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a b s t r a c t

Recently, the problem of boundary stabilization and estimation for unstable linear constant-coefficient
reaction–diffusion equation on n-balls (in particular, disks and spheres) has been solved by means
of the backstepping method. However, the extension of this result to spatially-varying coefficients is
far from trivial. Some early success has been achieved under simplifying conditions, such as radially-
varying reaction coefficients under revolution symmetry, on a disk or a sphere. These particular cases
notwithstanding, the problem remains open. The main issue is that the equations become singular
in the radius; when applying the backstepping method, the same type of singularity appears in the
kernel equations. Traditionally, well-posedness of these equations has been proved by transforming
them into integral equations and then applying the method of successive approximations. In this case,
with the resulting integral equation becoming singular, successive approximations do not easily apply.
This paper takes a different route and directly addresses the kernel equations via a power series
approach (in the spirit of the method of Frobenius for ordinary differential equations), finding in the
process the required conditions for the radially-varying reaction (namely, analyticity and evenness)
and showing the existence and convergence of the series solution. This approach provides a direct
numerical method that can be readily applied, despite singularities, to both control and observer
boundary design problems.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Prologue

It is with admiration that we contribute this article to cele-
rate the 80th birthday of Professor Art Krener in a special issue
n Systems & Control Letters—a journal in which he has published
some of his most impactful papers, such as his 1983 introduction
of nonlinear observers, jointly with Isidori, and his 1984 single-
authored introduction of approximate feedback linearization.

Art’s contributions are not only deep but also remarkably
broad, including nonlinear controllability/observability, nonlinear

✩ This work was supported in part by the National Natural Science Foundation
of China (62173084), the Fundamental Research Funds for the Central Uni-
versities, China and Graduate Student Innovation Fund of Donghua University,
China (CUSF-DH-D-2019089) and the scholarship from China Scholarship Council
(CSC201806630010). Rafael Vazquez acknowledges financial support of the
Spanish Ministerio de Ciencia, Innovación y Universidades, Spain under grant
PGC2018-100680-B-C21.

∗ Corresponding author.
E-mail addresses: rvazquez1@us.es (R. Vazquez),

hangjing9108@gmail.com (J. Zhang), jieqi@dhu.edu.cn (J. Qi), krstic@ucsd.edu
M. Krstic).
ttps://doi.org/10.1016/j.sysconle.2023.105538
167-6911/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
representation theory, feedback linearization, observer design,
control of bifurcations, optimal/bang–bang control, nonlinear
H-infinity control, solutions to Hamilton–Jacobi PDEs, and esti-
mation and analysis of stochastic systems.

His career in control theory started with his work on the max-
imum principle for problems where the first order conditions are
inconclusive. In order to generate conclusive results with the help
of higher order terms, he turned to Lie algebra and differential
geometry tools and employed his extension of Chow’s theorem
whose answer to the questions of accessibility and reachable
states leads to higher order necessary conditions for optimality.

Art then transitioned to representation theory, to answer
when a control-affine state–space model can be represented
as an input–output model via Volterra series and, somewhat
conversely, when a nonlinear input–output map can be repre-
sented as a bilinear state–space model. His work was a significant
inspiration for our spatial Volterra series approach to control of
nonlinear PDEs [1].

Art’s most impactful contribution resulted when he turned
his attention to controllability in his 1977 IEEE Transactions on
Automatic Control paper with mathematical physicist Hermann.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s

rener provided a comprehensive set of results on controllabil-
ty, observability, and minimality for nonlinear systems, tackling
hem analogously to the linear case—using rank conditions and
eading to decompositions into controllable and uncontrollable
ubsystems.
The initial idea for the celebrated feedback linearization orig-

nated in Krener’s necessary and sufficient conditions for the
xistence of a change of state variables that yields a transformed
ystem that is linear. Brockett, Hunt and Su, and Jacubczyk and
espondek extended this idea by adding feedback to the state
ransformation, producing the general framework now known
s feedback linearization. (One could argue that ‘‘PDE backstep-
ing’’ [2] is a PDE realization of the feedback linearization idea,
ith a PDE target system extending the finite-dimensional
runovsky form.) Recognizing himself that feedback linearizabil-
ty is not satisfied for some important physical systems, Krener
hen went on to develop a theory of ‘‘approximate feedback
inearization’’, published in Systems & Control Letters [3].

Pursuing a dual of the feedback linearization approach, for the
roblem of state estimation, Krener developed an approach to the
esign of observers for nonlinear systems, in collaboration with
sidori in Systems & Control Letters [4], and later with Respondek,
hich employs a state transformation and the injection of mea-
ured output. What we do in Section 6 of the present paper is a
DE analog of Krener’s approach.
Art pursued nonlinear control for systems with disturbances

n several waves—first in a paper with Isidori, Gori-Giorgi and
onaco in an award-winning paper that gives existence condi-

ions and constructions of decoupling and noninteracting control
aws, and then several years later in the context of nonlinear
-infinity control and estimation.
In the early and mid-1990s, inspired by ‘‘bifurcation control’’,

ildly popular in the physics community at that time, and linked
o interesting applications, Krener and Kang developed control
esigns for normal forms that include locally quadratic depen-
encies, which remain the definitive results of the art on this
ubject.
Art Krener cast an eye on PDE control systems at least as

arly as the mid-1990s, in the framework of a US Air Force
unded project on nonlinear control of jet engine instabilities.
hile other researchers focused on the first-order Galerkin ap-
roximations of the models of rotating stall instabilities in axial
low compressors in jet engines, Art formulated and studied
eneralized higher-order Moore–Greitzer nonlinear models [5].
It is a delight to see Art Krener take on PDE control as the

reoccupation for the present stage of his career [6,7]. Going
eyond the conventional development of operator Riccati equa-
ions, and the limitation to the study of their well posedness, in
is trademark fashion, Art is producing computable approximate
olutions to Riccati PDEs using Al’brekht’s approach, which he
as already brought to its state-of-the art form for nonlinear and
tochastic ODEs.

. Introduction

In this paper we introduce an explicit boundary output-
eedback control law to stabilize an unstable linear radially-
ependent reaction–diffusion equation on an n-ball (which in 2-D
s a disk and in 3-D a sphere).

This paper extends the spherical harmonics [8] approach of [9],
hich assumed constant coefficients, using some of the ideas
f [10]. For a finite number of harmonics, we design boundary
eedback laws and output injection gains using the backstep-
ing method [2] (with kernels computed using a power series
pproach) which allows us to obtain exponential stability of
he origin in the L2 norm. Higher harmonics will be naturally
2

pen-loop stable. The required conditions for the radially-varying
oefficients are found in the analysis of the numerical method
nd are non-obvious (evenness of the reaction coefficient). The
dea of using a power series to compute backstepping kernels
as first seen in [11] (without much analysis of the method

tself, but rather numerically optimizing the approximation) and
ater in [12], where piecewise-smooth kernels require the use of
everal series. Here, we prove that the method provides a unique
onverging solution, in the spirit of the method of Frobenius for
rdinary differential equations.
Some partial results towards the solution of this problem were

btained in [13] and [14] for the disk and sphere, respectively;
owever they required symmetry conditions. Older results in
his spirit were obtained in [15] and [16]. This paper extends
nd completes our conference contribution [17] where the ideas
here initially presented (without proof).
To the best of our knowledge, this paper presents the first

igorous proof of convergence of a power series solution for
he backstepping kernel equations. Thus, this work consolidates
he method as a valid alternative to more traditional numeri-
al approaches, which include finite difference approximations
f the kernel equations [2,18–20], the use of symbolical suc-
essive approximation series [21], or the numerical solution of
he integral version of the kernel equations [22,23]. The main
dvantages of the method are its simplicity (it does not require
he sometimes cumbersome conversion to integral equations thus
reventing mistakes or any consideration about discrete meshes),
peed (modern computing systems can reach high orders of the
eries in seconds), precision (one reaches a simple polynomial in
ne variable for the gain at the boundary that does not require
nterpolation), adaptability (it can be adapted to settings with
iscontinuous kernels by breaking the domain in pieces, see [12]),
nd capacity to produce kernels depending on parameters (by
ymbolically solving the kernel equations). The main drawback
s the analyticity requirement of the system coefficients, even
hough most physical systems and examples seen in backstepping
apers indeed possess analytic coefficients, and possibly a slow
onvergence rate of the series in some cases.
Previous results and applications in multi-dimensional do-

ains include multi-agent deployment in 3-D space [24] (by
ombining the ideas of [9] and [25]), convection problem on
nnular domains [21], PDEs with boundary conditions governed
y lower-dimensional PDEs [10,26], multi-dimensional cuboid
omains [27].
The backstepping method has proved itself to be an ubiquitous

ethod for PDE control, with many other applications including,
mong others, flow control [28,29], nonlinear PDEs [1], hyperbolic
-D systems [30–32], or delays [33]. Nevertheless, other design
ethods are also applicable to the geometry considered in this
aper (see for instance [34] or [35]).
The structure of the paper is as follows. In Section 3 we

ntroduce the problem. In Section 4 we state our stability result.
e study the well-posedness of the kernels in Section 5, which

s the main result of the paper, proving existence of the kernels
nd providing means for their computation; interestingly, odd
nd even dimensions require a slightly different approach. We
riefly talk next about the observer in Section 6, but skip most
etails based on its duality with respect to the controller. Then,
e give some simulation results in Section 7. We finally conclude
he paper with some remarks in Section 8.

. n-D reaction–diffusion system on an n-ball

Consider the following constant-coefficient reaction–diffusion
ystem in an n-dimensional ball of radius R:

∂u
= ϵ

(
∂2u

2 +
∂2u

2 + . . .+
∂2u

2

)
+ λu = ϵ △n u + λ(x⃗)u, (1)
∂t ∂x1 ∂x2 ∂xn
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here u = u(t, x⃗), with x⃗ = [x1, x2, . . . , xn]T , is the state variable,
volving for t > 0 in the n-ball Bn(R) defined as
n(R) =

{
x⃗ ∈ Rn

: ∥x⃗∥ ≤ R
}
, (2)

with boundary conditions on the boundary of Bn(R), which is the
(n − 1)-sphere Sn−1(R) defined as

Sn−1(R) =
{
x⃗ ∈ Rn

: ∥x⃗∥ = R
}
. (3)

The boundary condition is assumed to be of Dirichlet type,

u(t, x⃗)
⏐⏐⏐
x⃗∈Sn−1(R)

= U(t, x⃗), (4)

where U(t, x⃗) is the actuation. On the other hand the measure-
ment y(t, x⃗) is defined as

y(t, x⃗) = ∂ru(t, x⃗)
⏐⏐⏐
x⃗∈Sn−1(R)

, (5)

where ∂r denotes the derivative in the radial direction (normal to
the (n−1)-sphere), which would be defined as ∂ru(t, x⃗) = ∇⃗u·

x⃗
∥x⃗∥ .

