if 10¢/(10(n + 1) + (5 — 4(n + 1))q) < g then we conclude that

7, € Lqu/(lO(n+1)+(5*4(”+1))Q)(Q).

Therefore we have proved that, as long as 10g/(10n + (5 — 4n)q) < q, if Z; €
L10g/A0n+(5=4)9) () then 7, € L109/(10(n+1)+6E-4(+1))a) (). Recalling that ¢ > 5/2,
if we study the function n +— 10¢/(10n + (5 — 4n)q), we conclude that there exists
no,n1 € N such that, 10g/(10ng 4+ (5 — 4ng)q) < ¢ and 10g/(10n1 + (5 — 4nq1)q) > gq.
Thus we proved that the right hand side of the V-equation of (5.38) belongs to L4(Q).

Finally, from Lemma 1.13, we have
VelX, (5.42)

It remains to prove that U € X,. For this, we will analyze the right hand side
of the U-equation of (5.38) and use (5.40) and (5.42). The right hand side of the
U-equation is

gu —UAD — VU - Vo —uAV —Vu - VV.
With the regularities obtained so far for U and V', we have
gu —uAV —Vu-VV € LY(Q)

and
Zy := UAG + VU - Vo € L0710+ (), (5.43)

Again, we can prove by induction that, as long as 10g/(10n 4 (5 — 4n)q) < p, if Zs €
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L104/(10n+(5=41)9) () then we have Z, € L104/(10(n+D+(5-4(n+1))a)(Q). Recalling that
q > 5/2, if we study the function n — 10g/(10n + (5 — 4n)q), we conclude that there
exists np,n1 € Nsuch that, 10¢/(10n¢+(5—4ng)q) < q and 10¢/(10n1+(5—4n1)q) > q
and thus we proved that the right hand side of the U-equation of (5.38) belongs to
L9(Q). From Lemma 1.13, we conclude that U € X,. [ |

Now we are in position of proving Theorem 5.6, that is, we are able to prove that,
for any 7 = (%, D, f) € Saq local optimal solution of problem (5.35), there exists a

unique Lagrange multiplier for (5.35) at 7.

5.4.3 Proof of Theorem 5.6

The proof is divided in two steps: the existence of Lagrange multiplier and the

uniqueness.
Step 1: Existence

From Lemmas 5.21, 5.22 and Theorem 5.23 we have all the hypotheses of Theorem
5.20 fulfilled. Therefore there exists a Lagrange multiplier £ = (A, 1) € L (Q) x LY (Q)
satisfying, according to (5.34), the inequality

LoD = T F)d — NGO o) — GO ) = 0. (5.44)

for all ¢ = (U,V,F) € X, x X, x C(f). Then, using (5.36) and (5.37) in (5.44) we
conclude that there exists a Lagrange multiplier ¢ = (\,n) € LY (Q) x L7 (Q) such
that, for all (U,V, F) € Xq X X’q x C(f), we have

T T
’yu/ /sgn(u— ug) [T — ug|* U da dt —l—%/ /(v— vg) V dx dt
0 Q 0 Q

T o T
+7f/0 /chgn(f)|fq_1F dz dt—/o /Q<8tU—AU+V-(UVv) i

T

+V - (ﬂVV))A dr dt — / / (v - av + sz 'us @V
0 Q

“FV 1q, - Fo 190)77 dz dt > 0

Since (5.45) is valid for all (U, V, F) € Xq X Xq x C(f), we can deduce the optimality
system (5.6) and the optimality condition (5.10). In fact, since X, is a vectorial space,
if U,V € X, then —U,—V € X,. With this in mind, if we take (V, F) = (0,0) in
(5.45) we obtain

T T
/ / (6tU —~AU+V- (UW))A dz dt +/ /SUS_IUUW dz dt
0 Q 0 Q

T (5.46)
= ’Yu/ /sgn(u— ud)|ﬂ— ud‘sqflU dr dt, YU € Xq.
0 Q
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On the other hand, if we take (U, F') = (0,0) in (5.45) we obtain

T T
/ / (atv — AV + 3V —?Vlﬂc)n dz dt +/ /v S(@VV)A dz dt
0o Jo o Ja (5.47)

T
:%/ /(v—vd) V de dt, YV € X,.
0 Q

Note that if, considering formal computations, we integrate by parts the terms of
(5.46) and (5.47), passing the derivatives from (U, V) to (\,n), we see that (A,n) €
L9(Q) x LY (Q) satisfying (5.46) and (5.47) are actually very weak solutions of (5.6).
Also, choosing (U, V) =0 in (5.45) leads us to

T T
yf/ / sgn(f)|fI7F dzx dt+/ / onF dx dt >0, YF € C(f).
0 JQ. 0 c

Hence, taking F' = §(f — f), with > 0 and for all f € F finally gives (5.10).
Step 2: Uniqueness

