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Abstract
Stochastic orders or stochastic dominance as they are known in economics, have been
widely studied and applied in a variety of scientific fields, from biology to Systems
Engineering. However, to the best of our knowledge, there is an application gap in the
field of Sports Analytics or Sports Sciences. In this paper, we attempt a first approach
to a possible application of stochastic orders to a dataset of LaLiga (Spain) football
matches. Our aim is simply to show how a comparison can be extended beyond a simple
metric comparison. In particular, we will focus on the first and second dominance
stochastic orders as they are the most intuitive and simple to interpret and are also the
most widely used in economics.
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Resumen
Los órdenes estocásticos o las dominancias estocásticas tal como se conocen en
Economía se han estudiado y aplicado ampliamente en diversidad de campos científicos,
desde la Biología hasta la Ingeniería de Sistemas. Sin embargo, hasta donde llega
nuestro conocimiento hay una laguna de aplicación dentro del ámbito de las Ciencias
del Deporte. En este trabajo, pretendemos una primera aproximación a una posible
aplicación de los órdenes estocásticos a un conjunto de datos de partidos de fútbol de
LaLiga (España). Nuestro objetivo simplemente es mostrar como se puede ampliar
una comparativa más allá de una simple comparación de métricas globales o totales.
En particular, nos detendremos en los órdenes de dominancia estocástica de primer y
segundo orden por ser los más intuitivos y de más sencilla interpretación y por ser los
más usados en Economía.
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An Application of Stochastic Dominances in Sports Analytics

1 Introduction.

Most of the human activities in the past have been based on the comparisons between things
to choose the optimal decision taking into account the basic principle of: ’the more profit, the
better decision is’. However, a lot of decisions in real life are selected with uncertainty and under
risk since some noncontrolled random phenomenons can influence in the final result. Therefore,
the optimal decision in this case has to be justified by using the distribution function of the
random phenomenons, if it were known. The simplest way of comparing two distribution functions
is by the comparison of the associated means. Such a comparison is based on only two single
numbers, and therefore it is often not very informative. For example, assume that we want to
compare the effectiveness of field-shot for basketball players. For this comparison, the percentage
of success in field-shots is to be used. However, players have not the same effectiveness along a
season in different circumstances. That is, the effectiveness has a proper variability that can be
modelled by using a probability distribution and, in this way the comparison is more complete.
Consequently, there exists the need to establish an approach to compare distributions without the
use of their parameters such as means, variances, and so on. These kinds of comparisons between
distribution functions are called stochastic orders in the literature. These orders have been widely
applied in Economics, Biomedicine, Engineering, and different fields in Sciences (see (Shaked &
Shanthikumar, 1994)), but in Exercise and Sports Sciences, so far as we know, we only found one
paper (see (Damodaran, 2006)). In (Damodaran, 2006), cricket players are viewed as securities and
the team as a portfolio. Stochastic orders are referred to as stochastic dominance in the classical
economics literature. They have been widely studied, analysed, and applied to different uses. One
of the best known manuals in this regard is the book by (Denuit, Dhane, Goovaerts, & Kaas, 2005),
among others. A lof of works dealing with this topic in the literature and a search on Matchscinet
result in a total of 383 papers from (Hadar & Russell, 1971) to (Kopa, Kabašinskas, & Šutiené,
2022).

Within Sports Analytics, it is widespread to compare sports performance by means of metrics
of a similar nature to the expected goals such as expected attendance or expected threat. There
are also numerous contributions on this topic in specialised journals and congresses. We find it
very difficult and complex to make a selection of papers in this topic because of the large number
of them and, of course, because of their relevance in this field. Nevertheless, and taking into
account the historical evolution and the relationship with the subject of this article, we believe
that the following works can be representative: (Ensum, Pollard, & Taylor, 2004), (Pollard, Ensum,
& Taylor, 2004), (Macdonald, 2012), (Ruiz, Lisboa, Neilson, & Gregson, 2015), (Rathke, 2017),
(Spearman, 2018), (Tippett, 2019) and (Singh, 2019), among others. However, for those readers
who are interested in more information or further information on this topic, we recommend the
literature on this subject in the following website (Expected Goals Literature, n.d.).

Lately, the use of expected goals in football is becoming increasingly popular in the media and
among non-statisticians. However, there is still a long way to go both from a research point of view
and in terms of making it a term in the fan’s sporting vocabulary. As discussed at the beginning
of this section, comparing two sets of data through their respective means may not be sufficient.
This is the case with metrics such as expected goals. This is why in this article we intend to extend
the interpretation of this type of metric by using stochastic orders. In essence, an expected goal
is intended to measure the quality of a shot, regardless of the sport in which it is applied. This
quality is measured through the probability of scoring a goal under the conditions in which the
shot is taken. For example, in football, there are many factors that influence this probability, such
as the distance to the goal, the angle of the shot, the number of defenders between the goal and
the shooter, whether the shooter is right or left footed, whether the shot is taken in open play or
in any other type of play, the position of the goalkeeper, etc. Depending on these factors, the most
commonly used method is logistic regression. Not all data providers use the same factors to make
this estimation, and that is why there is a difference between these values depending on which
provider gives the information. How we will expand on this interpretation will be the focus of this
article.