Differently from [9], we consider non-constant λ(x⃗) verifying
he following assumption.

ssumption 3.1. The coefficient λ(x⃗) is an analytic function of x⃗
nd depends exclusively on the radius r = ∥x⃗∥.

Following [9], both the state and the actuation variable can
be written in n-dimensional spherical coordinates, also known as
ultraspherical coordinates (see [8], p. 93), which consist of one
radial coordinate r and n−1 angular coordinates θ⃗ . Then, using a
complex-valued) Fourier–Laplace series of Spherical Harmonics1
o handle the angular dependencies, defined as

(t, r, θ⃗ ) =

l=∞∑
l=0

m=N(l,n)∑
m=0

um
l (r, t)Y

n
lm(θ⃗ ), (6)

U(t, θ⃗ ) =

l=∞∑
l=0

m=N(l,n)∑
m=0

Um
l (t)Y n

lm(θ⃗ ), (7)

where N(l, n) is the number of (linearly independent)
n-dimensional spherical harmonics of degree l, given by N(0, n) =

(representing the mean value over the n-ball) and, for l > 0,

(l, n) =
2l + n − 2

l

(
l + n − 3
l − 1

)
, (8)

with Y n
lm being the mth n-dimensional spherical harmonic of

degree l. The coefficients in (6)–(7) are possibly complex-valued.
Following [9] and using (6)–(7) one reaches the following

independent complex-valued 1-D reaction–diffusion equation for
each spherical harmonic coefficient:

∂tum
l =

ϵ

rn−1 ∂r
(
rn−1∂rum

l

)
− l(l + n − 2)

ϵ

r2
um
l + λ(r)um

l , (9)

volving in r ∈ (0, R], t > 0, with boundary conditions
m
l (t, R) = Um

l (t), (10)

n these equations, we have considered Dirichlet boundary con-
itions. The measurement would be the flux at the boundary,
amely ∂rum

l (t, R).
Note that following [36, p. 640], a second boundary condition,

eflecting the second-order character of (9) and the need to avoid
ingular behaviors, can be expressed as:

um
l (t, 0)| < ∞. (11)

1 Spherical harmonics were introduced by Laplace to solve the homonymous
quation and have been widely used since, particularly in geodesics, electro-
agnetism and computer graphics. A very complete treatment on the subject
an be found in [8].
3

In the above equations, the integersm and l stand for the order
and degree of the harmonic, respectively. Note that the higher the
degree (corresponding to high frequencies), the more ‘‘naturally’’
s Eqs. (9)–(10) is, as seen next. Define the L2 norm

∥f ∥L2 =

√∫ R

0
|f (r)|2 rn−1dr. (12)

nd the associated L2 space as usual, where |f |2 = ff ∗, being f ∗

he complex conjugate of f .

emma 3.1. Given λ(r) and R, there exists L ∈ N such that, for
ll l > L, the equilibrium um

l ≡ 0 of system (9)–(10) is open loop
exponentially stable, namely, for Um

l = 0 in (10) there exists a
positive constant D1, such that for all t

∥um
l (t, ·)∥L2 ≤ e−D1t∥um

l (0, ·)∥L2 . (13)

1 is independent of l, and only depends on n, λ(r), ϵ, and R, and
an be chosen as large as desired just by increasing the values of L.

The proof is skipped as it mimics [10] just by using the L2 norm
s a Lyapunov function and Poincare’s inequality.
Thus one only needs to stabilize the unstable mode with l < L.

ince the different modes are not coupled, it allows us to stabilize
hem separately and re-assembling them. Moreover since only
finite number of harmonics is stabilized, there is no need to
orry about the convergence of the control law as in [9], with its
pherical Harmonics series being just a finite sum.
Our objective can now be stated as follows. Considering only

he unstable modes, design an output-feedback control law for Um
l

sing, for each mode, only the measurement of ∂rum
l (t, R). Our

design procedure is established in the next section along with our
main stability result.

4. Stability of controlled harmonics

Next, for the unstable modes we design the output-feedback
law. The observer and controller are designed separately using
the backstepping method, by following [9]; in this reference it
is shown that both the feedback and the output injection gains
can be found by solving a certain kernel PDE equation, which
is essentially the same for both the controller and the observer.
Thus, for the sake of brevity and to avoid repetitive material,
we only show how to obtain the (full-state) control law, giving
the basic observer design and some additional remarks later in
Section 6.

4.1. Design of a full-state feedback control law for unstable modes

Based on the backstepping method [2], our idea is utilizing an
invertible Volterra integral transformation

wm
l (t, r) = um

l (t, r) −

∫ r

0
K n
lm(r, ρ)u

m
l (t, ρ)dρ, (14)

here the kernel K n
lm(r, ρ) is to be determined, which defined on

he domain Tk = {(r, ρ) ∈ R2
; 0 ≤ ρ ≤ r ≤ R} to convert the

nstable system (9)–(10) into an exponentially target system:

tw
m
l = ϵ

∂r (rn−1∂rw
m
l )

rn−1 − ϵl(l + n − 2)
wm

l

r2
− cwm

l , (15)

m
l (t, R) = 0, (16)

here the constant c > 0 is an adjustable convergence rate. From
14) and (16), let r = R, we obtain the boundary control as the
ollowing full-state law

m
l (t) =

∫ R

K n
lm(R, ρ)u

m
l (t, ρ)dρ. (17)
0
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ollowing closely the steps of [9] to find conditions for the ker-
els, and defining K n

lm(r, ρ) = Gn
lm(r, ρ)ρ

(
ρ

r

)l+n−2, we finally
reach a PDE that the G-kernels need to verify:

λ(ρ) + c
ϵ

Gn
lm = ∂rrGn

lm+(3−n−2l)
∂rGn

lm

r
−∂ρρGn

lm+(1−n−2l)
∂ρGn

lm

ρ
,

(18)

ith only one boundary condition:

n
lm(r, r) = −

∫ r
0 (λ(σ ) + c)dσ

2rϵ
. (19)

e assume as usual that these kernel equations are well-posed
nd the resulting kernel is bounded in T ; this will be analyzed
ater in Section 5, providing also a numerical method for its
omputation.

.2. Closed-loop stability analysis of unstable modes

To obtain the stability result of closed-loop system, we need
hree elements. We begin by stating the stability result for the
arget system. We follow by obtaining the existence of an inverse
ransformation that allows us to recover our original variable
rom the transformed variable. Then we relate the L2 norm with
pherical harmonics. With these elements, we construct the proof
f stability mapping the result for the target system to the original
ystem. This is done by showing that the transformation is an
nvertible map from L2 into L2.

We first discuss the stability of the target system, having the
ollowing lemma:

emma 4.1. For all l ∈ N, and for c ≥ 0, the equilibrium wm
l ≡ 0 of

ystem (15)–(16) is exponentially stable, i.e., there exists a positive
onstant D2 such that for all t ,

wm
l (t, ·)∥L2 ≤ e−D2t∥wm

l (0, ·)∥L2 , (20)

here the constant D2 is independent of n, l or m, and only depends
n c, ϵ, and R; it can be chosen as large as desired just by increasing
he value of c.

roof. Consider the Lyapunov function:

2(t) =
1
2
∥wm

l (t, ·)∥
2
L2 , (21)

hen, taking its time derivative, we obtain

˙2 =

∫ R

0

w̄m
l ∂tw

m
l + wm

l ∂tw̄
m
l

2
rn−1dr ≤ −

( ϵ

4R2 + c
)

∥wm
l ∥

2
L2

(22)

hoosing

= D2 −
ϵ

4R2 (23)

e then obtain, independent of the value of n,
˙2 ≤ −2D2V2, (24)

hus proving the result. □

Lemma 4.2. For |l| ≤ L, let c be chosen as in Lemma 4.1, and
assume that the kernel K n

lm(r, ρ) is bounded and integrable. The
ystem (9) with boundary control (17) is closed-loop exponentially
table, namely there exists positive constants C and D2 such that

um
l (t, ·)∥L2 ≤ Ce−D2t∥um

l (0, ·)∥L2 , (25)

and D2 are independent of m or l, and only depend on n, L, λ(r),
and R.
 s

4

Proof. The proof consists of two parts, one is existence of an
inverse transformation, and then showing the equivalence of
norms of the variables un

lm and wn
lm; the result then follows from

the stability of the target system.
As shown in [9], when Kn(r, ρ) is bounded and integrable, the

ap (14) is invertible and its inverse transformation is

m
l (t, r) = wm

l (t, r) +

∫ r

0
Lnlm(r, ρ)w

m
l (t, ρ)dρ, (26)

hich is also bounded and integrable. Call now K̄ and L̄ the
aximum of the bounds of the function Ǩ n

lm and Ľnlm for a given n
nd all l ≤ L in their respective domains. It is easy to get

wm
l (t, ·)∥

2
L2 ≤ M1∥um

l (t, ·)∥
2
L2 , (27)

um
l (t, ·)∥

2
L2 ≤ M2∥w

m
l (t, ·)∥

2
L2 . (28)

here M1 = 2 + R4K̄/(2n) and M2 = 2 + R4L̄/(2n). Combining
hen Lemma 4.1 with the norm equivalence between um

l and wm
l

ystem stated as in (27) and (28), it is easy to obtain

um
l (t, ·)∥L2 ≤

√
M2∥w

m
l (t, ·)∥L2 ≤

√
M2e−D2t∥wm

l (0, ·)∥L2

≤

√
M1M2e−D2t∥um

l (0, ·)∥L2 . (29)

Let C =
√
M1M2, the result then follows. □

Note that combining Lemmas 3.1 and 4.2 and taking D =

in{D1,D2}, we get the following stability result for all spherical
armonics and thus the full physical system.

heorem 1. Under the assumption that the kernel K n
lm(r, ρ) is

bounded and integrable, the equilibrium um
l ≡ 0 of system (9)–(10)

under control law (17) is closed-loop exponentially stable, namely,
there exists a positive constant D, such that for all t

∥um
l (t, ·)∥L2 ≤ Ce−Dt

∥um
l (0, ·)∥L2 . (30)

where D can be chosen as large as desired just by increasing the
value of L and c in the control design process.

5. Well-posedness of the kernel equations

Next, we state the main result of the paper, which was in part
assumed in Theorem 1, also giving the requirements for λ(r). In
addition the proof of the result also provides a numerical method
to compute the kernels, which is an alternative to successive
approximations which do not work in this case (due to the sin-
gularities at the origin; see for instance [13] to see the resulting
singular integral equation that needs to be solved).

