
i

Equation Chapter 1 Section 1

Student Research Project

Telecommunication Engineering

Estimating thread densities in X-rays of old canvases

with PyTorch

Autor: Max Leitner

Tutor: Juan José Murillo Fuentes

Dpto. Teoría de la Señal y Comunicaciones

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

 Sevilla, 2023

iii

Student Research Project

Telecommunication Engineering

Estimating thread densities in X-rays of old

canvases with PyTorch

Autor:

Max Leitner

Tutor:

Juan José Murillo Fuentes

Dpto. de Teoría de la Señal y Comunicaciones

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2023

v

Student Research Project: Estimating thread densities in X-rays of old canvases with PyTorch

Autor: Max Leitner

Tutor: Juan José Murillo Fuentes

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2023

El secretario del Tribunal

vii

Abstract

The goal of the following student work is to rewrite a model, implemented in Keras, to PyTorch. Those models

execute a thread counting task on images, representing 1cm squared patches of radiographs, which are taken

from old paintings. Both models area trained and compared in terms of accuracy and efficiency, which includes

resource consumption in form of memory and runtime. By evaluating those metrics, it can be determined how

both frameworks behave and if a performance boost can be achieved through the change of the framework.

To answer this question, structural differences between the model implementations of both frameworks are

analyzed and the gained knowledge is used to recreate the model and the corresponding training structures. Each

model is trained 10 times with the same training parameters, after which the best performing model is selected

to perform an additional comparison on the test dataset. During the training, performance measurements are

taken.

The experiment showed that models from both frameworks equally performed in terms of accuracy. PyTorch

does perform worse regarding training speed. On average, it´s models take 1,7 times as long to finish an epoch

of their training. On the other hand, PyTorch thrives in the matter of memory consumption, consuming only one

third of the available GPU memory with no additional allocation. Keras utilized the full 16GB of GPU memory,

while still allocating 12GB of memory additionally.

Without an individual adaptation of training parameters, no overall improvement could be achieved on the

dataset, through a change of the framework.

Keywords:

Keras, PyTorch, Model migration, Thread counting, Radiograph analysis, Performance evaluation, Memory

utilization, Training speed, Accuracy

ix

Abstracto

Título: Estimación de la densidad de hilos en radiografías de lienzos antiguos con PyTorch

El objetivo del siguiente trabajo de estudiante es reescribir un modelo, implementado en Keras, a PyTorch. Estos

modelos ejecutan una tarea de recuento de hilos en imágenes en recortes de 1cm cuadrado de radiografías,

tomados de pinturas antiguas. Ambos modelos se entrenaron y compararon en términos de precisión y eficiencia,

lo que incluye el consumo de recursos en forma de memoria y tiempo de ejecución. Evaluando esas métricas,

se puede determinar cómo se comportan ambos entornos y si se puede conseguir un aumento del rendimiento

mediante el cambio de entorno.

Para responder a esta pregunta, se analizan las diferencias estructurales entre las implementaciones del modelo

de ambos entornos y los conocimientos adquiridos se utilizan para recrear el modelo y las estructuras de

entrenamiento correspondientes. Cada modelo se entrena 10 veces con los mismos parámetros de entrenamiento,

tras lo cual se selecciona el modelo con mejor rendimiento para realizar una comparación adicional en el

conjunto de datos de prueba. Durante el entrenamiento se realizan mediciones del rendimiento.

El experimento demostró que los modelos de ambos entornos obtuvieron los mismos resultados en términos de

precisión. PyTorch obtiene peores resultados en cuanto a velocidad de entrenamiento. De media, sus modelos

tardan 1,7 veces más en terminar una época de entrenamiento. Por otro lado, PyTorch destaca en lo que respecta

al consumo de memoria, ya que sólo consume un tercio de la memoria disponible en la GPU sin ninguna

asignación adicional. Keras utilizó la totalidad de los 16 GB de memoria de la GPU, sin dejar de asignar 12 GB

de memoria adicional.

Sin una adaptación individual de los parámetros de entrenamiento, no se pudo lograr ninguna mejora global en

el conjunto de datos mediante un cambio de entorno.

Palabras clave:

Keras, PyTorch, Migración de modelos, Recuento de hilos, Análisis radiográfico, Evaluación del rendimiento,

Utilización de memoria, Velocidad de entrenamiento, Precisión

xi

Index

Abstract vii

Abstracto ix

Index xi

Code Index xiii

Figure Index xv

Table Index xvii

1 Introduction 1

2 Project Background 3
2.1 Painting Analysis 3
2.2 Crossing Point Detection 4
2.3 U-Net Regression Model 5
2.4 Inception Module 6

3 Keras – PyTorch Comparison 9
3.1 Historic Development 9
3.2 Structural Analysis 9

3.2.1 Model Creation 10
3.2.2 Model Training and Test 12

3.3 Performance Analysis 14
3.3.1 Referenced Work 14
3.3.2 Conclusion from previous works 18

4 Dataset and Data preparation 21
4.1 Dataset 21
4.2 Data preparation 21

5 Hardware and Software Details 23
5.1 Hardware conditions 23
5.2 Software environment 23

6 Model Translation and Training 25
6.1 Model Setup 25
6.2 Data Loader 28
6.3 Early Stopping 29

6.4 Training Setup 30
6.5 Performance Analysis Utilities 32

7 Performance Results 35
7.1 Model performance 35
7.2 Comparison to Keras implementation 37
7.3 Conclusion from framework comparison 42

8 Conclusion 45

References Fehler! Textmarke nicht definiert.

xiii

CODE INDEX

Code 3-1. Example code for model creation with Keras functional API (Team 2023c) 10

Code 3-2. Example creation of a sequential model in Keras (Team 2023d) 11

Code 3-3. Example creation of a sequential model in PyTorch

(Sequential — PyTorch 2.0 documentation 2023) 11

Code 3-4. Example code for creating a Keras model by class definition (Team 2023c). 12

Code 3-5. Example code for creating a PyTorch model by class definition

 (Building Models with PyTorch — PyTorch Tutorials 2.0.0+cu117 documentation 2023) 12

Code 3-6. Example code for Keras model compile function (Team 2023b) 13

Code 3-7. Example code for Keras model fit function

(Training and evaluation with the built-in methods) 13

Code 3-8. Example code of a simple training loop in PyTorch (Red Hat Developer 2022) 14

Code 6-1. Inception module 26

Code 6-2. Inception submodule with 3x3 kernel 27

Code 6-3. Layer 1 of the U_Net structure 27

Code 6-4. Feedforward structure of the model 28

Code 6-5. Weight initialization function 28

Code 6-6. Custom Dataset Class 29

Code 6-7. Initialization DataLoader for Training Data 29

Code 6-8. Early Stopping Class 30

Code 6-9. Model initialization with CUDA 31

Code 6-10. Learning Rate scheduler 31

Code 6-11. Custom Loss function 31

Code 6-12. Batchwise Training loop 32

xv

FIGURE INDEX

Figure 2-1. Weft and warp yarn of woven fabric (S Anila et al. 2018) 3

Figure 2-2. Example patches of radiographs with low and high thread density 4

Figure 2-3. Visualization of the spatial counting algorithm (Delgado et al. 2023a) 5

Figure 2-4. Schema U-Net regression model with VGG16 structure (Delgado et al. 2023b) 6

Figure 2-5. Schema of Inception Module (Delgado et al. 2023b) 7

Figure 3-1. Architecture of the VGG16 CNN model (KABAKUŞ 2020) 15

Figure 3-2. Architecture of the LSTM model (KABAKUŞ 2020) 15

Figure 3-3. CNN Architectures for different data sets by Elshawi et al. 16

Figure 3-4. LSTM Architectures for different data sets by Elshawi et al. 17

Figure 3-5. Model structure with 8 Neurons in hidden layers by Munjal et al. 18

Figure 4-1. Labels for horizontal and vertical threads 21

Figure 4-2. Data preparation times 22

Figure 7-1. Training development PyTorch 36

Figure 7-2. Minimal Train-/Validation loss with total training epochs 37

Figure 7-3. Total training times 38

Figure 7-4. Trained epochs 38

Figure 7-5. Training development Keras 39

Figure 7-6. Time comparison 40

Figure 7-7. Training and validation loss 40

Figure 7-8. Occupied GPU memory 41

Figure 7-9. Memory allocation 41

Figure 7-10. Test time 42

Figure 7-11. Test loss 42

xvii

TABLE INDEX

Table 7-1. Performance comparison 43

1

1 INTRODUCTION

ith the rise of machine learning and deep learning within the last years, machine learning algorithms

are applied in many fields of the daily life (Zeolearn 2023). Since 2022, the topic is also omnipresent

in the media due to the publication of ChatGPT (Introducing ChatGPT 2023). The topic in this form

is discussed under the title of “artificial intelligence”. Machine learning also is used in scientific contexts to

facilitate and improve analysations.

Through the collaboration of the Universidad de Sevilla and the Museo del Prado in Madrid, a combination of

the machine learning topic and the painting analysis is created. Machine learning and digital analysis can

facilitate the work of thread counting, which is needed to describe the structure of the canvas, on which the

painting is painted on. For the execution of this work, image data of radiographs is used. By counting the number

of horizontal and vertical threads on each square centimetre, conclusions can be drawn regarding the canvas

structure and consequently the place of manufacturing (Delgado et al. 2023a).

Already two previous works are published by Delgado et al., presenting two different algorithms, which are

meant to replace the manual counting technique or their atomization using Fast Fourier transformation, since

this technique suffers from irregularities in the image data.

Goal of this work is the translation of the Inception Regression model based on the VGG16 – structure, which

is presented in the second paper and implemented in Keras, into a lower-level framework, which in our case is

PyTorch. By evaluating the performance differences in between the two implementations, we aim to select the

better framework for the model structure and dataset used.

To achieve this comparison, at first the background of the thread counting topic is analysed, presenting the

already published projects. The model architecture to implement is taken from the second publication, while the

spatial counting algorithm, presented in the first publication, serves for the label generation of the dataset.

Secondly, previous publications on framework comparisons between Keras and PyTorch will be evaluated, to

formulate an expectancy on the outcome of the conducted experiment. In this form possible performance gains

or declines can be previously identified. It follows an analysis of the structural differences in between the two

frameworks, to identify how the model can be correctly translated, that both implementations refer to the exact

same network structure. This will be necessary to assure comparability of the measurement outcomes. Also, the

dataset and needed steps of data generation are presented to obtain an understanding of the data processed by

the models.

Using this knowledge, the model will be implemented, utilizing the PyTorch API. In addition to the model and

training process, different measurement systems are implemented to evaluate the performance, after the training

and prediction. The main performance indicators will be training and prediction timers, model accuracy and

memory consumption.

According to those measurements, the better framework for the data and the model structure can be picked. The

outcome of this selection is put in relation to the expectations formulated in the pre-examinations, taking the

results of previous projects into account. That way, questions about the different behaviour of the frameworks

can be answered and possible improvements through a change of the framework can be identified.

W

3

2 PROJECT BACKGROUND

his student research is based on the previous works of A. Delgado and Juan. J. Murillo-Fuentes from the

Dep. Teoría de la Señal y Comunicaciones at ETSI Universidad de Sevilla in collaboration with Laura

Alba-Carcelén by the Dep. Restauración y Documentación Técnica Museo Nacional del Prado. Objective

of this previous work was the creation of a Deep learning model, allowing to analyse radiographs of paintings

owned by the Museo Nacional del Prado to gain information about ownership and dating of those respective

paintings.

2.1 Painting Analysis

When it comes to analyzing paintings, different approaches can be used, to assign a painting to a certain period.

Besides the classic analysis of the painting itself and consideration of the style, in which it has been painted, as

well as the historic properties already known about the painting, like ownership etc., also the materials can be

explored. Depending on the desired information, different techniques can be used in the analysis of the materials,

ranging from chemical or visual analysis to techniques like radiocarbon dating (Hendriks et al. 2019).

In this work and the previous projects, we are specifically referring to, we stick to the analysis of the canvas of

the painting. As pointed out in the work of Delgado and Murillo-Fuentes the most important features for canvas

analysis are the type of the fabric, the fabric material, the number of threads per centimeter, in both horizontal

and vertical direction and the deviation of angles between those threads in consideration of their horizontal or

vertical orientation (Delgado et al. 2023b).

The model mainly dealt with, analyzes the thread density of plain weave fabrics. Plain weave fabrics is

considered the simplest and most common of the basic textile weaves. It characterizes by its construction as the

fabric is produced by intertwining the horizonal and vertical threads (weft and warp yarn). Warp yarn titles the

threads arranged at the loom in parallel from the front to the back. The weft then describes the yarn, which is

introduced by the weaver to construct the fabric itself (Burnham 1980).