The article is organised as follows. Section 2 deals with the mathematical foundations of
stochastic orders. In particular, we will focus on the usual or first-order stochastic order and the
concave increasing or second-order stochastic order. This section also contains the comparison in
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these stochastic senses of beta distributions as well as mixed betas which play an important role
in the aim of the article. In Section 3, we explain the analysed dataset from LaLiga (Spain) and
the provider who provided us with the data. Section 4 deals with the results obtained and the
explanation of the theoretical results by means of two cases extracted from these data. Finally,
we conclude the article with a section devoted to a discussion of the results obtained and another
section with conclusions and possible future research lines.

2 Mathematical backgrounds
In this section, useful mathematical concepts which will be used later are explained. In short, we
recall the notion of stochastic orders that have been widely used in different scientific areas and we
also give the beta distribution and its properties which are used in Bayesian Data Analysis (BDA).

2.1 Stochastic Orders
The first and the most intuitive notion of stochastic order is called the usual stochastic order. The
basic idea of this order is about what distribution has the higher quantiles. This concept is defined
as following.

Definition 2.1. Let X and Y be two random variables with distribution function F and G,
respectively. Then, X is said to be smaller than Y in the usual stochastic order (denoted by
X ≤st Y ) if

E [φ(X)] ≤ E [φ(Y )] for all increasing functions φ : R −→ R, (1)

provided expectations exist.

This order is known in Actuarial Sciences as the first stochastic dominance (see (Denuit et al.,
2005)). A simple sufficient condition which implies the usual stochastic order is now given. Let
a(x) be defined on I, where I is a subset of the real line. The number of sign changes of a in I is
defined by

S−(a) = supS− [a(x1), a(x2), . . . , a(xm)] , (2)

where S−(y1, y2, . . . , ym) is the number of sign changes of the indicated sequence, zero terms being
discarded, ant the supremum in (2) is extended over all sets x1 < x2 < · · · < xm such that xi ∈ I
and m <∞. Then, the following theorem can be found page 10 of (Shaked & Shanthikumar, 1994).

Theorem 2.2. Let X and Y be two random variables with (discrete or continuous) density
functions f and g, respectively. If

S−(g − f) = 1 and the sign sequence is −,+,

then X ≤st Y.

Another important stochastic order is the well-known as the increasing concave [convex] order.
The definition is as follows.

Definition 2.3. Let X and Y be two random variables. Then, X is said to be smaller than Y in
the increasing concave [convex] order (denoted by X ≤icv[icx] Y ) if

E [φ(X)] ≤ E [φ(Y )] for all increasing concave [convex] functions φ : R −→ R, (3)

provided expectations exist.

For more details about this order see (Shaked & Shanthikumar, 1994). Similarly to Theorem
2.2, it can be proved that if X and Y are two random variables with distribution functions F
and G, respectively, and with finite means such that E(X) ≤ E(Y ), and S−(G − F ) ≤ 1 and
the sign sequences is −,+ when equality holds, then X ≤icv Y, (see Theorem 4.A.22 in (Shaked
& Shanthikumar, 1994)). Furthermore, assume that the random variables X and Y are defined
on a bounded support and they are nonnegative. Hence, it can be shown that if f and g are the
density functions of X and Y , respectively, then S−(f − g) = 2 and the sign sequences is +,−,+
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implies that S−(G − F ) = 1 and the sign sequences is −,+. The proof of this result is trivial by
using Theorem 3.A.44 and Theorem 4.A.22 in (Shaked & Shanthikumar, 1994). It is well-known
that the icv ordering is a partial ordering. To avoid this fact, we define an ordering based on an
inequality measure widely connected with the Gini Index. Let CVX be the coefficient of variation
for the random variable X, that is CVX =

√
var(X)/E(X), and similarly for CVY .

Definition 2.4. Let X and Y be two random variables with finite variance. It is said that Y is
better than X in variation sense (denoted by X ≤cv Y )if CV 2

Y ≤ CV 2
X .

Remark 1. The variation ordering has interesting properties.

1. X ≤cv Y if, and only if cX ≤cv dY for all c, d in R.

2. If a > 0 and a 6= E(X) then X ≤cv a+X.

3. If E(X) 6= 0 then X =cv
X
σX
, where var(X) = σ2

X .

From now on, we use the notation ≤∗ when the ≤st or the ≤icv[icx] orderings will be referred.
Most of real-life random variables might have been generated from a mixture of several distributions
and not a single distribution. The mixture distribution is a weighted summation of n distributions
{g1(x; θ1), · · · , gn(x; θn)} where {ω1, · · · , ωn} are the corresponding weights . As is obvious, every
distribution in the mixture has its own parameter θi ⊂ Rki . The mixture distribution is formulated
as:

f(x; θ1, · · · , θn) =

n∑
i=1

ωig(x; θi), subject to
n∑
i=1

ωi = 1.