Theorem 2. Under the assumption that λ(r) is an even real analytic
unction in [0, R], then for a given n > 1 and all values of l ∈ N,
here is a unique power series solution Gn

lm(r, ρ) for (18)–(19), even
n its two variables in the domain T , which is real analytic in the
omain. In addition, if λ(r) is analytic, but not even, then there is no
ower series solution to (18)–(19) for most values l ∈ N.

The requirement of evenness for λ(r) might seem unusual.
owever, if we carefully consider Assumption 3.1, and since r =

x⃗∥ =

√
x21 + x22 + . . .+ x2n, in physical space λ(x⃗) will be non-

nalytic, unless it is even. Thus, while solutions to the kernel
quations might exist for non-even λ(r), we cannot expect them
o be analytic. This result notwithstanding, if one is interested in
ontrolling only very low-order harmonics, kernels do exist with-
ut this requirement, as shown in [13,14], which only consider
he 0-th order harmonic (the mean) respectively for a disk and a
phere, and only require boundedness of λ(r).
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.1. Proof of Theorem 2

We start by giving out an algorithmic method to compute the
ower series for Gn

lm(r, ρ), which will allow us to prove Theorem 2
as well as numerically approximating the kernels.

First of all, we show that the evenness of λ(r) is a neces-
ary condition to find an analytic solution. Next, it is possible
o establish that the series for Gn

lm(r, ρ) only has even powers.
xploiting this property to suitably express (18)–(19), we finally
how the existence of the power series and thus Theorem 2
ollows. Convergence and related issues (radius of convergence)
s studied towards the end, finishing the proof.

.1.1. Computing a power series solution for the kernels
Starting from the most basic assumption of Theorem 2, we

onsider that λ(r) is analytic in [0, R], therefore it can be written
s a convergent series (encompassing c and ϵ for notational
onvenience):

λ(r) + c
ϵ

=

∞∑
i=0

λir i, (31)

hich, by the evenness of λ, may only contain even powers,2 this
s, λi = 0 if i is odd. We then, in the spirit of the method of
robenius for ordinary differential equations, seek for a solution
f (18)–(19) of the form:

n
lm(r, ρ) =

∞∑
i=0

⎛⎝ i∑
j=0

Cijr jρ i−j

⎞⎠ , (32)

where the dependence on n, l andm has been omitted for simplic-
ity (the solution will depend on these values). The series in (32)
collects together (in the parenthesis) all the polynomial terms
with the same degree.

It is easy to see that the boundary condition (19) implies:

∀i,
i∑

j=0

Cij = −
λi

2(i + 1)
, (33)

hich in particular implies C00 = −
λ0
2ϵ . On the other hand, the

eft-hand side of (18) becomes

λ(ρ) + c
ϵ

Gn
lm =

⎡⎣ ∞∑
i=0

⎛⎝ i∑
j=0

Cijr jρ i−j

⎞⎠⎤⎦ ∞∑
i=0

λiρ
i

=

∞∑
i=0

⎛⎝ i∑
j=0

Bijr jρ i−j

⎞⎠ , (34)

where we have defined

Bij =

i∑
k=j

Ckjλi−k. (35)

Finally, to express the right-hand side of (18), denote γ = n +

2l − 2 ≥ 0 and define the operators D1 = ∂rr + (1 − γ )1/r∂r and
D2 = −∂ρρ + (−1 − γ )1/ρ∂ρ . Then

D1Gn
lm =

∞∑
i=1

⎛⎝ i∑
j=1

j(j − γ )Cijr j−2ρ i−j

⎞⎠ , (36)

2 It is a known fact of analysis that even functions (respectively, odd
unctions) contain only even powers (respectively, odd powers) in their Taylor
eries. This fact has an easy proof by substituting the series in the definition of
venness f (r) = f (−r) (respectively, oddness f (r) = −f (−r)) and checking the
onditions verified by the coefficients.
5

D2Gn
lm =

∞∑
i=1

⎛⎝ i−1∑
j=0

(i − j)(j − i − γ )Cijr jρ i−j−2

⎞⎠, (37)

and thus, rewriting the sum to be homogeneous with (34),we
find

(D1 + D2)Gn
lm =

∞∑
i=−1

⎛⎝ i+1∑
j=−1

Dijr jρ i−j

⎞⎠ , (38)

where, (assuming Cij = 0 if i, j < 0 or j > i),

Dij = (j+2)(j+2−γ )C(i+2)(j+2)−(i−j+2)(i−j+2+γ )C(i+2)j, (39)

Equating (38) and (34), we obtain a system of equations:

∀i ≥ −1, Di(i+1) = Di(−1) = 0, (40)
∀i ≥ 0, 0 ≤ j ≤ i, (j + 2)(j + 2 − γ )C(i+2)(j+2) − (i − j + 2)

(i − j + 2 + γ )C(i+2)j = Bij. (41)

With λ(r) and n are fixed, we want to show that the kernel
equations are solvable for all values of l ∈ N. Thus, γ takes
increasing values. In addition we can assume γ ̸= 1, since the
case n = 3, l = 0 was already addressed in [14] showing
that it reduces to the usual 1-D kernel equations for parabolic
systems [2], which admits a power series solution according
to [11].

The first two equalities, if γ ̸= 1, imply

∀i ≥ 1, Ci1 = Ci(i−1) = 0, (42)

and, in particular, C10 = C01 = 0, whereas the second equality re-
sults in a system of equations that needs to be solved recursively,
starting at i = 0. It can be rewritten as follows to start at i = 2
(since C00, C10 and C01 are already determined).

∀i ≥ 2, 0 ≤ j ≤ i − 2,

(j + 2)(j + 2 − γ )Ci(j+2) − (i − j)(j − i − γ )Cij =

i−2∑
k=j

Ckjλi−2−k.

(43)

Note that for each i ≥ 2, there are i+1 coefficients in (32) but i+2
relations: one from (33), two from (42) and i−1 from (43). Thus,
it would seem that (33)–(42)–(43) is in general an incompatible
system. This is indeed the case if λ(r) is not even, i.e., if the series
(31) contains odd powers, as shown in the next section.

5.1.2. Evenness requirement of λ(r)
We start with the following result.

Lemma 5.1. If λ(r) is not even, then there are values of l ∈ N for
which there is no solution to (18)–(19) in the form of (32).

Proof. We show that, if there exists i odd such that λi ̸= 0, then
there is no solution in the form of a power series. First, if λ1 ̸= 0,
then from (33) we know that C01 + C10 = −

λ1
4ϵ , however since

orm (42) one has C01 = C10 = 0, this cannot hold. Consider now
here is indeed a value i > 1 for which a coefficient λi is distinct
rom zero and let us show the result by contradiction. Consider
he first such i. Now, since the right-hand side of (43) depends
n C(i−2)j, one gets that for all odd i′ < i Ci′j must zero from (33)–
42)–(43) all having a zero right-hand side (this can be formalized
ith an induction argument; we skip the details). Thus, at i, the

ollowing system of equations has to be verified:

Ci1 = Ci(i−1) = 0, (44)
i

Cij = −
λi

2ϵ(i + 1)
, (45)
j=0
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nd for 0 ≤ j ≤ i − 2,

(j + 2)(j + 2 − γ )Ci(j+2) − (i − j)(i − j + γ )Cij = 0, (46)

Let us consider l sufficiently large such that γ > i, so that the
coefficient (j+2−γ ) in (46) is distinct from zero in the full range
of j, namely 0 ≤ j ≤ i − 2. Then none of the coefficients in (46)
is zero. Therefore, combining (44) with (46), from Ci1 we can find
Ci3, then Ci5, and so on. Similarly, from Ci(i−1) we can find Ci(i−3),
Ci(i−5) and so on. These two sequences do not overlap because i is
odd and therefore, one finds Cij = 0 for all 0 ≤ j ≤ i which is not
compatible with (45) unless λi = 0, which contradicts our initial
assumption. □

Next we show that evenness of λ implies evenness of the
kernels.

Lemma 5.2. If λ(r) is even, then, a solution to (18)–(19) in the form
of (32) only has even powers.

Proof. We need to prove that Cij = 0 if either i or j is odd.
From the proof of Lemma 5.1, we directly know that for odd i
one has Cij = 0. Fix, then, i even and consider j odd; for i = 2,
the result is obvious. Assuming Ci′j = 0 for all even numbers
i′ < i and j odd, let us prove the result by induction on the
first coefficient. As before, we would need to solve (45)–(43). The
right-hand side Bij =

∑i−2
k=j Ckjλi−2−k of (43) is zero as in (46) by

the induction hypothesis (if k even) or directly zero if k odd. Then,
following again the proof of Lemma 5.1, we have the same system
of Eqs. (45)–(46) for our even i and odd j’s. Now:

Cij =
(j + 2)(j + 2 − γ )
(i − j)(i − j + γ )

Ci(j+2),

so starting from Ci(i−1) = 0 we find Ci(i−3) = 0, then Ci(i−5), and
o on; however, with i being even, this sequence ends now in
i1 (thus, the proof of Lemma 5.1 does not apply because the
equences starting at Ci1 and Ci(i−1) overlap). Thus, one finds Cij =

for all odd values of j between 1 and i − 1. □

.1.3. Well-posedness of the coefficient system
Next, we show that the coefficients of the power series can

lways be found, which by the previous lemmas only requires
tudying the even coefficients. For simplification, we redefine (31)
nd (32) as:

λ(r) + c
ϵ

=

∞∑
i=0

λir2i, Gn
lm(r, ρ) =

∞∑
i=0

⎛⎝ i∑
j=0

Cijr2jρ2(i−j)

⎞⎠ , (47)

without bothering to redefine the coefficients (note that (35) does
not require any change). Defining as well γ ′

=
γ

2 =
n
2 + l−1 ≥ 0,

the new system of equations to be solved is

∀i,
i∑

j=0

Cij = −
λi

2(2i + 1)
, (48)

nd

i ≥ 1, 0 ≤ j ≤ i − 1, (j + 1)(j + 1 − γ ′)Ci(j+1)

+ (i − j)(j − i − γ ′)Cij =

i−1∑
k=j

Ckjλi−1−k = B(i−1)j. (49)

Let us outline the solution procedure, and later derive some
conclusions. Solving in (49) every Cij as a function of Ci(j+1) we
get:

Cij =
(j + 1)(j + 1 − γ ′)Ci(j+1) + B(i−1)j

, (50)

(i − j)(i − j + γ ′)

6

which can be written more briefly if we define, for i > 0 and
0 ≤ j < i,

aij(γ ′) =
(j + 1)(j + 1 − γ ′)
(i − j)(i − j + γ ′)

, (51)

s

ij = aij(γ ′)Ci(j+1) +
B(i−1)j

(i − j)(i − j + γ ′)
. (52)

o be able to simplify a bit the equation, redefine

ˆ (i−1)j =
B(i−1)j

(i − j)(i − j + γ ′)
(53)

hen,

ij = aij(γ ′)Ci(j+1) + B̂(i−1)j. (54)

nd iterating this equality until reaching Cii, we get

ij =

⎡⎣k=i−1∏
k=j

aik(γ ′)

