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A B S T R A C T   

Digital Twins (DTs) are gaining popularity in the context of the fourth industrial revolution to replicate physical 
equipment and systems in the digital world. DTs promise increased productivity and sustainable performance by 
integrating data, models, and decision-support systems. However, before realizing the potential benefits of DTs 
for maintenance management, several challenges need to be addressed, including a lack of conceptual basis, 
functional description, and established requirements. Hence, the paper presents, in a practical manner, how to 
cover this gap in digital configurations for maintenance management, designed to benefit of DTs. The scope of 
the paper includes the design and implementation of an innovative condition-based maintenance application 
(CBM App) based on a DT of train axle bearings, and uses a generic framework for digital maintenance man-
agement for the functional description of the DT within the CBM App. The paper provides details of the models 
and algorithms used to build the DT and ensures that recommended features are fulfilled. To test the DT’s 
effectiveness and robustness, the design and framework are implemented in real CBM applications of TALGO, a 
high-speed train manufacturer. These tools are deemed helpful for easing DT implementation within the CBM 
App and can be replicated in other operational contexts.   

1. Introduction 

Nowadays we are experiencing rapid advances in digital technolo-
gies, data analytics and artificial intelligence applied to maintenance. 
These approaches have the potential to transform the way maintenance 
is managed. The Fourth Industrial Revolution has equipped industry 
with tools that help generate a deeper understanding of how complex 
industrial systems behave and perform, thus enabling us to manage 
them better. In this context, data plays a pivotal role to enhance main-
tenance management processes. Data can now be extracted, prepared, 
and recorded, for specific decision-making maintenance processes, 
automatically. Then, intelligent assets management systems apps (IAMS 
Apps) support the different decision-making processes organizing the 
collection and the analysis of data. Despite encouraging developments in 
digital solutions, several challenges remain to be addressed before the 
potential opportunities they present can be realized effectively for 
maintenance. The challenges include a general lack of awareness of 
which techniques and technologies are suitable to tackle specific 

maintenance management problems (Marquez et al., 2020). 
In this paper, we first use a recently presented framework for digital 

maintenance management (Crespo Márquez, 2022) with the purpose to 
describe, rigorously, the functionality of an original Digital Twin (DT) 
configuration for Condition Based Maintenance (a CBM App), developed 
in this research for the company TALGO, a well-known high speed train 
manufacturer. The way to define the configuration and functionality of 
the tool can be generalized for similar tools. 

In Section 3, we describe the configuration of the DT CBM App. In 
Sections 4 to 6, we offer the readers the details of the set of models used 
for detection, diagnosis, and prognosis of the considered failure modes 
of the bearings. The readers can notice that the model for detection is a 
ML model that was the subject of a previous publication of the team 
(Crespo Márquez et al., 2020), however the models adopted for failure 
modes classification (including innovative data transformation strate-
gies) and for the determination of their remaining useful life (RUL) are 
presented for the first time in this paper. 

During this research effort, the design and development team has 
reviewed the DT features that were mostly recommended in the 
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literature for this type of solutions (contributions from 25 different au-
thors). This review is presented in Section 2.3 and in this paper, it is 
explained how these characteristics were considered for the design of 
the CBM App solution and system in see Section 8. Before that, special 
attention is paid to the “Interaction” feature in Section 7. 

As summary, the main contributions of the paper are as follows:  

1. The design of a DT configuration for Condition Based Maintenance.  
2. The description of the functionality of the DT configuration using the 

framework in (Crespo Márquez, 2022), as presented in Fig. 6.  
3. The models for diagnosis/classification and RUL estimations are 

included. These models are presented in this paper, and are added, in 
the solution designed, to the ones for detection already presented in 
(Crespo Márquez et al., 2020).  

4. The data transformation strategy to move from temperature data 
points to temperature cycles data points, reducing considerably the 
quantity of data required for reasonable diagnosis quality.  

5. The selection of the recommended features to be present in these 
types of solutions/systems. This is done after a review of the litera-
ture. An interesting innovation is introduced to present the way the 
DT CBM App interact with the end user, using simple business rules 
resulting in a practical business process, as presented in Fig. 14.  

6. The description of how, during this process, the team used state-of- 
the-art tools for the data management and models building. For 
instance, the possibility to carry out the dimensionality analysis with 
RapidMiner ®, as presented in Fig. 12, could speed up the use of 
analytics while maintaining the quality of the solution for diagnosis. 

The paper is then organized as follows: Section 2 presents the 
background of the research, which includes the context and previous 
information that has been collected and analyzed on the specific topic of 
this paper. Section 3 describes the DT of shaft bearings for CBM pur-
poses, using the DMM framework suggested in (Crespo Márquez, 2022). 
Sections 4, 5 and 6 describe the detection, diagnostic and prognostic 
models included in this solution, as implemented in real life in the or-
ganization. Section 7 explains how the organization currently interacts 
with the DT. Section 8 reviews compliance with the six recommended 
features for the DT presented in this Section. Finally, the reader can find 
the conclusions of this work in Section 9. 

2. Research background 

This Section refers to the context and prior information that has been 
gathered and analyzed about the specific topic being addressed in this 
work. The two Subsections provide an overview of previous studies and 
existing literature related to Digital Twins (DTs) for CBM and to the 
more significant features to be considered when designing a DT. 

In the context of the fourth industrial revolution, we have seen the 
emerging popularity of the concept of DTs, which aim to replicate 
physical equipment and systems in the digital world through effective 
integration of data, models, and decision-support systems, promising a 
step change in productivity and sustainable performance. 

2.1. Literature review: challenges in DTs for CBM purposes 

This Sections explains the fact that present investigations are at a 
very incipient stage and must deal with strong challenges that are very 
important to this work. 

Despite encouraging developments in digital solutions, several 
challenges remain to be addressed before the potential opportunities 
they present can be realized effectively for maintenance. The challenges 
include a general lack of awareness of which techniques and technolo-
gies are suitable to tackle specific maintenance management problems. 
In the case of the DT, this is also generated by the fact that the definition 
of a DT and its characteristics are not yet fully established and there is a 
lack of conceptual basis (Schleich et al., 2017). Other authors affirm that 
one of the biggest challenges is focused on the availability and quality of 
the data, proposing alternatives for the creation of synthetic data 
through simulation (Animah and Shafiee, 2018). 

The use of DT for CBM purposes is recently increasing. From a 
generic perspective, Yang el al. (Yang et al., 2021) present the differ-
ences of DT-based CBM compared to traditional CBM applications, 
focusing on changes and challenges that DTs brings to fault diagnosis, 
fault prognosis, and maintenance decisions. The work divides the 
changes into three aspects: i) a new CBM framework, ii) the data for 
CBM modeling and iii) the visualization tools. Same work divides the 
challenges in i) establishment of DTs model of complex system with 
multiple attributes, ii) CBM based on virtual and real data fusion, and iii) 
the verification of CBM by DTs. Another very interesting contribution in 
this sense is presented by Abbas et al. (Abbas et al., 2021)concerning the 
use of DT applications for prognostics and health management of subsea 
systems. They find interesting opportunities for i) real time degradation 
control, ii) dynamic maintenance optimization, iii) remote operations 
and unmanned facilities, iii) effective synchronization of operation and 
maintenance, and iv) cost reduction and lower emissions. However, in 
their application they find relevant challenges in i)the mitigation of the 
effect of sensor drift, ii) lack of models and analytical algorithms 
capturing the effects of maintenance actions, iii) lack of online models 
for real-time diagnostic and prognostics (currently most of the existing 
diagnostic and prognostic analysis are designed to run offline), and iv) 
lack of algorithms for multiple twins’ synchronization and iv)validation 
on experimental prototypes and equipment. 