Figure 2-1. Weft and warp yarn of woven fabric (S Anila et al. 2018)

T

Project Background

4

Hereby the weft yarn is passed over and under each warp yarn, changing in each row. This leads to a high

number of intersections and gives them their characteristics as resistance against raveling, but therefore a

tendency to wrinkle as well as less capacity to absorb paint compared to other weave forms (Encyclopedia

Britannica 2023).

To run the fabric data through image analysis the X-ray of the painting is used, as the direct observation of the

fabric normally is not possible, due to a piece of cloth, which is stuck to the back of the painting to reinforce the

support. The quality of the obtained X-ray images heavily depends on factors like the used amount of paint and

primer, as well as wood stretcher, nails and other objects present in the image area (Delgado et al. 2023b).

Figure 2-2. Example patches of radiographs with low and high thread density

Utility of those images opens up through the fact, that the separation and distances between the threads in plain

weave are not regularly distributed but depend on the construction process. If two identical distributions are to

be found it can be concluded that both canvases come from the same exact production. This helps curators to

assign paintings to their painter if references can be found to other already studied paintings with secured

knowledge of their origin (Delgado et al. 2023b).

2.2 Crossing Point Detection

The training of the model on the radiographic images needs all images in our dataset to be labeled. To avoid

assigning every image a number of vertical threads by hand we refer to a previous work conducted by Delgado

et al. (2023a) using a different system for thread counting and use their results as our labeled training data. As

an underlying concept, spatial counting is used in the model, after identifying the crossing points of the horizontal

and vertical threads in the image section. Therefore, two different algorithms were used in the process. The first

one is the implementation of a Deep Learning model, to identify the crossing points and create an image

representation of the image section, marking the crossing points.

The data patches, which will be processed by our own model, come with assigned labels, already marking the

locations of horizontal and vertical threads. Consequently, in our case, the image processing with the deep

learning model by Delgado et al. (2023a) can be skipped. Instead, the given labels are used to calculate the

crossing points, by putting the labels on top of each other and calculating their intersection. Through finding the

centroids of the intersections, we can obtain the exact locations of the crossing points. After this step, the same

data is available, as if the images had been processed by the deep learning model without given labels. To

complete the labeling task, the locations of the crossing points are given to the second algorithm.

Just mentioned algorithm is called spatial counting. To obtain the number of horizontal and vertical threads in

our selected image section, every detected crossing point is taken and its closest neighbors are searched. The

number of neighbors assigned to each crossing point is determined beforehand. Out of the neighbor selection

the closest neighbor to the left and right, and at the top and the bottom is found. Their relation to the original

crossing point is determined by the respective angle of a vector between those points. In the next step, the average

Estimating thread densities in X-rays of old canvases with PyTorch

5

5

distance of those crossing points to their neighbors is used, to receive an estimation of the average thread density

in the image section (Delgado et al. 2023a).

Figure 2-3. Visualization of the spatial counting algorithm (Delgado et al. 2023a)

The in this way obtained data is saved and used as our labeled training data. Additionally, to the thread density,

in the referred paper also the thread angle was calculated and used for evaluation. Since our model just serves

for thread counting, this technique is not further treated in this work.

2.3 U-Net Regression Model

The model we work on is called a U-Net regression model, which returns the vertical density of threads per

centimeter. The first implementation of this model in Keras got presented by Delgado et al. (2023b). From this

work we take the base structure of the model and translate it into a PyTorch model to evaluate.

Inspiration for this model was taken from the U-Net model proposed by Delgado et al. (2023a). As the original

U-Net model, also the regression model takes advantage of the convolution applied with the help of the inception

module. The name comes from the fact that the model structure is similar to the U-Net model, without including

the decoder branch, but instead in the deepest stage of the U-Net, the tensor is flattened and, through processing

the data with Dense layers, a single number is emitted from the output layer, representing the number of vertical

threads in the analyzed image section.

The exact model to translate is an Inception VGG-Based Regression Model which represents an inception

regression model, while being adapted to the VGG16 Simonyan and Zisserman architecture. This combination

generates a regression model, using the inception model for the convolution, but the number of dense layers and

the number of their respective neurons is designed according to the VGG architecture. According to Delgado et

al. the designed structure aims to perform the feature extraction with the help of convolutional layers in the

encoder path. In each convolutional layer two successive inception blocks and 2D Max Pooling are used. The

regression itself is then performed in the second part, processing the data through a flatten layer and six following

dense layers. All hidden layers apply the ReLU activation function, while the output layer is relying on linear

activation.

Project Background

6

Figure 2-4. U-Net regression model with VGG16 structure (Delgado et al. 2023b)

2.4 Inception Module

In previous sections the inception module was mentioned as part of the U-Net regression model. This module

contains the core functionality of the convolution performed in the encoder branch. Firstly, the inception module

designed for the U-Net model processing painting radiographs was proposed in (Delgado et al. 2023a). The

motivation behind this approach falls back to a possibility of great range of thread densities within an image

section. Models with fixed kernel sizes struggle with a range, declared to lie between 6 to 23 threads per

centimeter. As a consequence, crossing points cannot be located reliably. To counteract this problem the

inception methodology and therefore multiple convolutional kernels of different sizes are used. In the presented

paper, the quadratic kernels have sizes of 3, 5 and 7. Within every inception block, every kernel is applied

separately, returning the same number of features, which are specified for every layer. The produced feature

maps then are concatenated and further processed with batch normalization during training and a ReLU

activation function. By concatenating, the resulting tensor has three times the number of features, specified

beforehand. During the convolution itself, no reduction of the image size is taking place. This is because before

the convolution step a zero padding is applied to every input image, so that the image size of input and output

matches. Reduction of the image size is achieved by the MaxPooling2D layer after the inception module.

Estimating thread densities in X-rays of old canvases with PyTorch

7

7

Figure 2-5. Schema of Inception Module (Delgado et al. 2023b)

9

3 KERAS – PYTORCH COMPARISON

s we translate the model from Keras to PyTorch at first we have to identify the biggest differences in

terms of design and capabilities of both frameworks. Therefore, we compare the history of their

respective developments, as well as the design differences, which must be considered when creating

Deep Neural Networks with each of those frameworks.

Furthermore, we analyse the current research state in terms of speed and needed resources of each framework,

to obtain an outlook on performance results we can expect after translating the model into PyTorch. By

researching compatibility and equivalencies between the frameworks we can identify equivalent structures, to

receive an exact translation of the model and preserve comparability.

3.1 Historic Development

The Keras framework was developed by François Chollet in 2015. It started out as a research project called

ONEIROS, which stands for Open-ended Neuro-Electronic Intelligent Robot Operating System (Team 2023a)

at the University of Montreal. Since the initial success of the AlexNet Model in 2012 in the area of computer

vision, the development of new machine learning frameworks was driven by big companies, like Google,

Facebook and Amazon. With the involvement of Google by developing TensorFlow, it enabled the development

of Keras, since it relies on TensorFlow and Theano as its respective backends. It is written in Python and abstracts

the more complex features of the underlying frameworks (Yuan 2020).

Two years after its official release, Keras got integrated into the TensorFlow library, to simplify the configuration

of the framework. Then in 2018 Keras got added as well to the TensorFlow 2.0 library allowing it to make use

of the new features and performance benefits introduced by this upgrade. It allows accessing TensorFlow

functionality through a high-level API, which Keras is representing (The History of Keras: From Research

Project to Industry Standard – TS2 SPACE 2023).

PyTorch’s release is dated one year after the Keras release. In October 2016 it got introduced as an internship

project by Adam Paszke. It is based on the Torch project, a machine learning framework written in the Lua

programming language. Finally, it got released by the Facebook AI research team and is mainly written in

Python and C++. Today deep learning projects by Facebook, Uber and Twitter are created with PyTorch

(Kurama 2021; Moltzau 2020).

3.2 Structural Analysis

The main structural differences between Keras and PyTorch conclude out of their basic use-case. Keras is a

python based high level API, which is very beginner friendly and requires less background understanding than

other frameworks for the construction of Deep Neural Networks (DNNs). It runs on a different possible

backends, like TensorFlow or Theano.

PyTorch on the other hand is a machine learning library, which can be implemented into Python and C++ code.

Therefore its API operates on a much lower level, which complicates certain structures, but at the same time

A

Keras – PyTorch Comparison

10

offers better capabilities for debugging, adjusting DNNs to personal preferences or influencing the

computational workflow (Keras vs PyTorch 2020).

3.2.1 Model Creation

Both frameworks allow different approaches to create deep learning model. The Keras framework offers three

different possibilities for model creation. Those are the use of the sequential model, the object-oriented approach

and the functional API. PyTorch offers similar techniques with its object-oriented approach, as well the

possibility to create sequential models. A functional API, like Keras has, is missing and for this makes Keras

more beginner friendly (Agarwal 2019).

3.2.1.1 Functional API

The functional API from Keras allows to create complex models without the need to create those respective

models with the object-oriented approach through class definition. Like the object-oriented definition it relies

on the tf.keras.Model class. For the custom deep neural network there is no need to declare a new class. We

begin by declaring an input layer and provide a shape for this input tensor. Then we chain the following layers,

by handing them the outputs of previous layers and catch the output of our output layer in a variable. Finally,

we instantiate our model by calling the tf.keras.Model class and providing the input and output layer as

arguments of the class call. For readability of the code, those steps can be united within a “create_model()”

function, which then contains the chaining of layers and the model class construction. The API is not limited to

create complete models from the input to the output layer but allows at the same time to construct partial models

from intermediate layers, which would then share those layers. This allows for example to create an autoencoder,

but at the same time access the encoder or decoder separately (Team 2023b).

import tensorflow as tf

inputs = tf.keras.Input(shape=(3,))

x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs)

outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

Code 3-1. Example code for model creation with Keras functional API

(Team 2023c)

3.2.1.2 The sequential class

The sequential class is the easiest way to create a model in both frameworks. It is used to create simple models,

which just have one input and one output tensor. It creates a stack of layers, through which the input gets passed.

In Keras we need the keras.Sequential class. The respective pendant in PyTorch is the torch.nn.Sequential class.

Both work same sense. On construction of the model class with the Sequential constructor, all contained layers

get passed to the model in order. The class itself then takes over the part of connecting the layers and passing

tensors through themselves, when the model is called. In this approach for Keras no input or output size has to

be given, as the model takes tensors of every input size and then sequentially chains the outputs of previous

layers to the following ones. PyTorch still needs the specification for input and output sizes. While in PyTorch

the layers are given comma-separated to the constructor or as a ordered dictionary OrderedDict, Keras’ models

takes a list of layers (Sequential — PyTorch 2.0 documentation 2023; Team 2023c; Chng 2022).

Estimating thread densities in X-rays of old canvases with PyTorch

11

11

import tf.keras as keras

import tf.keras.layers as layers

model = keras.Sequential(

 [

 layers.Dense(2, activation="relu"),

 layers.Dense(3, activation="relu"),

 layers.Dense(4),

]

)

Code 3-2. Example creation of a sequential model in Keras (Team 2023d)

import torch.nn as nn

model = nn.Sequential(

 nn.Conv2d(1,20,5),

 nn.ReLU(),

 nn.Conv2d(20,64,5),

 nn.ReLU()

)

Code 3-3. Example creation of a sequential model in PyTorch

 (Sequential — PyTorch 2.0 documentation 2023)

Both classes allow the appending of layers to the end of the model. In Keras this can be done with the add()

function of the model, while in PyTorch the append() function of the model fulfils this functionality.

3.2.1.3 Object-oriented approach

The object-oriented approach represents the most complex way to create a model in both frameworks. At the

same time, it allows the highest level of flexibility and customizability, when it comes to designing neural

networks. In this design for each model a class must be created. The class then needs to inherit either

tf.keras.Model in Keras or torch.nn.Model in PyTorch.

The __init__() function contains the model description itself. In this section all used layers have to be defined

according to the frameworks’ syntax. In both versions every layer gets defined as a new attribute of the object

class itself. Within the initialization no linking between the layers is done. The main difference hereby lies in the

properties of the layers themselves, as in PyTorch input and output sizes must be defined, whereas in Keras it is

sufficient to declare layer sizes. Both can be seen in the Code examples (Code 3-4, Code 3-5). In the basic

models, the initialization function just takes the model itself as an argument. If needed by design, additional

arguments can be added, which have to be passed to the constructor on model creation.

