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Contextuality is a distinctive feature of quantum theory and a fundamental resource for quantum
computation. However, existing examples of contextuality in high-dimensional systems lack the necessary
robustness required in experiments. Here, we address this problem by identifying a family of non-
contextuality inequalities whose maximum quantum violation grows with the dimension of the system. At
first glance, this contextuality is the single-system version of multipartite Bell nonlocality taken to an
extreme form. What is interesting is that the single-system version achieves the same degree of
contextuality but uses a Hilbert space of lower dimension. That is, contextuality “concentrates” as the
degree of contextuality per dimension increases. We show the practicality of this result by presenting an
experimental test of contextuality in a seven-dimensional system. By simulating sequences of quantum
ideal measurements with destructive measurements and repreparation in an all-optical setup, we report a
violation of 68.7 standard deviations of the simplest case of the noncontextuality inequalities identified.
Our results advance the investigation of high-dimensional contextuality, its connection to the Clifford
algebra, and its role in quantum computation.
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Introduction.—In quantum theory, measurements cannot
be considered as revealing preexisting properties that are
independent of other compatible observables measured on
the same system. This phenomenon is called contextuality
or Kochen-Specker contextuality [1,2]. It constitutes a
fundamental resource for some quantum information
processing tasks [3,4] and some forms of universal quan-
tum computation such as magic state distillation [5,6] and
measurement-based quantum computation [7–9].
However, a fundamental problem is that arguably the

most interesting forms of contextuality are experimentally
inaccessible as they require high-dimensional quantum
systems unavailable within current experimental platforms
(for an extended discussion, see [10]). This problem
affects extreme forms of contextuality [11,12], interesting
temporal correlations [13,14], practical applications of
contextuality such as dimension witnessing [15,16], self-
testing [17,18], sequential measurements-based machine

learning [19], and topologically protected quantum com-
putation [20]. To attack this problem, one way is by looking
for new high-dimensional systems [10]. Another comple-
mentary approach is to identify forms of contextuality that
are much more robust to noise.
The objective of this work is to produce robust con-

textuality in high-dimensional quantum systems. The
strategy we follow is looking for extreme forms of Bell
nonlocality, which are multipartite versions of contextual-
ity, and using the graph-theoretical approach to quantum
correlations [21] to study single-particle versions of them.
We observe that we can preserve the degree of contextuality
but use a smaller dimensional quantum system. That is,
there is a kind of “concentration” of contextuality in the
transition between the multipartite and the single-particle
cases. As a consequence, sequential measurements on a
high-dimensional indivisible system can lead to quan-
tum correlations whose violations of the corresponding
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noncontextuality inequalities grow with the system dimen-
sion. Moreover, the violations require Hilbert spaces
smaller than that of the composite system manifesting
the same degree of contextuality. This enhances the
contextual correlation’s robustness to noise and allows
us to experimentally observe contextuality in high-dimen-
sional systems. To demonstrate our findings, we report the
experimental results of a path-encoded photonic qudit of
d ¼ 7 that yields, when quantified by the quantum-classical
ratio [12], the highest degree of contextuality ever observed
on a single system.
Method.—Bell nonlocality can be seen as a form of

contextuality in which the requirement for compatibility is
achieved using observables acting on spatially separated
subsystems. Therefore, one can trivially convert every viola-
tion of a Bell inequality into a violation of a noncontextuality
inequality that preserves both the degree of contextuality and
the dimension of theHilbert space [22,23]. Amore intriguing
approach is to associate every Bell operator with a graph
indicating the exclusivity of a set of Bell experiment events
[21], that is, to specifywhich pairs of events are impossible to
happen simultaneously. Then, by identifying a contextuality
witness that shares the same graph of exclusivity, we can
achieve a greater quantum violation and/or employ smaller
dimensional systems [24–27].
Our starting point is the observation that the n-qubit