⎤⎦ Cii + B̂(i−1)j +

i−1∑
r=j+1

k=i−1∏
k=r

aik(γ ′)B̂(i−1)r ,

nd inserting this into (48), we reach an equation for Cii, namely

ii = −
1

κ(i, γ ′)

[
λi

2ϵ(2i + 1)
+ Hi

]
, (55)

here

(i, γ ′) = 1 +

i−1∑
j=0

k=i−1∏
k=j

aik(γ ′), (56)

nd

i =

i−1∑
j=0

B̂(i−1)j +

i−2∑
j=0

i−1∑
r=j+1

k=i−1∏
k=r

aik(γ ′)B̂(i−1)r

=

i−1∑
j=0

B̂(i−1)j +

i−1∑
r=1

r−1∑
j=0

k=i−1∏
k=r

aik(γ ′)B̂(i−1)r

=

i−1∑
j=0

B̂(i−1)j +

i−1∑
r=1

r
k=i−1∏
k=r

aik(γ ′)B̂(i−1)r

=

i−1∑
j=0

⎛⎝1 + j
k=i−1∏
k=j

aik(γ ′)

⎞⎠ B̂(i−1)j (57)

It is quite clear that these κ(i, γ ′) will play an important role;
in particular, if they are non-zero, one can always find a unique
solution for the coefficients Cij. Thus one needs to show that
κ(i, γ ′) ̸= 0 for any possible i or γ ′. The following lemma shows
this is indeed the case, by exploiting a connection of the aij
coefficients with Gauss’ hypergeometric functions.

Lemma 5.3. Let i be a positive integer and γ ′
≥ 0 a real number.

Then, it holds that

κ(i, γ ′) =
2i!
i!

Γ (γ ′
+ 1)

Γ (i + γ ′ + 1)
> 0, (58)

here Γ denotes the Gamma function [37, p. 255].

roof. Recalling from (56) and (51) the definitions of κ(i, γ ′) and
aij, respectively, one has

κ(i, γ ′) = 1 +

i−1∑ k=i−1∏ (k + 1)(k + 1 − γ ′)
(i − k)(i − k + γ ′)

(59)

j=0 k=j
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hich can be rewritten in terms of binomial numbers and ris-
ng/falling factorials3 [38] as

(i, γ ′) =

i∑
j=0

(
i
j

)
(i − γ ′)i−j

(1 + γ ′)i−j
(60)

nd reordering the sum and using
(

i
j

)
=

(
i

i − j

)
,

κ(i, γ ′) =

i∑
j=0

(
i
j

)
(i − γ ′)j

(1 + γ ′)j
=

i∑
j=0

(−1)j
(

i
j

)
(γ ′

− i)j

(1 + γ ′)j
, (61)

here the obvious fact (x)j = (−1)j(−x)j has been used. Consider
ow the finite polynomial pi(x, γ ′) defined as

pi(x, γ ) =

i∑
j=0

(−1)j
(

i
j

)
(γ ′

− i)j

(1 + γ ′)j
xj (62)

From the definition of Gauss’ hypergeometric function [37, p.
561], denoted as 2F1(a, b; c; x), in the polynomial case (a or b non-

positive integer) and noting (−1)j
(

i
j

)
=

(−i)j
j! , it is immediate

hat

i(x, γ ) = 2F1(−i, γ ′
− i; 1 + γ ′

; x) (63)

and therefore, from Gauss’ summation theorem [37, p. 556],
which is applicable in this case since 1 + 2i > 0,

κ(i, γ ′) = pi(1, γ ) = 2F1(−i, γ ′
− i; 1 + γ ′

; 1)

=
Γ (1 + γ ′)

Γ (1 + γ ′ + i)
Γ (1 + 2i)
Γ (1 + i)

=
2i!
i!

Γ (1 + γ ′)
Γ (1 + γ ′ + i)

, (64)

inishing the proof. □

The next result is an immediate conclusion of the positivity of
(i, γ ′):

emma 5.4. If λ(r) is even, then, for all values of l ∈ R, the
coefficients in (47) that solve (18)–(19) can be uniquely found up
to any order i.

To conclude the proof of Theorem 2, we need to prove ana-
lyticity of the series (47). This step, however, requires splitting
the problem in two possible cases: odd dimension (thus, γ ′

=

n/2 + 2l − 1 is not an integer) and even dimension (γ ′ integer).

5.1.4. Proof of analyticity for odd dimension
In the odd-dimension case, define the following coefficients:

Li0 = 1,

Lij =

(
i
j

)
(i + γ ′)(i − 1 + γ ′) . . . (i − j + γ ′

+ 1)
(1 − γ ′)(2 − γ ′) . . . (j − γ ′)

, j > 0 (65)

ith Li0 defined as 1; these are well-defined given that γ ′ is
non-integer. They can also be expressed as

Lij =

(
i
j

)
Γ (1 − γ ′)Γ (i + 1 + γ ′)

Γ (j + 1 − γ ′)Γ (i − j + 1 + γ ′)

Now, in (48)–(49), denote Cij = LijČij. Replacing in the recurrence
we get

B(i−1)j = (j + 1)(j + 1 − γ ′)
(

i
j + 1

)

3 Rising factorials (x)n are sometimes expressed using the Pochhammer’s
ymbol, with a slightly different notation, namely (x) .
n

7

Γ (1 − γ ′)Γ (i + 1 + γ ′)
Γ (j + 2 − γ ′)Γ (i − j + γ ′)

Či(j+1)

−(i − j)(i − j + γ ′)
(

i
j

)
Γ (1 − γ ′)Γ (i + 1 + γ ′)

Γ (j + 1 − γ ′)Γ (i − j + 1 + γ ′)
Čij

= (i − j)(i − j + γ ′)Lij
(
Či(j+1) − Čij

)
(66)

efine now

ˇ (i−1)j =
B(i−1)j

(i − j)(i − j + γ ′)Lij
(67)

nd the new set of recurrence equations for Čij becomes rather
imple:

∀i,
i∑

j=0

LijČij = −
λi

2(2i + 1)
, (68)

i ≥ 1, 0 ≤ j ≤ i − 1, Či(j+1) − Čij = B̌(i−1)j, (69)

nd the recurrence is easily solvable in terms of one element; for
nstance, Čii:

Čij = Čii −

r=i−1∑
r=j

B̌(i−1)r (70)

for j = 1, . . . , i. Replacing in (68) we reach
i∑

j=0

LijČii −

i−1∑
j=0

Lij
r=i−1∑
r=j

B̌(i−1)r = −
λi

2(2i + 1)

Thus:

Čii =
−

λi
2(2i+1) +

∑k=i−1
k=0

∑r=i−1
r=k LikB̌(i−1)r∑k=i

k=0 Lik

=

−
λi

2(2i+1) +
∑r=i−1

r=0 B̌(i−1)r

(∑k=r
k=0 Lik

)
∑k=i

k=0 Lik
(71)

all

ij =

k=j∑
k=0

Lik, Ri =

k=i∑
k=0

Lik = Rii. (72)

hen

ˇii =
−

λi
2(2i+1) +

∑r=i−1
r=0 B̌(i−1)rRir

Ri
(73)

ow, solving for the remaining coefficients from (70):

ˇij =
−

λi
2(2i+1) +

∑r=i−1
r=0 B̌(i−1)rRir

Ri
−

r=i−1∑
r=j

B̌(i−1)r

=
−

λi
2(2i+1) +

∑r=i−1
r=0 B̌(i−1)rRir −

∑r=i−1
r=j B̌(i−1)rRi

Ri

=
−

λi
2(2i+1) +

∑r=j−1
r=0 B̌(i−1)rRir −

∑r=i−1
r=j B̌(i−1)r (Ri − Rir )

Ri
(74)

inally, recovering the coefficients Cij from Cij = LijČij and using
67):

ij =

−
λi

2(2i+1) Lij +
∑r=j−1

r=0 B(i−1)r
LijRir

(i−r)(i−r+γ ′)Lir
−
∑r=i−1

r=j B(i−1)r
Lij(Ri−Rir )

(i−r)(i−r+γ ′)Lir

Ri
,

(75)

which is quite explicit.
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Notice that since ρ ≤ r ,

|Gn
lm(r, ρ)| ≤

∞∑
i=0

⎛⎝ i∑
j=0

|Cij|r2jρ2(i−j)

⎞⎠ ≤

∞∑
i=0

r2i

⎛⎝ i∑
j=0

|Cij|

⎞⎠ ,
hus, defining αi =

∑i
j=0 |Cij|, if we can prove that

∑
∞

i=0 αir2i
onverges for a certain radius of convergence R, so does Gn

lm(r, ρ)
or ρ ≤ r ≤ R, and thus we obtain the required analyticity. Now:

i =

i∑
j=0

|Cij|

≤
|λi|

2(2i + 1)

∑i
j=0 |Lij|

|Ri|
+

∑i
j=0
∑r=j−1

r=0 |B(i−1)r ||
LijRir

(i−r)(i−r+γ ′)Lir
|

|Ri|

+

∑i
j=0
∑r=i−1

r=j |B(i−1)r ||
Lij(Ri−Rir )

(i−r)(i−r+γ ′)Lir
|

|Ri|

=
|λi|

2(2i + 1)

∑i
j=0 |Lij|

|Ri|
+

∑i−1
r=0

∑i
j=r+1 |B(i−1)r ||

LijRir
(i−r)(i−r+γ ′)Lir

|

|Ri|

+

∑r=i−1
r=0

∑r
j=0 |B(i−1)r ||

Lij(Ri−Rir )
(i−r)(i−r+γ ′)Lir

|

|Ri|

≤
|λi|

2(2i + 1)

∑i
j=0 |Lij|

|Ri|

+

i−1∑
r=0

|B(i−1)r |

(
|Rir |

∑i
j=r+1 |Lij| + |Ri − Rir |

∑r
j=0 |Lij|

(i − r)(i − r + γ ′)|Lir ||Ri|

)
,(76)

o prove the convergence of the power series
∑

∞

i=0 αir2i consider
he following lemma, inspired by [39]:

emma 5.5. Consider g(x) =
∑

∞

i=0 gix
2i and h(x) =

∑
∞

i=0 hix2i
nalytic functions, both with radius of convergence R. Let i0 be a
onnegative integer, let (ai)∞i=0 be a sequence of real numbers, and
efine f (x) =

∑
∞

i=0 aix
2i, where ai verify, for i > i0

i ≤ bi|gi| + ci
i−1∑
j=0

aj|hi−1−j| (77)

here the sequences bi, ci ≥ 0 are decreasing for i > i0, with ci
lso verifying limi→∞ ci = 0. Then, f (x) is analytic with radius of
onvergence at least R.