Keras – PyTorch Comparison

12

import tensorflow as tf

class MyModel(tf.keras.Model):

 def __init__(self):

 super().__init__()

 self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)

 self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)

 def call(self, inputs):

 x = self.dense1(inputs)

 return self.dense2(x)

model = MyModel()

Code 3-4. Example code for creating a Keras model by class definition (Team 2023c).

import torch

class TinyModel(torch.nn.Module):

 def __init__(self):

 super(TinyModel, self).__init__()

 self.linear1 = torch.nn.Linear(100, 200)

 self.activation = torch.nn.ReLU()

 self.linear2 = torch.nn.Linear(200, 10)

 self.softmax = torch.nn.Softmax()

 def forward(self, x):

 x = self.linear1(x)

 x = self.activation(x)

 x = self.linear2(x)

 x = self.softmax(x)

 return x

tinymodel = TinyModel()

Code 3-5. Example code for creating a PyTorch model by class definition

 (Building Models with PyTorch — PyTorch Tutorials 2.0.0+cu117 documentation 2023)

To link the layers and allow the training on data, as well as the processing of data a function call() in Keras or

forward() in PyTorch must be added. The function takes the model itself and the input tensor as arguments. This

input tensor then must get passed through the layers. For this, the input gets passed as argument to the layers

predefined in the initialization function and their output handed to the following layer. The output of the last

layer is at the same time the output tensor of our model and therefore the return value of the forward() function

(Chng 2022; Team 2023b; Building Models with PyTorch — PyTorch Tutorials 2.0.0+cu117 documentation

2023).

3.2.2 Model Training and Test

While the creation of models in Keras and PyTorch is similar and differs mainly when the functional API of

Keras is used, the way of training those models is hardly similar.

Estimating thread densities in X-rays of old canvases with PyTorch

13

13

3.2.2.1 Training models in Keras

In Keras three main functions of the model are used to fulfil the training and test purpose. The first one is the

compile() function. After creating the model, it must be configured for training. By calling the compile() function

we can define configurations, like the optimizer, the loss function or the evaluation metrics to use.

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),

 loss=tf.keras.losses.BinaryCrossentropy(),

 metrics=[tf.keras.metrics.BinaryAccuracy(),

 tf.keras.metrics.FalseNegatives()])

Code 3-6. Example code for Keras model compile function (Team 2023b)

In the next step the actual training of the model takes place. It is handled by the fit() function of the model. The

handed parameters include the training data in form of the input tensors, as well as target data and training

parameters like batch size, number of epochs and validation data, if needed. Also call back functionality, like

early stopping, learning rate scheduling and training checkpoints can be handed to the fit() function.

history = model.fit(

 x_train,

 y_train,

 batch_size=64,

 epochs=2,

 validation_data=(x_val, y_val),

)

Code 3-7. Example code for Keras model fit function

(Training and evaluation with the built-in methods)

The last needed functionality is the possibility to test the model on new data. For this purpose exists the evaluate()

function. If called, it takes the test data in form of the input tensors, as well as the target data together with

properties for the test run, like batch size, initial sample weights or call back functionality. Based on the metrics

already provided in the compile step, the accuracy of the model on the test data can be evaluated (Training and

evaluation with the built-in methods).

3.2.2.2 Training models in PyTorch

Creating a training setup in PyTorch requires more knowledge of the training process, as it must be set up by

hand, without the comfort of calling a function like fit() in Keras. Instead, we have to write a training loop, in

which we pass the data to our model and calculate the loss function to update the optimizer accordingly.

Therefore, we define the optimizer and the loss function before our training loop with their respective properties.

In the best case, the data is already organized in form of a Dataset, which can be handled by a DataLoader. This

allows the easier handling of data, when training the data in batches. If not, it is possible to define a custom

dataset and corresponding data loader, to handle the data. If the dataset is small enough, the training data can be

directly passed to the model, as seen in Code 3-8. Before starting the training, the model has be set into training

mode by calling model.train(), to enable gradient tracking and batch normalization. Within the training loop,

which tracks the number of training epochs, the following steps are minimally necessary to enable proper model

training:

- Increase the epoch counter

- Set the gradients of the optimizer to zero

- Pass the training data through the model

- Compute the loss function for the calculated and given output

- Compute the gradients of the loss function by back tracking in the model layers

- Adjust the learning weights of the optimizer

Keras – PyTorch Comparison

14

loss_function = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(),lr=0.01)

epochs=500

final_losses=[]

model.train()

for i in range(epochs):

 i= i+1

 optimizer.zero_grad()

 y_pred=model.forward(X_train)

 loss=loss_function(y_pred,y_train)

 final_losses.append(loss)

 loss.backward()

 optimizer.step()

Code 3-8. Example code of a simple training loop in PyTorch

(Red Hat Developer 2022)

Additionally, to this basic functionality, more advanced features, like early stopping or learning rate adaptation

can be defined before the training loop and get adjusted after each epoch. If validation data is considered, a

second validation run has to be performed after the training epoch, where the model is put into evaluation mode

by calling model.eval(). Then the validation data gets passed through the model and based on the output the

validation metrics can be calculated (Red Hat Developer 2022; Training with PyTorch — PyTorch Tutorials

2.0.0+cu117 documentation 2023).

3.3 Performance Analysis

3.3.1 Referenced Work

Both Keras and PyTorch are considered powerful tools for the creation of deep neural networks. Due to their

structural differences and their intention of usage, they also have differences in terms of performance results.

Since Keras is a higher-level API and written in Python it lacks the performance lower-level frameworks like

PyTorch can offer. The first performance aspect to compare is training and prediction speed. PyTorch is

considered to be faster and more suitable for bigger datasets, but at the same time also requires more complex

preparation and is less suited for quick setups in prototyping (Terra 2020).

The second performance aspect which needs to be considered is the performance in terms of accuracy, learning

capabilities and overfitting. To get more insights into performance differences we can compare results of

previous setups, which implemented their models in both frameworks.

A comparison between the frameworks was done in the work by Kim et al. 2022. In this project the Dogs and

Cats Dataset by Kaggle got analyzed, which contains 25000 labeled images of dogs and cats. The results of the

model implementation were obtained with a 75-25 training-test split. Next to PyTorch and Keras, also the

MXNet library got analyzed, which will not be considered in our comparison. With each framework a CNN

model was created, trying to keep similarities within the model layers as close as possible. Also, for the models

the same hyperparameters got used, to keep the models comparable. The proposed model consisted of stacked

convolutional layers with three-by-three filters. Those were combined with max-pooling layers and a ReLU

activation function. For the output layer, a sigmoid function was used, to deal with the binary classification. To

determine the performance of the models, the accuracy and F1-score (Korstanje 2021) of each model got

Estimating thread densities in X-rays of old canvases with PyTorch

15

15

calculated. Since the goal was binary classification, true and false values got assigned to the cat/dog attribute.

Next to the named metrics, also the cross-entropy loss (Koech 2020) got calculated. After the training of ten

epochs, it was observable, that the Keras model showed better accuracy values at 78%, but suffered overfitting,

while the PyTorch model came with a 70.8% accuracy and therefore having a good fit on the data. In a final test

of the models on testing image samples they observed that, throughout different sample sizes, the Keras model

achieved high accuracy ranging from 89-98%. The PyTorch model on the other hand always got outperformed,

through achieving worse accuracies than the Keras model, ranging in between 85-92%. The same tendency

could be observed, when comparing the F1 scores. Although the better performance of the Keras model can be

observed in all given sample sizes, the authors of the work do not ultimately claim a superiority in performance

for the Keras model as, with the random sampling, accuracy and F1-scores differed in every test run (Kim et al.

2022).

A second project, which dealt with comparing the frameworks PyTorch and Keras, was published by

KABAKUŞ in 2020. Both frameworks got examined by creating three different types of neural networks: a

Feedforward Neural Network (FNN), a Convolutional Neural Network (CNN) and a Recurrent Neural Network

(RNN). Each models’ performance got evaluated by using three different measurements: training time, testing

time and prediction accuracy. The FNN was constructed out of three Dense layers with the sizes 64-64-10, where

the first two worked with the ReLU activation function and the last one with SoftMax activation. As a dataset,

the MNIST dataset consisting of handwritten digits in greyscale from zero to nine with a size of each 28x28

pixels was used (MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges 2013). For

the training of the neural network, the researchers used the Adam optimizer. A second model type, which got

analyzed, was a CNN, relying on the VGG16 architecture. The structure of the VGG16 architecture can be seen

in Figure 3-1. To train the CNN, the CIFAR-10 (CIFAR-10 and CIFAR-100 datasets 2017) dataset was used.

This dataset includes a collection of colored images, which can be assigned to ten different classes. Within those

classes different animal labels, like cat, frog and deer, but also vehicles, like trucks and airplanes can be found.

Model type number three were the RNNs. In this example a LSTM (Long short-term memory) implementation

was used. The structure of the LSTM model can be seen in Figure 3-2. To benchmark this model, it got trained

on the IMDB Movie Review dataset (N 2019). It consists of IMDb movie reviews which got labelled either as

positive or negative. Each movie review hereby is represented by an encoding in form of a list of word indexes.

Figure 3-1. Architecture of the VGG16 CNN model (KABAKUŞ 2020)

Figure 3-2. Architecture of the LSTM model (KABAKUŞ 2020)

The researchers evaluated the models, by running them on the Google Colab platform, to benefit from the

available GPU acceleration. 60,000 training and 10,000 test images were used out of the MNIST dataset to train

and evaluate the FNN model. In the results Keras performed better than PyTorch in every of the compared

categories. With an accuracy of 97.24% to 96.69% by PyTorch it reached slightly better results. In terms of

speed, the Keras model was 3.8 times faster during the training and 2.4 times during the testing. Based on those

results the researchers concluded, that Keras would be the better choice for the design of Feed Forward

Networks.

Keras – PyTorch Comparison

16

A similar tendency could be found for the design of the Convolutional Neural Network. Keras was found to be

more accurate, by having 78.43% accuracy compared to 76.54% by PyTorch. Also, in terms of speed Keras was

found to be superior. Training was completed 1.9 times and testing 1.4 times faster with Keras than with

PyTorch. Because of this, the researchers again found Keras to be better suited to design the VGG16 model,

representing the CNN architecture.

Lastly, also for the Recurrent Neural Network a comparison was made. 25,000 reviews were used for training

and the same amount again for testing, using the 5000 most frequent words in the embedding. In this scenario

PyTorch performed better in terms of accuracy, with an accuracy of 87.08% compared to 85.83% achieved by

Keras. The model training was completed 1.3 times faster with PyTorch than with Keras. In the testing phase,

Keras was able to be 1.6 times faster than PyTorch. Since Keras was only favorable, when it came to test speed,

the researchers found PyTorch to be better suited to design and train RNNs.

In summary, Keras seemed to be superior to PyTorch when it came to the design of FNNs and CNNs, both in

terms of accuracy and speed. For the creation of RNNs, PyTorch provided a higher level of accuracy and was

faster on training the data (KABAKUŞ 2020).

In 2021 the research team around Elshawi et al. published a benchmarking of the at this time most popular deep

learning frameworks TensorFlow, MXNet, PyTorch, Theano, Chainer, and Keras. From this benchmark we will

pick the data of Keras and PyTorch for our own comparison. The comparison was made with three different

architectures: Convolutional Neural Networks, Faster Region-based Convolutional Neural Networks (Faster R-

CNN) and Long-Short-Term Memory (LSTM). Used evaluation metrics were accuracy, training time,

convergence and resource consumption patterns. Experiments were run both on CPU and GPU, analyzing

different datasets. To train the CNNs, the datasets MNIST, CIFAR-10, CIFAR-100 (CIFAR-10 and CIFAR-100

datasets 2017) and SVHN (The Street View House Numbers (SVHN) Dataset 2011) were used (SVHN only for

GPU accelerated computations). For the Faster R-CNN architecture, models were trained on the VOC2012

dataset (The PASCAL Visual Object Classes Challenge 2012 (VOC2012) 2020). Three different datasets were

used to evaluate the LSTM models: IMDB Reviews, Penn Treebank (Treebank-3 - Linguistic Data Consortium

2023) and Many things: English to Spanish (Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project

(Good for Anki and Similar Flashcard Applications) 2023).

Figure 3-3. CNN Architectures for different data sets by Elshawi et al.

Estimating thread densities in X-rays of old canvases with PyTorch

17

17

Figure 3-4. LSTM Architectures for different data sets by Elshawi et al.

The results of this paper indicate that the performance of the models heavily depends on the underlying dataset

and the model type. Also, they show that the different frameworks have different abilities to use the additional

computing power when a GPU is accessible. When it comes to accuracy, running on the CPU in the given setup,

Keras overall achieves higher accuracy on the CNN models for the three tested datasets. On the MNIST dataset

the difference is not statistically significant since both models achieve an accuracy of approximately 98%.

Especially on the CIFAR-10, but as well on the CIFAR-100 dataset Keras gains a significant advantage by

achieving respectively 80% and 53% of accuracy, compared with 72% and 50% by PyTorch. The results with

the LSTM models are closer together, as both models achieve comparable accuracy values. Only on the Many

things dataset PyTorch performs slightly better. After testing the Faster R-CNN model is can be concluded that

Keras’ accuracy performance is also superior in this testing scenario. The same tendencies can be seen when

both models run on a GPU.

