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Abstract

This paper focuses on the design and implementation of an event-based con-

trol architecture to manage a renewable-based microgrid. This microgrid has

renewable-energy generation and a hybrid energy storage system that uses elec-

tricity and hydrogen. The main load of the microgrid is the energy demand of

an office. The primary control objective is to satisfy the load demand using the

available renewable generation and stored energy while reducing the amount of

energy purchased from the Utility Power Grid (UPG). To do that, the control

architecture, which has been defined within an event framework, makes use of a

set of state-space model predictive controllers which are selected as a function of

a variable sampling period. To evaluate the performance of the proposed control

architecture, simulation tests for a typical day of summer as well as an analyti-

cal study is performed. Furthermore, a comparison of the obtained results with

a classic state-space model predictive control approach is also included. The

obtained results show that the use of the event-based control architecture al-

lows a significant reduction of the number of changes in the control action at
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the expense of an acceptable deterioration of set-point tracking for a microgrid

with several types of electrochemical storage.

Keywords: Event-based control, Model Predictive Control, microgrids,

thermal comfort, energy efficiency, co-simulation

1. Introduction

These days, a transition from centralized and fossil-fuels based energy sys-

tems to distributed renewable-energy based ones is taking place mainly due to

the fact that non-renewable energy sources are more and more exhausted [1].

Hence, it is necessary to develop new control algorithms able to manage the

effects related to the intermittence and distribution of energy, as well as new

demand profiles. For this reason, the use of microgrids has spread in recent

years. A microgrid can be defined as a group of generators, loads and energy

storage systems that can be managed in both connected to grid or islanded oper-

ating modes with the principal aim of providing electricity in a reliable way [2].

In that way, a microgrid can be used to guarantee Quality of Service for local

loads just as hospitals, shopping centers, office buildings, etc.

Nevertheless, as it is pointed out in [3], the development of microgrid con-

trol algorithms is a difficult task which presents several problems and impor-

tant challenges. Specifically, [3] focuses on optimal management of microgrids.

Moreover, it is possible to find in literature many other works related to energy

management of a microgrid which make use of different approaches, such as,

heuristic algorithms [4], stochastic control [5, 6], neural-network and fuzzy logic

techniques [7]. Besides, Model Predictive Control (MPC) is one of the most

used techniques since it allows the integration of both generation and load pre-

dictions and energy price estimations. For instance, in [8] optimal controllers

for distributed renewable generation networks and batteries storage are pre-

sented. Likewise [9, 10] illustrates the use of centralized MPC techniques. In

[11] a review of different types of control approaches applied to microgrids (such

as rule-based, model predictive control and occupancy based model predictive
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control for buildings) is performed.

On the other hand, the use of event-based control approaches presents sev-

eral advantages, such as the computation of new control signals only when an

event is detected or the reduction in the use of resources [12]. Besides, these

approaches are very beneficial when they are applied to distributed systems,

since they can decrease the information exchange among the elements which

compose the system [13]. For these reasons, in the last years the use of event-

based techniques has spread widely and they have been applied to a huge variety

of systems. For example, to control Heating, Ventilation and Air-Conditioning

(HVAC) systems in buildings [14, 6], distributed solar collector fields [15], pH

level in photobioreactors [16], etc. However, up to our knowledge, there are not

many works which have applied event-based control to manage a microgrid.

Sometimes it is required to consider specific variables like the connection

status (connected/disconnected) or changes in the behaviour of the equipment

during the normal operation (for example different charging/discharging effi-

ciency coefficients for a batteries bank) within the control problem. For this

reason, it is necessary to develop and analyse new configuration, modelling and

control techniques. Therefore, the main objective of this paper is the develop-

ment of a control approach within the framework of hybrid MPC which allows

the efficient management of a renewable-energy based microgrid with two types

of electrochemical storage: batteries and hydrogen (fuel cell and electrolyzer).

Moreover, the developed strategy has considered some deterioration of storage

systems criteria to provide a larger durability. To do that, the use of event-

based MPC control is ideal since it maintains all the individual advantages of

both MPC and sampling techniques based on events. In more detail, these

characteristics of an event-based MPC have been used to establish a trade-off

between the performance of the control system (accuracy) and the necessary

effort (resources used by the control strategy). In this way, event-based control

systems can reduce the use of resources (by the application of new control sig-

nals only if it is required), and thus, also the economical costs at the expense of

an insignificant deterioration of the control system performance.
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A control approach has been developed in order to manage an existing

laboratory-scale renewable-energy based microgrid located at the University of

Seville [17]. The power supported by this microgrid is similar to the one de-

manded by an office room, see Table 1. The principal goals of the proposed

control system, from a performance point of view, are to satisfy realistic load

profiles for an office-building, to maintain the energy storage levels within estab-

lished security limit and to minimize the amount of energy exchanged with the

Utility Power Grid (UPG). Additionally, the degradation of the storage devices

(battery, electrolyzer and fuel cell) is taken into account; as analysed in [18], this

is closely related to the changes in the control actions, so a control strategy that

avoids frequent and sudden changes in the use of storage devices can improve

their lifetime. More in detail, it has been supposed that the microgrid should

satisfy the energy demanded by an office-room considering its thermal comfort

specifications and the physical constraints of the microgrid itself. Hence, a build-

ing has been simulated and controlled by means of co-simulation techniques and

the total energy amount demanded by a room of this building has been quan-

tified taking into account not only the energy demanded by the HVAC system

but also, the energy demanded by artificial lighting and electrical appliances.