roof. Since g and h analytic with radius of convergence R we
an write |gi|, |hi| ≤ MR−2i, where the definition as power series
f squares has been taken into account. Thus:

i ≤ biMR−2i
+ ci

i−1∑
j=0

ajMR−2i+1+2j (78)

efine ǎi = ai for i ≤ i0 and, for i > i0, ǎi = biMR−2i
+

i
∑i−1

j=0 ǎjMR−2i+1+2j. Obviously ai ≤ ǎi and therefore the radius
f convergence of f (x) would be at least the radius of convergence
f f̌ (x) =

∑
∞

i=0 ǎix
2i. Now:

ˇ i+1 = bi+1MR−2i−2
+ ci+1

i∑
j=0

ǎjMR−2i+2j−1

= bi+1MR−2i−2
+ ci+1Mǎi + ci+1R−2

i−1∑
j=0

ǎjMR−2i2+j+1 (79)

It is sufficient to compute

lim
ǎi+1
i→∞ ǎi
8

= lim
i→∞

bi+1MR−2i−2
+ ci+1Mǎi + ci+1R−2∑i−1

j=0 ǎjMR−2i+2j+1

ǎi
= lim

i→∞

Mci+1

+ lim
i→∞

bi+1MR−2i−2
+ ci+1R−2∑i−1

j=0 ǎjMR−2i+2j+1

biMR−2i + ci
∑i−1

j=0 ǎjMR−2i+1+2j

= R−2 lim
i→∞

bi+1 + ci+1
∑i−1

j=0 ǎjR
2j+1

bi + ci
∑i−1

j=0 ǎjR1+2j

≤ R−2 lim
i→∞

bi + ci
∑i−1

j=0 ǎjR
2j+1

bi + ci
∑i−1

j=0 ǎjR1+2j

R−2, (80)

here the inequality holds for sufficiently large i > i0 and thus
n the limit, therefore proving the lemma. □

To apply Lemma 5.5 to (76) we need to bound some of the
erms. In particular, if we are able to find bi and ci such that∑i

j=0 |Lij|

2(2i + 1)|Ri|
≤ bi,

max
r∈{0,...,i−1}

(
|Rir |

∑i
j=r+1 |Lij| + |Ri − Rir |

∑r
j=0 |Lij|

(i − r)(i − r + γ ′)|Lir ||Ri|

)
≤ ci, (81)

e get

i ≤ bi|λi| + ci
i−1∑
r=0

|B(i−1)r |

= bi|λi| + ci
i−1∑
r=0

i−1∑
k=r

|Ckr ||λi−1−k|

= bi|λi| + ci
i−1∑
k=0

k∑
r=0

|Ckr ||λi−1−k|

= bi|λi| + ci
i−1∑
k=0

αk|λi−1−k|. (82)

Thus, assuming that bi and ci verify the conditions given in
Lemma 5.5, and given that λ(x) has a radius of convergence of at
least R, we see that Gn

lm(r, ρ) converges and defines an analytic
function for ρ ≤ r ≤ R, thus proving Theorem 2 for the
odd-dimension case.

It remains to find such bi and ci. Proceeding exactly as in
Lemma 5.3 with a slight modification, we directly find

Ri = 2F1(−i,−(γ ′
+ i); 1 − γ ′

; 1) =
Γ (1 − γ ′)Γ (2i + 1)

Γ (−γ ′ + 1 + i)Γ (i + 1)

=
2i!
i!

Γ (1 − γ ′)
Γ (1 − γ ′ + i)

(83)

Now, let N = γ ′
− 1/2 and i > 2N . One can see that for

≤ j ≤ N ,

Lij| =

(
i
j

)
(i + γ ′)(i − 1 + γ ′) . . . (i − j + γ ′

+ 1)
(γ ′ − 1)(γ ′ − 2) . . . (γ ′ − j)

≤ |LiN |

=

(
i
N

)
(i + γ ′)(i − 1 + γ ′) . . . (i + 3/2)

(γ ′ − 1)(γ ′ − 2) . . . (1/2)

≤
i!

N!(i − N)!
(i + N + 1)!

(i + 1)!
1

(N − 1)!
(84)

nd

Ri| =
2i!
⏐⏐⏐⏐ Γ (γ ′

− 1)
′

⏐⏐⏐⏐ ≥
2i!

. (85)

i! Γ (i + 1 − γ ) i!(i − N)!N!
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hus, for i > 2N , calling di the following sequence

i =

∑N
j=0 |Lij|

|Ri|
≤

i!(i + N + 1)!
(i + 1)(N − 1)!2i!

, (86)

t is clear that di is a decreasing sequence, since from the ratio
est r = limi→∞

di+1
di

= 1/4.
Now, set i0 = 2N . For i > i0,∑i

j=0 |Lij|

2ϵ(2i + 1)|Ri|
=

∑N
j=0 |Lij| +

∑i
j=N+1 |Lij|

2(2i + 1)|Ri|
≤

di + 1
2(2i + 1)

= bi (87)

t is obvious that bi is decreasing, since di is decreasing.
Now we need to find a sequence ci for the second term in (81).

irst of all,

|Rir |
∑i

j=r+1 |Lij| + |Ri − Rir |
∑r

j=0 |Lij|

(i − r)(i − r + γ ′)|Lir ||Ri|

≤
2
∑i

j=r+1 |Lij|
∑r

j=0 |Lij|

(i − r)(i − r + γ ′)|Lir ||Ri|
(88)

he following lemmas are needed to find a bound to (88).

emma 5.6. Let N = γ ′
− 1/2 and i > 2N + 1. Then, define

∗
= ⌊

i−1+N
2 ⌋. It holds that |Lij| ≤ |Lij∗ |.

roof. Consider the ratio |Lij+1|

|Lij|
. It is easy to see that

|Lij+1|

|Lij|
=

(i − j + γ ′)(i − j)
|j + 1 − γ ′|(j + 1)

(89)

ow, if j ≤ N < i/2 − 1/2, then |j + 1 − γ ′
| = γ ′

− j − 1 >
′
− 1 = N + 1/2. Then, we have

|Lij+1|

|Lij|
=

(i − j + γ ′)(i − j)
(γ ′ − j − 1)(j + 1)

>
i/2(i/2 + γ ′)

(N + 1/2)(N + 1)
≥ 1. (90)

hus, the sequence always increases as long as j ≤ N , and we can
ook for a maximum j∗ > N . Then, for j > N , denote the ratio of
89) by f :

f =
|Lij+1|

|Lij|
=

(i − j + γ ′)(i − j)
(j + 1 − γ ′)(j + 1)

(91)

Now, f ≤ 1 implies (i− j)2 + γ ′(i− j) ≤ (j+ 1)2 − γ ′(j+ 1). Thus,
(i − j)2 − (j + 1)2 + γ ′(i + 1) ≤ 0. Manipulating the expression,
we find (i2 − 1)− 2j(i+ 1)+ γ ′(i+ 1) ≤ 0 and canceling the term
(i + 1) the following inequality for j is reached:

j ≤
i − 1 + γ ′

2
(92)

Therefore, if (and only if) the bound given by (92) is verified,
|Lij+1|

|Lij|
≤ 1. Therefore, we conclude that the maximum of the

sequence |Lij| is reached at

j = j∗ = ⌊
i − 1 + γ ′

2
⌋ = ⌊

i − 1 + N
2

+ 1/4⌋ = ⌊
i − 1 + N

2
⌋ (93)

thus finishing the proof. □

Lemma 5.7. Let N = γ ′
− 1/2 and i > 2N + 1. Then we have∑i

j=r+1 |Lij|
∑r

j=0 |Lij|
(i−r)(i−r+γ ′)|Lir

≤ 2Lij∗ , where j∗ is defined in (93).

roof. Now, to bound the term
∑i

j=r+1 |Lij|
∑r

j=0 |Lij, consider
two possibilities and use Lemma 5.6. If r < j∗, then

∑i
j=r+1 |Lij|∑r

j=0 |Lij ≤ (i − r)(r + 1)|Lij∗ ||Lir |. On the other hand, if r ≥ j∗,
hen

∑i
|L |

∑r
|L ≤ (i − r)(r + 1)|L ||L ∗ |. Therefore, if
j=r+1 ij j=0 ij ir+1 ij

9

r < j∗:∑i
j=r+1 |Lij|

∑r
j=0 |Lij|

(i − r)(i − r + γ ′)|Lir |
≤

(r + 1)|Lij∗ |
i − r + γ ′

≤
(j∗ + 1)|Lij∗ |
i − j∗ + γ ′

else, if r ≥ j∗,∑i
j=r+1 |Lij|

∑r
j=0 |Lij|

(i − r)(i − r + γ ′)|Lir |
≤

(r + 1)|Lir+1||Lij∗ |
(i − r + γ ′)|Lij|

nd using (91),∑i
j=r+1 |Lij|

∑r
j=0 |Lij|

(i − r)(i − r + γ ′)|Lir |
≤

(i − r)|Lij∗ |
(r + 1 − γ ′)

≤
(i − j∗)|Lij∗ |
(j∗ + 1 − γ ′)

ow, since i−1+N
2 ≤ j∗ ≤

i+N
2 , one has that

j∗ + 1
i − j∗ + γ ′

≤

i+N
2 + 1

i − i+N
2 + N + 1/2

=
i + N + 2
i + N + 1

< 2,

and similarly,

i − j∗

j∗ + 1 − γ ′
≤

i − i−1+N
2

i−1+N
2 + 1/2 − N

=
i + 1 − N
i − N

< 2,

thus concluding the proof. □

Thus, we are left with showing that
|Lij∗ |

|Ri|
is decreasing, which is

expected, since Lij∗ is one of the elements that appear in the sum
Ri. Using the expression (83) and the formula for Lij that involves
the Gamma function, we obtain the following:

|Lij∗ |
|Ri|

=
i!2Γ (1 − γ ′)Γ (i + 1 + γ ′)Γ (i + 1 − γ ′)

2i!j∗!(i − j∗)!Γ (γ ′ − 1)Γ (j∗ + 1 − γ ′)Γ (i − j∗ + 1 + γ ′)
.

(94)

ow, the decreasing character of the sequence is established as
ollows (consider the case where i+N is odd, so that j∗ =

i−1+N
2 ;

the even case is analogous). Consider Stirling’s approximation to
the factorial, namely n! ≈

√
2πn

( n
e

)n. Then:
i!2

2i!j∗!(i − j∗)!
=

i!2

2i!
( i−1+N

2

)
!
( i+1−N

2

)
!