In terms of training time on the CPU, Keras is up to 5 times faster than PyTorch when training the CNN. PyTorch

trains it´s LSTM models faster on the IMDB and Penn Treebank sets but struggles training on the Many Things

dataset. When accelerating the computation with a GPU PyTorch gains an advantage on the training time for

the MNIST dataset, finishing faster than Keras. On the other datasets Keras is still faster than PyTorch, up to 4.3

times faster on the CIFAR-10 dataset. Comparing the training times on the GPU for the LSTM it shows, that

PyTorch here gains most benefits from GPU acceleration. Throughout all datasets PyTorch is faster than Keras,

having the best performance on the IMDB dataset, which is trained 22 times faster.

The next measurement taken analyzed in this work refers to resource consumption. For the CPU training it can

be observed that PyTorch’s CPU usage is higher than Keras’ with exception of the CIFAR-100 and the Many

things dataset. The opposite can be seen when comparing memory consumption. Throughout most of the

datasets Keras occupies more memory than PyTorch. Exceptions were found training the Faster R-CNN on the

VOC2012 dataset and the LSTM on the Many Things dataset. After introducing the GPU, we see that for the

CNN training the Keras models mostly have a higher usage of the GPU. On the other hand, training the LSTM

models, the PyTorch framework needs more resources. Also, during the training PyTorch relies much more on

the CPU when training the CNN, while it can outsource more resources of the LSTM training to the GPU.

Training the Faster R-CNN, PyTorch has a higher GPU usage than Keras, but utilizes less of the CPU,

Additionally, PyTorch gains a significant advantage when it comes to memory consumption. In general, Keras

consumes more memory than PyTorch during the GPU accelerated training.

The last comparison between the frameworks was made for their convergence behavior. Mostly, models from

both frameworks find their peak performance after a similar number of training epochs. Biggest differences

could be found at the training of the LSTM models on the Penn Treebank and Many Things dataset. At the first

mentioned Keras already peaks between 10 to 20 epochs, while PyTorch needs around 40. At the second one

PyTorch converges way faster, already after less than 20 epochs, while it takes Keras between 60 to 80 epochs

to reach its maximum accuracy level (Elshawi et al. 2021).

A comparison solely on Feed-Forward Neural Networks was made by Munjal et al., testing FNNs with different

hidden layer sizes on data obtained analyzing the impedance and inductance spectra of Bi-Metallic Coins. The

Keras – PyTorch Comparison

18

compared frameworks were Keras, PyTorch, TensorFlow and CNTK. Again, we just use the data regarding

Keras and PyTorch to work with. Each model constructed was implemented identically in both frameworks. All

models have an input layer of 6 neurons and an output layer with 1 neuron. Also, every model had two hidden

layers. In the conducted experiments the number of neurons in the hidden layers variated between 8, 16, 32 and

64. In the training process two Dropout layers with a dropout ratio of 0,3 were included. The optimizer used for

weight tuning was the Adam optimizer. All frameworks use the sigmoid activation function in the output layer

and trained 10 epochs each, with exception of the CNTK framework, which for out comparison has no relevance.

Next to the model size, model training time, prediction time and production accuracy were evaluated.

Figure 3-5. Model structure with 8 Neurons in hidden layers by Munjal et al.

Due to being a high-level API, Keras models had the biggest sizes, consuming between 32 and 53kB depending

on the number of hidden neurons. PyTorch models are way smaller only needing 2,7 to 7,5kB of memory. With

increasing number of neurons, the training times of every model got up. For all model sizes Keras was slightly

faster taking 13,0 to 15,6ms for the training, compared to 17,3 to 22,6ms in PyTorch. Performance results came

in reversed comparing the prediction times. For the models with 8 and 16 neurons PyTorch only needed 0,15

and 1,5ms to predict the results of the training data. The same models took Keras 59,4 and 65,9ms to process.

Even though the prediction times for the bigger models rose significantly in PyTorch, it still outperformed Keras,

taking 21,2 and 33,8ms in PyTorch and 68,5/75,7ms in Keras. To compare the model accuracy, two different

types of generated data, representing two different targets, were used for classification, varying their similarity

during the experiment. Therefore, all models fall to an accuracy of 50% at high similarity, as the model randomly

classifies. The experiments concluded that for the 8-neuron network Keras has the lower accuracy, overall

having lower accuracies on all similarity levels. On the 16-neuron model in the beginning both frameworks have

a comparable accuracy at 99,8% in Keras and 99,51% in PyTorch. But with rising difficulty the PyTorch model

provides more accurate results, dropping later to 50%. The same behavior can be observed in the more complex

models with 32 and 64 neurons per layer. With rising difficulty the PyTorch accuracy performs better in a wider

range, than the Keras model (Munjal et al. 2022).

3.3.2 Conclusion from previous works

Based on the results of the previous works, no absolute conclusion can directly be drawn to predict the

performance of the model implemented in PyTorch, since in the past experiments no clear superior framework

could be found. The results heavily depend on the processed data and the type of model.

The initial statement declaring the higher speed capabilities of PyTorch due to its lower-level API cannot be

completely supported without reservation by the works previously intending a comparison. Considering the

results of the papers previously presented in this section, the intended performance boost of the regression model

must be at least partially questioned.

One common outcome which can be observed in all conducted experiments is Keras’ superiority in terms of

Estimating thread densities in X-rays of old canvases with PyTorch

19

19

accuracy. In our own experiments we can therefore expect a decline in terms of training accuracy compared to

the implementation in Keras. This does not necessarily lead to worse results with the PyTorch implementation

since previous works also pointed out a tendency of Keras in terms of overfitting to training data. A direct

transition from the training to the test accuracy cannot be made. Even if an accuracy decline is to be found, we

can assume it to be in the same scale as the results obtained with Keras.

The implemented regression model contains mostly convolutional elements and in the final layers implements

a Feed forward network. In both types of networks, Keras was found to be faster during the training of the data.

Because of this, we can expect the PyTorch model to need more time for the model training in this case as well.

Since the speedup differed a lot in the analysed works, no concrete speedup difference can be predicted for our

model. We can expect the Keras model to be faster than the following PyTorch version by a factor within a

range of 1,9 and 5 according to previous results.

When it comes to the measurement of test speed, there is no uniform tendency regarding our selected model

types. In most cases PyTorch was found to be faster than Keras during testing. Therefore, we can expect the new

implementation to outperform the Keras model in this section.

In terms of memory consumption, it was clearly observed that PyTorch requires bigger memory resources, and

we can deduce that the same results will be shown in our own model evaluation. To verify this, the memory

consumption on the GPU is tracked in every epoch.

Deriving a supposition from the results of the analysed works, we can expect the PyTorch model and the Keras

model to converge after a similar number of epochs. A slight edge for the PyTorch model can be assumed, as

the models implemented with PyTorch in the experiments by Elshawi et al. (2021) converged slightly faster

computing CNN models, since our model´s structure is mostly dominated by convolutional layers.

Results and predictions made in this section can also vary, because as Elshawi et al. (2021) pointed out that

PyTorch is the greater beneficiary of the GPU acceleration and this can lead to better computational performance

than expected. Also, how well the model can fit on the painting data can have a high influence on the obtained

performance metrics.

21

4 DATASET AND DATA PREPARATION

4.1 Dataset

The dataset we use is the same, which was used by Delgado et al. in both published papers. In this sense, the

model research is based on radiographs of 37 paintings provided by the Museo Nacional del Prado in Madrid.

The selection of paintings features painters, like Rubens, Velázquez, Lorena, Swanevelt, Dughet, Poussin, Both,

Lemaire, and Ribera. From those paintings, we get 240 labeled samples which are sections of the original

paintings with a size of 1,5cm × 1,5cm. Those samples can be characterized with the thread density they

represent, which lies in a range of 6 to 23 threads per cm. As already described in Delgado et al. (2023b), the

samples come in different conditions, regarding resolution and noise.

Figure 4-1. Labels for horizontal and vertical threads

4.2 Data preparation

Different steps must be taken, to make the dataset properly accessible to our regression model. This includes

preparing the data for the spatial counting algorithm, which delivers the labeling for our data. Therefore, in the

first step, the labeled patches, where we possess the information about the location of the horizontal and vertical

threads, have to be assigned to each painting, we have data from. In the end we obtain a list for each painting,

with the names of their available patches assigned. At first, the images are adjusted by creating a histogram of

the grey color scale and equalizing the distribution of the color channel values, changing the contrast and

especially creating higher contrast in low contrast regions. Some images appear more than ones in the index lists

for training, validation and test data. If the algorithm finds to process the same painting twice, the patches are

rotated 90° to increase the data availability.

Dataset and Data preparation

22

Since a meaningful training can only be achieved with higher data availability, we process the available patches,

to inflate the size of the training data through data augmentation. The initial patch size is 1,5cm × 1,5cm from

which we obtain smaller patches with the size of 1cm × 1cm. As the data is processed in Numpy arrays, this

means a change from 300 × 300 pixels to 200 × 200. Those are obtained, by selecting different image sections

and rotating or flipping them around different axes. In each step, eight different sections of the patch are taken.

Also, a small rotation is applied to the image in the range of 1° to 6°. This rotation allows generating training

data for the model, to learn distorted structures around nails etc.

In the next step, the labels for those images have to be created, by creating a separate image of the crossing

points of the patch. For this reason, the available markers for horizontal and vertical threads are placed on top of

each other. The in this way created image is processed with the identical data augmentation steps, to get labels

for all new created “sub-patches”. Since now more data patches are available, the indices for training, validation

and test data have to be adjusted. In the last step, the training data is normalized and translated into a range of

0 – 1, which makes the data easier to train in the learning process.

The actual target value of the regression model is the number of vertical threads in each 1cm × 1cm patch. This

data is needed during the training and validation of the model, as well as a reference, when predicting on the test

dataset. For the calculation of those numbers, the earlier described spatial counting algorithm is applied to the

crossing point maps, returning one scalar value for each patch.

After the data augmentation, the model can be trained on a total of 24360 patches. Additional 4368 patches are

available for validation during the training process. In the final evaluation of the best performing model, 1512

patches make up a test dataset. In total this makes 30240 patches, originals and augmented, to work with. The

total data preparation process takes around 520s in the Keras script, which translates to 8min 40s, during which

the spatial counting algorithms takes most of the time. Executing the preprocessing with PyTorch, the process

takes on average 6s longer as, in the measurement, the translation of the data to tensors and the creation of the

datasets and corresponding data loaders are included.

Figure 4-2. Data preparation times

The Python implementation, realising the selection of smaller patches and data augmentation, is taken from the

preprocessing steps created in (Delgado et al. 2023b). In each training round, the patches are returned by the

augmentation algorithm in form of Numpy arrays, together with an array of labels, after applying the spatial

counting algorithm.

23

5 HARDWARE AND SOFTWARE DETAILS

5.1 Hardware conditions

To accelerate our computations, we rely upon the NVIDIA Tesla P100 GPU with 16GB built-in memory. It is

the world's first GPU designed for AI supercomputing in data centers. The NVIDIA Pascal™ GPU architecture

is the backbone of the computing power delivered by the GPU. Characteristics of this architecture are the 16

nanometer FinFET fabrication technology, in which 150 billion transistors are placed on the GPU chip. This

architecture allows, together with memory optimization of the built-in memory, a performance boost and

acceleration for the training of our neural network implementations (NVIDIA 2023).

5.2 Software environment

The implementation and testing of the models are performed with Python 3.9.7 in a Jupyterlab 3.6.1

environment. For the creation of the PyTorch model, an installation of PyTorch 1.13.0 is used. The set against

Keras model is written with Keras-Tensorflow 2.7.0. To enable the GPU acceleration on die NVIDIA graphics

card, CUDA 11.3.1 is used. Additional memory allocation is measured with the help of the tracemalloc module.

While times are measured with the built-in Python time module, the measurement of the GPU memory

consumption is done with Nvidia-smi 0.1.3. The results of the time managements are stored in the form of

Numpy arrays, using Numpy 1.21.2. To represent and visualize the collected data, plots are created with

Matplotlib 3.4.3 and Seaborn 0.12.2.

25

6 MODEL TRANSLATION AND TRAINING

ith the knowledge gained in section 3 we can get to the model translation step itself. This chapter is

separated into the presentation of the steps taken to translate the model itself, according to the

previously evaluated differences between Keras and PyTorch, and then the translation of the training

code. This code enables the execution and consequently the evaluation of the model. The parameters used in the

model training are also presented within this chapter.

