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We study the interaction of moving localized oscillations with a local inhomogeneity in a discrete nonlinear

Hamiltonian system. We conjecture that resonance with a static nonlinear localized oscillation centered

at the local inhomogeneity is a necessary condition for observing the trapping phenomenon. Analytic

calculations and numerical simulations agree well with our hypothesis.
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1. Introduction

The interaction of nonlinear localized oscillations with local inhomogeneities in a system is an important
problem that has been studied in different frameworks: the scattering of kinks and envelope solitons on
local inhomogeneities in one–dimensional atomic lattices with nonlinear interactions [1], the interaction
between high-frequency continuous breathers and local inhomogeneities in the sine-Gordon model [2], [3],
and the scattering of kinks in the continuous sine-Gordon and φ4 models [4] and in the Frenkel–Kontorova
model [5], [6]. Solitons that, depending on the velocity, can be reflected by the inhomogeneity or pass
through it are described in [1], [5]. But in [2], [4], it was observed that solitons can also be trapped for
intermediate velocities.

Much attention has recently been paid to localized oscillations in nonlinear discrete systems (discrete
breathers). They can be obtained in Klein–Gordon lattices as exact solutions of dynamical equations [7]. In
addition, these localized oscillations can move under certain conditions, and they are usually called moving

breathers [8]–[12].
The interaction of a moving discrete breather with a local inhomogeneity in a Klein–Gordon chain was

previously considered by Forinash et al. [13] in the weak nonlinearity approximation. They found three
different behaviors: the moving breather passes through the inhomogeneity, it is reflected, or it is trapped,
initiating a depository of energy. All these effects are related to resonances with a linear localized mode.

In this work, we study the features of the interaction of moving discrete breathers with a local inhomo-
geneity in a Hamiltonian Klein–Gordon chain of oscillators with nonweak nonlinearity. We conjecture that
a necessary condition for the appearance of trapping is that there must exist a breather centered at the
local inhomogeneity with a frequency close to that of the moving breather. This guarantees the existence
of a wide range of parameters for which trapping is possible. Nevertheless, this condition is not sufficient,
because the trapping phenomenon does not occur when the tails of this breather and the linear localized
mode have different vibration patterns. We propose the hypothesis that both tails must have the same
vibration pattern for the trapping to occur.
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2. Model

To study the effects of a local inhomogeneity on the movement of breathers, we consider a simple model
in which moving breathers can be generated, i.e., a Klein–Gordon chain with nearest-neighbor attractive
interactions [8], [9]. Its Hamiltonian is given by

H =
N∑

n=1

(
mn

2
u̇2

n + Vn(un) + Wn(un, un−1, un+1)
)

, (1)

where un is the displacement of the nth particle with respect to its equilibrium position, Wn is the coupling
potential, and Vn(un) is the substrate potential at the nth site. If we introduce a local inhomogeneity,
the dynamical equations have two kinds of solutions: linear ones, which correspond to oscillations of small
amplitude, and nonlinear ones, which correspond to intrinsic localized modes or discrete breathers.

2.1. Soft substrate potential. As the first case, we consider a soft on-site potential. We choose V as
the Morse potential, i.e., Vn(u) = Dn(e−u−1)2, where Dn is the well depth at the nth site. We also consider
a linear coupling term Wn(un, un−1, un+1) = Cn(2un − un+1 − un−1) and introduce the inhomogeneity by
assuming a different well depth at only one site, i.e., Dn = Do(1+αδn,0), or, similarly, varying the coupling
constant Cn = C0(1+βδo,n) (C > 0) or the mass of a particle mn = m0(1+γδo,n). We then call the particle
located at n = 0 a local inhomogeneity with the magnitude controlled by the parameters α, β, or γ taking
values in the interval [−1,∞). This model proves very suitable for obtaining moving breathers [9], [10], [12],
and it has been used extensively in DNA dynamics [14]. We consider D0 = 1/2 and m0 = 1.