≈

√
i

π (i2 − (N − 1)2)
1
22i

ei( i−1+N
2

) i−1+N
2
( i+1−N

2

) i+1−N
2
. (95)

On the other hand, Stirling’s approximation to the Gamma func-
tion [37, p. 257] reads Γ (z) ≈

√
2π
z

( z
e

)z , thus
Γ (i + 1 − γ ′)Γ (i + 1 + γ ′)

Γ (j∗ + 1 − γ ′)Γ (i − j∗ + 1 + γ ′)
Γ (i + 1/2 − N)Γ (i + 3/2 + N)

Γ ( i−N
2 )Γ ( i+N

2 + 2)

1
ei

√
( i−N

2 )( i+N
2 + 2)

(i + 1/2 − N)(i + 3/2 + N)

×
(i + 1/2 − N)i+1/2−N (i + 3/2 + N)i+3/2+N

( i−N
2 )

i−N
2 ( i+N

2 + 2)
i+N
2 +2

. (96)

utting together (95)–(96), we obtain the following.

|Lij∗ |
|Ri|

≈
iΓ (1 − γ ′)

√
πΓ (γ ′ − 1)

√
f1(i)f2(i)if3(i), (97)

here we have broken the approximation into three functions:

1(i) =
i ( i−N

2 )( i+N
2 + 2)

, (98)

π (i2 − (N − 1)2) (i + 1/2 − N)(i + 3/2 + N)
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2(i) =
(i + 1/2 − N)(i + 3/2 + N)

√
(i − 1 + N)(i + 1 − N)(i − N)(i + N + 4)

, (99)

f3(i) =
(i + 1/2 − N)1/2−N (i + 3/2 + N)3/2+N( i−1+N

2

)−1+N
2
( i+1−N

2

) 1−N
2 ( i−N

2 )
−N
2 ( i+N

2 + 2)
N
2 +2

. (100)

Notice that clearly limi→∞ f1(i) = 0 (since f1(i) behaves likeO(1/i)
for large i), limi→∞ f2(i) = 1, and limi→∞ f3(i) = 16, thus it only
remains to compute limi→∞ f2(i)i, which is an indeterminate of
the kind 1∞. Resolving it (the details are omitted for brevity)
one obtains that the limit is indeed 1. Thus, it is possible to
find the decreasing sequence ci in (81), concluding the proof of
onvergence and analyticity in odd dimension.

.1.5. Proof of analyticity for even dimension
The fact that γ ′ is an integer makes the odd approach a

riori impossible, since (65) would not be well defined (it would
ontain divisions by zero). However, to overcome that difficulty,
e employ a partial solution for the kernel equations, to the order
′
− 1, which helps to regularize the problem.
For this, consider F (r, ρ) =

∑γ ′
−1

i=0 r2iφi(ρ2). Replacing this
function in (18)–(19) results in

γ ′
−1∑

i=0

r2i
λ(ρ2) + c

ϵ
φi(ρ2) =

γ ′
−1∑

i=0

[
4i(i − γ ′)r2i−2φi(ρ2) − r2i

(
4ρ2φ′′

i (ρ
2) + 2(2 + γ ′)φ′(ρ2)

)]
nd one gets the following recursive set of ODEs:

λ(ρ2) + c
ϵ

φi(ρ2) = 4(i + 1)(i + 1 − γ ′)φi+1(ρ2)

− 4ρ2φ′′

i (ρ
2) − 2(2 + γ ′)φ′

γ ′−1(ρ
2)

which is solved starting at i = γ ′
− 1:

λ(ρ2) + c
ϵ

φγ ′−1(ρ2) = −4ρ2φγ ′−1′′ (ρ2) − 2(2 + γ ′)φ′

γ ′−1(ρ
2)

his can be written as

xφγ ′−1′′ + 2(2 + γ ′)φ′

γ ′−1 +
λ(x) + c

ϵ
φγ ′−1 = 0

which is an ODE with a regular singular point at x = 0. By
applying the Frobenius method [40, Chapter 36] one can rewrite
this equation as

4x2φγ ′−1′′ + 2x(2 + γ ′)φ′

γ ′−1 +
λ(x) + c

ϵ
xφγ ′−1 = 0

and its indicial equation is r(r −1)+ (1+γ ′/2)r = 0, thus r1 = 0
and r2 = γ ′/2 (non-integer). We are interested in the solution
of the form φγ ′/2 =

∑
∞

i=0 aiρ
2i and discard the other solution. By

Fuchs’ theorem [41, p. 146] this solution is analytic where λ(x) is
nalytic, thus the radius of convergence of the resulting φγ ′−1(ρ2)

is greater than one. Next, for i = γ ′
− 2 up to i = 0:

4xφ′′

i + 2(2 + γ ′)φ′

i +
λ(x) + c

ϵ
φi = 4(i + 1)(i + 1 − γ ′)φi+1(x)

which, has the same indicial equation and again, also admits a so-
lution in the required form. Applying once more Fuchs’ theorem,
this solution is analytic in intervals where both λ(x) and φi+1 are
analytic. Thus, by induction, we find a family of solutions such
that the radius of convergence of all φi is greater than R.

The solutions just found have a degree of freedom (the first
coefficient ai of their power series, which is φi(0)). The idea
is to construct the solution such that the boundary condition
Gn (r, r) = H(r) is satisfied up to order 2γ ′

− 2. Thus: F (r, r) =
lm t

10
∑γ ′
−1

i=0 r2iφi(r2) and expanding in power series φi(r2):

(r, r) =

γ ′
−1∑

i=0

r2i
(
φi(0) +

r2

1!
φ′

i (0) +
r4

2!
φ′′

i (0) + . . .

)
Thus:

φ0(0) = H(0), (101)

φ1(0) +
1
1!
φ′

0(0) =
1
1!

H ′(0), (102)

φ2(0) +
1
1!
φ′

1(0) +
1
2!
φ′′

0 (0) =
1
2!

H ′′(0), (103)

. . . (104)

φγ−1(0) + . . .+
1

(γ − 1)!
φ

(γ−1)
0 (0) =

1
(γ − 1)!

H (γ−1)(0). (105)

t can be shown that this scheme produces valid initial values
or the φi’s. However, an easier approach is to follow the general
eries approach of Section 5.1.1 up to order i = γ ′

− 1. By the
niqueness of the series development and identifying coefficients,
t can easily be shown that φi(0) = Cii.

Next, calling Gn
lm(r, ρ) = Ǧn

lm(r, ρ)+ F (r, ρ) the new boundary
ondition for the PDE becomes: Ǧn

lm(r, r) = H(r) − F (r, r) which
tarts at order 2γ ′. Thus, we can propose Ǧn

lm(r, ρ) = rγ F2(r, ρ).
ne can see that the PDE for F2 is
λ(ρ) + c

ϵ
F2(r, ρ) = ∂rrF2(r, ρ) + (1 + γ )

∂rF2(r, ρ)
r

− ∂ρρF2(r, ρ) − (1 + γ )
∂ρF2(r, ρ)

ρ
, (106)

nd following previous sections, calling ψ(r2) =
H(r)−F (r,r)

r2γ ′ and
abusing the notation by keeping the same name for the coeffi-
cients Cij, one can find a power series development F2(r, ρ) =∑

∞

i=0

(∑i
j=0 Cijr2jρ2(i−j)

)
as

∀i,
i∑

j=0

Cij = −
ψi

2(2i + 1)
, (107)

i ≥ 1, 0 ≤ j ≤ i − 1, (j + 1)(j + 1 + γ ′)Ci(j+1)

−(i − j)(i − j + γ ′)Cij = B(i−1)j, (108)

ow the approach of Section 5.1.4 becomes applicable and even
asier, since all coefficients are positive. Indeed, define

i0 = 1, Lij =

(
i
j

)
(i + γ ′)(i − 1 + γ ′) . . . (i − j + γ ′

+ 1)
(1 + γ ′)(2 + γ ′) . . . (j + γ ′)

> 0, j > 0

(109)

Mimicking Section 5.1.4 we reach

αn =

i∑
j=0

|Cij|

≤
|ψi|

2(2i + 1)

∑i
j=0 |Lij|

|Ri|

+

i−1∑
r=0

|B(i−1)r |

(
|Rir |

∑i
j=r+1 |Lij| + |Ri − Rir |

∑r
j=0 |Lij|

(i − r)(i − r + γ ′)|Lir ||Ri|

)

=
|ψi|

2(2i + 1)
+

i−1∑
r=0

|B(i−1)r |
2Rir (Ri − Rir )

(i − r)(i − r + γ ′)LirRi
, (110)

here the last step can be performed due to the positivity of
he redefined coefficients L compared to Section 5.1.4. Again, we
ij



R. Vazquez, J. Zhang, J. Qi et al. Systems & Control Letters 177 (2023) 105538

a

b

T

z
a
o

6

s

w

u

N
t
t
t
t

w

w

u

a
a

v

w

0

F
a

pply Lemma 5.5 to (110). In this case, we define

i =
1

2ϵ(2i + 1)
≥ 0

which is already a decreasing sequence. Then we need to find ci
such that

max
r∈{0,...,i−1}

2Rir (Ri − Rir )
(i − r)(i − r + γ ′)LirRi

≤ ci (111)

and ci should be shown to be decreasing (for sufficiently large i)
and convergent to zero. Consider the following lemma.

Lemma 5.8. Consider Lij as defined in (109) and Ri, Rij as defined
in (109). Then:

1. Li(i−j) = Lij
2. Ri − Rir = Ri(i−r−1)

3. Let F (i, r) =
Rir (Ri−Rir )

(i−r)(i−r+γ ′)Lir
for i, r nonnegative integers with

r < i. Then we have F (i, r) = F (i, i − r − 1).
4. If r ≤ i/2, R(i, r) ≤ (r + 1)Lir .
5. It holds that maxr∈{0,...,i−1}

2Rir (Ri−Rir )
(i−r)(i−r+γ ′)Lir

≤ 2 i+2
i(i+2γ ′)Ri.

Proof. When writing Lij =

(
i
j

)
Γ (1+γ ′)Γ (i+1+γ ′)

Γ (j+1+γ ′)Γ (i−j+1+γ ′) the first

property becomes evident, whereas the second property is imme-
diate from the first since Ri − Rij =

∑k=i
k=j+1 Lik =

∑i−j−1
k=0 Li(i−k) =∑i−j−1

k=0 Lik = Ri(i−j−1).
For the third property, note that

F (i, r) =
(r + 1)(r + 1 + γ )
(i − r)(i − r + γ ′)

Li(i−r−1)

Lir
F (i, i − r − 1)

=
(r + 1)(r + 1 + γ )
(i − r)(i − r + γ ′)

Li(r+1)

Lir
F (i, i − r − 1)

= F (i, i − r − 1) (112)

he fourth property is obvious, noting that Lij ≤ Li(j+1) for j < i/2.
Finally, for the last property, first note that it is only required to
study 0 ≤ r ≤ i/2 given the third property. Now:

F (i, r) =
Rir (Ri − Rir )

(i − r)(i − r + γ ′)Lir

≤
(r + 1)Ri(i−r−1)

(i − r)(i − r + γ ′)

≤
r + 1

(i − r)(i − r + γ ′)
Ri (113)

and since this is an increasing function of r for 0 ≤ r < i,
we can bound it by its value at r = i/2, thus proving the final
property. □

Therefore, setting ci = 4 i+2
i(i+2γ ′) , a sequence that decreases to

ero, we can apply Lemma 5.5 to (110) and follow the same steps
s in Section 5.1.4 to obtain the result of Theorem 2 for the case
f even dimensions.