6.1 Model Setup

The model implementation created by Delgado et al. (2023b) in Keras is built by using the functional API,

presented in chapter 3.2.1.1. To call the model a function called regVGG is called in the original implementation.

Within this function all needed Keras layers are defined and linked to one another. As arguments the function

takes the input shape of the tensor in form of a tuple, the number of filters/features applied in the inception

module and an adjustable dropout rate. Like in every Keras model, the first layer has to be a layer of the Input

type (Team 2023d). The layer takes the previously given input shape as an argument.

The following definition of the Inception module is excluded and declared within a separate function. This

InceptionModule2 function takes and input parameter, which is needed, since it represents the tensor which will

be handed to the convolutional layers and connects the layers within the inception function to the layers outside

of the modules. In the function three so called “towers” are defined, allowing the processing of the given input

tensor by the three convolutional layers with different sized kernels. Each tower consists of three layers. The

first one is the Convolutional2D layer (TensorFlow 2023e). In our case this layer is specified with the number

of filters/features declared by the parameter in the Inception module function. Also, every convolutional layer

gets the k × k kernel size parameter. Since a size reduction of the tensor is not wished after applying the

convolution, the padding option ‘same’ is given as an argument, to apply zero padding if needed and return a

tensor with the same size as the input tensor. The kernels get initialized by selecting the ‘he_normal’ option

(TensorFlow 2023a). This kernel initializer takes its values from a truncated normal distribution. This normal

distribution is characterized by being centered around zero and having a standard deviation of:

𝑠𝑡𝑑𝑑𝑒𝑣 = 𝑠𝑞𝑟𝑡 (
2

𝑓𝑎𝑛𝑖𝑛
)

𝑓𝑎𝑛𝑖𝑛 … 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑡𝑒𝑛𝑠𝑜𝑟

Every convolutional layer is followed by a layer for Batch normalization and a ReLU activation function

(TensorFlow 2023c, 2023d). The results of the three towers are concatenated in the next step along the features

axis. After this step, the inception module returns the concatenated tensor for further processing in the module.

To create the setup for an identical model in PyTorch we first create our model class called RegVGGTorch. Here

we can directly observe the main difference emphasized in chapter 3.2.1., since we go from the usage of a

functional API to a class-based approach. This main class inherits the PyTorch Module class (Module —

PyTorch 2.0 documentation 2023). The __init__ function contains the model description and takes our design

parameters. Inspired by the Keras model, the values taken are the input shape of the tensor, the number of filters

W

Model Translation and Training

26

and the dropout rate. In PyTorch no input layer is required and the first layer declared is the inception module.

The inception module itself is implemented in a separate class. Since it is an independent module, it also inherits

the Module class. As parameters we have to hand to the module the number of input channels the tensor will

have, when it is given data to process, and the number of filters applied by the convolutional layers. To obtain

better readability for each “tower” in the Keras model, we create a separate model class containing each

convolutional kernel.

class InceptionModule(nn.Module):

 def __init__(self,

 in_channels,

 num_filters) -> None:

 super().__init__()

 self.inception_3x3 = Inception3x3(in_channels, num_filters)

 self.inception_5x5 = Inception5x5(in_channels, num_filters)

 self.inception_7x7 = Inception7x7(in_channels, num_filters)

 def forward(self, x):

 x_1 = self.inception_3x3(x)

 x_2 = self.inception_5x5(x)

 x_3 = self.inception_7x7(x)

 inception = torch.cat([x_1, x_2,x_3], dim=1)

 return inception

Code 6-1. Inception module

To perform the convolution we choose the nn.Conv2D module from PyTorch (Conv2d — PyTorch 2.0

documentation 2023). Those layers get initialized, with the handed number of input channels/features, the

number of filters to apply and their kernel size, depending on the kernel the respective class is representing. As

a padding option we select ‘same’ and therefore the same like in Keras, to enable zero padding, which is the

standard padding option in PyTorch. The according effect is the unchanged size of the processed image section.

Like in the original model, the convolution is followed by a batch normalization and the ReLU activation

function. For this purpose, we use the nn.BatchNorm2d module, which requires the number of features as

parameter, the tensor returned by the convolutional layer has, as well as the nn.ReLU module (BatchNorm2d —

PyTorch 2.0 documentation 2023; ReLU — PyTorch 2.0 documentation 2023). Every separately implemented

kernel module returns its result to the inception module, in which those results are concatenated along the feature

axis.

Estimating thread densities in X-rays of old canvases with PyTorch

27

27

class Inception3x3(nn.Module):

 def __init__(self,

 in_channels,

 num_filters) -> None:

 super().__init__()

 self.conv_2D = nn.Conv2d(in_channels, num_filters, kernel_size=(3,3),

 padding='same')

 self.batch_normalization = nn.BatchNorm2d(num_filters)

 self.activation = nn.ReLU()

 def forward(self, x):

 x = self.conv_2D(x)

 x = self.batch_normalization(x)

 x = self.activation(x)

 return x

Code 6-2. Inception submodule with 3x3 kernel

According to the model structure, within the model one block layers is created for every level of depth in the U-

Net regression model. In our case the regression model has a depth of five blocks, until we reach the flatten

layer. Every block consists of two or three successive Inception modules, followed by a Max Pooling layer and

Dropout layer. In Keras those layers are represented by the modules MaxPooling2D (TensorFlow 2023i) and

Dropout (TensorFlow 2023h) and get substituted in the PyTorch model with nn.MaxPool2d and nn.Dropout2d

(MaxPool2d — PyTorch 2.0 documentation 2023; Dropout2d — PyTorch 2.0 documentation 2023). In terms

of parameters both versions are treated the same. The Max Pooling layer gets provided with the kernel size,

which in our case is a 2×2 kernel. The parameter for the Dropout layer is the dropout rate given to the model

instance on creation. In the first and second stage of the of the U-Net, two inception modules are used, while in

the following stages three inception modules get applied one after another. Within the same depth of the U-Net

model, the number of filters is the same for each inception module. In the first stage eight filters are applied and

the number of filters gets doubled after every stage up to the fourth stage, where 64 filters get applied by every

inception module. In the fifth stage again 64 filters are used.

self.inception_1 = InceptionModule(in_channels, num_filters)

self.inception_2 = InceptionModule(3*num_filters, num_filters)

self.max_pooling_1 = nn.MaxPool2d((2,2))

self.dropout_1 = nn.Dropout2d(p=dropout)

Code 6-3. Layer 1 of the U_Net structure

After processing the data through the stages with the inception modules, the resulting tensor is flattened. In the

original Keras model, this is done by the Flatten layer (TensorFlow 2023b). Similar functionality can be applied

in PyTorch by using the nn.Flatten layer (Flatten — PyTorch 2.0 documentation 2023). The usage of those

layers is similar and no arguments are handed to the Flatten layers on creation. Next layers in line are the Dense

layers of the Keras model, responsible for the regression itself. In our model two Dense layers are applied with

512 neurons each, followed by an output layer with one neuron, providing the counting result of the thread

counting model. In the Keras framework the Dense module is used and is initialized with the number of desired

neurons and their following activation function (TensorFlow 2023f). After each of the hidden layers, the ReLU

activation function gets applied, while the output layer uses a linear activation function. PyTorchs equivalent of

the Dense module, is the nn.Linear class (Linear — PyTorch 2.0 documentation 2023). As the Keras version, it

gets the number of filters handed as a parameter, but additionally the number of input features needs to be

precalculated and given as a parameter. The nn.Linear module does not include the activation function.

Therefore after this layer, the nn.ReLU layer has to be added, to introduce the activation function.

Model Translation and Training

28

self.flatten = nn.Flatten()

self.linear_1 = nn.Linear(round(in_side_length/2**5)**2 * 24*num_filters,

64*num_filters)

self.relu_1 = nn.ReLU()

self.linear_2 = nn.Linear(64*num_filters, 64*num_filters)

self.relu_2 = nn.ReLU()

self.linear_3 = nn.Linear(64*num_filters, 1)

Code 6-4. Feedforward structure of the model

Since the convolutional layers in PyTorch do not have a parameter to specify the weight initialization, we have

to apply this manually. For this purpose our model class gets another function called _init_weights(). Within the

initialization function, we can call this function with the self.apply() command, which then applies the given

function to all layers of the model. The weight initialization function checks, if the given layer is of the

nn.Conv2D type and if this is the case, the weights of this layer get initialized with the normal distributed

Kaiming initialization (torch.nn.init — PyTorch 2.0 documentation 2023). The Kaiming initialization is another

name for the He initialization used in the Keras model.

 def _init_weights(self, module):

 if isinstance(module, nn.Conv2d):

 torch.nn.init.kaiming_normal_(module.weight)

Code 6-5. Weight initialization function

To connect all defined layers in the Keras framework, using the functional API, every layer gets handed the

output of its predecessor as an argument calling the initialized layer. The resulting output is catched with a new

variable. When every layer and connection is defined, the model has to be completed by calling the Keras Model

class and setting the previously defined input and output layer as inputs and outputs. This resulting model then

is returned by the regVGG function and can be used in the script to process the data.

In PyTorch the connection of the previously defined layers is realized in the forward function of the model class.

On call, the handed data is processed through the layers in the order defined in the forward function. The returned

value of this function is data output of the model, in our case the number determined by the model to be the

number of vertical threads in the image section.

In this way, the realized PyTorch model is identical to the model previously proposed by Delgado et al. (2023b)

in the Keras framework. Their similarity can be proven, next to the structure, by comparing their respective

number of trainable parameters. In our case, both implementations have 10.166.505 trainable parameters, which

is an indication for their identicality.

6.2 Data Loader

To facilitate the data handling within the training loop we can set up a data loader for the training, validation and

testing of the PyTorch model (torch.utils.data — PyTorch 2.0 documentation 2023). At the same time this allows

the training of the data in batches. The DataLoader class provided by PyTorch needs the data to process in form

of a Dataset class. Therefore, we implement our own Dataset class, containing the previously created dataset.

Estimating thread densities in X-rays of old canvases with PyTorch

29

29

class CropsDataset(Dataset):

 def __init__(self, X, Y) -> None:

 super().__init__()

 self.X = X

 self.Y = Y

 if len(self.X) != len(self.Y):

 raise Exception("The length of X and Y do not match")

 def __len__(self):

 return len(self.X)

 def __getitem__(self, index):

 x = self.X[index]

 y = self.Y[index]

 return x,y

Code 6-6. Custom Dataset Class

Our class is based on the basic implementation made by Black (2020). The class implemented is named

CropsDataset and inherits from the PyTorch Dataset class. To create a functional Dataset class, we have to

overwrite the __init__, __len__ and __getitem__ functions. On initialization the __init__ function gets the data

handed in form of a tensor, which we create from a numpy array, and for every data entry the belonging label in

a separate tensor. Therefore, we check if the length of the data tensor and the label tensor match and raise an

error if this is not the case.

With the __len__ function we return the number of entries in our dataset. Lastly, the __getitem__ function returns

the data entry and the corresponding label based on an index. By organizing our data in this class, the data loader

can iterate the dataset and create the batches needed for training in our wished size.

Afterwards we create three different data loaders, one for each type of usage: training, validation and test.

Alongside the dataset we define the batch size and activate the shuffling of our data.

train_loader = DataLoader(CropsDataset(

torch.Tensor(x_rot_train_full[train_idx][:,None,:]),

torch.Tensor(y_train_full[train_idx])),

batch_size=batch_size, shuffle=True)

Code 6-7. Initialization DataLoader for Training Data

The data, used to initialize the data loaders, is obtained, after executing the data augmentation and labelling steps,

which were presented in section 4. Therefore, the data is handled in form of Numpy arrays and converted into

tensors, before being stored within the Dataset class. To ensure that both models train on the same data, a seed

value is given to the augmentation function. It consists out of a fixed seed number, set in the beginning of the

Python script, combined with the number of the training, which is executed. Consequently, in each of the ten

trainings, a slightly different dataset is returned by the augmentation algorithm, to the application of gaussian

filters in the augmentation process. Before each training, a new variation of the training and validation data is

created in form of a Numpy array and handed to the dataset and data loader classes. Then, the data is used for

the training and validation of the model.

6.3 Early Stopping

The next functionality, which we have to realize manually is the early stopping. It allows us to stop the training

Model Translation and Training

30

process, before we reach the previously defined number of training epochs, if no further improvement can be

observed. This form of regularization helps to avoid overfitting the model to the training data (Mustafeez 2020).

In Keras the EarlyStopping class is already defined and can be handed to the fit function of the Keras model as

a callback property (TensorFlow 2023g). Since early stopping is not natively implemented in the PyTorch

framework, we create our own class to handle this task.

