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a b s t r a c t

In this paper we present the notion of greyscale of a graph as a colouring of its
vertices that uses colours from the real interval [0,1]. Any greyscale induces another
colouring by assigning to each edge the non-negative difference between the colours
of its vertices. These edge colours are ordered in lexicographical decreasing ordering
and give rise to a new element of the graph: the gradation vector. We introduce
the notion of minimum gradation vector as a new invariant for the graph and give
polynomial algorithms to obtain it. These algorithms also output all greyscales
that produce the minimum gradation vector. This way we tackle and solve a
novel vectorial optimization problem in graphs that may generate more satisfactory
solutions than those generated by known scalar optimization approaches.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Graph colouring problems are among the most important combinatorial optimization problems in
graph theory because of their wide applicability in areas such as wiring of printed circuits [1], resource
allocation [2,3], frequency assignment problem [4,5], a range of scheduling problems [6,7] or computer register
allocation [8,9]. A good collection of samples can be found in [10].

There are some works related to map colouring for which the nature of the colours is essential, whereas
the number of them is fixed. The maximum differential graph colouring problem [11], or equivalently the
antibandwidth problem, colours the vertices of the graph in order to maximize the smallest colour difference
between adjacent vertices and using exactly as many colours as the number of vertices. On the other hand,
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Fig. 1. Two greyscales f and f ′ of the graph K4.

the complementary optimization case, the bandwidth problem [12], aims to minimize the maximum colour
difference between adjacent vertices. Dillencourt et al. [13] studied a variation of the differential graph
colouring problem under the assumption that all colours in the colour spectrum are available. This makes
the problem continuous rather than discrete. Recent articles [14] propose to consider a continuous colour
spectrum to solve the well-known frequency assignment problem.

The bandwidth and antibandwidth problems attempt to optimize the extreme colours of the edges of
the graph, whereas Dillencourt et al. [13] focus on maximizing the sum of the colours of all the edges.
Additionally, other previous papers have also explored different sum functions under this last approach (for
instance, see [15]). Nonetheless, both cases, extreme values and sum functions, deal with scalar objective
functions.

In this line, the present paper tackles mappings taking values within the continuous spectrum [0, 1], where
0 and 1 correspond to white and black colours, respectively, and the rest of the intermediate values are grey
tones. Graphs in this work are finite, undirected and simple, and are denoted by G(V, E), where V and E

are their vertex-set and edge-set, respectively. The number of elements of V and E is denoted by n and m,
respectively (for further terminology we follow [16]). We deal with the recent concept of greyscale f of G

which is a mapping f : V −→ [0, 1] such that f−1(0) ̸= ∅ and f−1(1) ̸= ∅ [17]. For each vertex v of G,
e call f(v) the grey tone or colour of v and notice that two adjacent vertices can have mapped the same
rey tone. In particular, values 0 and 1 are called the extreme tones. Hence, the notion of complementary
reyscale arises for each greyscale f such that it maps every vertex v of G to 1− f(v).

Associated to each greyscale f of the graph G(V, E), the mapping f̂ : E → [0, 1] is defined as f̂(e) =
|f(u)− f(v)| for every edge e = {u, v} ∈ E and represents the gap or increase between the grey tones of the
vertices u and v. The value f̂(e) is also said to be the grey tone of the edge e. Thus, we deal with coloured
vertices and edges by f and f̂ , respectively. Note that the same mapping f̂ associated to the greyscale f

and its complementary one is obtained. The gradation vector associated to the greyscale f of G is the vector
grad(G, f) = (f̂(e1), f̂(e2), . . . , f̂(em)), where the edges of G are indexed such that f̂(ei) ≥ f̂(ej) whether
i < j, that is, in descending order of their grey tones. For the sake of clarity, and when the graph is fixed,
the gradation vector associated to a greyscale f will be denoted by Gf .

Fig. 1 shows two greyscales of the graph K4, f and f ′, whose corresponding gradation vectors are
Gf = (1, 1

2 , 1
2 , 1

2 , 1
2 , 0) and Gf ′ = (1, 2

3 , 2
3 , 1

3 , 1
3 , 1

3 ), respectively.
Given two greyscales f and f ′ of a graph G, we say that f has better gradation than f ′ if the gradation

ector Gf is smaller than Gf ′ following the lexicographical order, that is, Gf < Gf ′ . Thus, the descending
rder of gradation vectors determines the goodness in terms of gradation. Then, f is said to be smaller or
reater by gradation than f ′ if Gf < Gf ′ or Gf > Gf ′ , respectively. It can be observed that Gf < Gf ′ for the
wo greyscales in Fig. 1.

A greyscale of a graph G whose gradation vector is minimum is called a minimum gradation greyscale of
and the following problem is formulated:
Minimum gradation on graphs (migg): given a connected graph G(V, E), finding the minimum
gradation vector and all the minimum gradation greyscales.
2
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Fig. 2. The minimum gradation vector can be achieved from different greyscales.

Notice that, given a graph, the minimum gradation vector is unique but different minimum gradation
reyscales which give rise to it can exist (see an example in Fig. 2).