Another relevant contribution presenting a systematic literature re-
view of DTs for predictive maintenance can be found in van Dinter et al. 
(van Dinter et al., 2022). They identify several interesting aspects of 42 
primary studies in this field like the objectives, application domains, 
platforms, representation types, etc. In this case, the aim is to contribute 
to a Software Engineering approach for developing predictive mainte-
nance using DTs. This analysis observed a low adaptation level of in-
dustrial DT platforms with key challenges related to computational 
burden, the complexity of data, models, and assets, and the lack of 
reference architectures and standards. 

Concerning rolling bearings, up to now there are still few in-
vestigations on rolling bearings under the concept of DT technology. In 
their recent review, Peng et al. (Peng et al., 2022) review the brief his-
tory of DT technology and describe the core technologies of rolling 
bearings for DT construction, including detection, modeling, and Prog-
nostics Health Management (PHM) techniques. They conclude that the 
present investigations are far from enough and must deal with strong 
challenges related to the real-time online detection and multi-physics 
coupling models using fast algorithms. They also identify the impor-
tance of incorporating the knowledge of statistics and artificial intelli-
gence algorithms in modelling, to take the place of conventional physic 

Nomenclature 

ANN Artificial neural network 
BI Apps Business intelligence applications 
CBM Condition-based maintenance 
CBM App Condition-based maintenance application 
DT Digital twin 
ETL Extraction, transformation and loading 
FM Failure mode 
IAMS App Intelligent assets management systems application 
IaaS Infrastructure as a service 
ML Machine learning 
PaaS Platform as a service 
PHM Prognostic health management 
RUL Remaining useful life  
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and mathematic models, to improve scalability and flexibility of DTs. 
Concerning modeling, recent contributions present innovative and 
varied hybrid approaches, for instance combining mechanism models 
together with sensor data models like in (Shi et al., 2023). 

To summarize, the recurrent challenges identified in the literature 
with respect to DT technology to be used for CBM purposes include: 1) 
data acquisition and preprocessing to accurately reflects the operating 
conditions of the asset; 2) model complexity, variety and accuracy that 
can be affected by factors such as sensor placement, data quality, and 
model assumptions; 3) fast computing resources for organizations with 
limited computing infrastructure; 4) integration with existing mainte-
nance and monitoring systems due to existing compatibility and inter-
operability problems; 5) shortage of skilled personnel to interact with 
this technology; and 6) cybersecurity to protect a large amount of sen-
sitive data, and for real-time data processing reliance. 

2.2. Literature review: relevant digital twins features 

A recent review of DT applications (Errandonea et al., 2020), iden-
tified that their most common application was maintenance, followed by 
Prognostic Health Management (PHM) and lifecycle optimization, while 
the sectors where they are most applied are manufacturing, energy in-
dustry and aerospace. 

Some authors sustain that in order to be considered a DT, a model 
must have some specific characteristics (Schleich et al., 2017) such as: 
scalability (ability to analyze different scales of information); interop-
erability (ability to convert, match and establish equivalence between 
representation models); expansibility (ability to integrate models); and 
fidelity (ability to conform to the physical model). However, the features 
or characteristics that a DT model should possess to be widely used in 
industry remains an open question in the literature. 

Some contributions aim to narrow this research gap by proposing an 
initial synthesis of DT recommended features (Durão et al., 2018). In 
Durão et al. (2018) research, they found that the most frequent attri-
butes of DTs in the context of Industry 4.0 are real-time data, integra-
tion, and fidelity. These are crucial attributes for connecting the Product 
Model and the real conditions of a product. 

Real-time data is used for the optimization of products and produc-
tion processes (Zhang et al., 2017) and it is important for knowing the 
status of the product and to focus on the management and optimization 
of processes through monitoring and data analytics (Konstantinov et al., 
2017). 

Integration is the most important value creation in the DT world 
(Uhlemann et al., 2017). A real- world object is represented by different 
models. The integration of the different models is essential for creating 
valuable data (Canedo, 2016). 

Regarding fidelity, the DT allows the description of different opera-
tions in the real world. It is the fidelity of the model that provides the 
closeness to the physical product (Schleich et al., 2017). 

But besides the definition of the DT as a very realistic model of the 
current state of the process, this model must have the possibility to show 
its own behavior in interaction with the environment in the real world. 
Therefore, in the framework where DTs are considered, their interaction 
with the real world is another important feature for our digital and 
intelligent maintenance management (Rosen et al., 2015). In a survey 
concerning the difficulties to implement DTs in industry (Durão et al., 
2018) the main obstacles found are: robust integration of data and 
real-time control of the assets. The fact is, therefore, that most of the 
companies use the DT model as a conventional simulation model. Fig. 1 
can serve as a summary visual representation of the literature review 
conducted on desirable characteristics in DT applications as outlined in 
the preceding paragraphs. 

3. An approach to DTs for CBM Apps 

This section is dedicated to present the different functional elements 
that can be found in a CBM App, as well as to introduce the selected 
framework for the representation of the DT CBM App. 

3.1. The functional elements in a digital twin CBM App 

A DT CBM App is an intelligent system for maintenance and asset 
management. It works together with Extraction, Transformation and 
Loading (ETL) Apps to generate ad hoc data repositories with a certain 
data structure model (See Fig. 2). Apps will ensure that data extracted 
from selected data sources, is transformed according to information 
requirements, formats, etc. These data repositories are expected to be 
placed in databases that are available in the cloud, using IaaS (Infra-
structure as a Service) and PaaS (Platform as a Service) Tools. Then, it is 
just a question of intelligence, i.e., selecting the specific data for each 
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occasion and purpose, and the proper business rules for each specific 
decision-making (Marquez et al., 2020). 

IAMS Apps may also interact with additional tools such as simulation 
tools, providing extra analytical services, and they may add comple-
mentary data to the database records with results provided by these 
software elements. In addition to this asset knowledge discovering, 
creation and storing (Marquez et al., 2020), these IAMS Apps are pro-
vided by vendors together with business intelligence features or Apps (BI 
Apps). The BI App is designed for the interaction with the end user and 
extract database records to present the information according to the 
reporting needs and end user requirements, on demand or at the time 
needed by the business. A simple data flow of the process is presented in 
Fig. 1 (adapted from (Marquez et al., 2020). 