For commodity, we also denote a mixture distribution by using random variables: X =
∑n
i=1 ωiXi.

The distributions can be from different families, for example from beta and normal distributions.
However, this makes the problem very complex and sometimes useless; therefore, mostly the
distributions in a mixture are from one family (e.g., all beta distributions) but with different
parameters.

It is immediately obtained the following results:

1. Assume that X and Y are two mixture distributions with the same weighting parameter and
with n = 2. Let X1(Y1) and X2(Y2)be the corresponding components for X(Y ), respectively,
in such weighted summation whose parameters have the same dimension. By using Theorem
1.A.3 and Theorem 4.A.8 in(Shaked & Shanthikumar, 1994), if Xi ≤∗ Yi for i = 1, 2 then
X ≤∗ Y.

2. Assume that X = p1X1 + (1− p1)X2 and Y = p2X1 + (1− p2)X2 two mixture distributions.
If p1 ≤ p2 and X2 ≤∗ X1 then X ≤∗ Y. This result is shown by using definitions 2.1 and 2.3.

2.2 The Beta distribution

The beta distribution plays an important role in BDA (see (Ma & Leijon, 2011)). For example,
the beta distribution can be used to describe the initial knowledge concerning the probability of
success, such as the probability that a player gets a successful field shot in basketball. The beta
distribution is a suitable model for the random behavior of percentages and proportions. It has
also been used as applications such as time allocation in project management and control systems
(see (Hahn, 2008)). The definition is as follows.

Definition 2.5. Let X be an univariate random variable with density function f . Then, X is said
to have a beta distribution with parameters a and b (denoted as X ∼ Be(a, b)), if

f(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for x ∈ [0, 1],

where Γ(·) is the gamma function.
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Now, letX ∼ Be(a1, b1) and Y ∼ Be(a2, b2) be two beta distributions with a1 ≤ a2 and b1 ≥ b2,
and ai and bi are non-negative for all i = 1, 2. Consequently, the function φ(x) = xa2−a1(1−x)b2−b1

is strictly increasing with φ(0) = 0 and φ(1) = +∞. Hence, the equation

B1

B2
φ(x) = 1, (4)

where Bi = Γ(ai)Γ(bi)
Γ(ai+bi)

for i = 1, 2, has only one solution. It is easily shown that

S−(g − f) = S−
(
B1

B2
φ(x)− 1

)
.

Then, it is obtained that S−(g − f) = 1 and the sign sequences is −,+. Therefore, by applying
Theorem 2.2, X ≤st Y holds. Using the same reasoning, in the case in which a1 < a2 and b1 < b2,
and if it is fulfilled that

B1

B2
φ(x0) ≤ 1, where x0 =

a2 − a1

(a2 − a1) + (b2 − b1)
, (5)

you would also have the usual stochastic order. That is, X ≤st Y .
Now, assume that X ∼ Be(a1, b1) and Y ∼ Be(a2, b2) with a1 < a2 and b1 < b2, but equation

(5) is not verified. Consequently, the function φ(x) is a concave function on [0, 1] and φ(0) =
φ(1) = 0. Hence, there exist at most two solutions for the equation (5) with x ∈ (0, 1) since the
function φ(·) depends on two density functions, f and g.

Therefore, S−(g − f) = 2 and the sign sequences is −,+,−. Hence, S−(G − F ) = 1 and
the sign sequences is −,+ if the equality holds (see the proof of Theorem 3.A.44 in (Shaked &
Shanthikumar, 1994)). Furthermore, if a1/b1 < a2/b2 (that is, E(X) < E(Y )) then X ≤icv Y
(see Theorem 4.A. 22 in (Shaked & Shanthikumar, 1994)). In the case that a1/b1 > a2/b2, we
similarly obtain that Y ≤icx X. Furthermore, the random variables can be ordered in terms of
the coefficient of variation defined as CV (X) =

√
var(X)/E(X). That is, if a1/b1 < a2/b2, and

a1 < a2, and b1 < b2, hold then CV (X) > CV (Y ). Consequently, this fact can be interpreted as
Y is better than X in variation sense since the mean of Y is greater than the mean of X, and Y
has less relative variability than X.

Nevertheless, beta distributions are not as usual in Sports Analytics as we can believe. The
most realistic common situation is given by a mixture of distributions due to a unimodal density
that does not model too well real circumstances. For this reason, the definition of a mixture of
beta distributions are now given.

Definition 2.6. It is said to be that the random variable X follow a mixture of beta distributions
(denoted by X ∼MB(n,p;a,b)) if the corresponding density function is given by

f(x;p,a,b) =

n∑
i=1

piBe(ai, bi), (6)

where p = (p1, · · · , pn) with
∑n
i=1 pi = 1 and pi ∈ (0, 1); a = (a1, · · · , an) with ai > 0 ∀i,

and b = (b1, · · · , bn) with bi > 0 ∀i; and the density function of a beta distribution with the
corresponding parameters is denoted by Be(ai, bi).