We define the restricted version of the minimum gradation problem when the grey tones of some vertices
re known a priori, and the aim is to obtain the minimum gradation vector preserving the fixed grey tones.
his situation leads to the concept of incomplete greyscale. Given a graph G(V, E) and a nonempty proper

subset Vc of V , an incomplete Vc-greyscale of G is a mapping on Vc to the interval [0, 1]. A greyscale f is
ompatible with an incomplete Vc-greyscale g if f(u) = g(u) for all u ∈ Vc.

Restricted minimum gradation on graphs (rmigg): given a connected graph G(V, E) and an
ncomplete Vc-greyscale g of G, finding the gradation vector that is minimum among all the gradation vectors
f greyscales compatible with g, as well as determining all these greyscales.

Solving each of these problems means finding the appropriate minimum gradation vector and all their
inimum gradation greyscales except the complementary ones. Note that the migg and rmigg problems

re posed for connected graphs but general graphs can be also considered, and in this case each connected
omponent has to be studied separately.

In an analogous way, the notion of contrast in greyscales of graphs is widely studied in work [17] by
he same authors of this paper. Particularly, the maximum contrast problem is formulated by using the
ector (f̂(em), f̂(em−1), . . . , f̂(e1)) associated to the greyscale f ; observe that the lexicographical ascending
rdering is considered. This new problem belongs to the NP -hard class since it is related to the chromatic
umber problem as it is proved in [17].

Now let us focus on the contribution of this new notion we have just introduced. At present, although
he statement of these problems seems to be quite simple, we have not found minimum gradation problems
tudied in these terms in the literature. The gradation vector leads us to a vectorial objective function which
llocates grey tones in a manner which is both local and global: it is local due to the fact that the colour
f every particular edge belongs to the gradation vector; and it is global because all edges of the graph
articipate in the vectorial objective function. Recall that the classical minimax criterium minimizes the
aximal component of the vector, while the minisum criterium minimizes the sum of all components of

he vector. Fig. 3 visually displays an example of the goodness of minimum gradation vectors versus scalar
ptimization. Every vertex has been associated to a big pixel which is coloured with its grey tone, and these
ig pixels are next to each other according to the adjacencies between vertices. The idea of gradation is
learly better shown in Fig. 3(a) in the sense that the changes of colours are smooth.

Minimum gradation in greyscales could contribute to numerous problems concerning real networks. For
nstance, the community detection problem has become extremely useful in a wide variety of different areas
uch as biological, social, technological, and information networks. This problem aims to identify special
roups of vertices in a graph with high concentrations of edges within such vertices and low concentrations
etween these groups. This peculiarity of real networks is called community structure [18], or clustering in
raphs. For an extensive report on this topic see [19].

The graph may have a hierarchical structure, that is, it may arrange several levels of grouping of vertices,
ith small clusters included within large clusters, which are in turn included in larger clusters, etcetera. In

uch cases, hierarchical clustering algorithms may be used [20], that is, clustering techniques that disclose the
ultilevel structure of the graph. The starting point of any hierarchical clustering method is the definition
3
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Fig. 3. Comparison of minimum greyscales according to different criteria about the colours of edges: (a) minimum gradation vector,
(b) minimax scalar criterium; and (c) minisum scalar criterium.

Fig. 4. (a) A simple graph with three communities. (b) Hierarchical clustering from a minimum gradation greyscale for that graph.

f a similarity or weight measure between groups of vertices or clusters. Then, these clusters can iteratively
e merged by agglomerative algorithms if their similarity is sufficiently high, and starting with single vertex
lusters.

In the literature, many different weights have been proposed to be used in hierarchical clustering
lgorithms. In this line, the concept of gradation vector allows us to define a new weight measure which
uantifies similarities between vertex clusters, such that a pair of vertices will have high similarity value if
heir distance in the graph is small, where edges are weighted by the values of f̂ . Then, it is possible to
anage similarities between two clusters working with the mean among all the weighted distances of pairs

f vertices, one belonging to each cluster. Hence, similarities are expressed in terms of edge colours, and high
imilarity values are obtained for small gradation vectors. Furthermore, the image [0, 1] of any greyscale leads
o the needed variation range for weights in hierarchical clustering algorithms. In particular, the values 0
nd 1 correspond to maximum and minimum similarities, respectively.

Given any connected graph, we have implemented the above procedure to disclose the possible cluster
tructure of the graph. Fig. 4 shows a graph (left) whose three communities are perfectly identified by the
endrogram (right) obtained from a minimum gradation greyscale.

It is well known that graph theory is used to modelize many kinds of networks services. For water supply
etworks, problems such as minimizing the amount of dissipated power in the water network and establishing
ressure control techniques, among others, are studied. In [21], the method of graph partitioning is proposed
o solve them, which consists of creating subsystems to simplify water balance and identify water losses. In
4
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Fig. 5. Pressure assignment to the nodes of a water distribution network. There is a source vertex and six sink vertices, highlighted
in thick black line. The direction of flow ranges from high to low pressure. In (a) the minisum criterium is applied. In (b) a solution
under the minimax criterium is shown. In (c) a better pressure assignment is shown, obtained from a solution of the rmigg problem.

his line, the above posed technique to divide the graph into clusters or subsystems based on minimum
radation may be applied to this water network partitioning problem.