Now, to prove the uniqueness, we suppose that there are two Lagrange multipliers
(A7), (Mo, o) € LY(Q) x LY (Q) satisfying (5.46) and (5.47). Let (X, 7) = (Ao, 12) —
(A1,m), we will prove that A = 7j = 0. Subtracting the equation satisfied by (A1,m)
from the respective equation that is satisfied by (X2, 72) we conclude that (X, 77) satisfies

T
/ / (@U - AU+ V- (UV@))A + s TIUT 7 do dt = 0, YU € X, (5.48)
0 Q

T
/ / (c’w AV 4TV - ?Vlgc)ﬁ LV (@VV)A dz dt =0, (5.49)
0 Q

for all V € X,. Summing (5.48) and (5.49) we obtain

T
/ / (8tU ~ AU+ V- (UVD) + V- (WV))A dz dt
0 Jo (5.50)
T
+/ / (8tV — AV + @V + 5w UD — 7V1gc)ﬁ dz dt = 0,
0 Q

for all (U,V) € Xq X Xq. Now let g = sgn(M)|A|Y@D and gy = sgn(7)|7|'/ @D,
Since (A7) € LY(Q) x LY(Q), with ¢’ = q/(q — 1), we have g, gy € LY(Q). Take
(U, V) € X, x X, as the unique strong solution of (5.39) for this choice of gy and gy,
therefore we have from (5.50)

ye =g _
H)\”Lq/(Q) + ”UHLq/(Q) - 07

which implies that A = 7 = 0.
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5.4.4 Proof of Theorem 5.9

Case gy € LP(Q), with p € [10/9,10/7):
Let ¢ = T —t, then the backward problem (5.6) is equivalent to the forward one

ON — AN = VU - VA — s on + yusgn(u — ug)|u — ug|*7 1,
O — An = —u*n+ fn 1o, — V- (@VA) 4+ 7, (v — va), (5.51)
8n>\|F = an77|F = 0, )\(Oa ZE) = 77(0,.%) =0.

Then, applying Theorem C.1, item 1b, with U =7, V = X\, a1y = @° — f 1q,, b1 = 0,
&1 =0,d=1, gu =70 —vq), az =0, by = su* 10, & = Vv and gy = vusgn(u —
ug)|T — ug|**~! we conclude that there is a very weak solution (X, 7) € L*(Q) x L*(Q)
of (5.51) and, therefore, of (5.6). since ¢ > 5/2 > 2 we have ¢ < 2 and hence
(A, 7)) € L7 (Q)x LY (Q). Then, from the uniqueness result of Theorem 5.6 we conclude
that (X,7) is equal to the Lagrange multiplier (X, 7) furnished by theorem 5.6 and

(Am) € L*(Q) x L*(Q).
Case gy € LP(Q), with p € [10/7,2):

Using the same argument of the previous case, this time applying Theorem C.1,
item 1a, with gy = 7,(T—vy) € L*(Q) — L™/7(Q) and gy = vusgn(i—ug)|i — ug|*?" €
LP(Q) — LY/7(Q), we conclude that the Lagrange multiplier (\,n) furnished by
Theorem 5.6 is a weak solution of (5.6) with regularity (A\,n) € Wa x Wa. Now we
enhance the regularity of (\,n) by means of a bootstrap procedure analogous to the
used in the proof of Theorem 5.23. We first enhance the regularity of A. Since in the
right hand side of the A-equation we have —su*~1on + y,sgn(u — ug)|u — ug|*~1 €
LY/3(Q) + LP(Q), with p < 2, we apply the procedure and conclude that \ € Xp.

Next we apply the bootstrap argument to the n-equation. Since in the right of the
n-equation we have —V - (WV + 7,(7 — vq) € LP(Q) + L*(Q), with p < 2, we apply
the procedure and conclude that n € X, finishing the proof.
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CONCLUSION

In this thesis we have focused on the chemotaxis-consumption models

{ Ou — Au ==V - (uVv), v — Av = —u’v, (5.52)

Onulr = Onv|r =0, u(0) =u’, v(0)=1",

where V- (uVv) is the chemotaxis term and u®v is the consumption term, with s > 1,

and on optimal control problems subject to the controlled model

Ou — Au= =V - (uVv), v — Av=—u’v+ folg,,
(5.53)
Ont|r = Opvlr =0, u(0) =u", v(0) =Y,

where f : (0,7) x Q — R is the control, being 7" > 0 a fixed and finite final time,
Q. C Q is the control domain and 1q, is its characteristic function.

Reviewing the available literature about the models (5.52) we found works ad-
dressing only the case s = 1 that, in addition, were developed using classical in time
solution tools and therefore considering smooth coefficients and smooth domains. This
is not the most adequate framework to study the numerical approximation of (5.52)
or optimal control problems subject to the controlled problem (5.53). In fact, when
studying the numerical approximation of PDEs, one usually employs weak formu-
lations of the problem posed in more general domains. Moreover, in the controlled
problem (5.53), the control f = f(t,z) is usually a L¢-function, acting as a nonsmooth
coefficient in the chemical equation.