Henceforth, to manage the renewable-energy based microgrid, an event-based

state-space MPC control has been designed and implemented. In this case, two

different types of events have been defined: threshold and time-based events.

The effectiveness of the proposed control architecture has been analysed by

means of several simulation tests for a typical summer day in Seville. In addi-

tion, the obtained results have been compared with a classic state-space MPC

approach. The obtained results are promising since they demonstrate that it is

possible to reduce the number of actuations around a 65%, at the expense of

an acceptable deterioration of the performance and an increment of the energy

exchanged with the UPG less than 1.35 kWh for a whole day of operation for

the selected solution. Further, even if less important in this application, the

computing time is reduced up to 70%.

The structure of the rest of the paper is organized as follows: Section 2
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describes the methodology used to obtain realistic energy demand profiles for

an office-room considering thermal comfort constraints. Section 3, describes the

renewable-energy microgrid. Section 4 performs a detailed explanation of the

event-based state-space control architecture presented in this paper. Section 5

introduces the optimization procedure followed to select the main parameters of

the event-based strategy. Section 6 presents the simulation results obtained for

a typical summer day in Seville. Finally, Section 7 summarises main conclusions

and future works.

2. Energy demand: Thermal comfort control of an office-room

In this paper, it has been supposed that the renewable-energy based mi-

crogrid is used to satisfy the energy demanded by an office-room. Therefore,

obtaining realistic energy consumption profiles is a cornerstone, and thus, it is

necessary to determine the energy required by its users in order to develop their

daily activities, taking into consideration thermal comfort constraints.

Besides, for the purpose of assuring a comfortable situation for the users of

a room from a thermal point of view, the use of adequate control systems is re-

quired [19]. Moreover, to design and implement appropriate control strategies, it

is fundamental to have a building model able to capture its dynamic behaviour.

In this paper, an office building and a room-level thermal comfort controller have

been simulated by means of co-simulation techniques. Co-simulation can be de-

fined as the integration of various simulation tools at run-time coupling [20, 21].

More specifically, the EnergyPlus engine [22] has been used to simulate the

dynamic behaviour of the building whereas the thermal comfort controller has

been designed using Matlab. Furthermore, it is required to establish a com-

munication at simulation time between EnergyPlus and Matlab, and thus, the

Building Control Virtual TestBed (BCVTB) tool has been utilised [23].

In more detail, one of the buildings which have been included as an example

of how to use BCVTB tool has been selected and modified in order to be consid-

ered as an office building. It occupies an estimated total surface equal to 310 m2
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and comprises two floors and a basement. At each floor, two thermal zones

which face South and North have been considered, see figure 1(a). However, to

evaluate the performance of the event-based state-space MPC architecture pre-

sented in this paper, the south zone of the first floor (ZSF1) has been selected

as a characteristic office-room due to the dimensions of the renewable-energy

based microgrid. Furthermore, the following assumptions have been considered

in order to simulate the building:

• The maximum occupation rate of the selected room has been established

to 10 people. Moreover, it has been fixed that the first five workers ar-

rive at 7 a.m. Afterwards, at 8 a.m. three more workers arrive to their

workplace. The occupation rate of the room is fixed to its maximum value

from 10 a.m. to 1 p.m. and from 3 p.m. to 5 p.m. From 1 p.m. to 3 p.m.

and from 5 p.m. to 6 p.m. the occupation rate has been established to

five people. Finally, the last two workers abandon the room at 7 p.m.,

see 1(b).

• The building is located in the city of Seville. So, hourly weather data for

Seville obtained from [22] has been used. This dataset contains Interna-

tional Weather for Energy Calculations (IWEC) data originated based on

almost 20 years of data originally archived at the U.S. National Climatic

Data Centre and supplemented by solar radiation calculated as a function

of earth-sun geometry and cloud amount information [24]. As an exam-

ple, main outdoor environmental variables for a typical summer day can

be observed in figure 1(c).

• The HVAC systems are operated from 6 a.m. to 7 p.m..

As it can be observed in figure 1(c), Seville has hot summers with a max-

imum mean outdoor temperature approximately equal to 36oC. Therefore, to

reach a comfortable thermal sensation inside buildings the use of active strate-

gies such as HVAC systems, able to control indoor climate, is required. At

this point, it is important to mention that EnergyPlus allows the control of the
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a) Simulated office building: 3D overview

b) Profile of people inside the room

c) Outdoor conditions for summer in Seville

Figure 1: Principal characteristics of the building simulated with EnergyPlus
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indoor environment through zone level control algorithms by modifying, in an

appropriate way, the set-points defined for these zones. Those algorithms can

be defined as a function of a thermostat, of the operative temperature or the

Predicted Mean Vote (PMV) index [25]. Therefore, the designed control algo-

rithm in Matlab should estimate the adequate set-points based on the selected

zone control algorithm, that is, indoor air temperature, operative temperature

or PMV index, respectively. In this paper, a zone control based on the PMV

index has been performed. This index allows the prediction of the mean re-

sponse about thermal sensation of a large group of people exposed to particular

thermal conditions for a certain amount of time. Concretely, the steps that have

been followed to develop a thermal comfort controller for an office-room using

co-simulation techniques can be summarized as follows:

• An office building has been configured and simulated in EnergyPlus. It

will be considered as a room simulator from thermal comfort control point

of view.

• A characteristic room has been selected (ZSF1) and a model of it has been

obtained by means of classical identification techniques [26]. To do that, a

Pseudo-Random Binary Signal (PRBS) has been designed in Matlab and

it has been applied to the EnergyPlus building model using BCVTB tool.