On the other hand, a minimum gradation greyscale could be useful to model a possible almost uniform
istribution of a service through a network, from sources to sinks. Given a water supply network and the
raph that models it, any minimum gradation greyscale of the graph would help to design an appropriate
ater distribution through the network, in such a manner that water pressure losses between contiguous
ipes would be minimized. Thus, sources and sinks could be represented by vertices coloured with extreme
ones and the aim of obtaining the minimum gradation vector preserving these fixed grey tones is set out.
hat is, the restricted minimum gradation problem on graphs could provide a model to tackle the different
roblems that arise in water supply networks.

Fig. 5 shows three possible pressure assignments to the nodes of a simplified network model of fluid
istribution. The extreme tone 1 has been preassigned to a single source vertex while the value 0 is
reassigned to the six sinks of the network. The solutions provided by optimal values of scalar functions
ollowing minisum criterium (a) and minimax criterium (b) are worse than that obtained from the result of
he rmigg problem (c).

Therefore, in this paper we present the notions of greyscale of a graph and minimum gradation vector as
novel vectorial optimization problem in graphs. The outline of the paper is as follows: Section 2 formally

ntroduces theoretical results concerning the key of minimum colour assignment on graphs. In Section 3,
he polynomial nature of both problems, minimum gradation and restricted minimum gradation on graphs
s proved by designing algorithms that provide minimum gradation vectors and all greyscales that give rise
o them. Finally, in Section 4 we conclude with some remarks and highlight some open problems.

. Uniform colour assignment in gradation

In this section results about the nature of gradation problems are established, which let us prove the
orrectness of our polynomial procedures in Section 3.

The notion of distance in graphs and, in particular, the geodesics play an essential role in the migg
roblem. Given a connected graph G, the distance d(u, v) between two vertices u and v in G is the length
f a shortest path joining them; a u− v path is a path joining the u and v vertices of G and a u− v geodesic
s a shortest u− v path. The diameter d(G) is the length of any longest geodesic and two vertices u and v

re antipodal if d(u, v) = d(G).

5
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Given a greyscale f of a connected graph G(V, E), the edge-colour-increase mapping F is defined as the
mapping F : V × V −→ [0, 1] such that

F (u, v) =
{

|f(u)−f(v)|
d(u,v) if u ̸= v,

0 if u = v.

The value of F (u, v) can be viewed as ‘the amount of colour’ that every edge of any u − v geodesic would
be given whether the colour increase between u and v were fairly distributed along the u − v geodesic.
Throughout this section, the relationship between f̂ and F (u, v) is studied.

Our next results are established on the set of geodesics of the given graph and they state several links
between the values of f , f̂ and F , according to the position of the vertices into the geodesics.

emma 2.1. Let f be a greyscale of a graph G(V, E) and let u and v be a pair of vertices of G. For each
ertex w of each u− v geodesic and different from u and v, it holds that,

F (u, v) < max{F (u, w), F (w, v)} or F (u, v) = F (u, w) = F (w, v).

Moreover, the above equalities only hold whenever f(w) belongs to the interval of extremes f(u) and f(v).

roof. For the sake of clarity and without loss of generality we may suppose that f(u) ≤ f(v). It is
lear that d(u, v) = d(u, w) + d(w, v), and since w is different from u and v, then d(u, w) < d(u, v) and
(w, v) < d(u, v). We proceed according to the relative size of f(w) with respect to f(u) and f(v).

1. If f(w) /∈ [f(u), f(v)], it is easy to check that F (u, v) < F (w, v) or F (u, v) < F (u, w) and so
F (u, v) < max{F (u, w), F (w, v)} trivially follows.

2. If f(u) ≤ f(w) ≤ f(v), we prove that it is not possible F (u, v) > max{F (u, w), F (w, v)} and if
F (u, v) = max{F (u, w), F (w, v)}, then the three values of F are equal.
Assume to the contrary that F (u, v) > max{F (u, w), F (w, v)}. Hence, f(w) − f(u) < d(u, w)F (u, v)
and f(v)−f(w) < d(v, w)F (u, v), and then f(v)−f(u) < (d(u, w)+d(w, v))F (u, v) = d(u, v)F (u, v)⇒
F (u, v) < F (u, v), which is a contradiction.
Next, if F (u, v) = max{F (u, w), F (w, v)} we assume without loss of generality that F (u, v) = F (u, w).
Then, by replacing f(w)− f(u) = (f(v)− f(u)) d(u,w)

d(u,v) in F (w, v) = (f(v)−f(u))−(f(w)−f(u))
d(w,v) , we obtain

F (w, v) = (f(v)− f(u))[d(u, v)− d(u, w)]
d(u, v)d(w, v) = (f(v)− f(u))d(v, w)

d(u, v)d(w, v) = F (u, v). □

The following result establishes connections between the mappings f̂ and F on geodesics.

emma 2.2. Let f be a greyscale of a graph G(V, E), let u and v be a pair of vertices of G and let Pu−v be
u− v geodesic. The following statements hold:

1. F (u, v) ≤ maxe∈Pu−v f̂(e).
2. If F (u, v) = maxe∈Pu−v f̂(e) then F (u, v) = f̂(e) for every edge e ∈ Pu−v.

roof. For the sake of simplicity and without loss of generality, let the alternating sequence of vertices and
dges {u = w0, e1, w1, e2, w2, . . . , wl−1, el, v = wl} be the u− v geodesic Pu−v where f(u) ≤ f(v), and hence
= d(u, v).