Therefore we identified the opportunity and the need of extending the existing
theory about problem (5.52) and, in Chapter 2, we studied the existence and regularity
of solutions of the models (1) in a weak setting, varying the power s > 1. We developed
the results in terms of the regularity of the Neumann-Poisson problem (1.5) and, when
necessary, of Hypothesis (H1). This allowed us to enlarge the class of the considered
domains, when compared to the previous literature.

By means of a regularization procedure using adequate truncated models and the
cancellation between the attraction and consumption effects (see Subsection 2.3.1),
we established the existence of uniform in time weak solutions in 3D domains, and
uniqueness and regularity in 2D (or 1D) domains. The results of Chapter 2 were
published in [11].

Another novelty, when compared to the available literature, was the study of the
chemotaxis-consumption models considering all the powers s > 1. The regularity of

the chemical concentration v does not depend on this power s, while the regularity of
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the density of cells u increases as s € [1, 2] increases. For s > 2, only the L regularity

of u increases with s. This was possible, in part, because of the dissipative term

/USVU|2 dx
Q

that appears in the formal energy inequality (2.22) and its rigorous version in Sub-

section 2.3.2. This dissipative term seems to be an interesting feature of the present
chemotaxis-consumption models, specially when compared to the close related chemorepulsion-
production model.

Indeed, concerning the chemorepulsion-production model, in [24, 21, 22|, the au-
thors also rely on the cancellation of the repulsion and production effects to show ex-
istence of weak solutions and introduce a potential production term w?, for p € (1,2]
(the case p = 1 was studied previously in [10]). On the other hand, it was not possible
to control the effect of the production term «w? when p > 2 for large values of u and
prove existence of weak solutions for the chemorepulsion model.

Based on the theory developed in Chapter 2, in Chapter 3, we designed a time
discrete scheme for the chemotaxis-consumption models (5.52). Using the change of
variables z = v/v + a2 and a upper truncation of u in the nonlinear chemotaxis and
consumption terms we proposed a Backward Euler scheme for the (u, z) problem and
two different ways of retrieving an approximation for the function v. We proved the
existence of solution to the time discrete scheme, uniform in time a prior: estimates
and convergence of the scheme towards a weak solution (u,v) of the chemotaxis-
consumption model.

We remark that, although the existence of solution was proved in Chapter 2 (and
published in [11]), the design of a convergent time discrete scheme was not straight-
forward. Indeed, in order to obtain a time discrete scheme satisfying an energy law,
independently of the time step size, it was essential to propose the time discrete scheme
in terms variable z = v/v + o2 instead of the variable v. In addition, Lemma 3.10 was

decisive to prove convergence in the case s € [1,2). Indeed, regarding the backward

Euler method, in the study of the convergence, we define the approximations u’ﬁ,f , ufﬁz,
ZM and zF as in (3.24) and we have to prove that u*" —uk and z*" — 2% go to zero in

some norm as (m, k) — (00,0). This is clear when s > 2, because, for z&" — 2% one

k

m?

directly from (3.63). On the other hand, when s € [1,2), we must rely on the term

can conclude (3.30) directly from (3.29) and, for u*" — uk  one can conclude (3.64)
(3.32), where f” is not strictly positive and therefore the desired conclusion is not
immediate, hence the analysis carried out in Lemma 3.10 was necessary.

In Chapter 4, we studied optimal control problems related to weak solutions of
(5.53). To do it, we introduced the concept of weak solutions of the controlled model
(5.53) satisfying an energy inequality. To the best of our knowledge, this was the
first time that the concept of weak solution with energy inequality was applied to
this purpose. Next, we considered an optimal control problem for which we proved

existence of global optimal solution and discussed its relation with two other related
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optimal control problems that might be of interest.

In Chapter 5, we studied an optimal control problem subject to strong solutions
of (5.53). We introduced the appropriate concept of strong solution of the controlled
problem (5.53), given the control f, and then proved a more generic and sharp regular-
ity criterion, when compared to the available literature, that allows us to get existence
and uniqueness of global-in-time strong solutions. Using this regularity criterion, we
showed the existence of a global optimal solution, under the hypothesis that the ad-
missible set is nonempty. Next, we established first order optimality conditions for any
local optimal solution, proving existence, uniqueness and regularity of the associated
Lagrange multipliers.

We also would like to remark that we have done a great effort in order to ensure
that, along the whole work, all of our computations are rigorous. In what follows,
based in what has been done in this thesis, we present some possible perspectives of

future works.

Future works

In Chapter 2 we analyzed problem (5.52) using a regularization procedure and we
wrote the results in terms of the regularity of the Poisson-Neumann problem (1.5) and
Hypothesis (H1). Hypothesis (H1) is used in the proof of Lemma 2.10, in Appendix
B, because it is sufficient to guarantee that we can apply Lemma B.3 to a certain
boundary integral. In Appendix A we showed a large class of domains satisfy this hy-
pothesis. Therefore, if one finds a less restrictive condition that makes the application
of Lemma B.3 possible (the functions do not need to be pointwisely defined on the
whole boundary, but only to be pointwisely defined over the regular components of
the boundary, for example) or a less restrictive lemma to deal with the boundary in-
tegral term, then it is probable that one can enlarge even more the class of considered
domains.