Several estimation procedures based on EM algorithms have been proposed in the literature (see
(Ghojogh, Ghojogh, Crowley, & Karray, 2020) and (Schröeder & Rahmann, 2017), among others).
It is not our purpose here to obtain new methods for parameter estimation of the parameters in
a mixture of beta distributions, but it does establish at least a sufficient condition to be able to
compare them in a stochastic sense.

Corollary 2.7. Let X and Y be two random variables with distribution MB(2,p1;a,b) and
MB(2,p′;a′,b′), respectively. If p1 ≤ p1

′, and X2 ≤∗ X1, and Xi ≤∗ Yi for i = 1, 2, then
X ≤∗ Y.

Proof. The proof is immediately obtained by using the results in page 3. Furthermore, for more
clarity in the proof, we assume that X = p1X1 + (1− p1)X2, and similarly for Y .
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3 Material and Methods

3.1 Dataset and variables
In this study, match data were collected during the 2018-2019 and 2020-2021 LaLiga (the first
division in Spain) seasons from the database provided by https://understat.com/. We have
decided not to analyse the data from the 2019-2020 season due to the special circumstances
caused by the Covid19 pandemic. This meant that only 27 matchdays were played up to 8 March.
Subsequently, it was not resumed until 11 June, with all that this entailed in terms of types of
training. Many players had to carry out physical training sessions in their own homes and when
they returned to training together, they did so in groups due to security measures. Therefore,
we decided not to include this season’s data in this study. Consequently, we only scrapped
the expected goal metric for each shot and for the team during both seasons. Particularly, we
analyze the following team: Atlético de Madrid (ATM), FC Barcelona (FCB), Real Betis
(RBB), Getafe CF (GCF), Real Madrid (RM), Real Sociedad (RS), Sevilla FC (SFC),
Valencia CF (VCF) and Villarreal CF (VIL). For the scrapping process we use scripts from
https://github.com/ewenme/understatr.

Initially, the scrapped file from understatr has 20 variables, but we select the following for
our analysis:

• xG, is the value of the expected goal metric for the corresponding shot.

• situation, game action causing the shot to goal. It could be one of the following: Direct Free
kick, From Corner, Open Play, Penalty, and Set Piece.

• hteam, ateam, names of the home and away teams, respectively.

• ha, is a factor variable indicating if the shot was made by the home team (h) or the away team
(a).

• year, is a binary factor variable indicating the the year of the season when the shot was made.
If the value is 2018, then the corresponding season is 2018-19 and if the value is 2020, then
the season is 2020-21.

• result, the circumstance after the shot. It could be one of the following: Blocked Shot, Goal,
Missed Shots, Own Goal, Saved Shot, and Shot On Post.

• lastAction, action before the shot.

We will ony analyze this dataset for shots which are made from an Open Play and remove
those shots from Own Goal and Rebounds. This last modality belongs to a variable which is
named lastAction in the dataset.

3.2 Data
Each one of the teams analyzed played 38 games for each season. All shots, verifying the restrictions
before explained, are considered. It is obtained that 3140 and 2489 shots were made in the 2018-19
and in the 2020-21 seasons, respectively. It should be noted that the 2020-21 season is the season
that has been played with the stadium attendance restriction. It is not the intention here to make
a comparison to see if the effect of playing at home has diminished due to the support of the fans
and the extra motivation, as due to the two-year difference between the coaches change and even
the players of the teams themselves. However, it is curious to see the possible effect of playing
under very special and new conditions due to the global pandemic by COVID-19. In any case, we
can see these differences in total shots and goal percentages during both seasons in Table 1.
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Team Home Away
2018-19 2020-21 2018-19 2020-21

ATM 157(13.4) 187(17.7) 133(8.3) 149(10)
FCB 248(13.3) 232(13.4) 162(17.3) 203(14.3)
GCF 131(15.3) 116(10.3) 114(12.3) 101(6)
RBB 152(9.9) 137(9.5) 104(13.5) 149(8.7)
RM 223(10.8) 222(11.3) 161(8) 159(13.8)
RS 141(9.9) 159(13.2) 101(13.9) 132(9)
SFC 225(12) 186(10.2) 166(9.6) 143(11.9)
VCF 187(8) 117(15.4) 140(12.1) 97(11.3)
VIL 182(9.9) 146(11.7) 158(6.7) 117(18.8)

Table 1: Total shots and goal percentage in open play for each
team during 2018-19 and 2020-21 seasons.

3.3 Statistical Analysis

First, we analyze a mixed model for this data assuming that year and ha are fixed effects, and
team is a random effect. However, this model does not fit well due to the asymmetry of the
residuals. This asymmetry is originated from the proper asymmetry of the expected goal (xG)
variable. Furthermore, and by using diagnostic plots, the FCB team provokes that assumptions
about constant variance of random effects and normality of random effects are not verified. We
are not interested to remove FCB team from our data looking for a better mixed model since we
think that FCB is one of the best team in the LaLiga and their game style gave them several
European soccer championships in the last years. Another possible solution could be to use a
Box-Cox transformation to get normality in the residuals, but asymetry is so strong that it is not
corrected. Consequently, we will analyze this data under a nonparametric paradigm. We apply
the Kruskal-Wallis test to detect differences in the xG variable by taking into account the season
depending on if a team plays at home or away. These results can be viewed in Table 2. In terms
of these differences, the xG variable is grouped or not.