The main goal was to capture enough data of the selected room to allow

the identification of a model of the room.

• Afterwards, a simple control signal has been designed and implemented in

Matlab in order to maintain the PMV index within the limits established

by international standards. To do that, the model identified beforehand

has been used. Moreover, it should be taken into consideration that this

controller is subject to several disturbances such as outdoor air temper-

ature and room occupation. Simulation results of the thermal comfort

controller can be observed in figure 2.

• Finally, once that the room simulator (office building model developed in
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EnergyPlus) and the thermal comfort controller (Matlab) have been de-

signed and implemented, a control architecture which allows the thermal

comfort sensation to be maintained into the selected room has been im-

plemented using co-simulation techniques. To do that, EnergyPlus and

Matlab will simulate the building and the thermal comfort controller re-

spectively. Moreover, they will exchange the necessary information for a

correct operation using BCVTB interface at run-time coupling.

Figure 2: Results of the thermal comfort controller within the selected room

A more detailed description of the methodology followed to identify the

room model and to implement the thermal comfort control system has not been

included, since it is out of the scope of the work presented in this paper. Several

works and results related to this topic can be found in [19].

Finally, the energy demanded by this room to satisfy users’ necessities re-

lated to their quotidian activities and thermal comfort has been obtained from

EnergyPlus simulation engine. Specifically, the energy consumed by artificial

lighting and electrical appliances has been considered and moreover, the energy

used by the HVAC system to maintain a thermal comfort sensation has also

been taken into consideration. These energy demands have been configured to

depend on the number of people and the type of lights and electrical appliances

inside the room. Therefore, it has been supposed that there is a computer with

similar characteristics for each person. Data related to lighting and electrical
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appliances energy consumption for office-rooms have been obtained from [27].

Finally, a summary of the energy demanded by this room can be observed in

figure 3. This profile of energy demanded will be used from hereafter.

Figure 3: Energy demanded by the office-room

3. Renewable-energy based microgrid

The plant which is being analysed in this paper is an experimental renewable-

energy based microgrid located at the University of Seville (Spain). It is utilised

to test control approaches applied to energy management. The microgrid makes

use of hydrogen storage and renewable energy sources [9, 17, 28]. Figure 4 shows

a picture of the experimental microgrid, also known as Hylab, as well as its

principal components.

In general, under normal operation conditions of the microgrid, the energy

demanded is not usually equal to the production. Hence, surplus energy from

renewable sources can be kept in batteries or utilised to generate hydrogen by

means of electrolysis. In more detail, the hydrogen generated is stored in the

metal hydride tank. Thus, if the power from renewable energy sources is not

enough, the fuel cell can use hydrogen in order to supply the energy demanded.

Besides, the microgrid is connected to the main grid which allows energy sale and

purchase. The availability of hybrid storage (hydrogen and electricity) allows

the development of operation strategies on two different time scales: hydrogen
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Figure 4: Hylab microgrid.

can be used to supplement bigger oscillations while the batteries bank is respon-

sible of absorbing/providing small quantities of energy on fast transients. To

replicate the dynamic behaviour of renewable energy sources, the microgrid uses

a programmable power supply which can simulate a photovoltaic field and/or

a wind turbine. In addition, it also incorporates an electronic load to repli-

cate several demand profiles, a batteries bank and a complete hydrogen storage

system which is composed of a metal hydride tank used to keep hydrogen, a

PEM (Proton Exchange Membrane) fuel cell to produce electricity and a PEM

electrolyzer to generate hydrogen. The technical characteristics of the main

components of the microgrid can be observed in table 1.

The components of the microgrid are connected to a 48 V DC current bus us-

ing adequate power electronics. In addition, the control system has a dedicated

central control based on a programmable logic controller (PLC). This device is

specifically responsible for the necessary calculations and for determining the

basic control actions. The electrolyzer and fuel cell are managed through power
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converters and Controller Area Network (CAN) bus communications. On the

contrary, the electronic load and the power supply are controlled in analogue

mode. Generally, control systems which make use of a model of the system

are high in computational demands, and thus, real-time implementation using

commercial PLCs is to some extent problematic. Hence, in order to deal with

this problem, MPC control actions are determined using Simulink Real-Time

software on a computer installed in the laboratory. Afterwards, the computer

sends the determined control actions to the PLC using MATLAB OPC library.

The MPC control system receives the plant outputs to estimate the optimal

sequence of control signals.

To allow the DC bus to transfer power, two DC/DC converters related to the

fuel cell and the electrolyzer have been used. On the contrary, the batteries bank

is connected directly to the DC bus. Therefore, to simplify the topology, the

bus voltage is held by the batteries bank. This implementation is very common

in DC microgrids since it allows reducing costs and increasing reliability mainly

due to the fact that any unbalance in the system is absorbed by the batteries

bank [29]. Moreover, the converters related to the demand and renewable energy

sources are electronically emulated. A complete description of the microgrid

design and a full characterization of each subsystem can be found in [17].

Table 1: Microgrid Units.