1. A stronger assertion will be stated, that is

F (u, v) ≤ max{f̂(e ), . . . , f̂(e ), F (w , v)}
1 i i

6
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for i = 1, . . . , l − 1. For i = 1, Lemma 2.1 applied to w1 of Pu−v and the fact that f̂(e1) = F (u, w1)
lead trivially to F (u, v) ≤ max{f̂(e1), F (w1, v)}.
Inductively, let us suppose that F (u, v) ≤ max{f̂(e1), . . . , f̂(ei), F (wi, v)}. Lemma 2.1 is again applied,
in this case to wi+1 as vertex of the path {wi, ei+1, wi+1, . . . , v}, obtaining that

F (wi, v) ≤ max{F (wi, wi+1), F (wi+1, v)} = max{f̂(ei+1), F (wi+1, v)}.

Thus, the induction hypothesis and this inequality about F (wi, v) give rise to the result for i + 1.
2. Assume to the contrary that there exists ej an edge of Pu−v such that f̂(ej) < F (u, v). The following

intervals are considered for 1 ≤ i ≤ l:

Ii =

⎧⎨⎩ [f(wi−1), f(wi)] if f(wi−1) < f(wi)
[f(wi), f(wi−1)] if f(wi) < f(wi−1)

∅ if f(wi−1) = f(wi)

Thus, the union of these intervals is a cover of [f(u), f(v)] and therefore the following contradiction is
achieved:

f(v)− f(u) ≤
l∑

i=1
|f(wi−1)− f(wi)| =

l∑
i=1

f̂(ei) = f̂(ej) +
l∑

i=1,i̸=j

f̂(ei) ≤

≤ f̂(ej) + (l − 1) max
1≤i≤l

f̂(ei) = f̂(ej) + (l − 1)F (u, v) <

< F (u, v) + (l − 1)F (u, v) = lF (u, v) = f(v)− f(u). □

The following result highlights the key role that the maximum value of the edge-colour-increase mapping
plays in the migg problem.

orollary 2.3. Let f be a greyscale of a connected graph G(V, E) and let u and v be a pair of vertices of G

uch that F (u, v) = maxa,b∈V F (a, b) and f(u) ≤ f(v). Then,

1. f(w) = f(u) + d(u, w)F (u, v) for each vertex w of a u− v geodesic.
2. f̂(e) = F (u, v) for each edge e of a u− v geodesic.

roof.

1. If w is u or v, then the result holds trivially. Otherwise, since F (u, v) = maxa,b∈V F (a, b), in particular,
it holds that

F (u, v) ≥ max{F (u, w), F (w, v)}.

Then, by Lemma 2.1, F (u, v) = F (u, w) = F (w, v) and f(w) belongs to the interval [f(u), f(v)]. Now,
the result follows immediately:

F (u, v) = F (u, w) = f(w)− f(u)
d(u, w) ⇒ f(w) = f(u) + d(u, w)F (u, v).

2. Let a and b be the vertices of the edge e. Statement 1 is applied to a and b, and since d(u, b) = d(u, a)±1,
it holds that f(a) = f(u) + d(u, a)F (u, v) and f(b) = f(u) + (d(u, a)± 1)F (u, v).
Then, f̂(e) = |f(b)− f(a)| = | ± F (u, v)| = F (u, v). □

Next, a property for minimum gradation greyscales related to antipodal vertices which are white-and-
lack coloured is established. Furthermore, the first components of the minimum gradation vector are
haracterized.
7
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Theorem 2.4. Let f be a minimum gradation greyscale of a graph G. Then,

1. If u and v are vertices of G such that f(u) = 0 and f(v) = 1, then u and v are antipodal vertices.
2. At least the first d(G) components of the minimum gradation vector of G are 1

d(G) .

roof. Given any pair of antipodal vertices u and v of G, let f⟨u, v⟩ be the mapping on V (G) defined as
⟨u, v⟩(w) = d(w,u)−d(w,v)+d(G)

2d(G) . It is straightforward that f⟨u, v⟩ is a greyscale of G such that f⟨u, v⟩(u) = 0
nd f⟨u, v⟩(v) = 1.

Moreover, for any edge {w1, w2} and for any vertex t, it is easy to check that d(w1, t)−d(w2, t) ∈ {−1, 0, 1}.
ence, we get the value

f̂⟨u, v⟩({w1, w2}) =
⏐⏐⏐⏐d(w2, u)− d(w2, v) + d(G)− d(w1, u) + d(w1, v)− d(G)

2d(G)

⏐⏐⏐⏐ .

Therefore, the range of f̂⟨u, v⟩ is { 1
d(G) , 1

2d(G) , 0}.
Hence, as f is a minimum gradation greyscale, f̂(e) ≤ 1

d(G) for all e ∈ E and so maxe∈E f̂(e) ≤ 1
d(G) .