On the other hand, the regularity of the Poisson-Neumann problem (1.5) is con-
sidered because of the the self-diffusion operator and the boundary conditions that
are present in problem (5.52): the Laplacian operator and the homogeneous Neumann
boundary conditions. The effort of putting the results of Chapter 2 in terms of the
regularity of an adequate boundary-value problem related to the self-diffusion oper-
ator is probably a useful structure to the extension of the analysis of Chapter 2 to
chemotaxis-consumption models with more general self-diffusion operators and their
corresponding boundary conditions. As an example we refer the reader to [23], where
a chemorepulsion-production model with variable diffusion coefficients is studied.

In the previous literature we also find a considerable number of works about
chemotaxis-consumption models coupled with models for fluids, namely, the (Navier-)
Stokes equations. Hence, another interesting and open question is whether all the
aforementioned technique used in Chapter 2 to study problem (5.52) can be extended

to the chemotaxis-fluids models. It is probable that the present approach to (5.52)
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could be combined with the regularization for the fluid equations used in [62], for
example.

In Chapter 3 we proposed a conservative, energy stable, positivity preserving and
convergent time discrete scheme to approximate (5.52). Now, an interesting original
work on the numerical approximation of (5.52) should propose a fully discrete scheme
preserving properties of the solutions in the discrete level, such as conservation of the
total population of cells, positivity and energy estimates, and which converges to a
weak solution of (5.52).

The convergence is probably one of the most important features of a discrete
scheme, but in the case of the chemotaxis models, there is evidence that the preserva-
tion of the positivity in the discrete level is also relevant. Indeed, in [25], although the
considered schemes are convergent, the authors show through numerical simulations
that the scheme with “approximated” positivity of the discrete solutions prevents spu-
rious oscillations. As far as we know, four techniques are used with the objective of

preserving positivity of the discrete solutions of chemotaxis models:

1. the estimate of a singular functional and Finite Element Method (FEM) (im-
plying approximate positivity);

2. “upwind” schemes in the context of Finite Volume Method (FVM), Discontinu-
ous Galerkin method (DG) or FEM;

3. mass lumping combined with FEM in 2D domains;
4. and FEM schemes with stabilization terms used to preserve pointwise bounds.

Concerning the chemotaxis model (5.52), with s = 1, the singular functional ap-
proach is addressed in [27], where, among other schemes, the authors defined a fully
discrete scheme possessing a kind of energy inequality and used a singular functional
to obtain approximate positivity. The drawback of this scheme is that the energy
inequality has a residual term whose estimation is not clear in 2D and 3D domains,
yielding a decreasing energy only in the one dimensional case. Consequently, in the
2D or 3D cases, convergence is not clear.

The upwind approaches are possibly the better suited to preserve (exact) positivity
of the discrete solutions and in our opinion, their application to the chemotaxis-
consumption models (5.52) may lead to original works. For an example of these
approaches in biology related models, we refer the reader to [1|. On the other hand,
accounting for the complex procedures involved in obtaining energy estimates that can
be observed in Chapters 2 and 3, we do not expect that these upwind approaches will
lead to fully discrete energy stable schemes. Since energy stability is a key ingredient
to prove convergence, the design of a convergent upwind fully discrete scheme may
also remain as an open question in this case.

In [32] the authors design a fully discrete scheme for a Keller-Segel model applying
the mass lumping with FEM approach to obtain conditional positivity of the discrete
solutions in 2D domains. The drawback of this approach is that the positivity is
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attained provided that the space mesh size is small enough. This condition may lead
to the need of very small mesh sizes, increasing the computational cost. In a future
work, we intend to combine the regularization procedure used in Chapters 2 and 3
with this mass lumping approach to design an energy stable and convergent fully
discrete scheme to approximate (5.52), preserving positivity and total population of
cells.

For a FEM scheme with stabilization terms we cite [2]. The authors propose two
schemes to approximate the Keller-Segel model which preserve the lower bounds of the
solutions, yielding positivity in the discrete level. In addition, they prove a discrete
energy law that is satisfied by the discrete solutions.

In Chapter 4 we studied an optimal control problem subject to problem (5.53)
in the weak setting. We defined the adequate concept of weak solution of (5.53)
satisfying the energy inequality (4.3) and used it to define control problems with
bounded controls for which we proved existence of optimal solution. Nevertheless, the
existence of optimal solution for the optimal control problem subject to weak solutions
(5.53) which satisfy (4.3), but without bounded controls, that is, the minimization
problem (4.5), remains as an open question. In addition, in Remark 4.7 we have
already pointed out some other related questions which have the potential of being
the focus of future research.