Equipment Nominal Value

Programmable Power Supply 6kW

Electronic Load 2.5kW

Electrolyzer 0.23Nm3h-1 at 1kW

Metal Hydride Tank 7Nm3 at 5bar

Fuel Cell 1.5kW at 20Nl

Battery Bank C120 = 367Ah
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3.1. Linear model

A key aspect to design and implement an adequate control architecture for

the renewable-energy based microgrid is to have an available model. This model

must be able to precisely represent its dynamic behaviour. Therefore, assuming

that the efficiency of the battery is the same for charge and discharge, the

following energy balance equations determine the increment in the level of energy

in the storage units:

SOC(t+ 1) = SOC(t)− ηbatTs
Cmax

Pbat(t) (1)

LOH(t+ 1) = LOH(t) +
ηezTs
Vmax

Pez(t)− Ts
ηfcVmax

Pfc(t) (2)

where SOC and LOH are the State Of Charge of the batteries bank and

the Level of Hydrogen of the hydrogen storage tank in [%] respectively, η is the

conversion efficiency of each storage unit, Cmax is the maximum energy capacity

of the battery and Vmax is the maximum volume of H2 that can be stored in

the tanks. Then, Pbat is the power supplied by the battery, Pez is the power

consumed by the electrolyzer and Pfc is the electric power generated by the fuel

cell. Notice that the battery is directly connected to the DC bus and absorbs

the unbalance, so Pbat must compensate the rest of powers in the DC bus:

Pbat(t) = Pdem(t) + Pez(t)− Pfc(t)− Pgrid(t)− Pren(t) (3)

So, defining ω(t) = Pren(t)−Pdem(t) as the measurable disturbance, that is,

the existing difference between the power Pren originated by renewable energy

sources and the power Pdem demanded, the storage equations are:

SOC(t+ 1) = SOC(t)− ηbatTs
Cmax

(Pez(t)− Pfc(t)− Pgrid(t)− ω(t)) (4)

LOH(t+ 1) = LOH(t) +
ηezTs
Vmax

Pez(t)− Ts
ηfcVmax

Pfc(t) (5)

For the sake of simplicity, the powers of the hydrogen path are grouped

in one variable PH2
= Pfc − Pez, assuming that the efficiencies are similar in
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both ways. The values of the conversion from charging power to electrical and

hydrogen storage are obtained performing several experiments on the plant. A

series of 168 simulations were performed for different operating points: SOC

and LOH between 10% and 90% and charging and discharging powers between

500 and 1750 W . Finally, a discrete-time linear state-space model of the plant

around an operating point (u∗, x∗) has been obtained by means of identification

techniques:

x (k + 1) = x (k) +

 0.0936 0.0936

−0.3397 0

u (k) +

 0.0936

0

ω (k) (6)

where x = [SOC;LOH] represents the states and u = [PH2;Pgrid] in [kW ]

is the vector of the two manipulated inputs variables: the power applied to

the hydrogen path (electrolyzer, hydrogen storage tank and fuel cell) and the

power traded between the UPG and the microgrid. Finally, this model has

been discretized with a sampling period of Ts = 10 s. Moreover, the following

assumptions have been considered:

• It has been supposed that the fuel cell and the electrolyzer cannot operate

simultaneously. Therefore, if PH2 is lower than 0, it is associated with the

power of the electrolyzer (Pez). On the other side, if PH2 is positive, it

represents the power Pfc obtained from the fuel cell.

• A negative value of Pgrid stands for the power which is exported to the

UPG. On the contrary, a value of Pgrid greater than zero represents the

power imported from the UPG to the microgrid.

4. Event-based State-Space MPC for a renewable-energy based mi-

crogrid

In this section, the event-based state-space MPC architecture presented in

this paper is introduced. Concretely, it is based on the algorithm proposed

in [12]. The main difference lies in the MPC algorithm selected to be integrated
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within the event-based architecture. More in detail, the control architecture

presented in [12] is based on the Generalized Predictive Control (GPC) algo-

rithm, while, in this paper, a state-space formulation has been used. The use of

a state-space formulation simplifies the problem because it is not necessary to

perform signal sampling and re-sampling techniques since state-space MPC only

needs to know the state of the controlled variables and control signals in the

current time instant and, in our case, these variables can be measured. More-

over, to select the parameters for the event-based architecture a multiobjective

optimization problem has been solved, see Section 5.

In this paper, a modified version of this algorithm has been applied to control

the experimental laboratory microgrid described in Section 3. Hence, it is a

Multiple-Input-Multiple-Output (MIMO) control problem. More specifically,

the microgrid has two outputs: SOC and LOH which are controlled by means

of two manipulated variables: PH2 and Pgrid. Besides, this process is subject

to a disturbance, ω, that is, the difference between the power Pren generated by

renewable energy sources, and the power Pdem demanded by an office-room.

4.1. Control architecture

Generally, an event-based control strategy can be considered as a combina-

tion of feedforward and feedback actions. Furthermore, it can also be classified

as a type of hybrid control since the system will run in open loop between

events [30]. An event based control architecture is composed of three main

elements: an event-detector unit, a controller unit and the process unit, see fig-

ure 5. In more detail, each one of these elements is responsible for the following

tasks:

• Process unit: This module represents the controlled process, that is, the

experimental microgrid. To do that, a simulation based on a non-linear

model of it has been used [28].

• Event-detector unit: This element receives the outputs of the controlled

process (SOC and LOH) and analyses if an event has happened. In this
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case, it looks for two types of events: time events and threshold ones.

Afterwards, the occurrence of an event and the exact time instant it has

happened are sent to the controller unit.

• Controller unit: This unit is composed of a set of state-space MPC (SSMPC)

controllers and an event classification sub-unit. Moreover, it is responsible

for obtaining new control signals (PH2 and Pgrid) when an event is de-

tected. Concretely, the event classification module analyses the received

event and selects the most appropriate SSMPC controller as a function of

time in which the new event is detected. Afterwards, the selected SSMPC

controller recalculates control signals by solving the MPC problem defined

in Section 4.3.