3.2. The selected framework for the DT CBM App representation 

A graphical tool that eases the conceptualization of the new 
ecosystem in Fig. 2 is the Input—Process—Output diagram presented in  
Fig. 3. This diagram details the digital maintenance management 
framework once the new processes detailed in the previous Section are 
incorporated. In Fig. 3, input is raw data from different business systems 
to be transformed or converted. Systems can be, for instance, ERP sys-
tems, dispatching systems, GIS systems, DCS, etc. Wherever relevant 
asset information is stored in the business (Crespo Márquez et al., 2020; 
Crespo et al., 2018). The process is then divided into different building 
blocks (similarly to what is done in the standard ISO 14224:2016), each 
of the blocks representing a system: ETL systems, Database Systems, IAM 
Systems, AI systems and BI systems. Each one of these systems will have 
a certain function (or group of functions) to ensure an effective and 
efficient digital maintenance management. The different systems will 
handle a very precise and predetermined data model to generate an 
output. These outputs can be for different purposes: to identify risk in 
assets, to assess that risk, to mitigate the risk, etc. Whatever is needed to 
control risk for the business in assets normal operations. Each one of 
these outputs is related and assigned to a different IAM App. 

DTs (DT Apps) and Business Intelligence Apps (BI Apps) are very 
important supporting Apps within this framework. They may interact 
with the IAMS Apps to allow the introduction of powerful data analytics 
and visualization tools. Fig. 3 is a simple schematic of a complex digital 
maintenance management system. 

4. Case study. Train axle bearings CBM digital twin 

In the broadest understanding, CBM Apps include detection, di-
agnostics, and prediction of failure modes that can be interpreted to 
provide maintenance decision-making (Guillén et al., 2016). The case 
study in this paper is about the design of a DT in a CBM App elaborated 
to detect, classify, and predict train axle bearing failures using bearings 
monitored variables, in this case each bearing was only monitored 
capturing its temperature. A train axle bearing temperature depends on 
a set of factors, which when the train is running at the uninterrupted 
regime, consisting of the type and dimensions of bearings, the antifric-
tional and hydrodynamic properties of the lubricant, the spaces between 
the bearing rollers and rings, the static and dynamical loads of the 
bearing, the train running speed, the duration of travel without stops, 
the ambient air temperature, and the road curves (Lunys et al., 2015) 
(see Fig. 4). 

Each train axle, in the train model of this case study, is equipped with 
four axle bearings, two inner and two outers. The temperature of each 
bearing is controlled by a PT-100 type temperature probe. Each PT-100 
probe conforms to the requirements of standard EN 60751:2008 (in-
dustrial platinum resistance thermometers and platinum temperature 
sensors) and allows continuous monitoring of bearing temperature by 
the train control monitoring systems (TCMS). The TCMS will perform 
data capture of bearing temperatures with sampling frequency every 
minute, with the associated variables of date, time, outdoor tempera-
ture, and train speed. 

The DT to be analyzed in this paper, departs from the fact that the 
theoretical physical model to calculate axle bearing temperatures could 
be replaced by a data-driven bearing temperature model as in (Crespo 
Márquez et al., 2020). The data-driven model inputs and outputs are 
presented in Fig. 5. 

Notice that, to estimate an axle bearing temperature, the remaining 
axle bearings temperatures plus the ambient temperature are the only 
inputs considered. This is the capital principle, and very innovative 
approach, that is used to build all DT required predictive analytics. 
Artificial neural network algorithms were used to build the modes for 
temperatures and the subsequent prediction rules offered the following 
metrics (see Crespo et al., 2020, Table 12): Precision (100 %), Negative 
predictive value (22,87 %), Sensitivity (13.81 %), Specificity (100 %) 
Accuracy (31,35 %). With precision resulting the critical factor to accept 
the model to be put into operation (as presented in Fig. 7). 

The estimation of the bearing temperatures with the desired preci-
sion, besides allowing anomalies detection, opens the door to further 

Fig. 3. Input—Process—Output diagram of the framework in (Crespo Márquez, 2022).  
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modeling development to classify the potential failure modes that could 
be generating the excess temperatures in a certain bearing. Once the 
failure mode is identified, reliability models are used to determine the 
remaining useful life (RUL) of the component at a given moment, 
leading to a subsequent maintenance decision. 

In this paper the comprehensive functional description of the DT 
CBM App, as per the original design in collaboration with the Smart 
Maintenance Department of the company TALGO, is presented in Fig. 6. 
In Fig. 6, all algorithms, and models to simulate and classify bearings 
behavior are placed within the DT area, while business rules are 
implemented in the Apps located within the CBM processes apps area. 
This Figure is built using the framework in Fig. 2. In the subsequent 
Sections 5, 6 and 7, tool design details are presented to the reader, then 
the paper will describe how the DT in the designed App presents the 
recommended features that were referred in Section 3.1. (see Table 7 
Section 9). 

5. DT Analytics for anomalies detection 

Concerning analytics for anomalies detection, the CBM App is using 
an ANN predictive model, that was selected because of a good ratio 
correlation coefficient vs total time, assuming a minimum required 

Bearing Condi�ons 
(Dimension, Lubrica�on, Posi�on Pi)

Railway & 
Infrastructure Condi�ons 

Train Condi�ons 
(Sta�c and Dynamic loads, Speed)

Travel Condi�ons 
(Dura�on, Number of Stops)

Ambient Temperature 

Bearing Temperature 
(Ti, i=1…4)

Physical 
Model

Fig. 4. Factors (physical model inputs) conditioning a train axle bearing temperature.  

Fig. 5. Crespo et al. (2020) approach to predict axle bearing temperatures.  

Fig. 6. Details of the DT CBM App structure using the framework in Fig. 2.  
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correlation factor of 0.96, compared to other models such as Generalized 
Linear Models (GLM), Decision Trees (DT), Random Forest (RF), 
Gradient Boosted Trees (GBT) and Support Vector Machines (SVM) that 
were compared in the study. This model was published in a previous 
paper by Crespo et al. (Crespo Márquez, de la Fuente Carmona et al., 
2020), where their authors demonstrated that the suggested universal 
model per bearing position performed well (>0.98 correlation coeffi-
cient) for all four bearing positions. This made to overcome the 
non-ergodicity of the assets possible and permitted to develop only four 
bearing temperature prediction algorithms to cover all the fleet of trains 
bearings. The anomalies detection rule designed could identify damaged 
bearings with 100 % precision, at any speed of the train, based on a 10 
◦C Absolute Error (AE) threshold for the predicted temperature of the 
bearing. A threshold in train speed was introduced in the rule just for 
scoring data sets reduction, and the expected subsequent accuracy of the 
rule’s improvement. However, accuracy improvement was found not to 
be very significant for all cases. No relevant results were obtained 
regarding the accuracy and sensitivity of the algorithm related to the 
increase of the train speed threshold up to 90 km/h. The motivation for 
the selection of the threshold, in addition to the one mentioned above, 
serve to rule out data related to train starts and stops, where bearing 
temperatures have transient values characteristic of these modes of 
operation. 