Afterwards, we estimate the density function in every case by using mixed beta distributions. To
do so, we will explain the procedure we have carried out to estimate the corresponding parameters
of the mixed distribution of betas. First, a cluster analysis has been performed on the variable xG
using the k-means algorithm. Specifically, we have used the R package factoextra by means of
the command fviz_nbclust . We have also checked the results using two methods available as an
option in this command: the wss method and the silouhette method. In both cases, the optimal
number of clusters in all cases that we will present later in the results section has been two clusters.
Once we had an estimate of the number of clusters, we proceeded with the estimation of the beta
parameters as well as the corresponding weights. This has been done using the R package maxLik
as can be seen in the web https://rpubs.com/MatthewPalmeri/646676.

4 Results

The different results obtained after data analysis are shown below. First, we now comment on
the results shown in Table 2. This table contains the p-values corresponding to the Kruskal-Wallis
test. In such a way that we confront whether the team plays home or away versus season. That is,
the first column of Table 2 compares the xGs of each team when they play at home in the 2018-19
and 2020-2021 season. For example, the teams that have a significant difference are ATM, GCF,
SFC, and RS which has a p-value equals to 0.04. The second column deals with the comparison of
the seasons when the teams play away. The third and fourth column is the comparison between
whether they play as home and away, leaving the season factor fixed. Thus, for example, in the
2020-2021 season, we can see that RM and VIL are the only teams that have had significantly
different results.

Taking into account the results of Table 2, the distributions to be compared for each team are
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decided. For example, for FCB there are no significant differences between the crossovers, then
they are considered as a single distribution grouping all the values of the xGs in a single variable.

To simplify the interpretation, we will focus only on the comparison between RM and FCB
and the comparison of RBB when playing away in both seasons. The corresponding estimates can
be seen in Table 3. For example, the first column refers to the type of crossover between factors.
Thus, the type denoted by H, means when the team plays as a home team grouping all seasons.
In this case, we would have a two-component beta mixture, so that the parameter values of each
beta appear in the columns labeled shape1 and shape2. That is, the first component of the beta
mixture for the RBB when playing at home is a beta whose parameters are 2.272 and 45.599. The
sixth column of the table refers to the weight in the mixture of each component. At this point, it is
important to clarify that this weight does not have to coincide with the percentage of data in the
corresponding range of the mixture component, as it can and does happen that the intersection
of the ranges is not empty. However, we can state that this weight is a very approximate value to
the percentage of observations in each range. It is obvious that in all tables the component that
has the greatest weight by far outweighing the rest of the components is the first one, i.e. the one
corresponding to the lowest value of the xGs, which makes sense since during a match very few
shots on the goal are taken with a value of xG greater than 0.2.

Team Home Away 2018-19 2020-21

ATM 0.0055 0.0424 0.5977 0.2981
FCB 0.651 0.5856 0.737 0.1407
GCF 0.007397 0.1912 0.6397 0.3524
RBB 0.5642 0.04446 0.1846 0.8575
RM 0.1042 0.1386 0.2922 0.044
RS 0.04 0.086 0.3769 0.1631
SFC 0.021 0.8641 0.0974 0.1992
VCF 0.962 0.01092 0.4235 0.1126
VIL 0.9318 <0.001 0.4649 <0.001

Table 2: p-values for Kruskal-Wallis test.

FCB Type Components Shape 1 Shape 2 Weight
1 2.6682 41.4349 0.775
2 4.0694 5.4425 0.225

RM 1 2.535 45.243 0.8
2 2.152 3.188 0.2

RBB H 1 2.2720 45.599 0.8226
2 4.668 6.972 0.1774

A-2018 1 2.3142 38.8693 0.8171
2 12.1056 14.4257 0.1829

A-2020 1 2.2892 45.7960 0.8586
2 7.1633 9.1513 0.1434

Table 3: Estimates of mixed beta distributions of the RBB xGs.