Figure 5: Event-based state-space MPC control architecture.

In order to operate correctly the event-based state-space MPC control strat-

egy, it is necessary to define some concepts and constraints related to different

sampling times and the occurrence of events:

• The outputs of the controlled process, that is, SOC and LOH are provided

by the microgrid simulator. These variables are measured by means of a
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Sensor module and sampled through a constant sample time denoted as

Tbase.

• Afterwards, the event-logic module analyses at each Tbase time instant

the process outputs in order to identify the occurrence of a new event.

Specifically, two types of events have been defined: threshold based ones,

which make use of a parameter denoted β; and time-based events, that

depend on Tmax. More information about the event-logic module can be

found in Section 4.2.

• Finally, control signals (PH2, Pgrid) are calculated and applied to the

microgrid as a function of a variable sampling period Tf , which depends

on the occurrence of an event. Tf must be a multiple of Tbase and below a

maximum sampling period Tmax = nmax · Tbase. The selection of Tmax is

an important cornerstone in this type of controllers since it will influence

their performance. Hence, it is necessary to define a set of state-space

MPC controllers based on the variable sampling period Tf . This group

of controllers makes use of the state-space model given by (6) discretized

with different sampling periods (Tf ∈ {Tbase, 2 · Tbase, . . . Tmax}).

In the following subsections, a detailed explanation of the main elements

which compose the proposed control architecture has been included.

4.2. Event-logic module

In an event-based controller, control signals are not estimated in a syn-

chronous mode, but are calculated when a new event is detected. Therefore,

the sampling period of the controlled system is regulated by the event-logic

module. More specifically, it is responsible for verifying some conditions over

the process in order to detect possible events, and whenever necessary, to up-

date the sampling period of the controlled system and the state-space MPC

controller used.

As discussed before, in this paper two types of conditions have been de-

fined as events. Hence, when one of those conditions is detected, the event-logic
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module generates a new event which is transmitted to the controller unit to-

gether with the main process variables necessary to generate a new set of control

signals.

In particular, the first condition is associated with a threshold event applied

to the outputs of the controlled process. In other words, a new event is gen-

erated when the existing difference between one of the outputs of the process

(SOC or LOH) and their associated set-point values is greater than a fixed

tolerance β, see (7). This type of conditions is known as level crossing sampling

technique [31], and it can be formally expressed as,

|w (t)− y (t) | > β (7)

where the output of the system y(t) coincides with the state x(t), that is,

y(t) = x(t) = [SOC(t);LOH(t)].

On the contrary, the second condition is related to a time event which is

used for stability and performance improvement. Specifically, this condition

generates a new event when the time between two consecutive events is greater

that a maximum established time, that is, Tmax, see (8). Formally, it is

t− tei ≥ Tmax (8)

where, t is the current time-instant and tei represents the time-instant in which

the last event was detected.

Therefore, to detect a new event, at each period Tbase the previous men-

tioned conditions are checked, and this will originate a variable sampling period

denoted as Tf . As it can be inferred from (7) and (8), the selection of β and

Tmax is a critical issue which should be addressed in an appropriate way.

4.3. State-Space Model Predictive Control

As it was discussed previously, the controller unit within the event-based

control architecture is composed of a set of state-space MPC controllers. In

this section, the design of a classic state-space MPC controller which has been
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discretized using a certain sample time Tf is explained. MPC is distinguished

by the explicit use of a model of the controlled system in order to predict its

state along a prediction horizon Np [32]. Specifically, every Tf time period, a

sequence of control signals {u (t) , · · · , u (t+Np − 1)} is obtained by optimizing

a cost function, see (9). Then, the first component of this sequence is applied

to the microgrid at time instant t while the others are dismissed. Subsequently,

the complete procedure is performed again at next sampling time (t+ 1) using

more updated information. The cost function is expressed as

J (Np, Nu) =

Np−1∑
j=1

[x̂ (t+ j|t)− xref (t+ j)]
T
δ [x̂ (t+ j|t)− xref (t+ j)]

+

Nu−1∑
j=1

[∆u (t+ j|t)]T λ [∆u (t+ j|t)]

+

Nu−1∑
j=1

[u (t+ j|t)]T γ [u (t+ j|t)] (9)

where, x̂ (t+ j|t) represents an optimal j step-ahead prediction of the system

output estimated at sampling time t + j with the information available at

sampling time t, Np and Nu are the prediction and control horizons, respec-

tively, and δ, λ and γ are weighting matrices used to balance the set-point

tracking, the control increment and the control effort, respectively. Finally,

xref (t+ j) is the desired set-point for the states. Besides, it is worthwhile to

mention that it has been considered that all the signals have a sampling period

Tf (t = kTf , k = 1, · · · ,∞). In this paper, these values have been established

as δ = [0.01 0; 0 0.01], λ = [50 0; 0 1000] and γ = [10 0; 0 300]. These val-

ues have been selected to provide a higher priority to the use of the battery

bank over the hydrogen path and, moreover, to reduce the exchange of energy

with the UPG. Besides, set-point tracking weighting matrix, δ, has been chosen

not to guarantee a perfect set-point tracking but to maintain SOC and LOH

within an established security limits that allow the reduction of the number

of events, and thus, the number of actuations. Furthermore, the prediction
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and control horizons have been established to Np = 5 and Nu = 2, respec-

tively. Finally, the references values for SOC and LOH have been established

to xref = [60% 45%]
T

, respectively since it has been considered to be the

nominal operating point because it represents a compromise between operation

flexibility and guaranteed operation autonomy. For this reason, the model used

within the SSMPC has been linearized around this operation point.