To illustrate the difference in AE data distribution when the bearing 
is in good conditions versus when it comes to a degraded state, Fig. 7 
represents the temperature prediction AE distribution in periods of good 
(green) vs. degraded (blue) conditions, with train speeds TSt ≥90 km/k. 
Notice that when the bearing is in good conditions (green) the absolute 
error (AE) of its temperature prediction will never be higher that 10ºC, 
while when the bearing is in degraded condition (blue curve) the AE can 
reach much higher values with significant probability. Therefore, there 
is a clear possibility to predict abnormal bearing temperature behavior 
with maximum precision and specificity, when selecting the Absolute 
Error descriptor with a threshold of 10 ºC in the rule, and regardless the 
speed of the train. 

6. DT Analytics for failure mode classification 

6.1. ETL Process and data base generation 

The train axle bearing FM classification model is the second model 
contained in the DT of the CBM App in this paper case study. This 
modelling effort, to identify a certain bearing failure mode, required 
further ETL processes and different modeling tools. The most significant 
challenge was the decision (of the Smart Maintenance Department 

together with the Maintenance Engineering Department of the com-
pany), to approach this problem modeling temperature cycles instead of 
temperature points. This is a popular method (Healey et al., 2021) to 
study fatigue data analysis of mechanical components. In these cases, it 
is common to reduce a variable stress spectrum into a simpler, equiva-
lent set of stresses. Methods that extract successively smaller cycles from 
a sequence are used to simplify the calculation of the fatigue life of a 
component from these simpler cycles (Healey et al., 2021). In this case 
study this adds the benefit of the data reduction, as it will be detailed 
later. 

The data used in the study come from a fleet of 16 identical trains, 
some with more or fewer cars but with identical and interchangeable 
bearings among all of them. Each train has provided an average of 
800,000 temperature records for each of its bearings over the course of a 
year. Regarding cleanliness, only complete series of erroneous values 
have been eliminated, since there are very few errors, there has not been 
any considerable condition that has affected its bias. The size of the 
sample has been considerably large, in the order of Gigabytes, and the 
tool used to manage it has been RapidMiner. 

In the following paragraphs it is shown how temperature cycle 
analysis works, the steps to follow and the key variables for this analysis. 

The analysis departs with two steps dealing with data extraction as 
follows:  

1. The input data received for each bearing of the train, which is the 
following:  

– Date and time: This data is provided every minute.  
– Train Speed (TS): This data is provided every minute.  
– Ambient Temperature (Ta): This is the train outside temperature.  
– Bearing temperature (Ti): Each axle has 4 bearings temperature 

measurements, named: T0, T1, T2 and T3.  
– Bearing Temperature prediction (T̂i): This the prediction of each 

bearing temperature (T̂0, T̂1, T̂2 and T̂3) as obtained with baseline 
predictive analytics.  

– Kilometers traveled (Km): These are the total kilometers the train has 
traveled at a given time.  

2. Data received from the CBM Anomalies Detection App:  

– Absolute Error (AE): This is the difference between real and predicted 
temperatures Ti-T̂i per bearing i. According to developed detection 
analytics the anomaly is detected, and a positive is registered, when 
AETi > 10ºC.

– Time / Km of the first registered positive: For each bearing, the 
appearance of a positive (AETi > 10ºC) will trigger the utilization of 
the algorithm for failure mode classification. 

After these extraction steps, the analysis continues with the data 
transformation process, in three more steps, as follows:  

3. Determination of the following variables calculated from the 
extracted ones (Fig. 8):  

– Accumulated absolute error (Acc AE): This variable accumulates the 
AE when a positive is registered, since the first positive.  

– Accumulated kilometers since the first positive: This is the total number 
of kms the train run since the first positive was registered.  

– Accumulated kilometers in positive: This is the total number of the 
kilometers the train run in positive, since the first positive. 

4. Determination of the temperature cycles. This is done using an al-
gorithm (see Annex 1 for the pseudo code) that is developed, which 
considers that when there is a short distance between two positives 
points (between which are interspersed negatives), these two points 

Fig. 7. Distribution of EA for good (green) and degraded condition (blue) pe-
riods, for a train speed TSt ≥90 km/h. Taken from (Crespo Márquez, de la 
Fuente Carmona et al., 2020). 
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belong to the same bearing high temperature cycle. In this way, it is 
possible to simplify the data for the analysis of the bearing deterio-
ration, under the assumption that this deterioration will be associ-
ated with the set of overtemperature cycles that are identified. 

In Fig. 8 there is an illustration of one of the new variables, calculated 
from the extracted ones. This variable in Fig. 8: Accumulated kilometers in 
positive, is then used as an input in the model for failure mode classifi-
cation. In the Figure, the variable is plotted for a total of 12 different 
bearings since the km of their first positive to the total accumulated kms 
at their failure. 

Fig. 9 illustrates what is mentioned in the previous paragraph, de-
tailing the number of kilometers that elapse between recorded positives 
and counting the number of cycles depending on the maximum distance 
selected between positives of the same cycle (this count appears below 
the graph).  

5. Obtention of new following variables as per the cycle analysis 
performed:  

– Kilometers at the beginning of the cycle: These are the kilometers that 
the bearing traveled, from the first positive, until a new cycle started.  

– Kilometers at the end of the cycle: These are the kilometers that the 
bearing has traveled, from the first positive, until the end of the 
cycle.  

– Cycle Kms: Kilometers that the train travels in a cycle (the cycle ends 
when the next positive is farther away from the previous one, than 
the limit in km established in each case).  

– Kilometers traveled between cycles: These are the kilometers traveled 
between the end of one cycle and the beginning of the next one.  

– Cumulative cycles: Cumulative number of cycles since the first 
positive.  

– Percentage of kilometers in active cycle: Percentage of kilometers that 
the bearing accumulates in a cycle since the appearance of the first 
cycle.  

– Total kilometers in active cycle: Accumulation of kilometers that the 
bearing run within cycles. 

– Accumulated kilometers between cycles: This is the sum of the kilo-
meters that a bearing traveled between cycles, up to the last cycle.  

– Average of the kilometers between cycles: In this section we have the 
average of the kilometers traveled between cycles. Making this 
average gradually as we go from cycle to cycle. 

Fig. 10 shows the results obtained for different cycle variables 
(detailed below), when cycles are selected with different maximum 
distances between positives (cycles have been calculated with these 

Fig. 8. Sample data regarding Kms traveled in positive for different bearings.  

Fig. 9. Cycle count by varying the maximum distance between positives of the same cycle.  
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maximum distances between their positives set at 5, 10, 20 and 50 km). 
Although the main aim of the transformation process is to approxi-

mate the physical degradation model in a simpler way, it is observed 
that the amount of data to be considered and stored for the bearing 
analysis is also significantly reduced. The reduction achieved in the data 
to be stored per bearing studied is presented in Table 1. 

Finally, after these transformation steps, a specific-to-the-problem 
data model is generated and loaded into a new data base as explained 
in step 6:  

6. Specific data base generation and load 

An extract of the final tables obtained, of data per bearing, is pre-
sented in Table 2. The details of the data are also included in Annex 1 of 
this document. In this table the inner rows of each bearing records have 
been hidden to illustrate the number of records for the first stored cycles 
(e.g., 62–1 =61 records for bearing Train KZ15, T0 Axis1, or 
201–62 =149 records for bearing Train KZ15 T1 Axis22). 