The custom EarlyStopping class can be initialized with customizable values for the patience and the minimum

delta. Patience is the number of epochs, in which consecutively no improvement must be found, until the early

stopping is triggered. With the minimum delta, the minimal improvement for each epoch can be set, to be

recognized as improvement by the early stopping class.

class EarlyStopping():

 def __init__(self, patience=20, min_delta=0) -> None:

 self.patience = patience

 self.min_delta = min_delta

 self.counter = 0

 self.min_validation_loss = np.inf

 def __call__(self, validation_loss):

 if validation_loss < (self.min_validation_loss - self.min_delta):

 self.min_validation_loss = validation_loss

 self.counter = 0

 else:

 self.counter += 1

 if self.counter >= self.patience:

 return True

 return False

Code 6-8. Early Stopping Class

After each epoch we must call the early stopping instance with the validation loss previously calculated. On call,

the instance compares the validation loss with the minimal validation loss achieved during the training process,

taking into account the minimal delta value. If an improvement is detected, the patience counter is reset, and the

minimal validation loss is updated. Otherwise, the patience counter is increased by one and compared with the

preset patience value. On reaching the patience level, the early stopping is triggered, interrupting the training

process.

6.4 Training Setup

The training process in PyTorch must be implemented manually as well. That being the case, a training loop has

to be created, in which one loop iteration represents one training epoch of the model. We design our training

loop in a way, that equals the training done with the Keras framework and is backed by the information obtained

in section 3.2.2.

Before entering the training loop, we must create all instances needed to execute the training process. The first

and most important is the model itself and will be created, as described in the previous chapter, with its required

parameters. Since the execution of the model will be done on a GPU, according to PyTorch semantics, the model

must be moved to the GPU. For that reason, in case the GPU is available, we move the model to the GPU by

calling model.cuda() (CUDA semantics — PyTorch 2.0 documentation 2023). The same step needs to be done

for each data and label tensor, processed batchwise in the training loop.

Estimating thread densities in X-rays of old canvases with PyTorch

31

31

model = torch_models.RegVGGTorch(num_filters=number_of_filters,

 dropout=pb_dropout)

if torch.cuda.is_available():

model = model.cuda()

Code 6-9. Model initialization with CUDA

As optimizer we select the Adam optimizer, same as the one, used in the given Keras model. The Adam optimizer

is implemented in the PyTorch framework and is connected to our model, by giving the model parameters as an

argument on initialization (Adam — PyTorch 2.0 documentation 2023). Furthermore, we change the learning

rate to the same value, the Keras model is using, in this case taking the value 1,0e-3.

Even though the current implementation in Keras relies on a fixed learning rate and also the final comparison

between the frameworks will be executed with a constant learning rate during the training process, in the former

training script, a function enabling the variation of the learning rate was given. To also enable this option in the

PyTorch implementation, we use the LambdaLR learning rate scheduler (LambdaLR — PyTorch 2.0

documentation 2023). To make use of its functionality, we define a lambda function, which returns varying

results based on the number of epochs already accomplished in the training process. The function is handed to

the learning rate scheduler, which is connected to the optimizer. After each epoch in the training the loop the

learning rate is updated by calling scheduler.step().

lambda_function = lambda epoch: 1/(1 + epoch/10)

scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lambda_function,

verbose=True)

Code 6-10. Learning Rate scheduler

The loss function to evaluate the performance of our model is the “normalized mean absolute error”. Since there

is no pre-implemented loss function in PyTorch, which normalizes the error on the target data, we implement a

custom loss function. It takes the prediction and target data and returns the mean absolute error, where the

absolute error is normalized on the value of the target data, before calculating the mean. The function must return

a single value, to allow the backtracking of the optimizer.

def normalizedMAE_torch(y_true, y_pred):

 return torch.mean(torch.abs(y_pred - y_true)/y_true)

Code 6-11. Custom Loss function

To enable the early stopping functionality, we create an instance of the custom EarlyStopping class,

implemented earlier. For the early stopping and the model selection after the training process, we need to keep

track of the minimal validation loss achieved during the training, as we want to save the best performing version

of the model. Consequently, we initiate the minimal valid loss with infinity, as a starting point for the variable.

Also, we set the model into training mode, before entering the training loop for the first time.

In the beginning of each epoch, we must reset the training loss. After that, we enter a second loop, iterating the

dataset batchwise. We resort to the data loader, created in the preparation step, which returns the data and label

tensor in the batch size defined on creation. Within the loop, we clear the gradients of all optimized variables,

by calling optimizer.zero_grad(). In the next step we pass the data through our model and catch the outputs in a

variable, so that we can calculate the loss of this iteration with our loss function, comparing the model output

with the target labels. By using the backward pass, the gradient of the loss gets calculated with respect to the

model parameters. Based on those gradients, the model parameters get updated by the optimizer through calling

optimizer.step(). Lastly, in each batch processing, we accumulate the train loss.

Model Translation and Training

32

train_loss = 0.0

model.train()

Iterate training data

for batch_idx, (data, labels) in enumerate(train_loader):

optimizer.zero_grad()

if torch.cuda.is_available():

 data, labels = data.cuda(), labels.cuda()

output = model(data)

 loss = criterion(labels, output)

 loss.backward()

 optimizer.step()

train_loss += loss.item()

Code 6-12. Batchwise Training loop

After processing all data in training mode, the validation data has to be looped, so that we can evaluate the

progress of the training. Before, we instantiate a variable for the validation loss, on which we will accumulate

the validation loss of each processed batch. On processing the validation data, the model is put into validation

mode, to change the processing of the batch normalization to using the full data and deactivate the dropout

layers. The then following loop is similar to the loop iterating the training data, without integrating the optimizer.

Batch wise validation data is loaded to the GPU and processed by the model. The created output is compared

with the labels with the help of the loss function. Both, the validation loss and the training loss, are getting saved

to allow a statistical evaluation and representation.

After each validation run, the validation loss of the current run is compared to the minimal validation loss of

previous epochs. If an improvement can be found, the model is saved to later have access to the model with its

best performance capabilities.

A test loop after finishing the training has the same structure as the validation loop. For testing, we load the best

performing model according to the evaluation during the training. Then the test data, like the validation data, is

loaded batchwise from its data loader, moved to the GPU and passed through the model. A final evaluation takes

place, by calculating again the loss on this partition of the data.

6.5 Performance Analysis Utilities

The actual comparison between the model implementations in PyTorch and Keras is based on the measures of

achieved accuracy, training time, validation time and allocated memory during training. Next to separated

measurement of training and validation time, we also measure the time per epoch and the total training time. To

measure the different times, we use the python time module (Python documentation 2023). We obtain

timestamps, by calling time.perf_counter() before and after each training step, we need to measure. Later we can

subtract the timestamps from one another to calculate the time required to execute this step. All measurements

are saved in a list, to later get the statistical analysis.

Since the model applies a regression instead of a classification, we measure the preciseness of our model by

comparing the results of the loss function applied during the training and validation phase, using the mean

absolute error as loss function. With those we can evaluate how well the models are able to fit the training data.

By also comparing the error on the processing of the test data, we can generate a conclusion on how well the

models can perform on the dataset in general.

The consumption of memory is evaluated based on two measurements. With the tracemalloc module, the

Estimating thread densities in X-rays of old canvases with PyTorch

33

33

general allocation of memory on the RAM can be measured every training. The value we concentrate on is the

maximum memory allocation during one complete training. Secondly, the consumption of memory on the GPU

can be measured separately with the nvidia-smi module. Using this module allows the independent analysis of

the behavior of the two frameworks through third party software, without the need for the use of framework

specific analysis.

For PyTorch the measurement calls can be placed directly within the training loop. This way, timestamps and

memory information can be directly obtained and saved. As the Keras training takes places within the model.fit()

function call, to measure the times for training and validation steps as well as GPU memory consumption, a

separate callback has to be written and handed to the training function.

While every measurement is evaluated separately, we try to draw a joined conclusion using all analyses together

to select a framework, which is the better fit, to implement and process the x-ray data of the paintings.

To allow full comparability, the training parameters for both models are identical. Accordingly, both models use

the same model structure, optimizer, and loss function. The optimizer is the Adam optimizer with a learning rate

of 10-3. With the normalized mean squared error as a loss function, the models were trained batchwise with a

batch size of 32 inputs per cycle. The early stopping used, to prematurely end the training, has a latency of 20

epochs. If early stopping is not terminating the training process, the maximum number of epochs available for

training for both models is 100 epochs.

35

7 PERFORMANCE RESULTS

7.1 Model performance

After a total execution time of two days, taking nearly 48 hours of calculation time, the training of the PyTorch

model was completed. For the training evaluation in total ten separate trainings were executed during this period.

Per Training this leads to a total training time of 4h 43min on average. The times of the individual trainings have

a high variation, ranging from 3h 8min to 6h 16min. This high variation is caused by the different number of

epochs, the model was trained for in each training, until reaching either the maximum number of epochs or the

early stopping requirements. On average, the model was trained for 75,3 epochs, until the early stopping

requirements got reached. The fastest training run finished already after 50 epochs, whereas in three trainings,

the early stopping criteria never got reached and therefore all 100 training epochs were made use of. By taking

the number of epochs into account, we can calculate the average duration per epoch, which leads to the result of

225,34s per epoch. This number can be confirmed by calculating the average value of the epoch time

measurement during the training. A slight difference in value of 0,01s per epoch can be explained by the

additional calculations regarding time measurements and the print of the outputs by the end of each epoch, which

are not included in the pure epoch time measurements.

Each of the conducted trainings achieves a value within a comparable range as a result for the achieved minimal

training and validation loss. Since during the training the performance of the model is evaluated on the achieved

validation loss, the selection of the best performing training run is also done by comparing the validation losses.

We observe that the best performance is achieved by the model in training 7, achieving a minimal validation

loss of 9,89 × 10-3. The best fit on the training data was achieved in training 2, resulting in a train loss of

8,91 × 10-3. In training 7 the minimum value was obtained within a training of 66 epochs, while in training 2 all

100 epochs were executed. While with a growing number of epochs generally a better fit on the training data

can be achieved, no such correlation can be found for the validation data, as seen in figure 7-2.

Performance Results

36

Figure 7-1. Training development PyTorch

Estimating thread densities in X-rays of old canvases with PyTorch

37

37

Figure 7-2. Minimal Train-/Validation loss with total training epochs

Within each epoch, which takes 225,33s, training and validation must be executed. The highest proportion is

needed for the training of the model. On average, the training per epoch takes 217,61s, which is equivalent to

3min 37s and makes up 96,57% of the total epoch time. The validation is much faster and only takes 7,61s to

complete on average.

To achieve this computation, the model and data has to be processed on the GPU, specified in the previous

section. Next to the timings, also the memory consumption on the GPU is evaluated. The model is stored in the

memory of the GPU at all times and the data is loaded batchwise into the memory in each iteration. During the

training the occupancy is constantly around 4,98GB, therefore occupying 31,31% of the total GPU memory of

15,90GB ≈ 16GB.

Next to the GPU, also the RAM memory allocation was traced. It appears, that PyTorch running on the GPU

with sufficient memory does not have the need for additional memory allocation during the training. Throughout

all trainings, the average peak of memory allocation was only 1,62MB, which can be explained with the storage

of measurement variables, to collect and calculate all timers during training.

To obtain an evaluation on the final accuracy of the model, it gets evaluated on a separate test dataset. As a

model the earlier determined best model, with the lowest validation loss, is taken to process the data. The

prediction of the labels for this dataset took 2,7s and resulted in prediction loss of 11,58 × 10-3, which is slightly

higher than the validation loss by the same model. In comparison, the training loss is even higher, as this specific

model from training 7 produced a training loss of 1,44 × 10-2. Those numbers hint, that the model has a good,

generalized fit on the data.

7.2 Comparison to Keras implementation

As a follow-up to the training of the PyTorch model, the Keras model got executed under the same conditions

and the same measurements were taken during the training to allow a one-on-one comparison of the frameworks.

The complete training cycle of ten independent trainings was completed already after 22 hours. On average,

each training took 2h 12min. In comparison with PyTorch this means, that the same model can be trained in less

than half of the time, it takes to train the PyTorch model. Their timings range from a maximum of 2h 43min to

a minimum of 1h 23min.

Performance Results

38

Figure 7-3. Total training times

Again, a big variation in training times can be seen, as those depend on the number of epochs trained in each

session. Still, all the Keras trainings were able to finish faster than all compared PyTorch trainings. The shortest

training in Keras is already finished after 38 epochs through the early stopping mechanism. The highest number

of epochs was found to be 74 epochs, finishing on average after 60,1 epochs. As we can see, none of the trainings

took the full available 100 training epochs, as all of them were stopped prematurely by the early stopping criteria.

Consequently, Keras finishes the training on average 15 epochs earlier than PyTorch. This hints to a faster

convergence of the Keras model. After fewer epochs, and therefore training time, the Keras model reaches the

optimal loss.