To the best of our knowledge, there is not any study of a optimal control problem
related to chemotaxis-consumption-fluid models in a weak setting. Then, a future
work could deal with this problem, possibly extending the ideas of Chapter 4 to
chemotaxis-consumption-fluid models.

As it was mentioned in the introduction, it was not clear how to deduce some
type of optimality system associated to local optimal solutions using only the weak
regularity that is available in 3D domains. On the other hand, analogously to the
studies about optimal control problems related to chemotaxis models in 2D (and 1D)
domains [51, 29, 31, 5, 65, 54|, it is probable that, in 2D (and 1D) domains, using
the ideas of these cited previous works, one has more regularity, which will possibly
allow one to prove the existence of global optimal solution and to derive an optimality
system, establishing existence and regularity of Lagrange multipliers for any local
optimum.

In Chapter 5, in order to study an optimal control problem related to strong
solutions of (5.53) in 3D domains, we proved a regularity criterion that allows us to get
existence and uniqueness of global-in-time strong solutions. The uniqueness of solution
(u,v), given the control f = f(t,x), allows us to define the state (u,v) = (u(f),v(f))

in terms of the control f. Then the functional (5.2) can be written in terms of f as

T
a=2 / O ~ b e

, 2 T q (5.54)
5 ), [o(£) () = va(®)|72 i+ ; 1O 7a 0, @t
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An interesting work should investigate under which conditions we can calculate the
derivative of J with respect to f, exhibit its expression and use it to propose descent
methods. For an example of this kind of work we refer the reader to [9].

Once one computes the derivative of J with respect to f, we expect that it is pos-
sible to use it to obtain the optimality conditions of Chapter 5, similarly to the proce-
dure adopted in [9, 36] and, in the context of chemotaxis-Navier-Stokes-consumption
models, in [44]. In our opinion, this should be the subject of further study and, if this
is indeed possible, another question that arises is whether, using this procedure, one
can establish the same optimality conditions under the same hypothesis of Chapter 5.

Finally, we would like to remark that, even when compared to other chemotaxis
models, the chemotaxis-consumption models (with attraction and consumption) stud-
ied in this thesis showed to be very challenging due to the complex procedures needed
to obtain of energy estimates that can be observed in Chapter 2, probably mainly be-
cause of the test functions and the treatment of a boundary integral that are involved
in these procedures. This is why we expect that the treatment given to the present
chemotaxis-consumption models can be useful to the approach of other chemotaxis

models.
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Appendix A

Hypothesis (H1)

In the proof of Lemma 2.10 we will need Hypothesis (H1) (see page 25). Therefore,
in order to show that this hypothesis is not too restrictive, we show that Hypothesis
(H1) holds if the Poisson-Neumann problem (1.5) has the W3P-regularity (see defini-
tion 1.6 in page 18), for p > N. According to [20], this is true if T is at least C%!, for
example. Up to our knowledge, the validity of Hypothesis (H1) in other domains of

practical interest, such as polyhedra and polygons, is an open question.
Lemma A.1. Suppose that the Poisson-Neumann problem (1.5) has the W3P-regularity,
for some p > N, and let z € H*(Q) such that anz‘r = 0. Then there is a sequence

{pn} C C%(Q), with d,pn . 0, which converges to z in H*(Q).

Proof. For any fixed z € H?(Q) such that &ﬂ‘r =0, define f = —Az+ z. Note that
f € L*(Q) and z € H%(Q) is the solution of

—Az+z =f

8772‘F = 0.

(A1)

Let {fn}nen be a sequence of mollifiers of f, that is, f,, € C°(Q2) and f, — f
in L?() as n — oo. Then, for each fixed n € N, consider the following regularized

problem: Find p, : 2 — R such that

om0 a9
r
Considering the hypothesis that the Poisson-Neumann problem (1.5) has the W3-
regularity, for some p > N, we can conclude that, for each n € N, there is one, and
only one, function p,, € W3P(Q) C C?(Q) such that d,p, - 0 which solves problem
(A.2).
Since the functions z and p,, solve the problems (A.1) and (A.2), respectively, the

functions z — p,, solve the problem

_A(Z_pn>+(z_pn) :(f_fn)
@,(z—pn)F =0.
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Then, using (z — pp,) and —A(z — py,) as test functions in (A.3) we can conclude that

2 = pullz2()s IV (2 = po)llz2()s 1A(2 = o)l 220) < CIIf = fall2(@)-

Since f, — f in L?(Q) as n — oo, the latter implies that p, — z in H?(Q) as n — oo,

finishing the proof. |
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Appendix B

Proof of Lemma 2.10

Before proving Lemma 2.10, we must present some technical results.