6.2. The ML failure mode sorting algorithm 

Once the required data base is ready for model generation training 
and production, the process continues with the algorithm design, testing 
and validation. 

The algorithm attempts to separate bearings with internal deterio-
ration from those with overtemperature caused by external causes, 
mainly due to the train axle guidance system problems. To that end, it is 
necessary to know the final diagnosis of all the bearings observed to 
have suffered overtemperature cycles. It is essential to have data on 
whether the bearing was replaced or not, and if once it was replaced, 
whether the analysis performed by the quality department found it with 
internal deterioration or not. 

Bearings in the train that were not replaced, but which had over-
temperature cycles recorded, are obviously classified as "non-deterio-
rating" bearings. Basically, most of these bearings went back to normal 
temperature conditions when the train guidance problems were solved. 

All these records helped to better train the classification algorithm. In 
this way, it is possible to generate an ML algorithm that, receiving the 
data of the bearing temperature cycles over time, classifies it with a 
higher or lower probability of being a bearing with incipient deterio-
ration vs. a bearing suffering of guidance problems. 

The algorithm selected for this classification functionality can be 
chosen among different possibilities: according to its ROC curve (see  
Fig. 11), classification error, gain, execution time, training time, etc. For 
this case, the selected algorithm has been Deep Learning. 

Concerning the feature selection, the software allows to carry out a 
trade-off between complexity of the algorithm (number of features 
considered as input) and the classification error (see in Fig. 12 the final 4 
features set selected, corresponding with 2, 3, 4 & 5 features in the set, 
best sets evaluated by the software). This is an algorithm dimensionality 
analysis adding substantial value at this step of the design process. In the 
plot of Fig. 12 each point represents a different features set, i.e., a subset 
of the original variables, related to cycles, previously defined. Notice 
that the set selected by the software, of a complexity of 4 (i.e., a 
dimension of 4 variables), achieves a lower error rate that the original 
selected set of 5 (that was also including the duration of the cycle, as 
feature). So, the model is less complex (one feature less) and still more 
accurate than the original feature space (square in the graph). Using less 
features also means that models can be trained faster. The feature set 
which has been used to build the final model is shown. The weights 
assigned to the features by the software explain the relative importance 
of each variable in the dataset used to validate the model; they do not 
correspond to any internal weights used to configure the model 
algorithm. 

Error rate in Fig. 12 is training error rate. This performance, and 
therefore the feature set optimization, is calculated on a 40 % hold-out 
set which has not been used for any of the performed model optimiza-
tions. This hold-out set is then used as input for a multi-hold-out-set 
validation where the performance for 7 disjoint subsets is calculated. 
The largest and the highest performance are removed and the average of 
the remaining 5 performances is reported here. Although this validation 
is not as thorough as a full cross-validation, this approach strikes a good 
balance between runtime and model validation quality (Kotu and 
Deshpande, 2019). Tables 3 & 4 show algorithm performance metrics 
and confusion matrix, respectively. 

The company decided to use this algorithm in the App initially, ac-
cording to good levels in precision when classifying the internal bearing 
failure mode, regardless the fact that the level of false negatives was 
high. To improve general algorithm accuracy, more bearings failure 
must be classified, and their data added to the database for training. A 
process that has been already implemented in the company. 

Fig. 10. Sample of values obtained for cycle variables, when varying the maximum distance selected between positives of the same cycle.  

Table 1 
Reduction of the number of data records to be captured per bearing when 
applying the cycle algorithm.  

Bearing Samples REDUCTION of DATA POINTS for a Maximum distance 
between positives of a cycle of  

1 km 5 km 10 km 20 km 50 km 

KZ02 T3 AXLE 29  89.346  65  55  51  42 
KZ15 T2 AXLE 1  78.318  416  281  207  152  

A. CRESPO MARQUEZ et al.                                                                                                                                                                                                                



Computers in Industry 151 (2023) 103980

9

7. DT Analytics for prognostics. The RUL determination 

7.1. The RUL concept and definition considered for this case study 

Failure prognostics is defined (ISO 13381–1:2004) as “the Estimation 

of the Time to Failure (ETTF) and the risk of existence or later appear-
ance of one or more failure modes”. However, in most of the literature 
related to prognostics, the terminology Remaining Useful Life (RUL) is 
used, instead of ETTF (Medjaher et al., 2012). The concept of the RUL 
has been widely used in operational research, reliability, and statistics 

Table 2 
Example of an extract with data from several bearings, showing the number of data lines per bearing (assuming 5 km as max distance between positives of a cycle).  

Register Count Bearing Replaced Damaged Kms Enf of Cycle Kms between Cycles Cycle Kms Cummulative cycles Kms in active cycle 

2 KZ15T0A17 1 1 345.6 2619.9 342.6 1 342.6 
… … … … … … … … … 
62 KZ15T0A17 1 1 66704.7 58.5 31.7 61 10667.0 
63 KZ15T1A22 1 1 25.1 8.0 22.0 1 22.0 
… … … … … … … … … 
201 KZ15T1A22 1 1 92086.1 41.1 154.1 139 9694.0 
202 KZ15T1A29 1 1 1211.8 13.4 1209.9 1 1209.9 
… … … … … … … … … 
459 KZ15T1A29 1 1 105226.1 870.3 18.3 258 38379.0 
… … … … … … … … …  

Fig. 11. ROC curves of the different techniques (RapidMiner ®).  

Fig. 12. Trade-offs between model dimensionality (complexity) and error, including final features selection and their weights (RapidMiner ® output).  
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literature with important applications in other fields such as material 
science, biostatistics, and econometrics. Clearly the definition of the 
useful life depends on the context and operational characteristics (Si 
et al., 2011). 

Most of the prognostic activities are related to estimating the RUL of 
physical assets based on their current health and operating conditions 
that are expected for that asset in the future (Medjaher et al., 2012). 
Furthermore, estimation of RUL has been extensively investigated in 
recent years as a key aspect of Prognostics and Health Management (Hu 
et al., 2018). The research on how to best estimate the RUL has gained 
popularity. However, due to its complicated relationship with observ-
able health information, there is no such best approach which can be 
used universally to achieve the best estimate (Si et al., 2011). 

If the reader searches the literature related to the term RUL, a 
multitude of possible definitions for this term can be found, although 
they all coincide in one part. They define the RUL as the useful life that 
the asset has left from the current time (in which a symptom is detected, 
a condition monitored out of thresholds, etc.) until the end of its useful 
life, appearance of the failure or requires maintenance intervention 
(Okoh et al., 2014). The Remaining Useful Life is typically random and 
unknown, although it depends on the current age of the asset, future 
operating conditions and the observed condition monitoring or infor-
mation on the asset’s health. 

Concerning the estimation of the RUL, the existing approaches fall 
into three main categories (Jardine et al., 2006): statistical approaches, 
artificial intelligence (AI) approaches and model-based approaches. 