1. Since f(u) = 0 and f(v) = 1, F (u, v) = 1
d(u,v) and by Lemma 2.2 (part 1), F (u, v) = 1

d(u,v) ≤
maxe∈Pu−v f̂(e) ≤ maxe∈E f̂(e) ≤ 1

d(G) . Then d(u, v) ≥ d(G), that is, d(u, v) = d(G).
2. For a pair of vertices u and v given by Statement 1 and according to Lemma 2.2 (part 1), it holds that

F (u, v) = 1
d(G) = maxe∈Pu−v f̂(e), where Pu−v is any u − v geodesic, obviously, of length d(G). Last,

by Lemma 2.2 (part 2), F (u, v) = 1
d(G) = f̂(e) for every edge e ∈ Pu−v. □

The characterization of the minimum gradation vector for trees can be directly obtained from the above
orollary.

orollary 2.5. The minimum gradation vector of a tree T of diameter d(T ) is the vector whose d(T ) first
omponents are equal to 1

d(T ) and the remaining components are null.

. Solving the minimum gradation problems

Our next aim is to design algorithms which provide all the minimum gradation greyscales of a connected
raph, for both migg and rmigg problems. These greyscales are obtained in a stepwise manner by
ncomplete greyscales such that each of these is compatible with the previous one. Thus, an iterative
rocedure based on the operation of deleting coloured edges and isolated coloured vertices is carried out.

Firstly, we devise the Vc-Compatible-Complete-Mapping common subroutine which is applied to solve
oth the different rmigg problems according to the possible existence of the extreme tones as prefixed
olours, and the migg problem.

Procedure: Vc-Compatible-Complete-Mapping
Input: An incomplete Vc-greyscale g of a connected graph G(V, E).
Output: A mapping f on V compatible with g.

1. Initialize G1(V1, E1)← G(V, E)
2. Initialize i← 1
3. Initialize V 1

1 ← V1 and the number of connected components l(i)← 1
4. For u ∈ Vc do f(u) = g(u)
5. While |V | < |V | do
c

8



N. de. Castro, M.A. Garrido-Vizuete, R. Robles et al. Discrete Optimization 48 (2023) 100773

p
m
p

e
a
l
c

R
s
s

o

R
a
n
m

g

(a) Compute the distance matrix Di of graph Gi

(b) Compute the finite value Mi = max1≤j≤l(i){F (a, b) : {a, b} ⊆ V j
i ∩Vc} and the set Si = {{u, v} ⊆

V j
i ∩ Vc : F (u, v) = Mi, 1 ≤ j ≤ l(i)}, where distances are taken from Di

(c) Initialize A← ∅
(d) For each {u, v} ∈ Si and considering distances from Di do

i. Compute Au,v = {w ∈ Vi : w ∈u-vgeodesic of Gi}
ii. For each w ∈ Au,v do

f(w) =
{

f(u) + d(w, u) Mi if f(u) ≤ f(v)
f(v) + d(w, v) Mi if f(u) > f(v)

iii. Actualize A← A ∪Au,v

(e) Actualize Vc ← Vc ∪A

(f) Let Gi+1(Vi+1, Ei+1) be the subgraph of Gi(Vi, Ei) obtained by deleting all the edges w1w2
with w1, w2 ∈ A and removing the resulting isolated vertices. Let l(i + 1) be the number of
connected components of Gi+1. Let V j

i+1 be the vertex-sets of the connected components of Gi+1
for j = 1 . . . l(i + 1)

(g) If Si = ∅, each set V j
i contains exactly one vertex wj in Vc then

i. For j := 1 to l(i) do f(u) = f(wj) with u ∈ V j
i

ii. Actualize Vc ← Vc ∪ V 1
i ∪ · · · ∪ V

l(i)
i

(h) Actualize i← i + 1

In general terms, the Vc-Compatible-Complete-Mapping iterative procedure extends the input incom-
lete Vc-greyscale to a mapping on V by assigning colours based on maximum values of edge-colour-increase
appings. Afterwards, this mapping will lead us to the solution of the migg problem and the different rmigg
roblems according to the possible existence of the extreme tones as prefixed colours.

The main step of the algorithm is the while-loop of Step 5, which works while vertices without colour
xist. Thus, in every execution of this step, the maximum value of the edge-colour-increase mapping and
ll the pairs of vertices that reach this value are computed, and Step 5(d)ii assigns colours to the vertices
ying on the geodesics joining such pairs of vertices. Next, edges with coloured extreme vertices and isolated
oloured vertices are removed.

emark 3.1. For every edge e of G either its vertices belong to the set A at only one execution of Step 5d
ince it may be removed in Step 5f, or its vertices has been assigned the same colour in Step 5g. In the
econd case, e contributes with f̂(e) = 0 in grad(G, f).

In the first case, by applying Corollary 2.3.2. to each pair of vertices in Si and every connected component
f Gi at which the maximum value Mi is reached, Step 5d will produce f̂(e) = Mi.

emark 3.2. Note that the mapping generated by Vc-Compatible-Complete-Mapping procedure
nd the input incomplete Vc-greyscale have the same range of grey tones. Therefore, that mapping is not
ecessarily a greyscale due to the possible nonexistence of the extreme tones as values reached by the
apping. Additionally, the grey tone assigned by Step 5(d)ii can also be obtained as follows:

f(w) =
{

f(v)− d(w, v) Mi if f(u) ≤ f(v)
f(u)− d(w, u) Mi if f(u) > f(v)

Next, the rmigg problems are resolved according to the nature of the prefixed colours, that is, distin-

uishing whether or not the extreme tones are prefixed values.