Mermin-Ardehali-Belinskii-Klyshko (MABK) Bell inequal-
ities [28–30] have maximum quantum violations that satu-
rate the no-signaling bound and grow exponentially with the
number of qubits. Using the graphs of exclusivity of each
Bell MABK operator, we identify a family of noncontex-
tuality inequalities that admit a single-particle realization.
We then show that the minimal Hilbert space dimension
required to achieve its maximal quantum violation is smaller
than that needed to achieve the maximal quantum violation
of the correspondingMABK inequalities. This phenomenon,
hereafter called “contextuality concentration,” is not limited
to the MABK inequalities but also occurs for the bipartite
three-settings Bell inequality [26,31] and, as shown here, for
the Bell inequalities for graph states [32–34]. Our emphasis
on the MABK inequalities is motivated by their high degree
of nonlocality, resistance to noise, and low requirement of
critical detection efficiency [35].
Extreme contextuality in high dimensions.—The MABK

inequalities for the n-party, two-setting, two-outcome, or
ðn; 2; 2Þ Bell scenarios with n ≥ 3 odd can be written as
follows [28]:

Mn ¼ hMni ≤
NCHV

2ðn−1Þ=2; ð1Þ

where Mn¼ð1=2iÞPν∈f�1gν⊗n
j¼1 ½AðjÞ

1 þ iνAðjÞ
2 � and the

operators AðjÞ
k ; k ∈ f0; 1; 2g have eigenvalues �1. The

superscripts differentiate the index of qubits, h·i indicates
expectation value, and NCHV means the inequality holds
for any noncontextual hidden-variable theory. Its maximal

quantum violation, Mn ¼ 2n−1, is achieved by choosing

Pauli-like operators ½AðjÞ
1 ; AðjÞ

2 � ¼ 2iAðjÞ
0 that pairwise anti-

commute, and using the Greenberger-Horne-Zeilinger

(GHZ) state jGHZni ¼ ð⊗n
j¼1 jAðjÞ

þ i þ i ⊗n
j¼1 jAðjÞ

− iÞ= ffiffiffi
2

p
,

with jAðjÞ
� i being the �1 eigenstate of AðjÞ

0 .
To apply the graph-theoretical approach, we rewrite Mn

as a linear combination of rank-1 projectors: Mn ¼P
22n−2

k¼1 Πk −
P

22n−2

k¼1 Π0
k. The exponent 2n − 2 is due to

Mn having 2n−1 terms and each term having 2n−1 positive
(negative) projectors. By keeping only the projectors
with positive signs, a witness of contextuality can be
expressed in terms of event probabilities. Explicitly,
μn ¼

P
22n−2

k¼1 hΠki ¼ Mn=2þ 2n−2. Let us callGn the graph
of exclusivity of the events in μn; we illustrate the case of
n ¼ 3 in Fig. 1 and elaborate the procedure in
Supplemental Material [36]. According to the graph-
theoretical approach, the noncontextual bound and quan-
tum maximum of μn are

μn ≤
NCHV

αðGnÞ ¼ 2ðn−3Þ=2 þ 2n−2 ≤
Q
ϑðGnÞ ¼ 2n−1; ð2Þ

where αðGnÞ and ϑðGnÞ are the independence and Lovász
numbers of Gn, respectively [21]. The first observation is
that the gap between noncontextuality and quantum theory
is ϑ=α ¼ 2 − 2=ð1þ 2ðn−1Þ=2Þ, and thus increases with n.
We now proceed to show that the new graph-theoretical

inequality, Eq. (2), is stronger than the MABK inequality,
Eq. (1), in the sense that the quantum maximum of μn
exploits only 2n − 1-dimensional Hilbert space—one less
than in the n-qubit Bell scenario. The proof is by explicit
construction. Let us denote the juxtaposition of the pro-
jectors in Eq. (2) as A ¼ ðΠ1Π2 � � �Π22n−2Þ; then,

rankðAÞ¼2n−dimðsolution space ofAx¼00 �� �0|fflfflffl{zfflfflffl}
n

Þ; ð3Þ

FIG. 1. The graph of exclusivity associated with the events in
μn for n ¼ 3. The points connected by a line represent pairs of
mutually exclusive events. The four points on a colored quadri-
lateral represent four mutually exclusive events.
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where x is a 2n-dimensional ray. However, the only
solution to Ax ¼ 00…0 is a phase-flipped GHZ state:

Að1Þ
0 jGHZni ¼ ð⊗n

j¼1 jAðjÞ
þ i − i ⊗n

j¼1 jAðjÞ
− iÞ= ffiffiffi

2
p

. To check

the validity of the solution we observe that, as Að1Þ
0 and

Að1Þ
1 ðAð1Þ

2 Þ anticommute, an additional Að1Þ
0 in the state will

cause every term in Eq. (1) to inverse sign. Therefore, for
the phase-flipped GHZ state, Mn ¼ −2n−1. Translating it
into the event probabilities, we immediately find that μn
evaluates to 0. The solution is unique because only the
GHZ state maximally violates Eq. (1). Consequently, the
projectors in A span only a 2n − 1-dimensional space and
can be realized in a quantum system with the same
dimension.
The above results show that some forms of multipartite

nonlocality can be considered originating from contex-
tuality in lower dimensions and, reciprocally, that some
forms of multipartite nonlocality can be “concentrated”
into single-particle contextuality with a dimension advan-
tage. In addition, the maximal quantum violation
of Eq. (2) can be efficiently obtained by the semidefinite
program of Lovász optimization [16]; one possible reali-
zation for the n ¼ 3 case is given in Supplemental
Material [36]. This is in stark contrast with the situation
in Bell nonlocality, where the maximal violation is
not decidable even with a hierarchy of semidefinite
programs [61].
High-dimensional contextuality without inequalities.—

Just as nonlocality can be revealed by Hardy- and
GHZ-type proofs [62,63] without using inequalities, the
same can be done for contextuality [64–66]. However,
no constructions of such proof are known for high-
dimensional systems.
Here, we report a large class of logical contextuality

from the exclusivity structures of the so-called graph
states [67,68]. Using Clifford algebra, we prove in
Supplemental Material [36] that, if the representation
of an n-qubit graph state has an odd number of vertices
and at least one universal vertex, the events correspond-
ing to the GHZ-type nonlocality produced by the graph
state will induce a graph of exclusivity that can be
implemented in a 2n − 1-dimensional Hilbert space.
Therefore, graph states are ideal candidates for showcas-
ing examples of contextuality concentration. Moreover,
our construction here can secure a 100% success prob-
ability of observing the Hardy-like events violating
noncontextuality, thus paving the way for a robust
experimental observation of logical contextuality in
high-dimensional systems.
We develop the case n ¼ 3, where the only graph state,

up to local operations, is the GHZ state. In this case, the
graph of exclusivity coincides with the one of the n ¼ 3
MABK inequality. Subject to the exclusivity depicted by

the graph in Fig. 1, the logical contextuality can be
formulated as follows:

ð4Þ
Here, Pð1jiÞ denotes the probability that the measurement
outcome of the observable Πi is 1 and Psuc is the success
probability for observing events forbidden in noncontex-
tuality theories. The proof of Eq. (4) and the settings of
projectors achieving the quantum maximum are deferred to
Supplemental Material [36].
Experiment.—We present an experimental test of the

simplest case of the noncontextuality inequalities in Eq. (2)
with measurements on a seven-dimensional quantum sys-
tem. The system is encoded in the photonic path degree of
freedom and our experiment uses the techniques of spatial
light modulation [69–71].
The main technical challenge of the experiment is to

acquire the statistics of two-point sequential measurements
with a photonic seven-dimensional system, which is an
open technical problem for dimensions high enough for
observing contextuality concentration. To this objective, we
have devised a quantum-inspired procedure to realize a
nondemolition measurement with destructive measure-
ments followed by a repreparation of the postmeasurement
state [72]. The procedure allowed us to emulate a sequence
of two ideal measurements (i.e., yielding the same outcome
when repeated and not disturbing compatible observables)
of two rank-1 projectors Πi and Πj with simple prepare-
and-measure experiments [73,74]. Concretely, it works as
follows: first, perform a destructive measurement of Πi.
If the measurement yields the outcome 1, then prepare
the state jii; if it yields the outcome 0, then prepare
jψi − hijψijii, that is, the initial state with the þ1 eigen-
state of Πi subtracted. Finally, measure Πj on the repre-
pared state. Crucially, the context-independent, repeatable,
and minimally disturbing nature of the procedure would
allow us to justify the assumption of noncontextuality by
resorting to classical physics. Therefore, violation of a
noncontextuality inequality via the procedure certifies the
experiment itself is indeed manifesting contextuality.
To witness the high-dimensional contextuality, we