• The first category corresponds to statistical approaches or degrada-
tion models. Estimating the RUL is achieved by evaluating the con-
ditional lifetime distribution given that a system has survived up to a 
specific time. Life characteristics of a population of identical systems 
and lifetime data are required. However, such data are scarce or even 
nonexistent. With the advances in CM technologies, degradation data 
can be obtained from routine CM as feasible and low-cost alterna-
tives to estimate the RUL. These data are usually correlated with the 
underlying physical degradation process. Properly modeled, degra-
dation data can be used to predict unexpected failures and accurately 
estimate the lifetime of gradually degraded systems. Weibull anal-
ysis, PHM models or PIM models can be used to stablished a pre-
determined level of failure probability that can be used to estimate 
the RUL (Goode et al., 2000).  

• AI approaches must face the problem of the curse of dimensionality 
and the problem of long-term dependencies when building the ML 
algorithms. To that end, some popular algorithms are: self- 
organizing neural networks (S-ONN), dynamic wavelet neural 

networks (DWNN), recurrent neural network (RNN), Echo State 
Networks (ESN) and Long Short-Term Memory (LSTM) networks for 
RUL estimation. (Ramezani et al., 2020; Zhang et al., 2019).  

• Model-based approaches to prognosis require specific mechanistic 
knowledge and theory relevant to the monitored machine (like 
modeling for instance crack dynamics or other physics of failure). 
Mechanistic models are based on mathematical description of me-
chanical, chemical, biological, etc. phenomenon or process (Cempel 
et al., 1997) and (Qiu et al., 2002). A different way of applying 
model-based approaches to prognosis is to derive the explicit rela-
tionship between the condition variables and the lifetimes (current 
lifetime and failure lifetime) via mechanistic modelling. This has 
been done with bearings using vibration signals in (Cempel et al., 
1997) and (Qiu et al., 2002). 

7.2. RUL calculation and a procedure for its determination 

In this paper a statistical approach is followed to estimate the RUL (of 
any bearing of a train), once a positive (or anomaly detected for a failure 
mode) appears in a train axle bearing. A positive (according to the 
Procedure for the Design and Implementation of CBM Plans in the 
company) is defined as the occurrence of an absolute error (AE) of 
prediction greater than 10ºC between the actual bearing temperature 
and that predicted by the ANN designed for detection, when the train is 
running at more than 90 km/h (i.e., AE ≥ 10 ◦C, TS ≥ 90 km/h) and for 
more than one minute. 

RUL is now defined as a random variable that, estimated from the 
appearance of the first positive, offers a good prediction of the life of the 
element until its replacement due to over temperature or noise. This 
replacement is nowadays performed after the activation of the safety 
alert in the train monitoring and control system (TCMS) and/or because 
of a certain inspection (probably during a weekly train inspection in the 
workshop). The safety alert is triggered when the temperature difference 
between the four bearings of the same axle is higher than 25 ◦C — (Tmax 
− Tmin) ≥ 25 ◦C — and this condition is maintained for more than 1 min. 
Company’s objective through the analysis included in this part of the 
paper is to foresee the recommended time of bearing replacement, after 
its first positive, even without prior inspection, according to statistical 
estimates. 

The calculation will be applicable to any bearing regardless of its 
position in the train. The data used comes from the record of bearing 
replacements that could be traced, and linked to the recorded equipment 
monitoring data, and the predictions of bearing failures made with 
artificial intelligence algorithms. In general, the RUL is the estimated 
time of equipment operation until failure (point F) and it is estimated for 
any point (A in Fig. 13) located from point P (from which it is already 
possible to verify the existence of a potential failure) on the equipment. 
Therefore, the following always occurs: RUL≤ P-F Interval (See Fig. 13). 

To calculate the RUL of a bearing at point A, it will first be necessary 
to model the random variable "PF interval", i.e. the interval (in time, km, 

Table 3 
Classification algorithm performance metrics.  

Criterion Value STD 

Accuracy  76.3 % ±0.2 % 
Classification error  23.7 % ±0.2 % 
AUC  91.6 % ±0.2 % 
Precision  100 % ±0.0 % 
Recall  5 % ±1.0 % 
F Measure  9.5 % ±1.9 % 
Sensitivity  5 % ±1.0 % 
Specificity  100 % ±0.0 %  

Table 4 
Sorting algorithm confusion matrix (range 1: Guidance FM; range2: Internal 
FM).   

True range 1 True range 2 Class Precision 

Predicted range 1  785  248  75.99 % 
Predicted range 2  0  13  100.00 % 
Class Recall  100.00%  4.98 %    

Fig. 13. P-F Curve and P-F time interval. Estimated time to failure (RUL).  
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or representative unit of measurement) that elapses between the first 
positive (point P, agreed in the CBM procedure for: AE ≥ 10. C, TS ≥ 90 
km/h) and the possible replacement due to overtemperature and/or 
noise of a bearing. The point F considered takes place, in general, after 
the activation of the safety alert in the train monitoring and control 
system (TCMS), this condition is not of functional loss of the bearing, but 
of operation in conditions of lower safety level. Then it is possible to 
define, for this case study: 

RUL = RUL AF interval = (PF Interval − PA Interval).

The calculation of the RUL is non-deterministic and is therefore 
affected by a certain level of uncertainty (depending on the uncertainty 
of the calculation model and the quality and quantity of the existing 
data). 

The determination of the RUL will be made from the estimation of 
the distribution function of the PF interval, using a statistical technique 
such as the Weibull analysis. The application of the Weibull method will 
be carried out considering uncensored data of the random variable, i.e., 
samples of times from the first positive to the alarm and subsequent 
replacement of the bearing. It is considered that the bearing degrades 
from the first positive (point P), and that this degradation has a positive 
correlation with the number of positives recorded. It is also considered 
that the degradation is irreversible. In this procedure, the RUL is 
expressed in km (useful life in km), F(t, β, η) = Weibull(t, 4.14,
105652.23). 

From the first positive (point P) it is then possible to determine how 
many kilometers the train can run, without requiring bearing replace-
ment due to over-temperature or excessive noise, with a certain proba-
bility. For example, it is possible for the train to run 30,000 km after the 
first positive with a 99.46 % probability that an alarm will not appear on 
the train. Similarly, it is possible for the train to run 50,000 km after the 
first positive with a 95.59 % probability that no alert will appear on its 
TCMS. It is then decided to opt for 30,000 km as the PF Interval for the 
subsequent remaining useful life calculations, an interval that is going to 
be achieved with a 99.46 % probability without the need for bearing 
replacement, which usually happens after the TCMS alert on the train. 

There are simple goodness-of-fit tests such as the Kolmogorov- 
Smirnov test. The test is done for what is called a significance level (α) 
given the sample size. For example, for the case at hand, looking in the 
Kolmogorov-Smirnov Test tables at a significance level of α = 0.20, the 
critical value of the difference D for a sample size N = 4 is 0.494; this 
means that in 20 % of random samples of size 4, the maximum absolute 
deviation between the cumulative distribution of the sample [i.e. SN(x) 
= k/N, where k is the number of observations less than or equal to x] and 
the cumulative distribution of the population (theoretical function 
calculated above) will be at least 0.494. Calculated the differences in our 
case we obtain a maximum deviation of Dmax= 0.21907 with 
Dmax= 0.21907 ≤ D_(α = 0.2) = 0.494. Therefore, we should not reject 
the hypothesis made, in other words, we can work with the function 
selected in principle. 