In addition, at this point it is necessary to highlight that, although it is

possible to find in literature other works which do not consider set-point tracking

within storage systems [33, 34], in this paper it has been decided to include it

as a not very representative term of the cost function with the purpose of not

depleting storage systems.

Therefore, the state-space MPC controller is responsible for estimating the

future control signals sequence by minimizing the cost function given by (9).

To do that, it is required to obtain the optimal prediction of x (t+ j) for

j ∈ {0, 1, · · · , Np − 1} using the state-space model of the microgrid, see (6).

The following assumptions have been considered in order to calculate the op-

timal prediction of x (t+ j). Firstly, the state-space model given by (6) has

been rewritten according to (10) where A and C are identity matrices of an

appropriate size.

x (t+ 1) = Ax (t) +Bu (t) + Eω (t)

y (t) = Cx (t) (10)

As it was commented in Section 3, the system is subject to a state distur-

bance, ω (t) = Pnet, and thus, it is necessary to deal with it in an adequate

way. To do that, the overall process model has been augmented to include

the disturbance, following the formulation proposed by [35]. Although it would

be ideal to include the disturbance forecast within the control problem, as it

is not available, the disturbance has been considered constant over the entire

prediction horizon, so that the augmented model results in
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x̃ (t+ 1) = Adx̃ (t) +Bdu (t)

y (t) = Cdx̃ (t)

where,

x̃ (t+ 1) =

 x (t+ 1)

ω (t+ 1)

 ; Ad =

 A E

0 I

 ;

Bd =

 B

0

 ; Cd =
[
C 0

]
(11)

Secondly, the state-space controller has been implemented using an incre-

mental formulation of the state space model, that is, considering the control

increment ∆u (t) instead of the control signal u (t), where ∆u (t) = u (t) −

u (t− 1) [32]. Hence, defining a new state which depends of the previous aug-

mented one xf = [x̃ (t) u (t− 1)]
T

= [x (t) ω (t) u (t− 1)]
T

, the incremen-

tal model takes the general form given by

xf (t+ 1) = Mxf (t) +N∆u (t)

y (t) = Qxf (t)

where,

M =

 Ad Bd

0 I

 ; N =

 Bd

I

 ; Q =
[
Cd 0

]
(12)

that is,

M =



1 0 0.0936 0.0936 0.0936

0 1 0 −0.3397 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


; N =



0.0936 0.0936

−0.3397 0

0 0

1 0

0 1


;
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Q =

 1 0 0 0 0

0 1 0 0 0

 (13)

Therefore, taking into consideration the issues mentioned above, the output

of the model for sample time t+ j, assuming that the value of states and future

control increments are known, can be estimated recursively as

y (t+ j) = QM jxf (t) +

N−1∑
i=0

QMN−i−1N∆u (t+ i) (14)

In addition, this equation can be expressed in vectorial form just as: y =

Fx̂ (t) + H∆u, where F =
[
QM QM2 · · · QMNp

]T
; H represents a block

lower triangular matrix with its non-zero elements equal to Hij = QM i−jN

and ∆u = [∆u (t) ∆u (t+ 1) · · · ∆u (t+Np − 1)]
T

symbolises a sequence

of future control increments. Hence, it can be also inferred that the output of

the system depends on its current state and on a sequence of future control

increments, which is the decision variable that have to be estimated.

The sequence of control increments ∆u is obtained by minimizing the cost

function given by (9). Moreover, considering the recursive procedure to esti-

mate the process output in its vectorial form, the cost function equation can be

rewritten as:

J (Np, Nu) = (H∆u + Fx̂ (t)− xref )
T
δ (H∆u + Fx̂ (t)− xref )

+ ∆uTλ∆u + uT γu (15)

Finally, if the system is not subject to any constraint, it is possible to ob-

tain an analytical solution from the previous equation. Nevertheless, in this

case several constraints have been defined, and thus, a quadratic programming

problem should be solved using the previously defined quadratic cost function

with linear inequality and equality constraints [32]. In particular, several hard

constraints have been included to ensure an adequate performance of the mi-

crogrid. In other words, they act as physical limitations of the connection for
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the grid operation and the hydrogen path by applying limitations to the control

inputs variables and their increments:

−0.9 kW ≤ PH2 (t) ≤ 0.9 kW (16)

−2.5 kW ≤ Pgrid (t) ≤ 2.5 kW (17)

−0.9 kWs-1 ≤ ∆PH2 (t) ≤ 0.9 kWs-1 (18)

−2.5 kWs-1 ≤ ∆Pgrid (t) ≤ 2.5 kWs-1 (19)

Furthermore, several constraints concerning the state variables, SOC and

LOH, have been included with the main purpose of physically limiting the

batteries bank and the level of hydrogen within the storage tank:

40% ≤ SOC ≤ 90% (20)

10% ≤ LOH ≤ 90% (21)

Besides, it is worth emphasizing that the power of the batteries bank can

be obtained from (3). Finally, The State-Space Model Predictive Control is

summarized in Algorithm 1.

5. Optimal selection of Tmax and β parameters

As it was commented before, the choice of Tmax and β is a critical issue since

it influences the performance of the obtained results. The main goal of the event-

based control architecture presented in this paper is to reduce the number of

actuations without deteriorating too much the system’s performance. Hence, it

is a multiobjetive optimization problem.