Hamiltonian (1) leads to the dynamical equations

F ({un}) ≡ mnün + V ′
n(un) + Cn(2un − un+1 − un−1) = 0. (2)

2.1.1. Linear modes. The dynamical equations can be linearized if the amplitudes of the oscillations
are small. Therefore, the linear modes can be calculated supposing that the localized mode is un(t) =
u0e

iωLtrn [13]. There exist one linear localized mode and N−1 linear extended modes.
In the case of the local inhomogeneity in the well depth, the extended modes are

ω(q, α) =

√
ω2

0 + 4C sin2 q(α)
2

, (3)

where q(α) is the extended-mode wave vector (which depends in a nonstraightforward way on α), ω0 is the
linear frequency (in our case, ω0 =

√
2D), and the frequency of the linear localized mode is given by

ω2
L = ω2

0 + 2C + sgn(α)
√

α2ω4
0 + 4C2. (4)

The sign of r indicates the vibration pattern of the linear localized mode. Thus, if r > 0, the particles of
the mode vibrate in phase and have a wave vector q = 0. In contrast, if r < 0, the mode has a zigzag
vibration pattern and a wave vector q = π. The parameter r is given by

r = − sgn(α)
αω2

0 +
√

4C2 + α2ω4
0

2C
. (5)

Therefore, α and r have opposite signs. This also implies that for the extended modes, q ∈ (0, π] if α < 0
and q ∈ [0, π) if α > 0.
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Fig. 1. Different regimes in the interaction of a moving breather with an impurity introduced as an

inhomogeneity in the potential well depth in a soft substrate potential.

If we introduce the local inhomogeneity in the coupling parameter, the dependence of the linear localized
mode frequency on the parameter β is

ω2
L =

{
ω2

0 , β < 0,

β+2
4β C(

√
9β2 + 20β + 4 − 2 + 3β), β > 0,

(6)

and

r =
3β + 2 −

√
9β2 + 20β + 4
3β

.

There are no linear localized modes for β < 0, whereas for β > 0, they exist with q = π.
In the case of the inhomogeneity in the mass, we find that

ω2
L =

ω2
0 − sgn(γ)

√
(γ)2ω2

0(ω2
0 + 4C) + 4C2

m(1 − (γ)2)
, (7)

r =
|γ|(ω2

0 + 2C) − sgn(γ)
√

(γ)2ω2
0(ω2

0 + 4C) + 4C2

2C(|γ| − 1)
. (8)

The parameters r and γ have the same sign. Then, if γ < 0, the localized mode has q = π and the extended
modes q ∈ [0, π), and if α > 0, the localized mode q = 0 and the extended modes q ∈ (0, π].

2.1.2. Numerical observations. To study the interaction of a moving discrete breather with the local
inhomogeneity of the system, we performed some numerical simulations. To obtain a stationary breather, we
used common methods based on the anticontinuous limit [15]. If the initially chosen oscillator corresponds
to the local inhomogeneity, a stationary breather centered at the impurity is obtained. It is called an
impurity breather.

Once a stationary breather is obtained, it can be moved under certain conditions. There exists a
systematic method for calculating moving solutions [8], [9]; it consists in adding a perturbation of magnitude
λ collinear to the direction of the pinning mode to the velocities of the stationary breather and letting the
system evolve in time. The pinning mode is an antisymmetric linear localized mode, which can appear in
the set of linear perturbations of the system if the coupling is sufficiently strong [10]. A perturbation in
the pinning-mode direction thus breaks the translational symmetry of the system and makes the breather
move.

If the inhomogeneity is in the potential depth, four different regimes separated by critical values of the
control parameter were found. This is shown in Fig. 1.

1. Barrier. The inhomogeneity acts as a potential barrier. As the moving breather reaches the
impurity, it is generally reflected, leaving the impurity excited for a short time.

2. Excitation. The inhomogeneity is excited and the breather is reflected. The energy of the excited
inhomogeneity is larger than the energy of the impurity breather. Therefore, the excited impurity
vibrates with a frequency lower than ωb because the on-site potential is soft.



3. Trapping. The breather is trapped by the inhomogeneity. When the moving breather is close to
the inhomogeneity, it becomes trapped, and its center oscillates between the neighboring sites.
Furthermore, the trapped breather emits a great amount of phonon radiation and seems chaotic.

4. Well. The inhomogeneity acts as a potential well. The breather accelerates as it approaches the
inhomogeneity and decelerates after it has passed through the local inhomogeneity.

The transition between the different regimes is somehow diffuse, which means that the critical values of
α cannot be determined exactly. Furthermore, they are slightly dependent on the breather velocity. These
regimes were also found for different values of the breather frequency. For stronger coupling, the phonon
radiation is significant and could mask some of the described effects.