Once the goodness-of-fit test has been performed, it is possible to 
perform an additional specific experiment to get a true dimension of the 
uncertainty that currently exists given a small sample size for a certain 
failure mode. What is done in this experiment is the following: 1) 
Consider the WEIBULL (t;4,14; 105,652.23) distribution as the "true a 
priori" of the PF interval; 2) Obtain a large sample (100 observations) of 
PF intervals generated as pseudo-random numbers from that distribu-
tion. 3)Generate a series of experiments (10 have been selected in 
principle) by randomly selecting 4 of these numbers each time. 4) 
Calculate the best approximation of a Weibull for each of the 10 ex-
periments. 5) Obtain the variables of interest of this analysis that have 
been initially selected: Kms at R= 0.9946; R (30000) and R (15000). 6) 
Conclude on the uncertainty of the decision making, currently having a 
sample of only four observations. 

In Table 5 it is possible to appreciate the variations of the measures 
that could be considered for a very low sample size, in the selected 

variables of interest, for example:  

1. The Km to be traveled with a reliability of not having TCMS alerts of 
99.46 % that had been considered in a value of 30,000 in this work, 
could come to be estimated in 1343 km in the case of the first 
experiment (lower limit) or in 55,509 km in experiment 4 (upper 
limit). The average value of this variable in the experiments would be 
22,633.4 km.  

2. The reliability of the period selected as the PF interval in this work, R 
(30,000), could be estimated at 80.48 % in the case of the eighth 
experiment (lower limit) or 99.99 % in experiment 4 (upper limit). 
The average value of this variable in the experiments would be 
92.11 km.  

3. The reliability of 50 % of the period selected as the PF interval in this 
work, R(15,000), could be estimated at 91.49 % in the case of the 
first experiment (lower limit) or 100 % in experiment 4 (upper limit). 
The average value of this variable in the experiments would be 97.03 
%.  

4. Another interesting observation is that the ratio between the upper 
and lower limits of the estimates made. For example, this ratio is 
R30000MIN− MAX = 1, 24 for the R(30,000) limits, while it is of lower 
value for the reliability at 15,000 km, with R15000MIN− MAX = 1,09. 

All the above indicates the existing limitations in the accuracy of the 
calculations, which will disappear as the size of the observations ob-
tained increases, for future bearing replacements. 

8. The interaction with the digital twin 

The functionality of the DT allows the evaluation of the failure mode 
risk level and the subsequent control actions, this will allow the main-
tenance staff to schedule convenient maintenance activities. Interaction 
with the DT must be done using simple business rules resulting in a 
practical business process. Any new event detected by the DT leading to 
a new state of the asset concerning a failure mode will be a call for 
maintenance action. For the correct interpretation of the method of 
interaction with the DT, Table 6 describes the necessary concepts to be 
reviewed (taken from an original work in (Martínez-Galán Fernández 
et al., 2022). 

This method of interacting with the DT takes into consideration four 
proposed levels or states of FM risk: low, medium, high and failure; and 
two different types of events: monitoring and preventive maintenance 
events. The limits of the 4 risk levels (See Fig. 14), are determined by the 
company maintenance organization as follows (this could be agreed 
differently): 

Table 5 
Results of experiments with Easyfit Software. ® Mathwave. Data analysis and 
simulations.  

Experiment Weibull best fit Kms with 
R¼ 0,9946 

R (30000) 
In % 

R (15000) 
In % 

β η 

1  1.16  120770  1343  81.97 91.49 
2  1.45  88153  2399  81.06 93.08 
3  1.59  107840  4049  87.70 95,749 
4  9.46  96370  55509  99.99 100 
5  4.30  107340  31892  99.58 99.97 
6  1.93  105830  7084  91.59 97.72 
7  5.44  108080  41412  99.90 99.99 
8  1.45  85994  2351  80.48 92.35 
9  4.93  80484  27943  99.23 99.97 
10  4.16  113360  32352  99.60 99.98 
Max  9.46  120770  55509  99.99 100 
Min  1.16  80484  1343  80.48 91.49 
Mean  3.59  101422  20633  92.11 97.03 
STD  2.63  13059  19616  8.60 3.56  
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• Low Risk: Normal operation with no positive in the detection algo-
rithm, or with a positive detected but less than 15.000 km ago (this 
number of kilometers is selected in consonance with the resulting 
RULs for both FMs in Section 6).  

• Medium Risk: A failure mode enters this level when it is classified 
with > 70 % probability by the classification algorithm (Section 5) or 
when is running 15.000 kms. since the first detection positive (Sec-
tion 4) and no definitive failure mode classification is made (Section 
5).  

• High Risk: A failure mode enters this level when it is confirmed by a 
technician inspection, that is released when entering in Medium 
Risk. A failure mode leaves this level when there is a bearing 
replacement or reconditioned.  

• Fault: This would assume the bearing functional loss and will never 
be reached under normal operations of the DT App. 

It is considered that both, monitoring events and PM events, may 
lead to a change in the risk level of one or more failure modes of the 
asset. This is because these events release a new assessment of the FMs. 
Then, when a new failure mode state is reached, a certain maintenance 
action is accomplished (for instance, an algorithm for detection is 
launched, an inspection is done, a replacement takes place, etc.). 

To describe these concepts in a graphical manner, a CBM sequence 
affecting two failure modes is pictured in Fig. 14. In this case, Moni-
toring Events and PM Events may change the each one of the FMs risk 
level (FM1: Internal degradation and FM2: External guidance failure). 
Let’s assume that the error in bearing temperature prediction provides 
valuable information to be used as a symptom of both FMs. 
Temperature. 

In the example of Fig. 14 we represent a monitoring solution that 
provides information that can be linked with FM1 and FM2 risk level 
control. Event 1 appears when a first threshold on the prediction error is 
exceeded). At this time, the maintenance technician will not observe an 
increase in the risk level of any failure modes. However, the mainte-
nance technician will supervise the action of launching the classification 
algorithm and commence counting kilometers since the first positive 
was recorded. 

In this case, Event 2 takes place after a certain number of kms after 
event 1, for instance 15,000 kms, and non-concluding result offered by 
the classification algorithm. Then, it is agreed that both failure modes 
(FM1 and FM2) will be escalated to the Medium-risk level. Moreover, it 
is agreed that since the classification algorithm does not distinguish FM1 
from FM2, an inspection event (Event 3 in Fig. 14) will be scheduled. 
Event 3 is therefore a PM activity, an inspection task that will confirm 
the existence of FM1 or FM2, turning back the non-existing FM to a low- 
risk state (green color in Fig. 14). At the same, the maintenance tech-
nician could decide, for instance and always in accordance to his/her 
inspection outcome, to escalate FM1 risk level to high (red) and to 
program the substitution of the bearing (Event 4 in Fig. 14). This 
interaction was agreed and described to guide maintenance actions and 
to make sure of proper systems supervision. 

The reader may notice that whatever actions is agreed by the orga-
nization, to follow a given event, must consider the limits of failure 
mode RULs, established by the prognosis algorithms. This limits the 
reaction times when scheduling inspection manually or when moving 
the failure modes to a higher risk level automatically. 