A multiobjective optimization problem can be defined as the search for a

vector of decision variables able to satisfy certain constraints and, at the same

time, to optimize a vector of objective functions [36]. Therefore, a multiobjec-

tive problem is characterized by having two or more competing objectives (in

conflict) which should be simultaneously minimized (or maximized) satisfying
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Algorithm 1 State-Space MPC problem

Define the simulation time and current simulation time: tsim and k = 0.

Define the initial conditions of manipulated inputs, outputs and disturbances.

while k ≤ tsim do

1. Measure the current states (x), manipulated inputs (u), outputs (y) and

disturbances (ω).

2. Determine a new set of control signals along the control horizon, u =

[u (k|k) , u (k + i|k) , ..., u (k +Nu − 1|k)], by solving the quadratic problem

defined by:

min J (Np, Nu) =

Np−1∑
j=0

δ [x̂ (k + j|k)− xref (k + j)]
2

+

Nu−1∑
j=0

λ [∆u (k + j|k)]
2

+

Nu−1∑
j=0

γ [u (k + j|k)]
2

s.t.

x (k + 1) = Ax (k) +Bu (k) + Eω (k)

Pdem (k) = PH2 (k) + Pbat (k) + Pgrid (k) + Pren (k)

−0.9 kW ≤ PH2 (k + j) ≤ 0.9 kW

−2.5 kW ≤ Pgrid (k + j) ≤ 2.5 kW

−0.9 kWs-1 ≤ ∆PH2 (k + j) ≤ 0.9 kWs-1

−2.5 kWs-1 ≤ ∆Pgrid (k + j) ≤ 2.5 kWs-1

∀j = 0 . . . Nu − 1

3. The control signal u (k|k) is applied to the process whilst the other

control signals calculated in the previous step are discarded.

4. k = k + 1;

end while
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several constraints [37]. The solution to this type of problems is not unique.

In other words, it is not feasible to find an ideal solution able to optimize all

the objective functions. Nevertheless, there is a possibility of determining a

set of non-dominated solutions known as optimal solutions [37] which satisfy

some selected criteria. More specifically, this choice is performed by using some

decision techniques, such as, fixing the limit values of the decision variables.

A cornerstone within multiobjective optimization techniques is the definition

of the problem. In fact, it is necessary to specify the objective functions in an

appropriate way, that is, by determining which variables compose the objective

functions and the existing relations among them and the decision variables in a

clear and concise way.

In this case, there are two decision variables, Tmax and β, which should op-

timize two different objectives: i) the number of events; and ii) the performance

of the system by minimizing cost function evaluation, which indirectly optimizes

SOC and LOH set-point tracking and the exchange of energy with the UPG.

To do that, 132 simulations have been performed considering several values of

Tmax and β. In particular, it has been fixed that β ∈ {10%, 12%, · · · , 30%},

Tbase = 10 s, and thus, Tmax ∈ {10 s, 20 s, · · · , 120 s}. A summary of these

simulations is depicted in figure 6. It shows the existing relationships between

different combinations of Tmax and β parameters with the cost function evalua-

tion (top) and the number of events (bottom). It can be seen from figure 6(top)

that as Tmax and β parameters increase the performance of the system generally

deteriorates quickly, and thus, better solutions for this objective are obtained

for the smallest Tmax and β parameters. On the other hand, the minimum num-

ber of events is achieved with the maximum values of Tmax and β parameters

while, with Tmax = 10 s and β = 1% a total number of events around 8000 has

been reached. Therefore, both objectives are opposite regarding Tmax and β

parameters.

Hence, a set of optimal solutions has been generated from the previous

graphs, see figure 7. Concretely, it has been considered that a solution, that is a

combination of Tmax and β parameters, belongs to the set of optimal solutions
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Figure 6: Variation of J (top) and the number of events (bottom) as a function of Tmax and

β parameters

if the performance of the system is lower than 9.4 and there is a reduction in

the number of events. Moreover, a third condition has been added, that is,

the energy exchanged with the UPG should be less than 2.2 kWh. As it can

be observed in figure 7, these conditions have provided a group of solutions

which comprise β values within the interval [10%, 16%] and [24%, 28%], and

Tmax between [30 s, 80 s]. Finally, to evaluate the effectiveness of the proposed

control architecture, a selection of these solutions has been analyzed and their

simulations results have been included within Section 6.

6. Results and discussion

In this section, the effectiveness of the proposed control architecture has been

tested by means of simulation tests performed for a typical summer day in Seville

under clear-sky conditions. The main goal of these simulations is to evaluate

if the proposed event-based state-space MPC control architecture is able to
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Figure 7: Set of optimal solutions.

satisfy the total energy demanded by the office-room (see figure 3), minimizing

the number of actuations without deteriorating significantly the performance of

the control system in comparison with a classic state-space MPC controller. A

selection of points from Figure 7 has been done.