. Observer design

This section designs an observer for (9)–(10) from the mea-
ured output ∂rum

l (t, R) as follows:

∂t ûm
l = ϵ

∂r
(
rn−1∂r ûm

l

)
rn−1 − l(l + n − 2)

ϵ

r2
ûm
l + λ(r)ûm

l

+ pnlm(r)(∂ru
m
l (t, R) − ∂r ûm

l (t, R)), (114)

with boundary condition

ûm(t, R) = Um(t). (115)
l l

11
We need to design the output injection gain pnlm(r). Following
closely [9], define the observer error as ũ = u − û. The observer
error dynamics is given by

∂ ũlmt

∂t
=

ϵ

rn−1 ∂r
(
rn−1∂r ũlm

)
− l(l + n − 2)

ϵ

r2
ũlm

+ λ(r)ũlm − pnlm(r)∂r ũlm(t, R), (116)

ith boundary conditions

˜ lm(t, R) = 0. (117)

ext, we use the backstepping method to find a value of pnlm(r)
hat guarantees the convergence of ũ to zero. This ensures that
he observer estimates tend to the true state values. Our approach
o designing p(r) is to find a mapping that transforms (116) into
he following target system

∂w̃lmt

∂t
=

ϵ

rn−1 ∂r
(
rn−1∂rw̃lm

)
− cw̃lm − l(l + n − 2)

ϵ

r2
w̃lm, (118)

ith boundary conditions

˜ lm(t, R) = 0. (119)

The transformation is defined as follows:

˜ lm(t, r) = w̃lm(t, r) −

∫ R

r
Pn
lm(r, ρ)w̃lm(t, ρ)dρ, (120)

nd then pnlm(r) will be found from the transformation kernel as
n additional condition.
From [9], one obtains the following PDE that the kernel must

erify:

1
rn−1 ∂r

(
rn−1∂rPn

lm

)
− ∂ρ

(
ρn−1∂ρ

(
Pn
lm

ρn−1

))
− l(l + n − 2)

(
1
r2

−
1
ρ2

)
Pn
lm = −

λ(r)
ϵ

Pn
lm (121)

In addition, we find a value for the output injection gain kernel

pnlm(r) = ϵPn
lm(r, R) (122)

In addition, the following boundary condition must be verified.

0 = λ(r) + ϵ
(
∂rPn

lm(r, ρ)
) ⏐⏐⏐⏐
ρ=r

+
ϵ

rn−1

d
dr

(
rn−1Pn

lm(r, r)
)

+ ϵ∂ρ

(
Pn
lm(r, ρ)
ρn−1

) ⏐⏐⏐⏐
ρ=r

rn−1, (123)

hich can be written as

= λ(r) + ϵ∂rPn
lm(r, r) + ϵ

d
dr

(
Pn
lm(r, r)

)
+ (n − 1)

ϵPn
lm(r, r)
r

+ ϵ∂ρPn
lm(r, r) − (n − 1)

ϵPn
lm(r, r)
r

. (124)

ollowing [9], and after some computations, we reach the bound-
ry conditions for the kernel equations as follows:

Pn
lm(0, ρ) = 0, ∀l ̸= 0 (125)

Pn
lmr (0, ρ) = 0, ∀l ̸= 1 (126)

Pn
lm(r, r) = −

∫ r
0 λ(σ )dσ

2ϵ
. (127)

It turns out that the observer kernel equation can be transformed
into the control kernel equation, therefore obtaining a similar
explicit result. For this, define

P̌n (r, ρ) =
ρn−1

Pn (ρ, r), (128)
lm rn−1 lm
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Fig. 1. Polynomial approximation of the first six control gains Kl(r, ρ), l = 0, 1, . . . , 5.

l
d
t

f
t
s
r

nd it can be verified that the equation now governing P̌n
lm(r, ρ)

s exactly the equation satisfied by K n
lm(r, ρ). Thus P̌n

lm(r, ρ) =
n
lm(r, ρ) and we can apply our previous result of Section 5.
The observer error dynamics has the same stability properties

erived in Section 4 for the closed-loop system under full state
ontrol. As in the controller case, only a limited number of modes
eed to be estimated; namely, those that are not naturally stable
y Lemma 4.1, this being the main difference from the result
iven in [9].
Finally, the controller–observer augmented system can be

roved closed-loop stable as in [9], using the separation princi-
le given the linearity of the system, with desired convergence
ate, and without much modification; we skip the details, which
equires going up to H1 stability, as in [9].

. Implementation and simulation study

In this section, the simulation experiment on a three-
imensional unity ball (n = 3, R = 1) is taken as an example
o illustrate the effectiveness of the proposed control, and some
mplementation remarks.

The system with the output feedback control law is simulated
n 0 ≤ t ≤ 2 s with the following parameters: ϵ = 1, λ(r) =

0r4 +50r2 +50, c = 3. We consider that the system initially has
he random quantity u0 ∈ [0, 10], and the observer’s initial condi-
ion is set as the actual state plus an error of normal distribution
ith zero mean and σ 2

= 0.5.
Fig. 1 shows the plots of the polynomial approximation of

ernels K 3
lm, which is obtained by first expanding λ(r)+c

ϵ
by using

(31), and then finding the coefficients of (32) up to a cutoff in the
pth powers by solving recursively (39)–(41) for each i up to p; in
each step one needs to compute the coefficients Bij given by (35)
from the previously-found coefficients Cij. The value of K does not
depend on m, so we omit this subindex, and l is varied from zero
to the value given by Lemma 3.1. The value of p is chosen as p =

15. Applying Lemma 3.1, one can obtain l to be 11; however, here,
to save space, we only show the first six approximate numerical
solutions of the control gains. As shown in Fig. 1, we find that Kl
becomes increasingly smaller as l increases.
12
In order to avoid a dramatic increase in the complexity of
simulation caused by the high dimension, in our simulations, we
employ a method also based on spherical harmonic expansions,
which greatly reduces the error. Thus, we only calculate the
harmonics um

l that only need discretization in the radial direction,
and then we sum up a finite number S of harmonics to recover u.
When S > 0 is a large enough integer, the error caused by the use
of a finite number of harmonics is much smaller than the angular
discretization error. Thus, the simulation is carried out using the
formula

u(t, r, θ1, θ2) =

l=S∑
l=0

m=l∑
m=−l

um
l (t, r)Y

3
lm(θ1, θ2) (129)

which is a truncated variant of (6), where the spherical harmonics
are defined as

Y 3
lm(θ1, θ2) = (−1)m

√
2l + 1
4π

(l − m)!
(l + m)!

P3
lm(cos(θ1))e

jmθ2 (130)

with P3
lm the associated Legendre polynomial defined as

P3
lm(s) =

1
2ll!

(1 − s2)m/2
dl+m

dsl+m (s2 − 1)l (131)

Figs. 2 and 3 illustrate the transients of open-loop and closed-
oop responses at different times, respectively, where the color
enotes the value of the position at this time. The evolutions of
he L2 norm of u are plotted in Fig. 2(d) and Fig. 3(e), respectively.
Note that in these figures, the ranges of color bars are different
and thus avoid too uniform colors in Fig. 3.

When the open-loop and closed-loop evolution is compared
directly, the validity of the proposed method is illustrated more
intuitively. Fig. 3(f) shows the L2 norm of the observation error,
rom which it can be found that the system begins to converge
o its zero equilibrium after the observation error has already
ettled to zero as well. The evolutions at different layers, namely

= 0.002, r = 0.3, r = 0.5, and r = 0.8, are shown in
Fig. 4(a)–(c), and the observer errors are presented in Fig. 4(b),
(d). For clarity, only the first 0.4 s of the response are shown here.
Fig. 5 shows the control effort at the boundary. It can be seen that
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Fig. 2. Open-loop evolution. (a)–(c) Transient states. (d) L2 norm of state u.
he system driven by the proposed boundary control eventually
onverges after a short-term fluctuation.

. Conclusion

We have shown a design to stabilize a radially varying
eaction–diffusion equation on an n ball, by using an output-
eedback boundary control law (with boundary measurements
s well) designed through a backstepping method. The radially
arying case proves to be a challenge, as the kernel equations be-
ome singular in radius; when applying the backstepping method,
he same type of singularity appears in the kernel equations, and
uccessive approximations become difficult to use. Using a power
eries approach, a solution is found, thus providing a numerical
ethod that can be readily applied to both control and observer
oundary design. In addition, the required conditions for the ra-
ially varying coefficients (analyticity and evenness) are revealed.
This result can be extended in several ways. If one has Neu-

ann boundary conditions at the controlled boundary (which im-
lies then that one is measuring the state at the boundary instead
f its normal derivative), or even Robin boundary conditions, the
ethod can be extended straightforwardly, since the transfor-
ation itself does not change and, therefore, the backstepping
ernels remain the same. Only the particular control/observer
ains, deduced from the backstepping kernels, would change; as
ell as a small modification on Lemma 4.1 to account for the
hange in the boundary conditions.
13
In practice, this result can be of interest for the deployment of
multi-agent systems, following the spirit of [24]; thus, the radial
domain mirrors a radial topology of interconnected agents that
follow the reaction–diffusion dynamics to converge to equilibria
that represent different deployment profiles. Since the plant can
be chosen as desired (thereby setting the behavior of the agents),
the use of analytic reaction coefficients is not actually a restric-
tion, but opens the door to richer families of deployment profiles
compared to the constant coefficient case of [24].