Table 6 
Key concepts in DT interaction with maintenance techs.  

Concept Types 

Event 
Recordable, scheduled, or supervening 
time, at which the risk level of the 
affected failure modes must be 
reanalyzed.  

• Monitoring Event: Events taking place 
because of the CBM App (and its DT 
algorithms). They can be detection 
events, diagnostics events, or 
prognostics events.  

• Preventive Maintenance Events: 
Maintenance programmed or 
unforeseen events. They can be for 
example inspections or any PM 
activity. 

State 
Qualitative level of risk at a given 
time. Each event causes a possible 
change in the level of risk.  

• Fault: State after the failure has 
occurred. State in immediate 
replacement or repair of the item is 
required.  

• High Risk: State of operation closest to 
failure. Short-term activities are 
scheduled to reduce the level of risk.  

• Medium Risk: State in which an 
anomaly has been detected but with 
some security it is possible to continue 
operating under normal conditions. 
Medium-term activities are planned to 
confirm the risk and analyze how it 
evolves.  

• Low Risk: Normal operating state of 
the item 

Failure Mode 
Failure modes involved that can be 
fully or partially managed by CBM. 
Monitoring solutions and maintenance 
tasks are applied at failure mode level.  

• Primary failure mode (PFM)*  
• Secondary failure mode (SFM)*: 

initiated by a PFM  

* Terminology adopted from ISO 13381, (ISO, 2015). 
Source:Adapted from Martínez-Galán Fernández et al. (2022). 

Fig. 14. Graphic representation of the CBM APP DT interaction with Maintenance technicians. 
Adapted from (Martínez-Galán Fernández et al., 2022). 
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9. The digital twin features 

After reviewing the comprehensive description of the DT in Fig. 6, 
let’s now discuss about whether the CBM App DT fulfills the compre-
hensive list of high level characteristics that could be found in the 
literature for DTs. This is an exercise that we must do see if we speak 
properly when we refer to these tools and algorithms that we embed in 
CBM apps as DTs, and if so, to see the potentials and the quality of the 
DT. Table 7 presents the fulfillment of desirable DT features in this paper 
case study. 

10. Conclusions 

This paper presents a design of a DT configuration for Condition 
Based Maintenance and the description of its functionality using the 
framework in (Crespo Márquez, 2022), overcoming many of the chal-
lenges identified for the implementation of this type of tool for main-
tenance. This configuration introduces three analytical models, with two 
of them being contributions of the paper specifically designed for failure 
mode diagnosis/classification and RUL estimations. In these models, 
machine learning techniques are conjugated with statistical techniques 
to gain flexibility when modelling in these initial stages of the DT for 
CBM development. 

A very interesting point of the paper is the data transformation 
strategy to move from temperature data points to temperature cycles 
data points, allowing the classification of failure modes with a consid-
erable reduction in the quantity of data required for reasonable diag-
nosis quality. 

A selection of six features (scalability, interoperability, expansibility, 
fidelity, interaction, and integration) to consider when designing these 
types of DT solutions/systems is a recommendation of this paper, that is 
done after a careful review of the literature. 

Considerable attention was devoted in this work to examine the 
interaction with the DT using simple and practical business rules.The 
inclusion of a use case from TALGO, a high-speed train manufacturer, 
presented as a case study in the paper, adds significant value to the 
research. During the development of this use case, an approach was 
adopted to describe the interaction between the DT CBM App and the 
end users, as illustrated in Fig. 14. This approach employs straightfor-
ward business rules to handle events that modify the asset’s condition, 
resulting in a practical business process that effectively addresses the 
challenges identified in the aforementioned contributions. 

In the case study, the reader can appreciate how, to deal with data 
related challenges, the team used state-of-the-art tools for the data 
management and models building. For instance, the possibility to carry 
out the dimensionality analysis with RapidMiner ®, as presented in 
Fig. 12, could speed up the use of analytics while maintaining the quality 
of the solution for diagnosis. Also, this tool allows the selection of the 
more balanced model in terms of fast computation and accuracy of re-
sults, to overcome potential limitations in computing infrastructure. 

The paper wishes to contribute to bridging the existing gap in digital 
configurations for maintenance management, designed to benefit of 
DTs. 

Potential limitations of these tools are associated to the existing data, 
models, and services/apps management. Notice that digital trans-
formation requires an important effort in the maintenance organization 
to keep all these three layers updated. The need for additional skills in 
the organization is a clear issue to pay attention to. 

Future lines of research are associated to the discovery of new 
configuration for different critical assets maintenance (horizontal 
expansion), but also with the incorporation of more advanced tool for 
integration, from the monitoring infrastructure to the high-level intel-
ligent maintenance apps (vertical integration). Another important 
development can be using this framework not with maintenance oper-
ational services, as the one we are dealing with in this paper, but also for 
services/apps with a more strategic nature, such as those for dynamic 

criticality analysis, or those for long-term asset health analysis. 
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Table 7 
CBM App DT features in the case study.  

Feature Case study description 

Scalability. The DT model has been scalable to all train bearings requiring only 
the development of models per axle bearing position, regardless the 
axle in the train or the train in the fleet. 

Interoperability Data used to train the three different types of models came from the 
same source and there is a procedure explaining how original data 
is converted and matches the different predictive analytics data 
models. Real time data is now used to generate an on-line output. 

Expansibility. There is a clear possibility to integrate new models. For instance, 
RUL models based on machine learning models have been 
introduced to replace statistical models in some applications with 
more consistent data. 

Fidelity The ML models for anomalies detection replace in this case, with 
high tested precision, the very complex physical models related to 
the calculation of the dynamic behavior of loads in the train per 
axle bearings in each railway point at a certain speed. 

Interaction This part has been found a very interesting feature. When modeling 
a given failure mode (FM) different risk levels or states are 
proposed: low, medium, high and fault. At the same time two 
different types of events may show up: monitoring and preventive 
maintenance events. It is considered that both monitoring events 
and PM events (with human intervention) may lead to a change in 
the risk level of one or more failure modes of the asset. This is 
because these events trigger a new risk assessment of the affected 
FMs. A given event may affect different failure modes and in 
different ways. It is also assumed that reaching a new failure mode 
state triggers a maintenance action (the release of an algorithm for 
detection or prediction, an inspection, a replacement, etc.). This 
human supervision of the model’s performance and interaction 
with the DT resulted to be critical for the DT success. 

Integration The DT is to be integrated in the App in place, to control the trains 
fleet dynamic maintenance. Axle bearing DT must be incorporated 
into the comprehensive train CBM App. In this App, a total of 10 
train critical systems are monitored to generate an on-line train risk 
assessment and to suggest an immediate action. Understanding the 
implications of each system risk, according to each system 
criticality, is critical to establish an effective dynamic maintenance 
strategy. In this case this DT has been integrated within Google 
cloud infrastructure/services (The reader is referred to https:// 
cloud.google.com/customers/talgo for precise details about this 
integration).  
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ANNEX 1. Algorithm generating overtemperature cycles
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