From the analysis of the graphical results it cannot be established clearly

if the event-based state-space MPC architecture is better than the classical

one. Hence, an analytical study has been performed taking into consideration

some indexes related to set-point tracking, the exchange of energy with the

UPG and the computing time. Table 2 shows the results from this analytical

study. To analyse the performance of the output variables, that is, SOC and

LOH, the Integral Square Index (ISE) criterion has been used. It is defined as

ISEx =
∫∞
0
e2 (t) dt, where e (t) represents the error between the fixed set-point

and the output variable. Besides, the amount of energy exchanged with the

UPG in [kWh], Egrid, has been calculated for each simulation test and for the

classic state-space MPC approach. Furthermore, to compare both approaches

from a computing time point of view, the total time spent to simulate 24 hours

has been obtained for each simulation. Finally, the variables used to select the

optimal values for Tmax and β parameters, that is, the cost function evaluation

Jeval and the number of events, have been also included.
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a) SOC and LOH Set-point tracking

b) Power exchanged with the UPG (left) and the battery bank (right)

c) Power exchanged with the electrolyzer (left) and the fuel cell (right)

Figure 8: Simulation results for different values of β and Tmax
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Regarding the performance of the control system, it can be observed that

the best result for Jeval index is achieved using the classic state-space MPC. In

relation to the results of event-based approach, it can be seen that the number of

events is reduced by both increasing Tmax or β parameters. However, the energy

exchanged with the UPG is higher than the classic state-space MPC for all

the simulated scenarios. Nevertheless, the performance of the ISE criterion for

output variables is better than the one reached with the classic MPC. Therefore,

it can be concluded that with the control architecture presented in this paper

it is possible to reduce significantly the number of events, and consequently the

degradation of the storage devices, at the expense of reducing the performance

of the cost function evaluation. Hence, a trade-off solution can be achieved

by choosing an event-based strategy with Tmax = 30 s and β = 24%. This

configuration can also reduce computing time a 70% approximately without

deteriorating the cost function value too much.

Finally, it is necessary to underline that the main objective of developing

control strategies for an optimal energy management in a microgrid is not to

guarantee set-point tracking of SOC and LOH but to assure that the energy

demanded is satisfied by minimizing, at the same time, other matters such as

the energy exchanged with the UPG and the degradation of the storage devices.

Nevertheless, another important issue that should be taken into consideration

is to increase as much as possible the lifetime of the different actuators. In

general, the dynamics of a microgrid is very fast, and thus, a sampling period

for the classical SSMPC equal to 10 s had to be selected, which implies a

total of 8640 control actions along one day. Therefore, trying to reduce the

number of actuations is very important. According to the simulation results

included in this Section, the proposed event-based state-space MPC approach

has been able to reduce the number of events around 65% at the expense of an

acceptable deterioration of the cost function value and a little increment in the

energy exchanged with the UPG.
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7. Conclusions

In this paper, an event-based state-space MPC control architecture has been

presented to manage a renewable-energy based microgrid used to provide the

energy demanded by an office-room. The main objective of this control approach

was to reduce the number of changes in the manipulated variables (avoiding

storage devices degradation) maintaining, at the same time, the performance of

the microgrid. More in detail, the energy demanded by an office-room has been

estimated taking into consideration thermal comfort requirements. To evaluate

the goodness of the proposed control approach, simulation results for a typical

summer day have been performed under different scenarios. A comparison with

a classic state-space MPC control system has been also included. The obtained

results are promising and the main conclusion which can be inferred from them

is that the control architecture presented in this paper allows the significant

reduction of the number of changes in the control signal at the expense of

slightly reducing the performance of the cost function evaluation. For instance,

in the simulation scenario with Tmax = 30 s and β = 24% a reduction of the

number of events equal to 65% has been reached.

As for future works, the type of events proposed in this paper will be enlarged

by simulating a dynamic number of rooms in the system or by including electrical

vehicles as a mean to store energy. Moreover, the obligation of satisfying the

whole demand will be removed allowing the control architecture to decide the

most appropriate time instant to satisfy this demand. Therefore, a demand

side management strategy which considers both users’ comfort sensation and

microgrid operation will be developed and compared with the results presented

in this paper.

References

[1] A. Nuñez-Reyes, D. Marcos, C. Bordons, M. Ridao, Optimal scheduling of

grid-connected PV plants with energy storage for integration in the elec-

30



tricity market, Solar Energy 144 (2017) 502–516.

[2] D. Olivares, A. Mehrizi-Sani, A. Etemadi, C. Canizares, R. Iravani, M. Kaz-

erani, A. Hajimiragha, O. Gomis-Bellmunt, A. Saeedifard, R. Palma-

Behnke, G. Jimenez-Estevez, N. Hatziargyriou, Trends in microgrid control,

IEEE Transactions on Smart Grid 5(4) (2014) 1905–1919.
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Table 2: Comparison of selected event-based state-space MPC approach versus classic one.
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1Simulations conducted in Intel(R) Core(TM)i7-8700 CPU 3.20GHz RAM 16 GB, Windows
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Table .3: Nomenclature.

Acronym Meaning

BCVTB Building Control Virtual TestBed

Cmax Maximum energy capacity of the battery

HVAC Heating, Ventilation and Air-Conditioning

LOH Level of Hydrogen

MPC Model Predictive Control

η Conversion efficiency of each storage unit

Pbat Power exchanged with the battery bank

Pdem Power demanded by the office room

PEM Protom Exchange Membrane

Pez Power to the electrolyzer

Pfc Power obtained from the fuel cell

Pgrid Power exchanged with the UPG

PH2 Power applied to the hydrogen path

Pnet Power difference between Pren and Pdem

PLC Programmable Logic Controller

PMV Predicted Mean Vote

PRBS Pseudo-Random Binary Signal

Pren Power originated by renewable energy sources

SOC State Of Charge

UPG Utility Power Grid

Vmax Volume of H2 that can be stored in the tanks

ZSF1 South Zone of the First Floor

37


	Introduction
	Energy demand: Thermal comfort control of an office-room
	Renewable-energy based microgrid
	Linear model

	Event-based State-Space MPC for a renewable-energy based microgrid
	Control architecture
	Event-logic module
	State-Space Model Predictive Control

	Optimal selection of Tmax and  parameters
	Results and discussion
	Conclusions