Figure 7-4. Trained epochs

Estimating thread densities in X-rays of old canvases with PyTorch

39

39

Figure 7-5. Training development Keras

Not only the number the number of epochs is decisive for the duration of the total training. The training steps,

as well as the validation steps themselves can be executed faster than in PyTorch. For the time per epoch, we

calculate 131,42s which translates to 2min 11s. Most of the period accounts for the training steps with 123,58s,

while 6,11s are needed for the validation. The validation in Keras is only 19,7% faster and makes a smaller

difference. Training steps, on the other hand, can be completed in 56,79% of the time needed with PyTorch.

Those factors lead to a faster completion of every single epoch and give Keras and advantage for a faster

completion of the training.

Performance Results

40

Figure 7-6. Time comparison

Even though Keras has a significant advantage in terms of training time, its performance in terms of accuracy

does not significantly suffer from the faster execution and smaller number of calculated epochs. As to be seen

in figure 7-7, the minimal training loss in most of the trainings is even smaller than the training loss achieved in

PyTorch trainings. Occasionally, PyTorch trainings achieve a better fit on the training data than Keras, but the

median loss is in favour of Keras, as is the distribution of values around it. PyTorch gains a small edge on the

validation loss, but all the differences are very small and do not have a big impact on the prediction outcome of

the respective models.

Figure 7-7. Training and validation loss

Like the PyTorch model, also the implementation in the Keras framework got executed on the same GPU. Both

frameworks utilize the GPU to speed up their calculations. While PyTorch only used roughly one third of the

GPUs memory, Keras uses nearly all the available memory on the GPU. During training the model and tensors

occupy 15.67GB on the GPU, which translates to 98,59% of the total available memory.

Estimating thread densities in X-rays of old canvases with PyTorch

41

41

Figure 7-8. Occupied GPU memory

Apart from the GPU memory, the PyTorch model did not occupy additional memory in the RAM, which we

were able to measure. This behaviour is not transferable to the Keras model. In each training, the Keras model

allocated additionally 12,19GB of memory at its peak to execute its computations. This memory consumption

adds up to the already needed 15,67GB on the GPU. Combined, the maximum memory consumption of the

Keras model is 27,86GB compared to 4,98GB of the PyTorch model. This results in a memory consumption

5,6-times higher than needed to train the model in PyTorch.

Figure 7-9. Memory allocation

To compare the performance of the Keras model on the test dataset, the best Keras model was selected, based

on the achieved validation loss. In this case, the best results were achieved in training 9 with a validation loss of

10,12 × 10-3. The minimal achieved training loss attained by this model is 10,04 × 10-3. The validation loss in

that case is just insignificantly worse than the one achieved by the PyTorch model. Both were tested on the same

test dataset and their prediction time was measured. Keras finished the prediction after 2,91s and attained a test

loss of 10,89 × 10-3. Compared to the PyTorch implementation, the prediction is slightly slower, but results in a

slightly better prediction, even though having the slightly worse validation loss.

Performance Results

42

Figure 7-10. Test time

Figure 7-11. Test loss

7.3 Conclusion from framework comparison

The three main evaluation metrics, which have been covered in the previous section, are timers, memory

consumption and accuracy. While those were solely compared numerically, in this section, the obtained results

are related to the results found in other experiments, which compare the performance of different frameworks

implementing identical deep neural networks. For this purpose, the measurements taken with the regression

model are compared to the predictions made in section 3.3.2, regarding a convolutional model with a feed-

forward section in the end for regression. A summary of the key metrics achieved on our data can be found in

table 7-1.

Estimating thread densities in X-rays of old canvases with PyTorch

43

43

Table 7-1. Performance comparison

 PyTorch Keras

Average Training Time 4,71 h 2,20 h

Average Training Epochs 75,3 60,1

Time per epoch 225,33 s 131,42 s

Time per training step 217,61 s 123,58 s

Time per validation step 7,61 s 6,11 s

Prediction time (on test set) 2,7 s 2,91 s

GPU memory consumption 4,98 GB (31,3%) 15,67 GB (98,59%)

Allocated memory 1,62 MB 12,19 GB

Minimal train loss 8,91 × 10-3 7,66 × 10-3

Minimal validation loss 9,89 × 10-3 10,13 × 10-3

Test loss (with best performing model) 11,58 × 10-3 10,89 × 10-3

At first, the much faster training time of the Keras model is to note, completing the training and therefore also

every epoch around 1,7 times faster, than the PyTorch model. The validation, while being faster, does not display

such a grave slowdown, as validation in Keras is only around 1,25 times faster. This outcome supports the

knowledge and understanding gained in the pre-examinations, where also the Keras framework was found to be

faster in training CNN models. Even though a slowdown of training speed is traced in the PyTorch model, the

expectations of a slowdown are not met. In the pre-examinations, a prediction for the Keras model was made,

expecting it to be faster in a range of 1,9 to 5 times faster than the PyTorch implementation. Only being close to

the range, the slowdown of the PyTorch model is not as grave as anticipated, while still showing the right

tendency.

Next to the training speed, also a prediction on the outcome for pure prediction speed was made, so that already

in section 3.3.2, an edge of the PyTorch model was assumed. While the difference of the timers is marginal,

even on the smaller test set, the faster prediction capabilities of the PyTorch model can be seen in the conducted

experiment, proving the statements made previously.

Evaluating the accuracy of both models, it can be observed that the values of training, validation and test loss

are all to be found within the same order of magnitude. Also, the results achieved by both models are very close

together and do not show many differences. The best model in terms of training loss comes from the Keras

implementation, getting the best fit on the training data. At the same time, the best performing Keras model

achieved the better accuracy on the test dataset. This test accuracy can be achieved even though, after the model

selection, the PyTorch model has the better validation accuracy. Since PyTorch only tops the accuracy in this

metric, the better fit on the validation data could be a coincidence due to the composition of the validation set.

Although PyTorch needs much longer for its training, it cannot take benefits from this additional computing

time. In more than double the average training time, the model is not able to generate results with better accuracy,

but only close and in certain metrics still worse results. The better fit on the training data by Keras at some point

could also be interpreted as overfitting, but by introducing mechanisms, like the early stopping, it is observable

on the validation and test data, that no overfitting is to be found, but generalized results are achieved.

Neither in previous works nor in the results of the comparison made in this work, a superiority of PyTorch in

terms of accuracy could be found. All works have in common that they show Keras better capability to find a

good fit to the training data, when it comes to the processing of CNN networks. In some cases, this fit on the

training data is interpreted as overfitting, but is not the case in this comparison, as proven with the performance

on train and test dataset.

Not only does Keras achieve nearly identical accuracy results in shorter training periods, but in this case, it

converges faster to its loss function minimum. By finishing on average 15 epochs earlier, the result is contrary

to the prediction made in the pre-examinations, where a faster convergence of PyTorch on CNN networks was

predicted.

While the achieved accuracy of both models is similar, a clear tendency can be found evaluating the memory

consumption metrics. The PyTorch model only consumes one third of the GPU memory, Keras is using. Keras

Performance Results

44

is utilizing the full GPU memory available and consequently, PyTorch only consumes one third of the total

available GPU memory. In addition to the GPU memory, Keras allocates up to 12,19 GB of memory at a time.

PyTorch, on the other hand, does not need further memory which needs to be allocated outside of the GPU.

Possible causes for Keras’ high memory consumption can be a regular swap of tensors from the GPU to memory,

since the full model does not fit on the GPU together with the data. Even though both networks are the same, an

explanation of the higher memory needs can be Keras’ nature of a higher-level API, which creates a memory

overhead.

The results of this experiment yield the contrary to the expectations formulated in the pre-examinations. Since

PyTorch was found to have a high memory utilization, also in this experiment, the higher memory consumption

was anticipated. Adding together GPU utilization and maximal memory allocation, this leads to a consumption

5,6 times as high by Keras. In this case, having Keras as the more memory intensive framework, fits instinctively

better to its higher-level API nature. With this knowledge, for the processing of the patch data, PyTorch can be

seen as better suited on systems with less memory availability.

For comparability, both models were trained with the same hyperparameters. Considering the possibility of an

adjustment, the PyTorch training can be optimized due to its smaller memory consumption. By increasing the

batch size, the memory consumption increases but allows a speedup of the training process at the same time.

With this change, an edge for PyTorch can be created and compensate the currently worse performance in the

time consumption metrics.

On the present setup with the given hard- and software availability, Keras is the better fit for the processing and

training of the radiograph data using the current training parameters. It is faster in the training and even achieves

better accuracy on the training and test dataset. PyTorch has a slight advantage in terms of prediction speed, but

which is marginal compared to the speedup during training achieved by Keras. Next to the faster training per

epoch, Keras also shows the better convergence behaviour. The current hardware setup, can deal with the high

memory needs Keras demands, making it the overall better choice for this setup and data.

45

8 CONCLUSION

n this work, we presented a PyTorch implementation of the Inception Regression model, based on the VGG16

– structure. Before implementing the own model, the results previously published regarding the automatic

thread counting analysis were revised.

The parallels in the code implementation for Keras and PyTorch were identified, since the previous Keras model

implantation relies on the functional API, which is available for Keras, but lacks in the library of the PyTorch

API. Because of this, the model had to be translated to an object-orientated structure. We learned about the

needed adjustments in between the training loop of PyTorch and the model training call in Keras and

implemented the additional utilities to enable early stopping functionality, the use of a custom loss function and

the setup for the batchwise training, which needs changes in the training loop and the organization of the data in

the form of data loaders.

This gained knowledge was used, together with a look at the dataset, to construct the new model implementation.

Following those understandings, an exact replication of the network structure in the PyTorch framework was

made possible. In addition to the model and training structure, measurement functionalities were implemented

to evaluate timers for training and validation, memory consumption and accuracy.

Before the evaluation of our own model, an analysis of potential performance improvements or performance

declines was made. Those assumptions are based on the outcomes of previously conducted framework

comparisons. The analysis showed that, using the PyTorch framework, longer training times have to be expected.

Also, the accuracy of the model can suffer from this framework change. Based on the pre-examinations, PyTorch

was also found to be the more memory intensive framework. As previous studies showed, PyTorch can benefit

more from GPU acceleration, which let open the possibility, that it may perform better in the setup. Biggest

influence on the superiority of one framework or the other were the type of network implemented and dataset

worked on. While Keras performed better on FFNs or CNNs, PyTorch thrived on LSTM implementations.

To evaluate the two frameworks, each network got trained ten times in separate training runs, storing the best

performing model according to the achieved validation loss in each training. Comparability was assured using

the identical hyperparameters for each model and in each training run. After picking the best performing model

out of those ten, it is tested another time on a separate test set. Measurements of all ten trainings are considered,

either by observing their median and range or calculating the mean.

Our own measurements in parts match those findings. Using the PyTorch framework, training per epoch took

around 1,7 times longer than with Keras and validation times extended by a factor of around 1,25. As Keras in

our case converges faster to its optimal validation loss and consequently finishes trainings on average 15 epochs

earlier, in the end the total training times are typically more than twice as long. A small improvement through

the framework change can be seen on the prediction timers. The results on accuracy do not differ a lot from the

Keras achievements. Training, validation and test loss are within the same range, while Keras achieves slightly

better performance on the training and test loss, the model with the smallest validation loss comes from the

PyTorch implementation.

In the memory comparison, our own results heavily differ from previous findings. Although PyTorch was said

to be the more memory intensive framework, the opposite is the case in this experiment. The compared memory

I

Conclusion

46

metric relies on the measurements of the utilized GPU memory and the tracing of allocated memory. During the

training, PyTorch only utilized 31,31% of the available GPU memory and did not allocate additional memory.

Keras, on the other side, on average made use of 98,59% of the available 16GB of GPU memory and additionally

allocated 12,19GB of memory at its peak value. Combining those measurements, Keras needs 5,6 times more

memory, than the same model implemented in the PyTorch framework.

Based on those measurements, the preferable model for this type of network architecture, together with the

structure of the data, was searched. Finally, Keras was found to be the superior framework for this case, due to

its faster training times and equal achievements in terms of accuracy, which in terms of terms of training and

test loss were even slightly better. In most of the training runs Keras models got a better fit on the training data.

Even though the memory comparison was in favor of the PyTorch framework, for the decision the setup we

worked on was also considered. The setup is able to handle Keras’ higher memory consumption, while achieving

better results on the other metric. Because of this, Keras is chosen as the preferred framework and unfortunately

no overall improvement can be achieved through the framework change. PyTorch would be the recommendation

for setups with less memory available, since its consumption is much lower, while working with the data.