4.1 Case 1

In this example, we are going to perform a stochastic comparison of the xG of the RM and those
of the FCB. This type of comparison, as we have already seen and interpreted in Section 2, allows
us to broaden the understanding of the data without being at all a complete ordination. In this
specific case, the first comparison that is usually made in media and social networks is through
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averages or absolute values. Let us take as an example that RM in the 2018-2019 season got a
total of 49 goals in open play and its xG was 50.2, while FCB got an xG of 65.6 and got 64 goals.
As described in Section 1, we cannot forget that the expected goals correspond to the mean of
the Poisson binomial distribution, so comparing two xG in global terms would be equivalent to
comparing two means with the risk thet they are nonrobust measures. In any case, for both teams,
the total number of goals scored in open play is practically equal to their expected goal value.
However, it appears from this overall comparison that FCB’s performance was somewhat better
than RM’s in the 2018-2019 season. Recall that in that season, FCB was LaLiga champion with a
total of 90 goals and RM was the third with a total of 63 goals. However, in the 2020-2021 season,
RM came second with a total of 67 goals and FCB came third with 85 goals, of which in open play
were 35 and 57, respectively. All this means that currently the media and social networks often
use average metrics or total measures to make team performance comparisons with the danger
that this entails as they are not robust and to some extent uninformative measures of reality.
For this reason, a stochastic comparison between the corresponding distributions is proposed, the
interpretation of which can be seen in Section 2. However, it should be clarified that stochastic
comparisons are not complete orders but partial orders. That is, it may happen that we have two
distributions that are not comparable in some stochastic sense.

From Table 3, we can express the mixture of the beta distributions of the FCB as follows
according to the notation given in Section 2, page 3:

X = 0.775Be(2.6682, 41.4349) + 0.225Be(4.0694, 5.4425).

Similarly, we obtain the mixture of beta distributions for the RM

Y = 0.8Be(2.535, 45.243) + 0.2Be(2.152, 3.188).

If we plot the density functions of both mixtures (see Figure 1), it can be seen how these
functions cross at least four times which implies that they cannot be compared stochastically until
at least up to fourth-order stochastic order. In this paper, and because of its interpretations in
economics, we only propose up to order 2, i.e. the usual stochastic order (≤st) and the increasing
concave order (≤icv), also called stochastic dominance of the first and second order, respectively.
This result was expected because of the shape of the curvature of a mixture that has two modes
can hardly be compared stochastically in a global way.

This circumstance, which will occur very frequently, forces us to take a position on the matter
to be able to carry out a stochastic comparison. Applying the results of Section 2, it is very simple
to obtain that Y1 = Be(2.535, 45.24) ≤ST X1 = Be(2.66, 41.43). This implies from the outset that
the distribution of the low value RM xGs is smaller than FCB xGs in some stochastic sense. And
furthermore, as a consequence of the usual stochastic order, any quantile of the distribution of the
RM’s xG will be less than or equal to the corresponding quantile of the distribution of the FCB’s
xG.

Similarly, checking the conditions in Section 2, we obtain that Y2 = Be(2.152, 3.188) ≤icv X2 =
Be(4.06, 5.44). This means that for high RM’s xG has lower and more variable values than those
corresponding to the FCB in some stochastic sense.

Due to the impossibility of a comparison for the mixtures of the xG of both teams, we will
make a comparison in terms of the coefficient of variation according to Definition 2.4. By a simple
calculation and taking into account the weights, we obtain that the CV of RM is 4.637 and the
corresponding one of FCB is 5.428. Therefore, we can interpret that the xG of RM is better than
that of FCB in the sense of stochastic variation, which does not mean that RM has higher mean
and lower variance as it is the case. However, it is verified that the variance of the RM’s xG is
about half the variance of the FCB’s xG.

From now on, we will distinguish between these two clusters in the following way: low xG for
those clusters below 0.15 and high xG for those above 0.15. This division coincides with the two
components of the mixture of the beta distribution. In short, RM took a total of 139 shots on
goal in the two seasons with an xG greater than 0.15, and of these 53 were goals. This means
an effectiveness rate of approximately 38.13%. FCB, however, took a total of 189 shots on goal
with an xG above 0.15 and scored 70 goals, i.e. 37.03% effectiveness. Admittedly, this is not a
significant difference. And, as you select the shots with less xG and calculate the goal percentage,
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RM is almost as effective as FCB (7.77% and 5.59%, respectively). This fact is not a contradiction
with the orderings analysed since these orderings only take into account the value of the expected
goal and not the result of the shot. The information provided by the stochastic order can be
interpreted in some way as a pattern of play, both in terms of the team’s offensive play and the
defensive system employed by the opponents.

4.2 Case 2
Below is a comparison for RBB when they played away in the 2018-19 and 2020-21 seasons. One
of the questions that may arise in this analysis is whether there are significant differences between
the two squads and the tactics and strategies employed by two different coaches when playing
at home. As far as the xG values between the two seasons are concerned, there are no significant
differences (p-value=0.5642 in the Kruskal-Wallis test, see Table 2). And as for the players’ squads,
the website Transfermarket, which specialises in valuing teams, we can say that both valuations
are very similar. We think that extrapolating beyond the xG values to interpret the context of both
seasons can lead to misinterpretations. That is why for a more in-depth analysis of the game it is
necessary to use the video analysis that is already widely used by technical staff in football today.