However, the theoretical side of the result needs to be further
investigated; an avenue of research that can be explored is the
relaxation of the analyticity hypothesis by using reaction coeffi-
cients belonging to the Gevrey family; the kernels can then be
analyzed to verify if they are still analytic, or rather Gevrey-type
kernels, or simply do not converge. Also, the rate of convergence
of the obtained power series is of interest and shall be explored.
We have experimentally observed that the rate of convergence
of the series representation of λ(r) has a considerable influence
on it. In addition, one could also explore how fast the series
converges in the case of constant λ, since an explicit solution is
known from [9]. In particular, the worst case in a domain with
radius R would be given by the convergence rate of the Maclaurin
series of I1

[√
λ
ϵ
R
]
where I1 is a modified Bessel function of order

1. Since this function behaves quite closely to an exponential
if its argument is large (which would be the case with slowest
convergence), the number of required terms would be given by
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o
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t
i

Fig. 3. Closed-loop evolution using output feedback control. (Note the different upper ranges of the color bars in Figs. 2 and 3.) (a)–(d) Transient states. (e) L2 norm
f state u. (f) L2 norm of observation error ũ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
he remainder of the power series of an exponential. In that case,
t is easy to see that the size of the term

√
λ
ϵ
R would define

the required truncation level. If we extrapolate this behavior,
then, beyond the convergence rate of the series representation
of λ(r), we can say that higher values of R and maxr∈[0,R] |λ(r)|
and lower values of ϵ would result in slower-converging series;
coincidentally, these are exactly the same factors that would
result in a more unstable open-loop plant.
14
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R

Fig. 4. The details of closed-loop evolution at different r or θ⃗ . (a) (c) Actual states. (b) (d) Observer errors between the actual and estimated states.
Fig. 5. The control effort at different θ⃗ .
eferences

[1] R. Vazquez, M. Krstic, Control of 1-D parabolic PDEs with Volterra
nonlinearities — Part I: Design, Automatica 44 (2008) 2778–2790.

[2] M. Krstic, A. Smyshlyaev, Boundary Control of PDEs, SIAM, 2008.
15
[3] A.J. Krener, Approximate linearization by state feedback and coordinate
change, Systems Control Lett. 5 (1984) 181–185.

[4] A.J. Krener, A. Isidori, Linearization by output injection and nonlinear
observers, Systems Control Lett. 3 (1983) 47–52.

[5] J.S. Humbert, A.J. Krener, Analysis of higher order Moore-Greitzer com-
pressor models, in: Proceedings of the 1997 IEEE International Conference

http://refhub.elsevier.com/S0167-6911(23)00085-3/sb1
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb1
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb1
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb2
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb3
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb3
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb3
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb4
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb4
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb4
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb5
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb5
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb5
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb5


R. Vazquez, J. Zhang, J. Qi et al. Systems & Control Letters 177 (2023) 105538
on Control Applications, 1997, pp. 651–656.
[6] A.J. Krener, Optimal boundary control of a nonlinear reaction diffusion

equation via completing the square and Al’brekht’s method, IEEE Trans.
Automat. Control 67 (12) (2021) 6698–6709.

[7] A.J. Krener, Boundary control of the beam equation by linear quadratic
regulation, Systems Control Lett. 153 (2021) 104949.

[8] K. Atkinson, W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Springer, 2012.

[9] R. Vazquez, M. Krstic, Boundary control of reaction–diffusion PDEs on
balls in spaces of arbitrary dimensions, ESAIM:Control Optim. Calculus
Variations 22 (4) (2016) 1078–1096.

[10] R. Vazquez, M. Krstic, J. Zhang, J. Qi, Stabilization of a 2-D reaction–
diffusion equation with a coupled PDE evolving on its boundary, in:
Proceedings of the 2019 IEEE Conference on Decision and Control, CDC,
2019.

[11] P. Ascencio, A. Astolfi, T. Parisini, Backstepping PDE design: A convex
optimization approach, IEEE Trans. Automat. Control 63 (2018) 1943–1958.

[12] L. Camacho-Solorio, R. Vazquez, M. Krstic, Boundary observers for coupled
diffusion-reaction systems with prescribed convergence rate, Systems
Control Lett. 134 (2020) 104586.

[13] R. Vazquez, M. Krstic, Boundary control of a singular reaction–diffusion
equation on a disk, in: CPDE 2016 (2nd IFAC Workshop on Control of
Systems Governed By Partial Differential Equations), 2016.

[14] R. Vazquez, M. Krstic, Boundary control and estimation of reaction–
diffusion equations on the sphere under revolution symmetry conditions,
Internat. J. Control 92 (1) (2019) 2–11.

[15] F. Bribiesca Argomedo, C. Prieur, E. Witrant, S. Bremond, A strict control
Lyapunov function for a diffusion equation with time-varying distributed
coefficients, IEEE Trans. Automat. Control 58 (2013) 290–303.

[16] S.J. Moura, N.A. Chaturvedi, M. Krstic, PDE estimation techniques for
advanced battery management systems—Part I: SOC estimation, in:
Proceedings of the 2012 American Control Conference, 2012.

[17] R. Vazquez, M. Krstic, J. Zhang, J. Qi, Output feedback control of radially-
dependent reaction-diffusion PDEs on balls of arbitrary dimensions,
IFAC-PapersOnLine 53 (2) (2020) 7635–7640.

[18] S. Kerschbaum, J. Deutscher, Backstepping control of coupled linear
parabolic PDEs with space and time dependent coefficients, IEEE Trans.
Automat. Control 65 (7) (2019) 3060–3067.

[19] J. Deutscher, J. Gabriel, A backstepping approach to output regulation for
coupled linear wave-ODE systems, Automatica 123 (2021) 109338.

[20] H. Anfinsen, O.M. Aamo, Adaptive Control of Hyperbolic PDEs, Springer,
New York, 2019.

[21] R. Vazquez, M. Krstic, Boundary observer for output-feedback stabilization
of thermal convection loop, IEEE Trans. Control Syst. Technol. 18 (2010)
789–797.
16
[22] L. Jadachowsi, T. Meurer, A. Kugi, An efficient implementation of back-
stepping observers for time-varying parabolic PDEs, IFAC Proc. Vol. 45 (2)
(2012) 798–803.

[23] J. Auriol, D. Bresch-Pietri, Robust state-feedback stabilization of an un-
deractuated network of interconnected n+ m hyperbolic PDE systems,
Automatica 136 (2022) 110040.

[24] J. Qi, R. Vazquez, M. Krstic, Multi-Agent deployment in 3-D via PDE control,
IEEE Trans. Automat. Control 60 (4) (2015) 891–906.

[25] T. Meurer, M. Krstic, Finite-time multi-agent deployment: A nonlinear PDE
motion planning approach, Automatica 47 (2011) 2534–2542.

[26] J. Qi, M. Krstic, S. Wang, Stabilization of reaction–diffusion PDE distributed
actuation and input delay, in: Proceedings of the 2018 IEEE Conference on
Decision and Control, CDC, 2018.

[27] T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping
Designs, Springer, 2013.

[28] R. Vazquez, M. Krstic, Control of Turbulent and Magnetohydrodynamic
Channel Flow, Birkhauser, 2008.

[29] R. Vazquez, E. Trelat, J.-M. Coron, Control for fast and stable laminar-to-
high-Reynolds-numbers transfer in a 2D Navier-Stokes channel flow, Disc.
Cont. Dyn. Syst. Ser. B 10 (2008) 925–956.

[30] L. Hu, R. Vazquez, F. Di Meglio, M. Krstic, Boundary exponential stabiliza-
tion of 1-D inhomogeneous quasilinear hyperbolic systems, SIAM J. Control
Optim. 57 (2) (2019) 963–998.

[31] J. Auriol, F. Di Meglio, Minimum time control of heterodirectional linear
coupled hyperbolic PDEs, Automatica 71 (2016) 300–307.

[32] G. Andrade, R. Vazquez, D. Pagano, Backstepping stabilization of a
linearized ODE-PDE Rijke tube model, Automatica 96 (2018) 98–109.

[33] M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems,
Birkhauser, 2009.

[34] R. Triggiani, Boundary feedback stabilization of parabolic equations, Appl.
Math. Optimiz. 6 (1980) 201–220.

[35] V. Barbu, Boundary stabilization of equilibrium solutions to parabolic
equations, IEEE Trans. Automat. Control 58 (2013) 2416–2420.

[36] R. Haberman, Elementary Applied Partial Differential Equations, second ed.,
Prentice-Hall, 1987.

[37] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, ninth
ed., Dover, 1965.

[38] D.E. Knuth, Two notes on notation, Amer. Math. Monthly 99 (5) (1992)
403–422.

[39] V. Leon, B. Scardua, On singular Frobenius for second order linear partial
differential equations, 2019, preprint downloaded from arXiv, https://arxiv.
org/abs/1907.02620.

[40] K.B. Howell, Ordinary Differential Equations: An Introduction to the
Fundamentals, second ed., CRC Press, 2019.

[41] E. Butkov, Mathematical Physics, Addison-Wesley, 1995.

http://refhub.elsevier.com/S0167-6911(23)00085-3/sb5
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb6
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb6
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb6
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb6
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb6
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb7
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb7
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb7
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb8
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb8
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb8
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb9
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb9
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb9
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb9
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb9
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb10
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb10
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb10
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb10
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb10
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb10
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb10
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb11
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb11
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb11
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb12
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb12
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb12
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb12
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb12
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb13
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb13
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb13
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb13
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb13
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb14
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb14
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb14
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb14
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb14
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb15
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb15
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb15
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb15
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb15
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb16
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb16
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb16
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb16
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb16
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb17
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb17
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb17
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb17
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb17
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb18
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb18
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb18
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb18
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb18
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb19
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb19
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb19
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb20
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb20
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb20
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb21
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb21
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb21
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb21
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb21
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb22
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb22
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb22
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb22
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb22
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb23
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb23
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb23
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb23
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb23
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb24
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb24
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb24
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb25
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb25
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb25
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb26
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb26
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb26
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb26
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb26
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb27
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb27
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb27
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb28
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb28
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb28
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb29
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb29
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb29
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb29
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb29
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb30
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb30
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb30
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb30
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb30
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb31
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb31
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb31
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb32
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb32
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb32
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb33
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb33
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb33
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb34
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb34
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb34
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb35
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb35
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb35
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb36
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb36
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb36
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb37
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb37
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb37
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb38
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb38
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb38
https://arxiv.org/abs/1907.02620
https://arxiv.org/abs/1907.02620
https://arxiv.org/abs/1907.02620
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb40
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb40
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb40
http://refhub.elsevier.com/S0167-6911(23)00085-3/sb41

	Kernel well-posedness and computation by power series in backstepping output feedback for radially-dependent reaction–diffusion PDEs on multidimensional balls
	Prologue
	Introduction
	n-D Reaction–Diffusion System on an n-ball
	Stability of controlled harmonics
	Design of a full-state feedback control law for unstable modes
	Closed-loop stability analysis of unstable modes

	Well-posedness of the kernel equations
	Proof of Theorem 2
	Computing a power series solution for the kernels
	Evenness requirement of λ(r)
	Well-posedness of the coefficient system
	Proof of analyticity for odd dimension
	Proof of analyticity for even dimension


	Observer design
	Implementation and simulation study
	Conclusion
	Declaration of Competing Interest
	Data availability
	References