9
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Lemma 3.3. The procedure Vc-Compatible-Complete-Mapping is finite and has time computational
omplexity of O(n4) for any connected graph of order n.

Proof. At least one vertex is coloured at every iteration of the while-loop in Step 5, either by Substep 5(d)ii
or 5g, and hence it ends after at most |V | − |Vc| iterations. The time complexity of computing distance
matrices (Step 5a) dominates the time complexity of the rest of the steps and that can be done in O(n3) time
applying the Floyd–Warshall algorithm [22,23]. So, the while-loop and the Step 5a determine the polynomial
time of the Vc-Compatible-Complete-Mapping algorithm, that is, O(n4) time. □

Theorem 3.4. Let g be an incomplete Vc-greyscale of a connected graph G(V, E) such that the extreme
tones 0 and 1 are reached by g. Then it is possible to solve the associated rmigg problem in O(n4) time.

Moreover, the solution to rmigg problem is unique and the associated greyscale is provided by the
Vc-Compatible-Complete-Mapping algorithm.

Proof. The proof splits into three claims.

Claim 1. The algorithm outputs a well-defined greyscale f compatible with g.

The values of f are either the values of g (Step 4) or are assigned by Step 5(d)ii to vertices belonging to
u − v geodesics such that Mi = F (u, v). Owing to Step 4, f is compatible with g and since both extreme
tones are prefixed colours, its range is the interval [0, 1].

Let us check that the colour assignment by Step 5(d)ii is consistent, that is, both when a vertex in Vc

is again coloured by Step 5(d)ii in the ith-iteration; and in the case of a vertex belonging to different such
geodesics.

First, let w be a vertex with colour f(w) belonging to a u−v geodesic such that Mi = F (u, v) (maximum
value of Step 5b); in particular, F (u, v) is greater than F (u, w) and F (w, v). Hence, by applying Lemma 2.1
for f , u, v and the subgraph induced by Vi−1∩Vc, we can affirm F (u, v) = F (u, w) = F (w, v) and, moreover
f(w) belongs to the interval of extremes f(u) and f(v). Whether f(u) ≤ f(v), it holds that

F (u, v) = F (u, w)⇒Mi = f(w)− f(u)
d(w, u) ⇒ f(w) = f(u) + d(w, u) Mi.

In other words, the value assigned to w by Step 5(d)ii coincides with the previous colour of w. When
(u) > f(v) the reasoning is similar taking into account that F (u, v) = F (w, v).

On the other hand, let u1 − v1 and u2 − v2 be two geodesics such that Mi = F (u1, v1) = F (u2, v2) (we
ssume, without loss of generality, f(u1) ≤ f(v1) and f(u2) ≤ f(v2)) and let w be a vertex in V − Vc

elonging to both geodesics. In order to prove f(w) = f(u1) + d(u1, w) Mi = f(u2) + d(u2, w) Mi, let us
uppose on the contrary that f(u1) + d(u1, w) Mi > f(u2) + d(u2, w) Mi (the arguments are similar if the
nequality “<” is assumed), and therefore

f(u1) > f(u2) + (d(u2, w))− d((u1, w)) Mi, (1)

rom Mi = F (u1, v1) it holds that

f(v1) = f(u1) + (d(u1, w) + d(w, v1)) Mi. (2)

aking into account (1) and (2),

f(v1) > f(u2) + (d(u2, w) + d(w, v1)) Mi ≥ f(u2) + d(u2, v1) Mi ⇒

⇒ f(v1)− f(u2)
d(u2, v1) ≥Mi.

hich is a contradiction.

10
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This finishes the proof of Claim 1.

Claim 2. grad(G, f) = (M1, . . . , M1, M2, . . . , M2, . . . , Mr, . . . , Mr, 0, . . . , 0), where r is the number of
xecutions of the while-loop, possibly with no zeros.

By Remark 3.1, let us consider the edges that contribute with Mi ̸= 0 to grad(G, f).
It is necessary to guarantee that the sequence of maximum values computed in Step 5b is strictly

decreasing in i. Let Mi and Mi+1 be the maximum values of F on Gi and Gi+1 and computed by the
terations i and i + 1 of Step 5b, respectively. Henceforth we will check Mi > Mi+1, for i = 1, 2, . . . , r − 1.

Here, let us di denote the distance measured in Gi and is listed in the matrix Di; it is clear that
i(u, v) ≤ di+1(u, v). Let also ui+1 and vi+1 be two vertices such that Mi+1 = F (ui+1, vi+1) on Gi+1.
he executions at which the vertices ui+1 and vi+1 are coloured determine three cases:

1. Both vertices ui+1 and vi+1 have been coloured before the ith-iteration takes place. Then,
if {ui+1, vi+1} /∈ Si, it follows that

Mi ≥
|f(ui+1)− f(vi+1)|

di(ui+1, vi+1) ≥ |f(ui+1)− f(vi+1)|
di+1(ui+1, vi+1) = Mi+1.

Otherwise, the fact that {ui+1, vi+1} ∈ Si leads to

di(ui+1, vi+1) < di+1(ui+1, vi+1)

and then
Mi = |f(ui+1)− f(vi+1)|

di(ui+1, vi+1) >
|f(ui+1)− f(vi+1)|

di+1(ui+1, vi+1) = Mi+1.