For future works, PyTorch’s low memory consumption can offer room for improvement. The memory

availability gives the option to increase the batch size, which can speed up the training. This change could

compensate for the current training time deficits. Therefore, we propose to further test the PyTorch model in

different training setups, with the help of a hyperparameter optimization. Possibly, with different training

parameters, a PyTorch model can be created, which exceeds the performance achieved by the Keras model.

47

REFERENCES

Adam — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html, updated on 6/2/2023, checked on 6/2/2023.

Agarwal, Rahul (2019): Moving from Keras to Pytorch - Towards Data Science. In Towards Data Science,

5/28/2019. Available online at https://towardsdatascience.com/moving-from-keras-to-pytorch-f0d4fff4ce79,

checked on 5/5/2023.

BatchNorm2d — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d, updated on

5/29/2023, checked on 5/29/2023.

Black, Sam (2020): Generating batch data for PyTorch - Towards Data Science. In Towards Data Science,

11/16/2020. Available online at https://towardsdatascience.com/generating-batch-data-for-pytorch-

7435b1a02e21, checked on 6/2/2023.

Building Models with PyTorch — PyTorch Tutorials 2.0.0+cu117 documentation (2023). Available online at

https://pytorch.org/tutorials/beginner/introyt/modelsyt_tutorial.html, updated on 5/5/2023, checked on

5/5/2023.

Burnham, Dorothy K. (1980): Warp and weft. A textile terminology. Toronto: Royal Ontario Museum.

Chng, Zhe Ming (2022): Three Ways to Build Machine Learning Models in Keras. In Machine Learning

Mastery, 6/30/2022. Available online at https://machinelearningmastery.com/three-ways-to-build-machine-

learning-models-in-keras/, checked on 5/5/2023.

CIFAR-10 and CIFAR-100 datasets (2017). Available online at https://www.cs.toronto.edu/~kriz/cifar.html,

updated on 4/8/2017, checked on 5/10/2023.

Conv2d — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d, updated on 5/29/2023,

checked on 5/29/2023.

CUDA semantics — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/notes/cuda.html, updated on 6/2/2023, checked on 6/2/2023.

Delgado, A.; Alba-Carcelén, L.; Murillo-Fuentes, J. J. (2023a): Crossing Points Detection in Plain Weave for

Old Paintings with Deep Learning. Available online at https://arxiv.org/pdf/2302.11924.

Delgado, A.; Murillo-Fuentes, Juan J.; Alba-Carcelen, Laura (2023b): Thread Counting in Plain Weave for

Old Paintings Using Semi-Supervised Regression Deep Learning Models. Available online at

https://arxiv.org/pdf/2303.15999.

Dropout2d — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.Dropout2d.html#torch.nn.Dropout2d, updated on 5/31/2023,

checked on 5/31/2023.

Elshawi, Radwa; Wahab, Abdul; Barnawi, Ahmed; Sakr, Sherif (2021): DLBench: a comprehensive

experimental evaluation of deep learning frameworks. In Cluster Comput 24 (3), pp. 2017–2038. DOI:

10.1007/s10586-021-03240-4.

Encyclopedia Britannica (2023): Plain weave | textile. Available online at

https://www.britannica.com/technology/plain-weave, updated on 5/4/2023, checked on 5/4/2023.

Flatten — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html#torch.nn.Flatten, updated on 5/31/2023,

checked on 5/31/2023.

Hendriks, Laura; Hajdas, Irka; Ferreira, Ester S. B.; Scherrer, Nadim C.; Zumbühl, Stefan; Smith, Gregory D.

et al. (2019): Uncovering modern paint forgeries by radiocarbon dating. In Proceedings of the National

References

48

Academy of Sciences of the United States of America 116 (27), pp. 13210–13214. DOI:

10.1073/pnas.1901540116.

Introducing ChatGPT (2023). Available online at https://openai.com/blog/chatgpt, updated on 7/1/2023,

checked on 7/1/2023.

KABAKUŞ, Abdullah Talha (2020): A Comparison of the State-of-the-Art Deep Learning Platforms: An

Experimental Study. In SAUCIS 3 (3), pp. 169–182. DOI: 10.35377/saucis.03.03.776573.

Keras vs PyTorch (2020). In GeeksforGeeks, 2/4/2020. Available online at

https://www.geeksforgeeks.org/keras-vs-pytorch/, checked on 5/4/2023.

Kim, Seongsoo; Wimmer, Hayden; Kim, Jongyeop (2022): Analysis of Deep Learning Libraries: Keras,

PyTorch, and MXnet. In : 2022 IEEE/ACIS 20th International Conference on Software Engineering Research,

Management and Applications (SERA). May 25-27, 2022, Las Vegas, USA. 2022 IEEE/ACIS 20th

International Conference on Software Engineering Research, Management and Applications (SERA). Las

Vegas, NV, USA, 5/25/2022 - 5/27/2022. Piscataway, NJ: IEEE, pp. 54–62.

Koech, Kiprono Elijah (2020): Cross-Entropy Loss Function - Towards Data Science. In Towards Data

Science, 10/2/2020. Available online at https://towardsdatascience.com/cross-entropy-loss-function-

f38c4ec8643e, checked on 5/9/2023.

Korstanje, Joos (2021): The F1 score | Towards Data Science. In Towards Data Science, 8/31/2021. Available

online at https://towardsdatascience.com/the-f1-score-bec2bbc38aa6, checked on 5/9/2023.

Kurama, Vihar (2021): The 15 Popular Deep Learning Frameworks for 2022. In Paperspace Blog, 11/9/2021.

Available online at https://blog.paperspace.com/15-deep-learning-frameworks/, checked on 4/25/2023.

LambdaLR — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.LambdaLR.html#torch.optim.lr_scheduler.

LambdaLR, updated on 6/13/2023, checked on 6/13/2023.

Linear — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear, updated on 5/31/2023,

checked on 5/31/2023.

MaxPool2d — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d, updated on

5/31/2023, checked on 5/31/2023.

MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges (2013). Available online at

http://yann.lecun.com/exdb/mnist/, updated on 5/14/2013, checked on 5/9/2023.

Module — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.Module.html, updated on 5/29/2023, checked on 5/29/2023.

Moltzau, Alex (2020): PyTorch Governance and History - Alex Moltzau - Medium. In Medium, 8/8/2020.

Available online at https://alexmoltzau.medium.com/pytorch-governance-and-history-2e5889b79dc1, checked

on 4/23/2023.

Munjal, Rohan; Arif, Sohaib; Wendler, Frank; Kanoun, Olfa (2022): Comparative Study of Machine-Learning

Frameworks for the Elaboration of Feed-Forward Neural Networks by Varying the Complexity of

Impedimetric Datasets Synthesized Using Eddy Current Sensors for the Characterization of Bi-Metallic Coins.

In Sensors 22 (4), p. 1312. DOI: 10.3390/s22041312.

Mustafeez, Anusheh Zohair (2020): What is early stopping? In Educative, 7/31/2020. Available online at

https://www.educative.io/answers/what-is-early-stopping, checked on 6/2/2023.

N, Lakshmipathi (2019): IMDB Dataset of 50K Movie Reviews. Available online at

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews, updated on 3/9/2019,

checked on 5/10/2023.

NVIDIA (2023): NVIDIA Tesla P100: der fortschrittlichste Grafikprozessor für Rechenzentren. Available

online at https://www.nvidia.com/de-de/data-center/tesla-p100/, updated on 6/21/2023, checked on 6/22/2023.

Estimating thread densities in X-rays of old canvases with PyTorch

49

49

Python documentation (2023): time — Time access and conversions. Available online at

https://docs.python.org/3/library/time.html, updated on 6/4/2023, checked on 6/4/2023.

Red Hat Developer (2022): Build, train, and run your PyTorch model | Red Hat Developer. Available online at

https://developers.redhat.com/learn/openshift-data-science/how-create-pytorch-model/build-train-and-run-

your-pytorch-model, updated on 10/10/2022, checked on 5/5/2023.

ReLU — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU, updated on 5/29/2023, checked

on 5/29/2023.

S Anila; K Sheela Sobana; B Saranya (2018): Fabric Texture Analysis and Weave Pattern Recognition by

Intelligent Processing. Available online at

https://www.researchgate.net/publication/327209131_Fabric_Texture_Analysis_and_Weave_Pattern_Recogni

tion_by_Intelligent_Processing.

Sequential — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html, updated on 5/5/2023, checked on 5/5/2023.

Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project (Good for Anki and Similar Flashcard

Applications) (2023). Available online at https://www.manythings.org/anki/, updated on 4/12/2023, checked

on 5/10/2023.

Team, Keras (2023a): Keras documentation: About Keras. Available online at https://keras.io/about/, updated

on 4/17/2023, checked on 4/23/2023.

Team, Keras (2023b): Keras documentation: The Model class. Available online at

https://keras.io/api/models/model/, updated on 4/17/2023, checked on 5/5/2023.

Team, Keras (2023c): Keras documentation: The Sequential model. Available online at

https://keras.io/guides/sequential_model/, updated on 4/17/2023, checked on 5/5/2023.

Team, Keras (2023d): Keras documentation: Input object. Available online at

https://keras.io/api/layers/core_layers/input/, updated on 5/23/2023, checked on 5/29/2023.

TensorFlow (2023a): tf.keras.initializers.HeNormal | TensorFlow v2.12.0. Available online at

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal, updated on 3/23/2023, checked

on 5/29/2023.

TensorFlow (2023b): tf.keras.layers.Flatten | TensorFlow v2.12.0. Available online at

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten, updated on 3/23/2023, checked on

5/31/2023.

TensorFlow (2023c): tf.keras.layers.Activation | TensorFlow v2.12.0. Available online at

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Activation, updated on 5/20/2023, checked on

5/29/2023.

TensorFlow (2023d): tf.keras.layers.BatchNormalization | TensorFlow v2.12.0. Available

online at https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization, updated on

5/20/2023, checked on 5/29/2023.

TensorFlow (2023e): tf.keras.layers.Conv2D | TensorFlow v2.12.0. Available online at

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D, updated on 5/20/2023, checked on

5/29/2023.

TensorFlow (2023f): tf.keras.layers.Dense | TensorFlow v2.12.0. Available online at

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense, updated on 5/20/2023, checked on

5/31/2023.

TensorFlow (2023g): tf.keras.callbacks.EarlyStopping | TensorFlow v2.12.0. Available online

at https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping, updated on 5/27/2023,

checked on 6/2/2023.

TensorFlow (2023h): tf.keras.layers.Dropout | TensorFlow v2.12.0. Available online at

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout, updated on 5/27/2023, checked on

References

50

5/31/2023.

TensorFlow (2023i): tf.keras.layers.MaxPool2D | TensorFlow v2.12.0. Available online at

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D, updated on 5/27/2023, checked on

5/31/2023.

Terra, John (2020): Keras vs Tensorflow vs Pytorch: Key Differences Among Deep Learning. In Simplilearn,

7/26/2020. Available online at https://www.simplilearn.com/keras-vs-tensorflow-vs-pytorch-article, checked

on 5/6/2023.

The History of Keras: From Research Project to Industry Standard – TS2 SPACE (2023). Available online at

https://ts2.space/en/the-history-of-keras-from-research-project-to-industry-standard/, updated on 4/21/2023,

checked on 4/23/2023.

The PASCAL Visual Object Classes Challenge 2012 (VOC2012) (2020). Available online at

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/, updated on 6/27/2020, checked on 5/10/2023.

The Street View House Numbers (SVHN) Dataset (2011). Available online at

http://ufldl.stanford.edu/housenumbers/, updated on 12/16/2011, checked on 5/10/2023.

torch.nn.init — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_normal_, updated on 5/31/2023, checked on

5/31/2023.

torch.utils.data — PyTorch 2.0 documentation (2023). Available online at

https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader, updated on

5/31/2023, checked on 5/31/2023.

Training and evaluation with the built-in methods. Available online at

https://www.tensorflow.org/guide/keras/train_and_evaluate, checked on 5/5/2023.

Training with PyTorch — PyTorch Tutorials 2.0.0+cu117 documentation (2023). Available online at

https://pytorch.org/tutorials/beginner/introyt/trainingyt.html, updated on 5/5/2023, checked on 5/5/2023.

Treebank-3 - Linguistic Data Consortium (2023). Available online at

https://catalog.ldc.upenn.edu/LDC99T42, updated on 5/10/2023, checked on 5/10/2023.

Yuan, Lin (2020): A Brief History of Deep Learning Frameworks - Towards Data Science. In Towards Data

Science, 12/8/2020. Available online at https://towardsdatascience.com/a-brief-history-of-deep-learning-

frameworks-8debf3ba6607, checked on 4/23/2023.

Zeolearn (2023): Machine Learning- The Complete Guide. Available online at

https://www.zeolearn.com/magazine/what-is-machine-learning, updated on 7/1/2023, checked on 7/1/2023.