Lemma B.1. Let z : Q — R be a C*(Q) function such that 0,z . 0. Then
1
/ |Az|? dx :/ |D?2)? da — / V(|Vz|?) -7 dr.
Q Q 2 Jr

Proof. It suffices to prove the inequality for sufficiently regular functions and then

pass to the limit. Integrating by parts we have
/ |Az? dx = —/ Vz-VAz dx = / |D?2)? dx — / [(V2)TD?z] - n dT
Q Q Q r

1
:/ \D22|2 daz—/VVzF-ndI’.
Q 2 Jr

Lemma B.2. There is a constant C > 0 such that

2 3 4
/|D22\2 dx—i—/ &Az d:v:4/z]D2\/§|2 d:v+/ V| dx,
0 o Q 4 Ja

22

4
|D?2)? da < C( 2|D?V/2|* dx + V2] dm),
Q Q Q 22

for all z € H*(Q) such that 877Z’F =0 and z > «, for some a > 0.

1.

Proof. See lemma 3.3 of [60] for item 1. The inequality in item 2 is a direct conse-

quence of the identity in item 1. [ |

The next two results will allow us to estimate the boundary integral.

m

Lemma B.3. Letl' = U I';, each I'; defined through a parametrization of one variable
i=1

of R? by the other two. Then there is C > 0 such that, for all i, one has

’/ V|Vz]2-ndfi SC/ \Vz|2dI‘,-,
Fi Fi
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for all z € C?(2) such that 0,z - 0.
Proof. See |26]. [

Lemma B.4. Let Q be a Lipschitz domain. Then, for each § > 0, there is a C(§) > 0
such that
V2l 2y < CO)2l L2 () + lID?zll 120y, ¥ 2 € H?(S).

Proof. This is Lemma 2.4 in [49]. [
Now we are in position of proving Lemma 2.10.

Proof of Lemma 2.10. We recall that, by hypothesis, z(z) > a > 0, a.e. z € Q.
Now we divide the proof in two main steps.
STEP 1: First of all, we are going to obtain the inequality
V2|

22 (B.1)
08 D%2 |21 ) — COIIV2 g,

2 WZ|2 2 2 3
2 [ |Az|]” dx + 2 Az dr >8 | 2|D*Vz|* do + -
Q 0 0 2 Jq

z

In fact, from Hypothesis (H1), we have the existence of a sequence {z;} such that
zj € C2%(Q), the trace of the normal derivative of z; is zero and ; ||z — Zjll 2 () — 0.

We can choose the sequence {z;} such that

o[ Q

< zj(x) a.e. x € QY] > jo.

Now, applying Lemmas B.1 and B.2-1, we have

12
2/ |Az; |2 dx—l-Q/ V| Az; dx
Q Q J

z
2,12 [V2]? 2
=2 [ |D%|" de + 2 Azjdx — [ V|Vz;|*-ndl
Q Q r
3 [ |Vt
:8/zj\D2\/zj~|2 dx—i—/ | Z;' —/vvajP-ndr.
Q 2Ja 7z r

Now we apply Lemma B.3 and Lemma B.4 (in this order) to obtain

12
2/ |Az;|? dx—i—?/ MAzj dx
Q Q %

V2,

3 |4
> 8/ 2| D* /7| da + 2/ 57— — ClIVzll7r
0 Q %

3 [ |Vt

25 [ aipryse as d [ V]
Q Q%

— C(5”D22’]H%Q(Q) - C(é)HVZJH%Q(Q)’
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where § > 0 is supposed to be a sufficiently small number to be chosen later. Now
we use the fact that z; — z in H%(Q) as j — oo and thus we obtain inequality (B.1),
finishing the first step of the proof.

STEP 2: Next, we apply Lemma B.2-2 to the right hand side of (B.1) and choose
6 > 0 small enough, then there exist two constants C, Co > 0 such that

2 4
2/ |Az|? d:c+2/ V] Az deC’l(/ |D?2|? dm—i—/ |Vz’| dx) _CQHVZH%2(Q)
Q Q Q Q <

z

and the proof of Lemma 2.10 is finished. [ |
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Appendix C

Existence of solution for a generic

linear system

We introduce the following general prototype of a linearized problem related to

chemotaxis models,

U =AU+ a U+ bV +V-(Ué)+ V- (dVV) =gy,
OV — AV +asV +bU + & - VV = gy, (Cl)
OnU|r =0, V|r =0, U(0,z) =V(0,z) =0,

where the coefficients a;, b;, ¢; and d are rather singular functions. Next we state and

prove the theorem of existence of problem (C.1).
Theorem C.1. Fori = 1,2, let a; € L5/?(Q) and & € L°(Q) with V - & € L'(Q)
and 51 . ﬁ‘p =0.
1. Ifb; € L¥%(Q) and d € L>®(Q) we have:
(a) if gu,gv € L'Y7(Q) then there is a weak solution (U,V) € Wy x Wy to
(1),
(b) if gu,gv € L%Q) and Vd € L5(Q) then there is a very weak solution
(U, V) € L3(Q) x L*(Q) to (C.1);
2. if by € L°3(Q) and by,d € L*(Q) we have:
(a) if gy € LY7(Q) and gy € L*(Q) then there is a weak-strong solution
(U, V) € Wy x X5 to (C.l),‘
(b) if gu € L'9(Q) and gy € L'7(Q) then there is a very weak-weak solution
(U, V) € L2(Q) x W to (C.1).