extracted three kinds of quantities from the results of the
prepare-and-measure experiment: (i) the probabilities in
Eq. (4) demonstrating the Hardy-type contextuality; (ii) the
quality of exclusivity, i.e., fPði; jj1; 1Þj½Πi;Πj� ¼ 0g for
establishing a lower bound of μ3 with realistic measure-
ments and check the measurement repeatability; and (iii) the
absence of signaling between compatible measurements for
confirming the ideality of the measurement and showing
the observed effect was indeed due to contextuality, instead
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of disturbance. Explicitly, for estimating μ3 under imperfect
exclusivity, we used the fact that [72]

μ3 ≥
X

k

Pð1jkÞ −
X

ði;jÞ
Pð1; 1ji; jÞ; ð5Þ

where k ∈ VðG3Þ is an index associated with a vertex in G3

and ði; jÞ ∈ EðG3Þ is an edge in G3. The no-signaling
condition between pairs of compatible observables Πi and
Πj can be verified by checking if all the following signaling
factors vanish:

εij ¼ Pð1jiÞ − Pð1; −ji; jÞ; ε0ij ¼ Pð1jiÞ − Pð −; 1jj; iÞ;
εji ¼ Pð1jjÞ − Pð1; −jj; iÞ; ε0ji ¼ Pð1jjÞ − Pð −; 1ji; jÞ:

ð6Þ
That is, the marginal probability of one measurement
is statistically independent of the other, regardless of
the sequence of two measurements performed. Here,
Pð1; −ji; jÞ ¼ Pð1jjÞPð1ji ¼ 1; jÞ þ Pð0jjÞPð1ji ¼ 0; jÞ
denotes the marginal probability of Πi yielding outcome 1
when Πj is subsequently measured; similarly definitions
hold for the other marginal probabilities.
Our experimental setup is illustrated in Fig. 2(a). Photons

from an attenuated 800 nm laser were expanded and
the wavefront resembled a Gaussian beam with a waist
radius of 1.6 mm. Throughout the experiment, we used the
spatial mode degree of freedom of the photons to register
the seven-dimensional qudit, where the computational
bases j1i through j7i are the angular states localized within
a circular sector of the Gaussian beam. To generate these

angular states and their superpositions, we casted photons
on a spatial light modulator (SLM) that displayed a phase-
only hologram of seven circular sectors [cf. Fig. 2(b)]. The
hologram in each sector displayed a blazed grating with a
different phase range; consequently, a fraction of photons
underwent diffraction, resulting in their propagation direc-
tion being altered toward the second SLM. By adjusting the
maximum phase variation of the grating to control the
amplitude of photon wave functions in the seven sectors,
we can realize the encoding of arbitrary qudit states [75],
with an explicit example shown in Fig. 2(c).
The modulated photons then propagated through a 4f

correlator, where the unwanted diffraction orders were
filtered by a pinhole at the focal plane of the first lens.
At the output plane of the correlator, a second SLM
implemented the qudit measurement by employing the
reverse transformation of the encoding process [76,77]. In
this way, choices of the initial states and the measurement
settings were realized by displaying different holograms
on the first and second SLM, respectively. To check the
precision of the setup, we prepared all holograms used in
the experiment, measured the spatial wave function profiles
directly before the second SLM with a charge-coupled
device camera, and compared them with theoretical pre-
dictions (cf. Supplemental Material [36]). The results
revealed an average Pearson correlation [78] of 95.5%
between theoretical and experimental wave function pro-
files. Finally, a telescope shrank the beam waist, and the
photons were collected by a single-mode fiber (SMF) to
determine the detection probability of an initial state on a
specific measurement basis with photon counting.
Our experimental results are presented in Fig. 3. For the

observation of Hardy-like contextuality [Eq. (4)], we
(a)