Having clarified the context of the RBB during those two seasons, let us now analyse the xGs
produced as visitors from the point of view of stochastic orders. To do so, looking at Table 3, we
see how the xGs of the RBB can be modelled as a mixture of two-component beta distributions for
both seasons. From Table 3, we can express the mixture of beta distributions for the RBB when
playing at home jointly during 2018-19 and 2020-21 seasons as follows according to the notation
given in Section 2, page 3:

X = 0.8226Be(2.272, 45.599) + 0.1774Be(4.668, 6.972)

Similarly, we obtain the mixture of beta distributions for the RBB when playing away for each
season separately,

Y = 0.8171Be(2.3142, 38.8693) + 0.1829Be(12.1056, 14.4257) and

Z = 0.8586Be(2.2892, 45.796) + 0.1434Be(7.1633, 9.1513),

where Y is for the 2018-19 sesason and Z for the 2020-21 season.
It is easy to obtain the following stochastic comparisons between the components of the

mixtures:

Be(2.3142, 38.8693) ≤ST Be(12.1056, 14.4257) and Be(2.2892, 45.796) ≤ST Be(7.1633, 9.1513),

Be(2.2892, 45.796) ≤ST and Be(7.1633, 9.1513) ≤icv Be(12.1056, 14.4257).

These partial orders between the components may lead us to believe that the icv order between
the mixtures will be verified. However, this circumstance does not occur due to the number of
crossings between the respective density functions as can be seen in Figure 2.

Moreover, in Figure 3a and 3b it is clear how the two mixed distributions cannot be compared
in the sense of first and second-order stochastic dominance since the respective density functions
cross at least four times. This forces us to compare by components. In fact, in Figure 3a, it
can be clearly observed how the components with the lowest xG values of the 2018-19 season
stochastically dominate in first order to the corresponding ones in the 2020-21 season. This fact
is easily demonstrated by comparing the corresponding parameters of the beta distribution in the
first component of the mixture, since they satisfy the criterion given in Theorem 2.2. This implies
not only a higher mean but also that the quantiles of any order are higher for Quique Setién’s
team. Nevertheless, and even though they were seasons without significant differences in the low
xGs.

For the second component, the one for the 2018-19 season and the one for the 2020-21 season,
it is obtained in a simple way by applying the results of section 3 that Be(7.1633, 9.1513) ≤icv
Be(12.1056, 14.4257). That is, the values of the xGs between 0.15 and 0.8 for the 2020-21 season are
lower than the corresponding values for the 2018-19 season and more variable in some stochastic
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Figure 1: A comparison between FCB and RM

Figure 2: RBB away comparison during 18-19 and 20-21
seasons
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(a) Density Functions for xG <0.15 (b) Density Functions for 0.15< xG< 0.8

Figure 3: RBB comparison as an away team in Seasons
2018-19 and 2020-21

sense. However, if we analyse the effectiveness (understanding effectiveness as up to now, the goals
scored) between these xG values, we obtain that in Setién’s season RBB shot at goal in open play
a total of 20 times and scored 9 goals (45%), while in Pellegrini’s season, RBB shot at goal in open
play a total of 21 times and scored 6 goals (approximately 28.57%).

For the case of the first component, we would have that the one for the 2018-19 season dominates
the one for the 2020-21 season in the usual stochastic sense. That is, it has a higher mean in some
stochastic sense. This first component is for xG values lower than 0.15. For the Setien’s team, there
were 84 shots in open play scoring 5 goals (approximately 5.9% effectiveness) and for Pellegrini’s
team there were a total of 128 shots scoring 7 goals (approximately 5.4% effectiveness).

Therefore, we can generally conclude that RBB when away in the 2018-19 season created more
quality scoring opportunities than in 2020-21 and with more effectiveness, which is not a necessary
basis for a better final ranking in LaLiga. In the 2018-19 season, the RBB was in tenth place with
only 50 points and in the 2020-21 season it was sixth with 61 points. The explanation for this can
be found in the variance of the number of goals per game, which indeed implies that the variance
of the number of goals per game in the 2020-21 season should be higher than in the 2018-19 season.
Regardless of this fact, and without going into subjective assessments of both seasons, it is a known
fact that Pellegrini’s team plays a more attractive game for the spectator and with better results
in general.

5 Discussions

In this paper, we have presented a stochastic comparison applied to sports analytics. It is well
known that stochastic orders have many applications in the field of economics. However, these types
of orders are of a partial nature, which may imply that the given two probability distributions are
not comparable in some sense. Added to all this is the fact that the expected goals metric is widely
discussed and questioned in terms of the information it provides, since it can be considered out
of context of the game. However, it is no less true that we wanted to give another view of the
classical interpretation provided by these metrics of the average type, trying to get a little more
information. It should also be taken into account that the providers of soccer match data use
different methods to estimate expected goals, so the results provided here may differ if we use data
from other companies. It is not our aim here to question the quality of the data we have used,
let alone claim that it is the most accurate on the market. We simply want to show one more
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application that can be easily extrapolated to any data set with the same characteristics. Having
clarified this point, we would like to emphasize the fact that some assumptions that we have used
in the study can, of course, be debated and criticized. We refer to the assumption of independence
of the shots and that due to the nature of the expected goals, the highest percentage will always
occur in low values. Looking at the corresponding tables, in the first component, in almost all
teams they are higher than 75%. This may raise the question of analyzing high values of the xG
as possible outliers in the total set and even eliminating them from the study if they exist. We
have avoided such a situation simply for simplicity of analysis since the objective of the study was
stochastic comparison. Clearly, we could have kept only the first component and from that we
could have performed the stochastic comparisons, but we considered it more interesting to see the
complexity involved in stochastic dominances in the case of mixed distributions as in this case.