Proof. We will prove this result by means of the Galerkin method. Let {¢,,} be a
basis of H'(£2) of functions satisfying

_A(Pm + ©om = )\m(Pma 8n(Pm‘F =0,

for each m € N, and define X™ as the n-dimensional space generated by the first
n elements of {¢m}. Also, for i = 1,2, let a?,b?,d" € C®(R x R3) and & €

1770
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(C(R x R3))3 be mollifier regularizations of a?,b%,d" and & such that

1771

a; — a; strongly in L5/2(Q), fori=1,2,

& — & strongly in (L°(Q))3, fori=1,2,

where in the case of item 1 we have
bl — b; strongly in L5/2(Q), fori=1,2,

d" is bounded in L*°(Q) and converges to d strongly in LP(Q), for any p € [1,00),

with
d™ — d strongly in L>(W1®)

in the case of item 1b, and in the case of item 2
b7 — by strongly in L>3(Q),

b — by strongly in L?(Q),
d™ — d strongly in L°(Q).
We look for Galerkin solutions (Up, V) of the form

n

Un(tie) =Y g} (Opsa)  and  Valta) = S W (g (a)
j=1

j=1

such that

(OuUn, ) + (VUn, Vo) + (a1Un, ) + (b1 Va, 0)  (C.2)

— (Unl, V) = (d"VV,, Vo) = (90, ¢) »
OV, 0) = (AVa, @) + (a3 Vi, ) + (b3Un, ) + (3 - VV, ) = (gv, ), (C.3)
Upn(0,2) = V(0,2) =0,  (C.4)

for all ¢ € X™. From the results on linear ordinary differential systems with smooth
coefficients we have the existence and uniqueness of global classical solution (U,, V,,) €
CH[0,T]; X™ x X™) satisfying (C.2)-(C.4), for each n € N. Next we obtain a priori
estimates for (Uy, V) that we will use to pass to the limit as n — co. Now deal with
each case of the theorem.
Case la: We begin by taking ¢ = U, € X" in (C.2) and obtain
1d
2dt
+ 1107 ([ 52 [ Vall prossl|Unll pross + [ Unll paoss 161 15[V Un | 2
+ 1" || e IV Vall L2V Unll L2 + [lgull ros7 [[Unl| p1oss

1Unl72 + IVUll72 < lla? s/ 1UnllZ 10/
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Next, among other things, we must use Young’s inequality and we highlight the fol-

lowing estimation:

2/5 3/5
9ol 1071 Unll 10/5 < Callgu |l prose |Unll 26 | Ul 25

2/7 2/5 5/7 3/5
< Cullgull 25t WU 9w 1252 Ul 305

10/7 25/28 15/20
< Callgu |07 U122 + Csllgu 121 Unl 3!

10/7 10/7 2
< Callgu 3567 1Uall32 + Callgu 15677 + C5llUallZ
Then, applying the properties of the mollified sequences, the interpolation inequality
(1.2) and Young’s inequality with the appropriate weights we conclude that for any
§ > 0 there are C, 3 > 0 such that

1d 2 5/2 5/2
5 g7lUallta + BIVUIE: < Cllarl35, + 10111757,
10/7
Haills + ool 2or)NUale + ClIVal 22 (C.5)

10/7
+Cllgull}0 + Cldl2 e + DIV Va2

Now we take ¢ =V, € X" in (C.3), which gives us

1d
2dt

A 10311 L2 [1Un | ross [1Vall prors
s IVValllVall s + llgvilipio[Vall pross.

—VallZe + IVVallZe < llag Loz lVallf o

Applying the properties of the mollified sequences, the interpolation inequalities (1.2)
and Young’s inequality with the appropriate weights we conclude that for any § > 0
there are C, 3 > 0 such that

5 S VallZ, + BIVVaE, < CIUIE,

5/2 5/2 - 10/7
+C(llaz 22, + 152175, + 1255 + lgv IEomr ) I Vall2 (C.6)
10/7
+Cllgv (13577 + 8V Un 2
Let Cop = 2C(||d||3 + 1)/83, summing (C.5) and Cy times (C.6) and choosing § > 0

small enough then the terms 6||VU,[|3; and C(||d||3o + 1)||[VV; |32 can be absorbed
and we conclude that there is § > 0 such that

1d

2dt
5/2 5/2 -

< O(lar|l22, + 16175, + 112113

10/7 5/2 5/2
Hlgu [0 + DTN + C(llazl 2, + 162117, (C.7)

= (1Unl72 + CollVall72) + BUIVUlZ: + [VVall72)

= 10/7
e 35 + v 1550, + DI Vall2,

10/7 10/7
+Cllgullins + Cllgv 11257
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5/2 5/2 = 10/7 5/2 - 10/7
o s L1220 12, gulli . Nazll?ss, 102055, 122055, llgviioe, €

L'(0,T), we are able to apply Gronwall’s Lemma to (C.7) and conclude that

Since |lay||

(Un, V) is bounded in L>®(L?) x L>®(L*) N L*(H') x L*(H").