(b) (c)

FIG. 2. Experimental setup. (a) Optical setup of the prepare-
and-measure experiment. A spatial light modulator (SLM)
encoded the initial state by modulating the photonic wavefront.
A 4f correlator mapped the wavefront to the second SLM, which
implemented the measurement. The photons are collected by a
single-mode fiber (SMF) and sent to the single-photon avalanche
detector (SPAD) for photon counting. (b) A sample hologram
showing the encoding scheme. The corresponding state is
jψi ¼ ðj1i þ j2i þ j3i þ j4iÞ=2. (c) An example of calculated
versus measured wave function profile. The holograms and their
characterization results for all states (projectors) needed in the
experiment are shown in Supplemental Material [36].

(a) (b)

FIG. 3. Experimental results. (a) Stacked bar chart of event pro-
babilities, pi ¼ Pð1jiÞ, with the seven-dimensional photonic
system.Given all prerequisites in former columns. The last column
with orange background has noncontextual (quantum) predictions
of ideally 0(1), therefore manifesting logical contextuality.
The error bars denote the 1σ standard deviations calculated
by assuming a Poissonian counting statistics. (b) Orthogonality
between the projectors measured determined by preparing the
nondegenerate eigenstate of every projector and measuring the
detection probabilities on their corresponding compatible projec-
tors. Only the grids corresponding to different compatible mea-
surements are colored (the others are white).
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displayed the hologram of the initial state on the first SLM
and iterated the holograms on the second SLM over all the
measurement basis. The total probabilities on the left-hand
sides of the three constraints and the final nonclassical
event were measured to exceed 97.6%, exhibiting a sharp
contradiction with the prediction from noncontextuality. To
ensure reasonable exclusivity of the compatible measure-
ments in the experiment, pairs of holograms corresponding
to orthogonal projectors were displayed on the two SLMs.
The average detection probabilities for these settings were
determined to bePð1; 1ji; jÞ ¼ 0.64%—almost vanishing as
expected for ideal measurements. By substituting the
recorded probabilities into Eq. (5) to compensate for the
deviations from ideal exclusivity and test the quantitative
noncontextuality inequality, we found that μ3 ≥ 3.821�
0.012, violating the prediction of noncontextuality by
68.7 standard deviations. Here, the standard deviations
were estimated by assuming a Poisson distribution for the
statistics and resampling the recorded data (cf. Supplemental
Material [36]).
To verify the no-signaling condition, we prepared the

conditional state after the first projector measurement for
each edge in the exclusivity graphG3, and then measured it
with the second projector. Owing to the normalization of
counting, the effect of a later measurement upon an earlier
one, represented by εij and εji, would always be zero. The
result of ε0ij and ε

0
ji in the no-signaling test for the 72 edges

in G3 is shown in Fig. 4. Most of the signaling factors are

within 1 standard deviation from zero, with a quantitative
characterization gave jε0j ¼ ð1.17� 1.39Þ%. The small
nonzero values can be considered to originate from
experimental imprecision and small drifting over time,
and the overall results complied well with the no-signaling
requirement.
Conclusions.—We have identified quantum correlations

resulting from sequential measurements on a single particle
that manifest extremely strong forms of contextuality in
lower dimensions. These correlations exhibit large viola-
tions of noncontextuality inequalities and perfect success
probabilities for single-shot detection of contextuality.
An accompanying photonic experiment fleshed out the
theoretical findings by simulating sequences of ideal
quantum measurements with destructive measurements
and observed the highest degree of contextuality on a
single system (cf. Supplemental Material [36] for a com-
parison with previous studies). Although the present result
only shows a dimension reduction of 1, we envisage that
contextuality concentration can be scalable by using graph
products, thereby offering additional advantages. Because
contextuality in stabilizer subtheory-based exclusivity
structures investigated here forms the backbone of quantum
computation architectures [5–9,79–81] in many different
physical systems [20,82–93], our work may stimulate the
development of high-dimensional quantum information
processing and novel quantum algorithms.
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