We also want to clarify that although we have provided data corresponding to 9 teams, we
have only analyzed two cases, one corresponding to the comparison between FCB and RM and the
comparison of RBB when they have played away, simply due to the lack of space and not to be
too tiring for the reader.

6 Conclusions and future research
The main conclusion that can be drawn from this paper is that the use of stochastic dominances
can be useful to obtain information beyond simple means or variances for a Sports Sciences data
set. However, it should be clear that it does not completely solve the problem because, as we have
already seen, it may happen that we have the non-comparability of variables in some stochastic
sense. This gives rise to an open a new field of research in Sports Analytics in the sense of increasing
the order of stochastic orders and trying to interpret them in the field of data analysis in sports,
even proposing hypothesis tests of stochastic orders that improve the existing ones in the literature.

Acknowledgement(s)
We would like to give our sincere thanks to the support team of understat.com for allowing us to
use the data from their website.

Additionally, the authors would like to thank to Prof. Martí Casals from University of Vic for
his valuable comments on mixed models in Section 3.

Notes on contributor(s)
Miguel Alejandro Troncoso-Molina collaborated in this work while he was doing his final degree
project in Mathematics, under the supervision of Professor Fernández-Ponce, at the Universidad
de Sevilla.

References
Damodaran, U. (2006). Stohcastic dominance and analysis of odd batting performance: the indian

cricket team, 1989-2005. Journal of Sports Science and Medicine, 5 , 503-508.
Denuit, M., Dhane, J., Goovaerts, M., & Kaas, R. (2005). Actuarial theory for dependent risks.

measures, orders and models. John Wiley and Sons.
Ensum, J., Pollard, R., & Taylor, S. (2004). Applications of logistic regression to shots at

goal in association football: calculation of shot probabilities, quantification of factors and
player/team. Journal of Sports Sciences, 22 (6), 504.

Expected goals literature. (n.d.). https://docs.google.com/document/d/
1OY0dxqXIBgncj0UDgb97zOtczC-b6JUknPFWgD77ng4/edit.

Ghojogh, B., Ghojogh, A., Crowley, M., & Karray, F. (2020). Fitting a mixture distribution to
data: tutorial. arXiv:1901.06708v2 [stat.OT]..

Hadar, J., & Russell, W. (1971). Stochastic dominance and diversification. JJournal fo Economic
Theory , 3 , 288-305.

14

https://docs.google.com/document/d/1OY0dxqXIBgncj0UDgb97zOtczC-b6JUknPFWgD77ng4/edit
https://docs.google.com/document/d/1OY0dxqXIBgncj0UDgb97zOtczC-b6JUknPFWgD77ng4/edit


An Application of Stochastic Dominances in Sports Analytics

Hahn, E. (2008). Mixture densities for project management activity times: A robust approach to
pert. European Journal of Operational Research, 188 (2), 450-459.

Kopa, M., Kabašinskas, A., & Šutiené, K. (2022). A stochastic dominance approach to pension-fun
selection. IMA Journal of Management Mathematics, 33 (1), 139-160.

Ma, Z., & Leijon, A. (2011). Bayesian estimation of beta mixture models with variational inference.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (11).

Macdonald, B. (2012). An expected goals model for evaluating nhl teams and players. In Mit
sloan sports analytics conference 2012. Boston, USA..

Pollard, R., Ensum, J., & Taylor, S. (2004). Estimating the probability of a shot resulting in a
goal: The effects of distance, angle and space. International Journal of Soccer and Science,,
2 (1), 50-55.

Rathke, A. (2017). An examination of expected goals and shot efficiency in soccer. Journal of
Human Sport and Exercise,, 12 , 514-529.

Ruiz, H., Lisboa, P., Neilson, P., & Gregson, W. (2015). Measuring scoring efficiency through goal
expectancy estimation. In European symposium on artificial neural networks, computation
intelligence and machine learning.

Schröeder, C., & Rahmann, S. (2017). A hybrid parameter estimation algortihm for beta mixtures
and applications to methylation state classification. Algorithms for Molecular Biology,, 18 ,
12-21.

Shaked, M., & Shanthikumar, G. (1994). Stochastic orders and their applications. Academic Press,
Boston.

Singh, K. (2019). Introducing expected threat (xt). (https://karun.in/blog/expected-threat.html)

Spearman, W. (2018). Beyond expected goals. In Mit sloan sports analytics conference 2018.
Boston, USA..

Tippett, J. (2019). The expected goals philosophy: A game-changing way of analysing football.
Independently published.

15