Using this bound in the equations (C.2) and (C.3) we also obtain n-independent
bounds for 0,U,, and 8,V,,, which leads us to

(Un, Vy,) is bounded in Wa x Wa. (C.8)

Next, we skip the standard procedures of the application of the Galerkin’s method to
linear equations and state that with (C.8) we are able to pass to the limit as n — oo
in (C.2) and (C.3), concluding that there is (U, V) € Wy x W5 solution of problem
(C.1).

Case 1b: The n-independent a priori estimates for this case are similar to those of
the case la, but now, instead of choosing ¢ = U, € X" in (C.2) and p =V, € X"
in (C.3), we take ¢ = (A +1)71U, € X" in (C.2) and ¢ = (A + 1)1V, € X" in
(C.3), where ® = (—A + I)~1U, is well defined as the function

—AD+ D =U,, 0,P|r =0.
We also use the fact that there is a constant C' > 0 such that
6]l 2 < CI(=A+ 1)l 2, YV € H*(Q).

Another relevant change is that we integrate by parts to reduce the order of the space
derivatives of U, and V,, in (C.2) and (C.3) and we highlight the term (d"VV,,, V)
of the (C.2) that, in this very weak solution setting, is written as — (V,,Vd", Vy) —
(Vod™, Agp).

Case 2a: We take p =V, — AV,, € X" in (C.3), which gives us
Ld
2dt
+llazll sz IVall Lol AVall o 4 11021 o [|Unll pross |Vl 22
1020 s [|Unll pross [ AVl 2 + Cllz || s [V Vall pross [ Vil 22
+ Cl & s [VVall pros [AVall 2 + llgv 2 (1Vall L2 + 1AVl 2)-

Vol + IV VallZe + 1AVAl72 < lla3 ] s/ [VallF soss

Applying the properties of the mollified sequences, the interpolation inequalities (1.2)
and (1.3) and Young’s inequality with the appropriate weights we conclude that for
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any § > 0 there are C, B > 0 such that

3 5/2
IVl + BUITValZ + 1AVaEs) < Cllaal32,

Hb2llZs + 122025 + lgvllie + DIValZn + ClUIEe (C.9)
+Cllgv 172 + 0l VU|7

Now we take ¢ = U,, € X™ in (C.2) and obtain

1d
2dt
107 [ s [ Vall oo Unl prors + [1Unll pross 16711 25 |V Unl| £2

" Ls IV Vall 1o VUl 2 + llgull pro/7 [Unll pross-

UL + VUl < llad | /2 1Unl17 100

Applying the properties of the mollified sequences, the interpolation inequality (1.2)
and Young’s inequality with the appropriate weights we conclude again that for any
§ > 0 there are C, 3 > 0 such that

3 5/2 5/3
U2+ AUVl < Clanl22, + 1] 35
10/7

Hleullzs + 1dll7s + llgull o/ + DIUlI72 (C.10)
10/7
+C|Vallis + Cllgu )7 + 81 AVa 3
Summing (C.9) and (C.10) and choosing § > 0 small enough so that the terms
8[VUy,|12; + 6| AV, |2, on the right hand side can be absorbed by the corresponding
terms on the left hand side, we conclude that there is 8 > 0 such that

1d
5 (T2 + 1Val20) + BUVTL 22 + 1V Val22)
5/2 5/3 o
+BIAVIZ, < Cllarl|?, + 161175, + @15
10/7
HlIdlISs + llgu 20 + DIIUnl2 (C.11)

+C([lazl3s + 1b2ll3s + 1220135 + llgv 122 + D Val %
10/7
+Cllgu 267 + Clgv I3
5/2 5/3 10/7 5/2 ~
v 100550 N3, s Nlgol0)e Nlazlysre, 1Bls, licls, llgv 132 €
LY(0,T), we are able to apply Gronwall’s Lemma to (C.11) and conclude that

Since ||a1|]

(Un, Vy) is bounded in L®(L?) x L®(HY)n L*(HY) x L*(H?).

Using this bound in the equations (C.2) and (C.3) we also obtain n-independent
bounds for 9,U,, and 9;V,,, which leads us to

(Un, Vi) is bounded in Wo x Xo. (C.12)
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Again, we skip the standard procedures of the application of the Galerkin’s method to
linear equations and state that with (C.12) we are able to pass to the limit as n — oo
in (C.2) and (C.3), concluding that there is (U,V) € Wa x X solution of problem
(C.1).

Case 2b: The n-independent a priori estimates for this case are similar to those of

the case 2a and one can obtain them based on the previous cases. |
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