2. Precisely one of the vertices ui+1 and vi+1 is coloured at the ith-iteration and the other one has been
coloured in a previous iteration. Without loss of generality, f(ui+1) ≤ f(vi+1) can be assumed and
then we distinguish two possibilities depending on whether either ui+1 receives its grey tone at the
ith-iteration or vi+1 does.

(a) If the vertex ui+1 is coloured at the ith-iteration, it belongs to some ui − vi geodesic such that
Mi = F (ui, vi) on Gi (f(ui) ≤ f(vi) can be assumed) and so it holds that

f(ui) = f(ui+1)− di(ui, ui+1) Mi. (3)

On the other hand, vi+1 is coloured before the ith-iteration and the inequality between Mi and
Mi+1 is achieved by distinguishing if {ui, vi+1} belongs or not to Si.
In case that {ui, vi+1} /∈ Si, the equality in (3) leads to:

Mi >
f(vi+1)− f(ui)

di(ui, vi+1) ≥ f(vi+1)− f(ui)
di(ui, ui+1) + di(ui+1, vi+1) ≥

≥ f(vi+1)− f(ui+1) + di(ui, ui+1) Mi

di(ui, ui+1) + di+1(ui+1, vi+1) =

= di+1(ui+1, vi+1) Mi+1 + di(ui, ui+1) Mi

di(ui, ui+1) + di+1(ui+1, vi+1) .

Observe that if Mi ≤Mi+1, then

Mi >
[di+1(ui+1, vi+1) + di(ui, ui+1)] Mi

di(ui, ui+1) + di+1(ui+1, vi+1) = Mi,

which is impossible, and therefore M > M .
i i+1

11
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In case that {ui, vi+1} ∈ Si, as ui+1 and vi+1 belong to the connected component Gi+1, and since
di(ui+1, vi+1) < di+1(ui+1, vi+1) it follows that di(ui, vi+1) < di(ui, ui+1) + di+1(ui+1, vi+1) and

Mi = f(vi+1)− f(ui)
di(ui, vi+1) >

f(vi+1)− f(ui)
di(ui, ui+1) + di+1(ui+1, vi+1) ,

and the reasoning goes on as in the lines above.
(b) If the vertex vi+1 is coloured at the ith-iteration, similar arguments lead to the result Mi > Mi+1

taking into account two facts: vi+1 belongs to some ui − vi geodesic such that Mi = F (ui, vi) on
Gi and f(ui) ≤ f(vi), which implies that f(vi+1) = f(vi) − di(vi, vi+1) Mi, and the membership
or not of {ui+1, vi} in Si.

3. Both vertices ui+1 and vi+1 are coloured by the ith-iteration. Therefore, two pairs of vertices exist
{u1

i , v1
i } and {u2

i , v2
i } of Gi such that Mi = F (u1

i , v1
i ) = F (u2

i , v2
i ) and the vertices ui+1 and vi+1

belong to some u1
i − v1

i and u2
i − v2

i geodesic, respectively (without loss of generality we may suppose
that f(ui+1) ≤ f(vi+1), f(u1

i ) ≤ f(v1
i ) and f(u2

i ) ≤ f(v2
i )). Then,

f(ui+1) = f(u1
i ) + di(u1

i , ui+1) Mi ⇒ f(u1
i ) = f(ui+1)− di(u1

i , ui+1) Mi (4)

f(vi+1) = f(v2
i )− di(v2

i , vi+1) Mi ⇒ f(v2
i ) = f(vi+1) + di(v2

i , vi+1) Mi (5)

If {u1
i , v2

i } /∈ Si and from (4) and (5), it holds that

Mi >
f(v2

i )− f(u1
i )

di(u1
i , v2

i ) ≥ f(vi+1) + di(v2
i , vi+1)Mi − f(ui+1) + di(u1

i , ui+1)Mi

di(u1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2

i ) =

= di+1(ui+1, vi+1) Mi+1 + di(v2
i , vi+1) Mi + di(u1

i , ui+1) Mi

di(u1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2

i )

Observe that if we assume Mi ≤Mi+1 implies

Mi >
[di(u1

i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2
i )] Mi

di(u1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2

i ) = Mi,

which is impossible, and hence Mi > Mi+1.
It remains to consider the case {u1

i , v2
i } ∈ Si. The inequality Mi > Mi+1 is achieved by applying that

di(u1
i , v2

i ) < di(u1
i , ui+1)+di+1(ui+1, vi+1)+di(vi+1, v2

i ), which follows from the connection of ui+1 and
vi+1 in Gi+1.

herefore, Claim 2 is shown.

laim 3. Unicity of f . f is the only greyscale compatible with g such that its gradation vector

grad(G, f) = (M1, . . . , M1, M2, . . . , M2, . . . , Mr, . . . , Mr, 0, . . . , 0)

s minimum among all gradation vectors of such greyscales.