To explain some of these results, we performed a continuation of a stationary breather centered at the
local inhomogeneity, varying the parameter α. Then, a bifurcation appears for α = αc > 0 and another
for α = αres < 0. The first is initiated by a localized Floquet eigenmode that abandons the unit circle and
leads to a breather extinction, i.e., the impurity breather does not exist for α > αc. In the second case, the
breather bifurcates with the zero solution through a pitchfork bifurcation in the space of time-reversible
solutions of frequency ωb.1

For α = αres, the frequency of the linear localized mode is the same as the frequency of the impurity
breather with the moving breather frequency, i.e., ωL = ωb. The value αres can be calculated from Eq. (4)
as a function of ωb and C:

αres = −
√

(ω2
b − ω2

0)(ω2
b − ω2

0 − 4C)
ω2

0

. (9)

Hence, the trapped breather does not exist for α > 0. This indicates that the condition α ∈ (αres, 0) might
hold for the trapped breather to exist.

The scenario for the trapped breathers for α < 0 is as follows. In this case, the linear localized mode has
q = 0, and also all the particles of the impurity breather vibrate in phase. This vibration pattern indicates
that the impurity breather bifurcates from plane waves with q = 0 [16], i.e., the impurity bifurcates from
the localized mode, and it will be the only localized mode that exists when the inhomogeneity is excited
for α > αres. Therefore, when the moving breather reaches the inhomogeneity, the breather can excite the
localized mode. In fact, we have performed a successful continuation from the impurity breather to the
localized mode at constant action and α.

For α < αres, the trapped breather cannot be generated, and the moving breather is always reflected.
In addition, the impurity breather does not exist.

If α > 0, the scenario is different. In this case, the localized mode has q = π, but the impurity breather
sites again vibrate in phase, i.e., the impurity breather does not bifurcate from the localized mode. Hence,
there are two different localized excitations for α > 0: the (linear) localized mode and the (nonlinear)
impurity breather. But, actually, the equations that govern the system are nonlinear; therefore, the linear
modes can only correspond to low-amplitude oscillations. In the case of the impurity breather, the linear
regime corresponds to the tails. Consequently, if the moving breather reaches the inhomogeneous site, it
will excite the impurity breather and the tails of the localized mode. But the latter vibrates in zigzag. As
a consequence, there will be two different linear localized entities: the tails of the localized mode (vibrating
in zigzag) and the tails of the impurity breather (vibrating in phase).

In the case of the inhomogeneity introduced in the coupling parameter, the breather can only be
trapped for β < 0, as shown in Fig. 2. This result was verified numerically, and there is only a critical value
of the parameter β = β1.

1We note that dynamical equations (2) do not correspond to the standard dynamical system ẋ = f(x, t), in which
pitchfork bifurcations are usually described.
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inhomogeneity in the coupling parameter in a soft substrate potential.
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Fig. 3. Different regimes in the interaction of a moving breather with an impurity introduced as an

inhomogeneity in the mass in a soft substrate potential.
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Fig. 4. Different regimes in the interaction of a moving breather with an impurity introduced as an

inhomogeneity in the well depth with a hard substrate potential.

Finally, when we introduce the inhomogeneity in the mass, we observe a behavior qualitatively similar
to the inhomogeneity in the potential depth. The trapping phenomenon occurs when an impurity breather
exists with the same vibration pattern as the localized linear mode (see Fig. 3).

2.2. Hard substrate potential. We consider a hard substrate potential. We study a chain of
nonlinear oscillators with a φ4 hard on-site potential and linear coupling. The Hamiltonian is

H =
∑

n

(
1
2
u̇2

n +
1
2
ω2

nu2
n +

1
4
u4

nC

(
1
2

(un − un−1)2 +
1
4

(un − un−1)4
))

,

and ω2
n = ω2

0(1 + αδn,0).

2.2.1. Linear modes and numerical observations. The linear modes are similar to those in the soft on-
site potential case except that the vibration pattern of the impurity breather is inverted. In our numerical
simulations, we found different behaviors summarized in Fig. 4. In all cases, the trapping phenomenon is
observed in the region α > 0, and the impurity breather has zero amplitude when α = αres.

3. Trapping hypothesis

As a consequence of our numerical observations, we conjecture that the existence of an impurity
breather is related to the trapping phenomenon and the vibration pattern of the linear localized mode. We
thus summarize our hypothesis:



The existence of an impurity breather for a given value of α is a necessary condition for the existence

of trapped breathers. But if there exists a linear localized mode with a vibration pattern different from

that of the impurity breather, then the trapped breather does not exist.

4. Conclusions

We have studied the interaction of moving discrete breathers with an local inhomogeneity in a Klein–
Gordon chain with nonweak nonlinearity. The trapping occurs whenever the trapping hypothesis holds: an
impurity breather of a frequency close to that of the moving breather must exist. In addition, there must
not exist a (linear) localized mode with a vibration pattern different from that of the impurity breather.
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