Let Ck be the vertex-set of G containing the vertices that have been coloured at any of the first k

xecutions of the while-loop in Step 5, for k = 1 . . . r, being r the total number of executions of Step 5.
iven a minimum gradation greyscale h compatible with g we prove by induction on k that h(w) = f(w)

or all w ∈ V .
For k = 1, every vertex of C1 belongs to some u − v geodesic Pu−v = {u = w0, e1, w1, e2, w2, . . . ,

l−1, el, v = wl} (alternating sequence of vertices and edges) such that g(u) = f(u) = h(u) and g(v) =
(v) = h(v). There does not exist an edge e such that ĥ(e ) > M due to the minimality of G and
i i 1 h

12
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the existence of Gf . The next argument guarantees the non-existence of an edge ei such that ĥ(ei) < M1,
herefore ĥ(ei) = f̂(ei) = M1 for all edges of Pu−v. Both values of any greyscale on consecutive vertices of
u−v define intervals whose union is a cover of the interval [g(u), g(v)] or [g(v), g(u)]. The lengths of these

ntervals, that is, the grey tones of the corresponding edges, are all M1 for f ; and so, also for the greyscale
. Thus, if there exists one of them less than M1 there must exists another one greater than M1,

However, this fact is not possible owing to the minimality of Gh and the existence of Gf .
Then, f(wi) = h(wi) for all vertices of Pu−v since f̂(ei) = ĥ(ei) = M1 for all edges of Pu−v and

(u) = h(u) = g(u) and f(v) = h(v) = g(v).
For the induction step, the same previous reasoning is applied to the elements of the geodesics taking

art in the execution k +1 of Step 5, since the extreme vertices of such geodesics belong to Ck and therefore
heir grey tones assigned by f and h are equal.

Therefore, proof of Claim 3 ends.
Finally, the time complexity follows from Lemma 3.3. □

The next result solves the rmigg problem in the case of only one type of extreme colour is present, either
hite or black, among the prefixed values.

heorem 3.5. Let g be an incomplete Vc-greyscale of a connected graph G(V, E) such that only one extreme
one, either 0 or 1, is reached by g. Then it is possible to solve the associated rmigg problem in O(n5) time.

roof. Without loss of generality, we may suppose that g reaches the white colour 0 but not the black
olour 1. There exists a vertex w ∈ V −Vc such that f(w) = 1 for any greyscale f compatible with g. Then,
or every vertex w ∈ V −Vc a new incomplete greyscale gw is defined such that gw(u) = g(u) whether u ∈ Vc

nd gw(w) = 1. In accordance with Theorem 3.4 for gw, only one greyscale fw exists, that is compatible
ith gw whose gradation vector is minimum among all gradation vectors of greyscales compatible with gw.
Among these |V − Vc| greyscales fw, those whose gradation vector is minimum are the solutions of

the rmigg problem, and they have been obtained by running the Compatible-Complete-Mapping
polynomial procedure |V − Vc| times. Hence O(n5) is achieved for this problem. □

Now, the following result solves the proposed problems in case of neither black nor white appearing among
the prefixed values.

Theorem 3.6. It is possible to resolve both rmigg and migg problems in at most O(n6) time.

Proof. This proof is similar to the proof of Theorem 3.5, but in this case a new incomplete Vc ∪ {w1, w2}-
greyscale is defined for every pair of vertices w1 and w2 of V − Vc such that g{w1,w2}(u) = g(u) whether
u ∈ Vc, g{w1,w2}(w1) = 0 and g{w1,w2}(w2) = 1. Since there are

(|V −Vc|
2

)
of these incomplete greyscales and

the Compatible-Complete-Mapping polynomial procedure provides only one greyscale for each one of
them, this problem can be solved in O(n6) time. Finally, we can consider migg problem as a particular case
of rmigg problem for Vc = ∅. □

In accordance with Theorem 2.4 the actual computational cost of the Vc-Compatible-Complete-
Mapping procedure applied to the migg problem (Vc = ∅) can be reduced. By only taking into account the
pairs of antipodal vertices to be coloured with the extreme tones, instead of all the pairs of vertices of the
graph. Such pairs of antipodal vertices can be obtained form distance matrix D1 in Step 5a of first while-loop
without extra computational cost. On the other hand, the Vc-Compatible-Complete-Mapping procedure

has to be applied a quadratic number of times in the worst case, once for each pair of vertices coloured with

13
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black and white. These executions can be performed in parallel computation and since we are dealing with
minimax problems, after each iteration of the while-loop, it suffices to continue with the executions that lead
to the minimum value for Mi. The rest of these executions of the Vc-Compatible-Complete-Mapping
procedure can be discarded and aborted.

4. Conclusions and future works

This article introduces the new concept of gradation of a graph which is related to vertex and edge
colourings. This way, polynomial algorithms have been designed to solve minimum gradation problems,
taking into account whether or not prefixed colours exist. Nevertheless, the algorithms developed in this
paper have high computational complexity, thus it is essential further efforts are made to improve the
computational time required to solve these gradation problems. Since the time complexities are determined
by the computation of the distance matrix of the graph, it is suggested the research of different resolution
techniques so as to reduce the computational times. Additionally, it would also be interesting to pose
gradation in digraphs, studying a possible more suitable way of assigning colours to the directed edges.

Finally, some practical applications cited in the introduction deserve a more in-depth study on their utility
and possible improvement compared to already known results. Such is the case of hierarchical clustering
algorithms for which we have indicated a similarity function based on a minimum gradation greyscale. Other
possible applications in the context of distribution networks on graphs also be beneficial and lead to future
work.
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